ECONOMICS OF MANGO GROWING IN PUNJAB

Khuda Bakhsh*, Basharat Ali Saleem, Aman Ullah Malik and Khurram Ziaf
*Department of Environmental and Resource Economics, University of Agriculture, Faisalabad, Pakistan
Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan

ABSTRACT
Mango cultivation has distinguished characteristics from growing other major crops like wheat, cotton, sugarcane, etc. in the sense that the former continues to produce output for a longer period of time. Therefore, cost of production and returns are estimated in different ways compared to annual crops. The present study has been designed to investigate cost of production, and returns per acre over the life time of mango trees. A sample of 20 mango growing farmers was taken purposely from various villages of Multan district. The objective was to work out Cost benefit ratio and net present worth of growing mango orchard. Net present worth of Rs. 155607.16 per acre was estimated for the sampled respondents which indicate that mango cultivation fetches higher returns whereas Cost benefit ratio is reasonably high and it came to be 2.61 implying that investing one rupee in mango cultivation would return Rs. 2.61. These results indicate that investing in mango orchard would bring huge returns to the farmers on one hand and for the country in the form of foreign earnings on the other hand.

Keywords: Mango, cost of production, returns, Multan, Pakistan.

INTRODUCTION
Mango is the second major fruit crop in Pakistan. At present it is grown on an area of 627.71 thousand acres with production 1089 thousand tonnes (Anonymous, 2005). The main mango growing districts in the Punjab province are Multan, Bahawalpur, Muzaffar Garh and Rahim Yar Khan. In the province of Sindh, it is mainly grown in Mirpur Khas, Hyderabad and Thatta and in the province of NWFP it is grown in Peshawar and Mardan. It occupies 16 percent of total fruit area in Pakistan. Moreover, Multan and Bahawalpur share around 54 percent of total area under mango (Khan, 2005). The statistics indicate that area under mango cultivation has increased with the passage of time; however, the rise in production is comparatively slow.

Mango fruit is rich in nutrients such as protein, vitamin A, fiber, thiamine, ascorbic acid, etc. Pakistan earns huge amounts of foreign exchange reserves from exporting mango each year. However, in spite of this, mango yield in Pakistan is 8-9 tonnes per hectare as compared to the world yield of 25 tonnes per hectare (Sauco, 1993). This gap in yield is due to poor management practices and high postharvest losses as the farmers lack technical know how about the mango production in Pakistan (Khushk and Smith, 1996). Perishable nature and marketing practices are
other factors which affect quality of mango and hence result in low price and ultimately the growers suffer from losses (Sabir, 2003).

Need for the study

Production of fruit orchards like citrus, mango, etc. is distinguished from annual crops by the long gestation period, an extended period of output flow, and varying stages of productivity over the lifetime (Chand, 1994). Therefore, it is more difficult to determine economics of mango production as compared to annual crops. A large variety of forces influences the economics of mango production but the main factors are yield, prices and cost of production. These factors are influenced by other variables like soil, climate, market conditions, etc.

Having sufficient awareness regarding profitability of any enterprise is needed to make rational decisions at the farm level during various production stages. Economics of various crop enterprises has been estimated at different point of time by various organizations (APCom) and individuals (Ahmad et al., 1992, 1994 and 2003). Unfortunately, little research work has been conducted on finding out economics of mango production in Pakistan. Efforts have been made by various individuals to determine economics of orchards (Ahmad et al., 1993; Shakoor, 2001; Hanif, 2003). Ahmad et al. (1993) determined various financial techniques to find out profitability of mango cultivation after having discussions with experts. Shakoor (2001) conducted study on Kinnow growing whereas field conditions relating to mango production have not been studied in detail.

Unfortunately, the farmers and other concerned individuals know very little about economics of growing mango. The farmers need information regarding investment and returns from fruit gardening business. Keeping in view the importance of mango in terms of area, production and foreign earnings from mango export, the present investigation aims at determining the cost of production and profitability of growing a mango orchard.

METHODOLOGY

Source of Data

The present study was confined to Multan district as this district is famous for mango cultivation throughout Pakistan. A total of 20 mango growers were selected from various villages of Multan district. Selection of the mango growers was made by using purposive sampling method because of shortage of time and financial constraints on the hands of the researchers. A well designed questionnaire was prepared for gathering information regarding the use of various inputs and output of mango trees and personal interview method was employed for collecting above mentioned information.

Analytical Framework

As regards fruit or orchard enterprises, the situation are rather different, growing fruit trees represent long term investment. The first few years of such enterprises only involve costs and low returns. To handle such difficulty, following analytical techniques were adopted to determine profitability of mango cultivation.

Generally mango trees do not start bearing commercial crop till the sixth year of their life and the annual fruit harvest is divided into two distinct yield cycles: first, from the seventh to the end of the twelfth year; and the second from thirteenth year to fortieth year. The main difference between the two cycles is the average number of mangoes per tree that can be harvested annually. The yield in the second cycle is more than twice as compared to the first one. It was also assumed that selling price of mango produce and input prices remain constant throughout the duration of the enterprise. This is a fairly common approach to avoid the complications arising from attempts to include inflation in input and output prices. As regards the costs, they were organized under three separate sections: the first establishment year, years 2 to 6, years 7 to 12 and years 13 to 40. Cost of various inputs used in growing mango was calculated on the basis of methodology adopted by Ahmad et al. (1993 and 2004).
Returns from growing fruit trees vary with the age of trees. The first few years only involve costs and low returns. Therefore, costs and returns are estimated by discounting future benefits and future costs and these are called respectively discounted benefits and discounted costs. Financial analysis was used to determine profitability of mango trees. For this purpose, two techniques i.e. Net Present Worth (NPW) and Cost Benefit Ratio (CBR) were used as discussed by Gupta and George (1974), Vaidya et al. (1991) and Ahmad et al. (1993).

Net Present Worth (NPW) of an investment is the discounted value of all cash inflows and cash outflows of the project during its life time. It can be computed as

\[\text{Net Present Worth} = \sum_{t=1}^{n} \frac{B_t - C_t}{(1 + i)^t} \]

Where notations are explained below

\[B_t = \text{benefits in each year} \]
\[C_t = \text{costs in each year} \]
\[n = \text{number of years} \]
\[i = \text{interest rate} \]

The Cost benefit ratio (BCR) of an investment is the ratio of the discounted value of all cash inflows to the discounted value of all cash outflows during the life of the project. It can be estimates as follows

\[\text{CostBenefitRatio} = \frac{\sum_{t=1}^{n} \frac{B_t}{(1 + i)^t}}{\sum_{t=1}^{n} \frac{C_t}{(1 + i)^t}} \]

Where,

\[B_t = \text{benefits in each year} \]
\[C_t = \text{costs in each year} \]
\[n = \text{number of years} \]
\[i = \text{interest rate} \]

The discount rate or interest rate should be equal to the opportunity cost of capital, that is, the rate of interest which could be obtained in the best alternative investment or the rate of interest on borrowed capital. It was assumed as 10 percent for the analysis of the present study.

RESULTS AND DISCUSSIONS

Average cost by items pertaining to the establishment year and for other sections is given in table 1. The average annual total cost for the establishment year of mango plantation came to be Rs. 19820 per acre. Total cost was divided into five items and they included planting material and transplanting cost, fertilizer and manure, plant protection measures, fencing, irrigation, labour and miscellaneous expenditures. Cost incurred on planting material and transplanting was Rs. 2020 per acre. Fertilizer and manure cost was estimated to be Rs. 700, those of fencing, irrigation and miscellaneous were Rs. 5600, 4800 and 1000 per acre, respectively. Labour input included family labour, permanent labour and casual hired labour used for various activities like layout, digging, care of plants, application of fertilizer and irrigation, etc. A total of Rs. 5700 was estimated as labour cost for the first year. Plant protection measure cost was not recorded during the first year because there was no problem of plant protection.

Similarly, for the second section, capital cost (comprising all above mentioned categories) was determined and it came to be Rs. 69270 and the main component of total cost was fertilizer and manure application whereas the second most important one was labour. For the third
section (7-12 years) total cost or capital cost was Rs. 47190 and irrigation, labour and fertilizer and manure were the major constituents of total cost in descending order during this period. A total of Rs. 234920 was estimated as capital cost for the period from 13-40 years. During this period, the crucial constituents of capital cost were irrigation, labour, miscellaneous and fertilizers and manure, respectively (Table 1).

Output and Returns of Mango Cultivation

As discussed earlier, mango trees do not start bearing in the early years, therefore, output and returns were assumed zero from first to sixth year. Output and returns were considered from the start of 7th year and onward because during that period, output was produced in such amount that could be marketed. Output depends on number of trees planted per acre and in the case of present study; average number of trees per acre were estimated to be 46. From these 46 mango trees, output produced was 20424 kg per acre during years 7 to 12 and undiscounted amount was Rs. 178301.52 per acre. During second cycle that started from year 13 and ends on year 40, output increased substantially and it was 224112 kg per acre and total amount was Rs. 1956497.76 per acre (Table 2). This amount shows that mango cultivation gives huge returns by investing less amount of capital i.e. Rs. 371200 as shown in table 1.

Financial Viability of Mango Cultivation

Costs and returns do not serve as true yardsticks for making a decision to go for investing in mango production. This is due to the fact that costs incurred in and returns from mango cultivation are not comparable without discounting such costs and returns. The present worth of costs and benefits was estimated by using 10 percent interest rate or discounting rate. Present worth of benefits for the period of first to sixth year was assumed zero because during this period, mango trees generally do not bear fruits (if fruiting occurs in some years then it is in negligible amount). Net present worth was estimated to be Rs. 155607.16 per acre over the life time of mango trees. Our findings are in full agreement with those of Shakoor (2001). The BCR came to be 2.61 (Table 3) showing that investment in mango cultivation can be considered substantial and economically justifiable. Results of a similar study conducted in India showed BCR as 2.34 (NABARD, 2005) and this finding coincides with our BCR.

CONCLUSION

- Discounted gross income per acre came to be Rs. 71273.41 during 7 to 12 years and Rs. 181052.90 during 13 to 40 years, whereas discounted cost for the respective cycles was Rs. 20629.04 and 24879.36. These results point out that returns from mango growing are substantial and Pakistani farmers could earn huge profit if mango orchards are planned on commercial basis. In this way, the mango growers could earn a large amount of profit on one hand and can contribute towards earning foreign exchange reserves for Pakistan on the other hand.
- Net Present Worth per acre over the life of mango plantation is highly profitable from economic point of view and it is Rs. 155607.16, which indicates that mango cultivation gives higher returns.
- Cost benefit ratio (2.61) is greater than unity and it is profitable to invest more in mango cultivation.

SUGGESTIONS

Results of the study highlight that net returns are positive. It is expected that under the prevailing technology, prices of inputs and outputs, use of various inputs, and the acreage under mango farming will increase. On the basis of the findings of the study, the following suggestions are made to abridge the yield potential of mango.

- Mango cultivation could increase if recommended package of practices of mango based on scientific data are readily available to the farmers. Role of agricultural extension department should be strengthened to boost up mango cultivation and production in the Punjab province.
Fruits of mango are perishable in nature and they need proper packaging, storing and transporting facilities. However, such facilities are not available to the farmers. If these facilities are made available to the farmers at their door steps, the mango cultivation and its profitability would rise to a great extent.

There is a lack of research in mango industry. Prospects of mango cultivation require increased research facilities, research personnel, training to researchers and improved communication between researchers and mango growers. Especially small growers need more attention of the researchers.

It is the time of value addition. Mangoes should be processed into juices, nectars and other value added products. In this way, demand for mangoes would increase and this increased demand would result in higher income of mango growers. For this purpose, setting up processing industries in mango growing areas will be a good decision in the right direction.

The present study was conducted on a small sample. It is suggested that detailed studies based on larger sample size should be conducted to see the profitability of various farm enterprises. This will help in making more appropriate decisions by the planners, policy makers, administrators and the farmers for achieving optimal allocation of scarce farm resources to alternative enterprises.

REFERENCES
Ahmad, B., Bakhsh, K. and Hassan, S. 2004. Economics of growing potato. Faculty of Agricultural Economics and Rural Sociology, University of Agriculture, Faisalabad, Pakistan.
TABLES

Table 1: Estimated cost of mango (Rs/acre)

<table>
<thead>
<tr>
<th>Particulars</th>
<th>Years</th>
<th>1</th>
<th>2-6</th>
<th>7-12</th>
<th>13-40</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planting material and transplanting cost</td>
<td></td>
<td>2020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2020</td>
</tr>
<tr>
<td>Fertilizer and manure</td>
<td></td>
<td>700</td>
<td>20070</td>
<td>8550</td>
<td>49000</td>
<td>78320</td>
</tr>
<tr>
<td>Plant protection measures</td>
<td></td>
<td>-</td>
<td>1500</td>
<td>1998</td>
<td>4144</td>
<td>7642</td>
</tr>
<tr>
<td>Fencing</td>
<td></td>
<td>5600</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5600</td>
</tr>
<tr>
<td>Irrigation</td>
<td></td>
<td>4800</td>
<td>16800</td>
<td>14400</td>
<td>67200</td>
<td>103200</td>
</tr>
<tr>
<td>Labour</td>
<td></td>
<td>5700</td>
<td>18300</td>
<td>13242</td>
<td>58576</td>
<td>95818</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
<td>1000</td>
<td>12600</td>
<td>9000</td>
<td>56000</td>
<td>78600</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>19820</td>
<td>69270</td>
<td>47190</td>
<td>234920</td>
<td>371200</td>
</tr>
</tbody>
</table>

Table 2: Projected output and gross income

<table>
<thead>
<tr>
<th>Particulars</th>
<th>Unit</th>
<th>Quantity</th>
<th>Output (kg/acre)</th>
<th>Amount (Rs/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 7-12</td>
<td>Tree</td>
<td>46</td>
<td>20424</td>
<td>178301.52</td>
</tr>
<tr>
<td>74 kg/tree/year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 13 to 40</td>
<td>Tree</td>
<td>46</td>
<td>224112</td>
<td>1956497.76</td>
</tr>
<tr>
<td>174 kg/tree/year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Financial analysis of mango

<table>
<thead>
<tr>
<th>Particulars/years</th>
<th>1-6</th>
<th>7-12</th>
<th>13-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital cost (Rs/acre)</td>
<td>67030</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maintenance cost (Rs/acre)</td>
<td>-</td>
<td>50340</td>
<td>234920</td>
</tr>
<tr>
<td>Total cost (Rs/acre)</td>
<td>67030</td>
<td>50340</td>
<td>234920</td>
</tr>
<tr>
<td>Gross income (Rs/acre)</td>
<td>0</td>
<td>178301.52</td>
<td>1956497.76</td>
</tr>
<tr>
<td>Net benefit (Rs/acre)</td>
<td>-67030</td>
<td>127961.52</td>
<td>1721577.76</td>
</tr>
<tr>
<td>PWC at 10 % df</td>
<td>51210.77</td>
<td>20629.04</td>
<td>24879.36</td>
</tr>
<tr>
<td>PWB at 10% df</td>
<td>0</td>
<td>71273.41</td>
<td>181052.90</td>
</tr>
<tr>
<td>NPW at 10% df</td>
<td>155607.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCR</td>
<td>2.61</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>