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Abstract

Let F be a p-adic field and G be a metaplectic cover of G = GL(r, F ).
Suppose that M = G1×G2 is a Levi subgroup of G with two blocks. This
note discusses the tensor products of genuine admissible representations
of G1 and of G2.
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1 Preliminaries

A totally disconnected group in this note means a topological group which is also

a Hausdorff space with a countable basis consisting of open compact sets. Let

G be a totally disconnected group and H be a normal subgroup of G such that

G/H is finite abelian. If π is an admissible irreducible representation of G, then

the restriction π|H is a finite direct sum of admissible irreducible representations

of H (refer to [2, Lemma 2.1]). If σ is a representation of H, and g ∈ G, denote

by σg the conjugate of σ which is given by σg(x) = σ(g−1xg),∀x ∈ H. Denote

by σG the induced representation of G. Denote by G∗ the group of characters

of G. We identify (G/H)∗ with the group of characters of G which are trivial

on H. For a character χ ∈ G∗, denote by πχ the representation of G given by

(πχ)(g) = χ(g)π(g). The following lemma follows from [5, Lemma 7.9] (also

refer to [2, Lemma 2.3]).

Lemma 1.1 Let σ be an irreducible representation of H. There is a subgroup

K of G such that

1) H < K < G;
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2) σ extends to an irreducible representation ρ of K on the same space in which

σ operates;

3) ρG is irreducible.

Furthermore,

σG =
⊕

ω∈(K/H)∗

(ρω)G, (1)

where each (ρω)G is irreducible and equivalent to ρGχ for any χ ∈ (G/H)∗

whose restriction to K equals ω.

Corollary 1.2 Let π be an irreducible representation of G. Then σ = π|H is

irreducible if and only if π 6∼= πχ for any nontrivial character χ of G trivial on

H.

Corollary 1.3 For any two irreducible subrepresentations π1 and π2 of σG,

π1|H ∼= π2|H . Furthermore, if σ is subrepresentation of π1|H , then so is σg for

g ∈ G.

Corollary 1.4 If π ∼= πχ for any χ ∈ (G/H)∗, then π = σG for some irre-

ducible representation σ of H.

2 The Definition and Some Basic Properties

Let M be a totally disconnected group and G1, G2 be subgroups of M such

that M = G1 × G2. Let µ be a finite subgroup of C×. We say a topological

group M is a covering group of M by µ if we have a short exact sequence

1 −→ µ −→ M
p−→ M −→ 1,

where p is a topological quotient map.

If H is a subgroup of M , denote H = p−1(H). A representation π of H is

said to be genuine if π(ξg) = ξπ(g) for any ξ ∈ µ, g ∈ H. We assume that all

the representations considered in this note are genuine and admissible.

Denote [x, y] = xyx−1y−1 for x, y ∈ M and denote by [G1, G2] the subgroup

of M generated by [g1, g2], g1 ∈ G1, g2 ∈ G2. Observe in general [G1, G2] 6= 1.

For g2 ∈ G2, define a character

χg2 : G1 → µ, g1 7→ [g2, g1], ∀g1 ∈ G1.
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Let

G◦
1 = {g1 ∈ G1 : [g1, g2] = 1,∀g2 ∈ G2}.

It is easy to see that G◦
1 is a normal subgroup G1. Define the subgroup G◦

2

similarly. The following condition on the covering is assumed in this section.

For i = 1, 2, G◦
i is of finite index in Gi (2)

Remark that the assumption is satisfied if M is a reductive group over p-adic

field.

Let

M◦ = G◦
1 ×G◦

2.

Let Ξ be the subgroup {(ξ, ξ−1) : ξ ∈ µ}. Then we have

G1 ×G◦
2
∼=

(
G1 ×G◦

2

)
/Ξ, M◦ ∼=

(
G◦

1 ×G◦
2

)
/Ξ.

If (π1, V1) and (π◦2 , V2) are irreducible representations of G1 and G◦
2 respec-

tively, define the tensor product representation π1⊗π◦2 of G1 ×G◦
2 on the space

V1 ⊗ V2 by

(π1 ⊗ π◦2)(g1g2)v1 ⊗ v2 = π1(g1)v1 ⊗ π◦2(g2)v2,

∀g1 ∈ G1, g2 ∈ G◦
2, v1 ∈ V1, v2 ∈ V2.

This is well-defined since [G1, G◦
2] = 1.

Lemma 2.1 Notation as above, π1 ⊗ π◦2 is admissible and irreducible. Any

admissible irreducible representation of G1 ×G◦
2 is of this form.

For x ∈ G1, y ∈ G◦
2 and g2 ∈ G2, we have

(π1 ⊗ π◦2)g2 (xy) = (π1 ⊗ π◦2)
(
[g2, x]x

(
g2yg−1

2

))
= (π1χg2) (x)⊗ (π◦2)g2 (y). (3)

The next lemma follows from the above observation.

Lemma 2.2 Let π be an admissible irreducible representation of G. Then π|G1

is a direct sum of at most countably many irreducible representations of G1. If

π1 is one of the irreducible component, then so is π1χ for χ ∈
(
G1/G◦

1

)∗
. Any

irreducible component of π|G1
is equivalent to π1χ for some χ ∈

(
G1/G◦

1

)∗
.
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Let M = G1 × G2 × · · · × Gr be a totally disconnected group and M is a

covering of M by a finite abelian group. Let

G◦
i = {gi ∈ Gi : [gi, g] = 1,∀g ∈ G1 × · · ·Gi−1 ×Gi+1 × · · · ×Gr}.

By induction, we can get a result for M similar to Lemma 2.2.

Definition 2.3 Let M be a covering of a totally disconnected group M = G1×
· · ·×Gr by a finite subgroup of C×. Let πi be an genuine admissible irreducible

representation of Gi for i ≤ r. An admissible irreducible representation of M is

called a metaplectic tensor product of π1, · · · , πr if, for each i, its restriction

to Gi contains the given representations πi.

Denote by {π1 ⊗ · · · ⊗ πr} the set of all metaplectic tensor products of

π1, · · · , πr.

It follows from the definition that any irreducible representation of M is a

tensor product.

If πi, i = 1, 2, 3, are irreducible representations, we denote by {{π1⊗π2}⊗π3}
the union of the sets {π⊗π3} where π runs over {π1⊗π2}. We get the associative

law immediately be the definition.

{{π1 ⊗ π2} ⊗ π3} = {π1 ⊗ π2 ⊗ π3} = {π1 ⊗ {π2 ⊗ π3}}.

From now on, suppose we are given two representations π1 of G1 and π2 of

G2. We want to see how much π1 and π2 can determine irreducible representa-

tions of M . We start with a lemma.

Lemma 2.4 The set of all metaplectic tensor products of π1 and π2 is the set

of all inequivalent irreducible subrepresentations of (π1 ⊗ π◦2)M when π◦2 runs

over all irreducible subrepresentations of π2|G◦
2
.

Corollary 2.5 The number of metaplectic tensor products of π1 and π2 is not

larger than min(|G1/G◦
1|, |G2/G◦

2|).

Theorem 2.6 Let π be a metaplectic tensor product of π1 and π2 Then the set

of metaplectic tensor products of π1 and π2 is (up to equivalence) the set of πχ

where χ runs over the set of characters of M/M◦.
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Proof

By Lemma 2.2, πχ is a tensor product of π1 and π2 for χ ∈ (M/M◦)∗.

To show any tensor product of π1 and π2 is of this form, we first observe the

following fact: For any two irreducible subrepresentations π◦2 and π′◦2 of π2|G◦
2
,

(π1 ⊗ π′◦2 )M = (π1 ⊗ π◦2)M
χ for χ ∈ (M/M◦)∗.

Indeed, assume π′◦2 = (π◦2)g2 for some g2 ∈ G2. By (3), we get the following

identities from which the claim would follow.

(π1 ⊗ (π◦2)g2)M ∼=
(
(π1 ⊗ (π◦2)g2)g−1

2

)M
∼=

(
π1χ

−1
g2

⊗ π◦2
)M ∼= (π1 ⊗ π◦2)M

χ

(4)

for some character χ of M which extends the character (χg2)
−1⊗ 1 of G1 ×G◦

2.

By Lemma 1, Any two irreducible subrepresentations of (π1 ⊗ π◦2)M differ

by a character on M/M◦. Now the theorem follows from Lemma 2.4. Q.E.D.

Corollary 2.7 The restrictions of any two metaplectic tensor products of π1

and π2 to the group M◦ are equivalent. Hence the set {π1 ⊗ π2} of metaplectic

tensor products of π1 and π2 is the set of inequivalent irreducible subrepresen-

tations of (π◦1 ⊗ π◦2)M .

Remark that by the above corollary, the set of metaplectic tensor products

of two irreducible representations π1 and π2 depend only on the restrictions of

π1 and π2 to the subgroups G◦
1 and G◦

2 respectively.

We conclude this section by a lemma which will be used later.

Lemma 2.8 If π1|G◦
1

is irreducible, then the number of metaplectic tensor prod-

ucts of π1 and π2 equals the number of inequivalent irreducible subrepresenta-

tions of π2|G◦
2
.

3 Applications to GL(r, F )

Let F be a p-adic field and G = GL(r, F ). Denote by µn the subgroup of C×

of order n and by (·, ·) the n-Hilbert symbol on F . Let G be the metaplectic

cover of G by µn as defined in [4, §0.1]. In particular, its cocycle on the diagonal

subgroup T is given by

σ(a, b) = (det(a),det(b))c
∏

i<j(ai, bj), (5)
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a = diag(a1, · · · , ar), b = diag(b1, · · · , br) ∈ T,

Suppose r = r1+r2 and let πi be an irreducible presentation of Gi = GL(ri). In

some cases, the set of metaplectic tensor products {π1⊗π2} can be distinguished

by the central characters. For example, [3, Theorem 1] shows this is the case if

the covering number n = 2. Also, this is the case if each πi is the Langlands

quotient of the induced representation iGi

Ti
ρi, where Ti = T ∩ Gi and ρi is an

irreducible representation of Ti such that the exponent of the character ρn
i given

by (the x below is at the i-th position)

ρn
i (x) = ρ(diag(1, · · · , 1, x, x−1, 1 · · · , 1)), x ∈ F×

is nonnegative for any i < r. The last example is when the base field F contains

2n-th roots of unity. Savin has shown that in this case, the exponent c in

(5) can be chosen to be −1/2 and hence M is a quotient group of the direct

product of G1 and G2. So there is only one metaplectic tensor product of two

representations and it behaves just like the usual tensor product [6, Section 1].

It can be shown that the above construction can be realized only if the field F

contains 2n-th roots of unity.

We now give an example showing that the central character can not always

distinguish tensor products.

Lemma 3.1 Let ρ be an irreducible representation of T such that ρw ∼= ρ for

any w in the normalizer of T . Then δ = iG
T

ρ is irreducible and δ|G◦ is a direct

sum of finite copies of an irreducible representation of G◦.

Assume n, r, r1, r2 are natural numbers such that r = r1 + r2, gcd(r1, n) =

gcd(r1 − 1, n) = 1, n|r2. Let GL(r, F ) be the covering of GL(r, F ) given by (5)

with c = 0. Let M = G1 ×G2 with G1 = GL(r1) and G2 = GL(r2).

Take an irreducible representation π1 of G1 such that π1|G◦
1

is a direct sum

of finite copies of an irreducible representation of G◦
1. The existence of such a

representation is guaranteed by Lemma 3.1. Denote by Zi the center of Gi. Let

π2 be any irreducible representation of G2. The center of M is

Z =
{
diag(anIr1 , b

nIr2) : a, b ∈ F×}
= Z1Z2.

6



So all metaplectic tensor products of π1 and π2 have the same central character.

We show there are more than one metaplectic tensor products of π1 and π2.

Let π◦2 be an irreducible subrepresentation of π2|G◦
2
. First observe that

(π◦2)g 6∼= π◦2 for any g ∈ G2 − G◦
2. Indeed, since n|r2, the center of G◦

2 is

Z(G◦) = p−1{xIr2 : x ∈ F×}. Let ω be the central character of π◦2 . Then the

central character of (π◦2)g is ωχg where χg is the character of the center of G◦
2

given by χg(z) = [g, z] = (det(g), x)r2−1 for z ∈ Z(G◦) with p(z) = xIr2 . Since

gcd(r2 − 1, n) = 1, χg is a nontrivial character. We then see (π◦2)g and π◦2 have

different central characters and hence are inequivalent.

We conclude that (π1⊗π◦2)g2 6∼= π1⊗π◦2 for any g2 ∈ G2−G◦
2 by (3). Hence

(π1 ⊗ π◦2)M is irreducible. By the choice of π1, there is an h ∈ G2 such that

π1χh 6∼= π1 (Corollary 1.4). It then follows that π1⊗ (π◦2)h 6∼= (π1⊗π◦2)g2 for any

g2 ∈ G2 −G◦
2 and we get

(π1 ⊗ π◦2)M 6∼=
(
π1 ⊗ (π◦2)h

)M

.

Each side is a metaplectic tensor product of π1 and π2 by Lemma 2.4.

We close this note by a discussion on the metaplectic tensor product defined

in [1].

Let B be a maximal subgroup of F× with the property that (b, b′) = 1 for

all b, b′ ∈ F×. Let r = r1 + · · ·+ rl be a partition of r and M = G1 × · · · ×Gl,

where Gi = GL(ri). Denote

MB = {m = diag(g1, · · · , gl) ∈ M : gi ∈ Gi,det(gi) ∈ B}. (6)

Let G be the covering of G = GL(r, F ) given by (5) and Z the center of G. Sup-

pose πi, i = 1, · · · , l, are admissible irreducible representations of ZGi. Denote

GB
i = {g ∈ Gi : det(g) ∈ B}. Observe [ZGB

i , ZGB
j ] = 1,∀i 6= j. The definition

of the tensor product of πi’s in [1, 26.2] is given as follows.

Pick up any irreducible subrepresentation π′i of πi|ZGB
i

. Form the tensor

product representation π′ = π′1 ⊗ · · · ⊗ π′l of MBZ. The tensor product of

π1, · · · , πl is defined to be the induced representation (π′)M .

The well-definedness of the “tensor product” depends on the following claim:

For any m ∈ M −MBZ, (π′)m is not equivalent to π′.
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Actually the above claim is not true in general. Indeed, we are going to

construct examples to show that the centralizer of MBZ in M is not contained

in MBZ in general. Let

B∗ = {x ∈ F× : (x, b) = 1,∀b ∈ B}.

It is not hard to see that the centralizer of MBZ in M is{
adiag (λ1Ir1 , · · · , λlIrl

) : λi ∈ B∗, ar−1 ∈ B∗} . (7)

If the base field is the field R of real numbers, such an example is easy

to find. In this case, B = R+, B∗ = R×. Let r = 2s be any even number.

Consider M = GL(s) × GL(s). By (7), any scalar matrix is in the centralizer

of MBZ in M , while any scalar in MBZ must be a positive multiple of the

identity matrix.

For p-adic field, we construct as follows. Let p be a prime and n = 4p2.

Let F be a p-adic field containing 2n-th roots of unity whose residue field has

characteristic p, say, F = Qp

(
eπ
√
−1/4p2

)
. Then −1 is an n-th power and

B∗ = B. Observe that (x2p, y2p) = 1 for any x, y ∈ F×. So we may choose B

containing F×2p.

Let r = 2p+1 and consider M = GL(p)×GL(p+1). Take any u ∈ F×−B.

By (7), s(uIr) is in the centralizer of MBZ in M . If s(uIr) ∈ MBZ, then

uIr = bIr · zIr with bIr ∈ p(MB) and zIr ∈ p(Z). By (6), both bp and bp+1

are in B and so is b. Hence u = bz with b ∈ B and z2p ∈ F×4p2
, i.e., u = bz ∈

BF×2pµ2p = B. This contradicts with the choice of u and hence the centralizer

of MBZ in M is not contained in MBZ.

Acknowledgments

I would like to thank J. Adams, B. Roberts and G. Savin for many helpful

discussions.

References
[1] Y Z Flicker and D A Kazhdan. Metaplectic correspondence. Publ. Math. IHES, 64:53–110,

1986.

[2] S S Gelbart and A W Knapp. L-indistinguishability and R groups for the special linear
group. Adv. in Math., 43(2):101–121, 1982.

8



[3] A Kable. Exceptional Representation of the Metaplectic Double Cover of the General
Linear Group. PhD thesis, Oklahoma State University, 1997.

[4] D A Kazhdan and S J Patterson. Metaplectic forms. Publ. Math. I.H.E.S., 59:35–142,
1984.

[5] A W Knapp and E M Stein. Intertwining operators for semisimple groups, II. Inventiones
Math., 60:9–84, 1980.

[6] G Savin. A nice central extensor of GL(r). preprint.

Department of Mathematics

University of Toronto

100 St. George Street

Toronto, Ontario M5S 3G3

sun@math.utoronto.ca

9


