# Examples of Metaplectic Tensor Products

Heng Sun

1998.9.

#### Abstract

Let F be a p-adic field and  $\overline{G}$  be a metaplectic cover of G = GL(r, F). Suppose that  $M = G_1 \times G_2$  is a Levi subgroup of G with two blocks. This note discusses the tensor products of genuine admissible representations of  $\overline{G_1}$  and of  $\overline{G_2}$ .

AMS subject classification: Primary: 11F70, Secondary: 22D12. Key words and phrases: metaplectic group, tensor product

### **1** Preliminaries

A totally disconnected group in this note means a topological group which is also a Hausdorff space with a countable basis consisting of open compact sets. Let G be a totally disconnected group and H be a normal subgroup of G such that G/H is finite abelian. If  $\pi$  is an admissible irreducible representation of G, then the restriction  $\pi|_H$  is a finite direct sum of admissible irreducible representations of H (refer to [2, Lemma 2.1]). If  $\sigma$  is a representation of H, and  $g \in G$ , denote by  $\sigma^g$  the conjugate of  $\sigma$  which is given by  $\sigma^g(x) = \sigma(g^{-1}xg), \forall x \in H$ . Denote by  $\sigma^G$  the induced representation of G. Denote by  $G^*$  the group of characters of G. We identify  $(G/H)^*$  with the group of characters of G which are trivial on H. For a character  $\chi \in G^*$ , denote by  $\pi\chi$  the representation of G given by  $(\pi\chi)(g) = \chi(g)\pi(g)$ . The following lemma follows from [5, Lemma 7.9] (also refer to [2, Lemma 2.3]).

Lemma 1.1 Let σ be an irreducible representation of H. There is a subgroup K of G such that

 H < K < G;</li> 2)  $\sigma$  extends to an irreducible representation  $\rho$  of K on the same space in which  $\sigma$  operates;

3)  $\rho^G$  is irreducible.

Furthermore,

$$\sigma^G = \bigoplus_{\omega \in (K/H)^*} (\rho \omega)^G, \tag{1}$$

where each  $(\rho\omega)^G$  is irreducible and equivalent to  $\rho^G \chi$  for any  $\chi \in (G/H)^*$ whose restriction to K equals  $\omega$ .

**Corollary 1.2** Let  $\pi$  be an irreducible representation of G. Then  $\sigma = \pi|_H$  is irreducible if and only if  $\pi \not\cong \pi \chi$  for any nontrivial character  $\chi$  of G trivial on H.

**Corollary 1.3** For any two irreducible subrepresentations  $\pi_1$  and  $\pi_2$  of  $\sigma^G$ ,  $\pi_1|_H \cong \pi_2|_H$ . Furthermore, if  $\sigma$  is subrepresentation of  $\pi_1|_H$ , then so is  $\sigma^g$  for  $g \in G$ .

**Corollary 1.4** If  $\pi \cong \pi \chi$  for any  $\chi \in (G/H)^*$ , then  $\pi = \sigma^G$  for some irreducible representation  $\sigma$  of H.

## 2 The Definition and Some Basic Properties

Let M be a totally disconnected group and  $G_1$ ,  $G_2$  be subgroups of M such that  $M = G_1 \times G_2$ . Let  $\mu$  be a finite subgroup of  $\mathbf{C}^{\times}$ . We say a topological group  $\overline{M}$  is a covering group of M by  $\mu$  if we have a short exact sequence

$$1 \longrightarrow \mu \longrightarrow \overline{M} \xrightarrow{p} M \longrightarrow 1,$$

where p is a topological quotient map.

If H is a subgroup of M, denote  $\overline{H} = p^{-1}(H)$ . A representation  $\pi$  of  $\overline{H}$  is said to be genuine if  $\pi(\xi g) = \xi \pi(g)$  for any  $\xi \in \mu, g \in \overline{H}$ . We assume that all the representations considered in this note are genuine and admissible.

Denote  $[x, y] = xyx^{-1}y^{-1}$  for  $x, y \in \overline{M}$  and denote by  $[\overline{G_1}, \overline{G_2}]$  the subgroup of M generated by  $[g_1, g_2], g_1 \in \overline{G_1}, g_2 \in \overline{G_2}$ . Observe in general  $[\overline{G_1}, \overline{G_2}] \neq 1$ . For  $g_2 \in G_2$ , define a character

$$\chi_{g_2}: \overline{G_1} \to \mu, \quad g_1 \mapsto [g_2, g_1], \quad \forall g_1 \in G_1.$$

Let

$$\overline{G_1^\circ} = \{g_1 \in \overline{G_1} : [g_1, g_2] = 1, \forall g_2 \in \overline{G_2}\}.$$

It is easy to see that  $\overline{G_1^{\circ}}$  is a normal subgroup  $\overline{G_1}$ . Define the subgroup  $\overline{G_2^{\circ}}$  similarly. The following condition on the covering is assumed in this section.

For 
$$i = 1, 2$$
,  $\overline{G_i^{\circ}}$  is of finite index in  $\overline{G_i}$  (2)

Remark that the assumption is satisfied if M is a reductive group over p-adic field.

Let

$$M^{\circ} = G_1^{\circ} \times G_2^{\circ}.$$

Let  $\Xi$  be the subgroup  $\{(\xi, \xi^{-1}) : \xi \in \mu\}$ . Then we have

$$\overline{G_1 \times G_2^\circ} \cong \left(\overline{G_1} \times \overline{G_2^\circ}\right) / \Xi, \quad \overline{M^\circ} \cong \left(\overline{G_1^\circ} \times \overline{G_2^\circ}\right) / \Xi.$$

If  $(\pi_1, V_1)$  and  $(\pi_2^{\circ}, V_2)$  are irreducible representations of  $\overline{G_1}$  and  $\overline{G_2^{\circ}}$  respectively, define the tensor product representation  $\pi_1 \otimes \pi_2^{\circ}$  of  $\overline{G_1 \times G_2^{\circ}}$  on the space  $V_1 \otimes V_2$  by

$$(\pi_1 \otimes \pi_2^\circ)(g_1g_2)v_1 \otimes v_2 = \pi_1(g_1)v_1 \otimes \pi_2^\circ(g_2)v_2$$
$$\forall g_1 \in \overline{G_1}, g_2 \in \overline{G_2^\circ}, v_1 \in V_1, v_2 \in V_2.$$

This is well-defined since  $[\overline{G_1}, \overline{G_2}] = 1$ .

**Lemma 2.1** Notation as above,  $\pi_1 \otimes \pi_2^{\circ}$  is admissible and irreducible. Any admissible irreducible representation of  $\overline{G_1 \times G_2^{\circ}}$  is of this form.

For  $x \in \overline{G_1}, y \in \overline{G_2^{\circ}}$  and  $g_2 \in \overline{G_2}$ , we have

$$(\pi_1 \otimes \pi_2^{\circ})^{g_2}(xy) = (\pi_1 \otimes \pi_2^{\circ}) \left( [g_2, x] x \left( g_2 y g_2^{-1} \right) \right) = (\pi_1 \chi_{g_2}) \left( x \right) \otimes (\pi_2^{\circ})^{g_2}(y).$$
(3)

The next lemma follows from the above observation.

**Lemma 2.2** Let  $\pi$  be an admissible irreducible representation of  $\overline{G}$ . Then  $\pi|_{\overline{G_1}}$  is a direct sum of at most countably many irreducible representations of  $\overline{G_1}$ . If  $\pi_1$  is one of the irreducible component, then so is  $\pi_1\chi$  for  $\chi \in (\overline{G_1}/\overline{G_1^\circ})^*$ . Any irreducible component of  $\pi|_{\overline{G_1}}$  is equivalent to  $\pi_1\chi$  for some  $\chi \in (\overline{G_1}/\overline{G_1^\circ})^*$ .

Let  $M = G_1 \times G_2 \times \cdots \times G_r$  be a totally disconnected group and  $\overline{M}$  is a covering of M by a finite abelian group. Let

$$\overline{G_i^{\circ}} = \{g_i \in \overline{G_i} : [g_i, g] = 1, \forall g \in \overline{G_1 \times \cdots \oplus G_{i-1} \times G_{i+1} \times \cdots \times G_r}\}.$$

By induction, we can get a result for  $\overline{M}$  similar to Lemma 2.2.

**Definition 2.3** Let  $\overline{M}$  be a covering of a totally disconnected group  $M = G_1 \times \cdots \times G_r$  by a finite subgroup of  $\mathbb{C}^{\times}$ . Let  $\pi_i$  be an genuine admissible irreducible representation of  $\overline{G_i}$  for  $i \leq r$ . An admissible irreducible representation of  $\overline{M}$  is called a metaplectic tensor product of  $\pi_1, \dots, \pi_r$  if, for each i, its restriction to  $\overline{G_i}$  contains the given representations  $\pi_i$ .

Denote by  $\{\pi_1 \otimes \cdots \otimes \pi_r\}$  the set of all metaplectic tensor products of  $\pi_1, \dots, \pi_r$ .

It follows from the definition that any irreducible representation of  $\overline{M}$  is a tensor product.

If  $\pi_i$ , i = 1, 2, 3, are irreducible representations, we denote by  $\{\{\pi_1 \otimes \pi_2\} \otimes \pi_3\}$  the union of the sets  $\{\pi \otimes \pi_3\}$  where  $\pi$  runs over  $\{\pi_1 \otimes \pi_2\}$ . We get the associative law immediately be the definition.

$$\{\{\pi_1 \otimes \pi_2\} \otimes \pi_3\} = \{\pi_1 \otimes \pi_2 \otimes \pi_3\} = \{\pi_1 \otimes \{\pi_2 \otimes \pi_3\}\}.$$

From now on, suppose we are given two representations  $\pi_1$  of  $\overline{G_1}$  and  $\pi_2$  of  $\overline{G_2}$ . We want to see how much  $\pi_1$  and  $\pi_2$  can determine irreducible representations of  $\overline{M}$ . We start with a lemma.

**Lemma 2.4** The set of all metaplectic tensor products of  $\pi_1$  and  $\pi_2$  is the set of all inequivalent irreducible subrepresentations of  $(\pi_1 \otimes \pi_2^\circ)^{\overline{M}}$  when  $\pi_2^\circ$  runs over all irreducible subrepresentations of  $\pi_2|_{\overline{G_n^\circ}}$ .

**Corollary 2.5** The number of metaplectic tensor products of  $\pi_1$  and  $\pi_2$  is not larger than  $\min(|G_1/G_1^\circ|, |G_2/G_2^\circ|)$ .

**Theorem 2.6** Let  $\pi$  be a metaplectic tensor product of  $\pi_1$  and  $\pi_2$  Then the set of metaplectic tensor products of  $\pi_1$  and  $\pi_2$  is (up to equivalence) the set of  $\pi\chi$ where  $\chi$  runs over the set of characters of  $\overline{M}/\overline{M^{\circ}}$ . Proof

By Lemma 2.2,  $\pi\chi$  is a tensor product of  $\pi_1$  and  $\pi_2$  for  $\chi \in (\overline{M}/\overline{M^\circ})^*$ . To show any tensor product of  $\pi_1$  and  $\pi_2$  is of this form, we first observe the following fact: For any two irreducible subrepresentations  $\pi_2^\circ$  and  $\pi_2'^\circ$  of  $\pi_2|_{\overline{G_2^\circ}}$ ,  $(\pi_1 \otimes \pi_2')^{\overline{M}} = (\pi_1 \otimes \pi_2^\circ)^{\overline{M}} \chi$  for  $\chi \in (\overline{M}/\overline{M^\circ})^*$ .

Indeed, assume  $\pi_2^{\circ} = (\pi_2^{\circ})^{g_2}$  for some  $g_2 \in \overline{G_2}$ . By (3), we get the following identities from which the claim would follow.

$$(\pi_1 \otimes (\pi_2^{\circ})^{g_2})^{\overline{M}} \cong \left( (\pi_1 \otimes (\pi_2^{\circ})^{g_2})^{g_2^{-1}} \right)^{\overline{M}} \cong \left( \pi_1 \chi_{g_2}^{-1} \otimes \pi_2^{\circ} \right)^{\overline{M}} \cong (\pi_1 \otimes \pi_2^{\circ})^{\overline{M}} \chi$$

$$(4)$$

for some character  $\chi$  of  $\overline{M}$  which extends the character  $(\chi_{g_2})^{-1} \otimes 1$  of  $\overline{G_1 \times G_2^{\circ}}$ .

By Lemma 1, Any two irreducible subrepresentations of  $(\pi_1 \otimes \pi_2^{\circ})^{\overline{M}}$  differ by a character on  $\overline{M}/\overline{M^{\circ}}$ . Now the theorem follows from Lemma 2.4. *Q.E.D.* 

**Corollary 2.7** The restrictions of any two metaplectic tensor products of  $\pi_1$ and  $\pi_2$  to the group  $\overline{M^{\circ}}$  are equivalent. Hence the set  $\{\pi_1 \otimes \pi_2\}$  of metaplectic tensor products of  $\pi_1$  and  $\pi_2$  is the set of inequivalent irreducible subrepresentations of  $(\pi_1^{\circ} \otimes \pi_2^{\circ})^{\overline{M}}$ .

Remark that by the above corollary, the set of metaplectic tensor products of two irreducible representations  $\pi_1$  and  $\pi_2$  depend only on the restrictions of  $\pi_1$  and  $\pi_2$  to the subgroups  $\overline{G_1^{\circ}}$  and  $\overline{G_2^{\circ}}$  respectively.

We conclude this section by a lemma which will be used later.

**Lemma 2.8** If  $\pi_1|_{\overline{G_1^{\circ}}}$  is irreducible, then the number of metaplectic tensor products of  $\pi_1$  and  $\pi_2$  equals the number of inequivalent irreducible subrepresentations of  $\pi_2|_{\overline{G_2^{\circ}}}$ .

## **3** Applications to $\overline{GL(r,F)}$

Let F be a p-adic field and G = GL(r, F). Denote by  $\mu_n$  the subgroup of  $\mathbf{C}^{\times}$  of order n and by  $(\cdot, \cdot)$  the n-Hilbert symbol on F. Let  $\overline{G}$  be the metaplectic cover of G by  $\mu_n$  as defined in [4, §0.1]. In particular, its cocycle on the diagonal subgroup T is given by

$$\sigma(a,b) = (\det(a), \det(b))^c \prod_{i < j} (a_i, b_j), \tag{5}$$

$$a = \operatorname{diag}(a_1, \cdots, a_r), b = \operatorname{diag}(b_1, \cdots, b_r) \in T,$$

Suppose  $r = r_1 + r_2$  and let  $\pi_i$  be an irreducible presentation of  $\overline{G_i} = \overline{GL(r_i)}$ . In some cases, the set of metaplectic tensor products  $\{\pi_1 \otimes \pi_2\}$  can be distinguished by the central characters. For example, [3, Theorem 1] shows this is the case if the covering number n = 2. Also, this is the case if each  $\pi_i$  is the Langlands quotient of the induced representation  $i \overline{\frac{G_i}{T_i}} \rho_i$ , where  $T_i = T \cap G_i$  and  $\rho_i$  is an irreducible representation of  $T_i$  such that the exponent of the character  $\rho_i^n$  given by (the x below is at the *i*-th position)

$$\rho_i^n(x) = \rho(\text{diag}(1, \dots, 1, x, x^{-1}, 1, \dots, 1)), \quad x \in F^{\times}$$

is nonnegative for any i < r. The last example is when the base field F contains 2n-th roots of unity. Savin has shown that in this case, the exponent c in (5) can be chosen to be -1/2 and hence  $\overline{M}$  is a quotient group of the direct product of  $\overline{G_1}$  and  $\overline{G_2}$ . So there is only one metaplectic tensor product of two representations and it behaves just like the usual tensor product [6, Section 1]. It can be shown that the above construction can be realized only if the field F contains 2n-th roots of unity.

We now give an example showing that the central character can not always distinguish tensor products.

**Lemma 3.1** Let  $\rho$  be an irreducible representation of  $\overline{T}$  such that  $\rho^w \cong \rho$  for any w in the normalizer of  $\overline{T}$ . Then  $\delta = i \overline{\overline{G}} \rho$  is irreducible and  $\delta|_{\overline{G^o}}$  is a direct sum of finite copies of an irreducible representation of  $\overline{G^o}$ .

Assume  $n, r, r_1, r_2$  are natural numbers such that  $r = r_1 + r_2, \gcd(r_1, n) = \gcd(r_1 - 1, n) = 1, n | r_2$ . Let  $\overline{GL(r, F)}$  be the covering of GL(r, F) given by (5) with c = 0. Let  $M = G_1 \times G_2$  with  $G_1 = GL(r_1)$  and  $G_2 = GL(r_2)$ .

Take an irreducible representation  $\pi_1$  of  $\overline{G_1}$  such that  $\pi_1|_{\overline{G_1^\circ}}$  is a direct sum of finite copies of an irreducible representation of  $\overline{G_1^\circ}$ . The existence of such a representation is guaranteed by Lemma 3.1. Denote by  $\overline{Z_i}$  the center of  $\overline{G_i}$ . Let  $\pi_2$  be any irreducible representation of  $\overline{G_2}$ . The center of  $\overline{M}$  is

$$\overline{Z} = \left\{ \operatorname{diag}(a^n I_{r_1}, b^n I_{r_2}) : a, b \in F^{\times} \right\} = \overline{Z_1 Z_2}.$$

So all metaplectic tensor products of  $\pi_1$  and  $\pi_2$  have the same central character. We show there are more than one metaplectic tensor products of  $\pi_1$  and  $\pi_2$ .

Let  $\pi_2^{\circ}$  be an irreducible subrepresentation of  $\pi_2|_{\overline{G_2^{\circ}}}$ . First observe that  $(\pi_2^{\circ})^g \not\cong \pi_2^{\circ}$  for any  $g \in \overline{G_2} - \overline{G_2^{\circ}}$ . Indeed, since  $n|_{r_2}$ , the center of  $\overline{G_2^{\circ}}$  is  $Z(\overline{G^{\circ}}) = p^{-1}\{xI_{r_2} : x \in F^{\times}\}$ . Let  $\omega$  be the central character of  $\pi_2^{\circ}$ . Then the central character of  $(\pi_2^{\circ})^g$  is  $\omega\chi_g$  where  $\chi_g$  is the character of the center of  $\overline{G_2^{\circ}}$  given by  $\chi_g(z) = [g, z] = (\det(g), x)^{r_2 - 1}$  for  $z \in Z(\overline{G^{\circ}})$  with  $p(z) = xI_{r_2}$ . Since  $\gcd(r_2 - 1, n) = 1$ ,  $\chi_g$  is a nontrivial character. We then see  $(\pi_2^{\circ})^g$  and  $\pi_2^{\circ}$  have different central characters and hence are inequivalent.

We conclude that  $(\pi_1 \otimes \pi_2^\circ)^{g_2} \not\cong \pi_1 \otimes \pi_2^\circ$  for any  $g_2 \in \overline{G_2} - \overline{G_2^\circ}$  by (3). Hence  $(\pi_1 \otimes \pi_2^\circ)^{\overline{M}}$  is irreducible. By the choice of  $\pi_1$ , there is an  $h \in \overline{G_2}$  such that  $\pi_1 \chi_h \not\cong \pi_1$  (Corollary 1.4). It then follows that  $\pi_1 \otimes (\pi_2^\circ)^h \not\cong (\pi_1 \otimes \pi_2^\circ)^{g_2}$  for any  $g_2 \in \overline{G_2} - \overline{G_2^\circ}$  and we get

$$(\pi_1\otimes\pi_2^\circ)^{\overline{M}}
ot\cong \left(\pi_1\otimes(\pi_2^\circ)^h\right)^{\overline{M}}$$

Each side is a metaplectic tensor product of  $\pi_1$  and  $\pi_2$  by Lemma 2.4.

We close this note by a discussion on the metaplectic tensor product defined in [1].

Let B be a maximal subgroup of  $F^{\times}$  with the property that (b, b') = 1 for all  $b, b' \in F^{\times}$ . Let  $r = r_1 + \cdots + r_l$  be a partition of r and  $M = G_1 \times \cdots \times G_l$ , where  $G_i = GL(r_i)$ . Denote

$$M^B = \{m = \operatorname{diag}(g_1, \cdots, g_l) \in M : g_i \in G_i, \operatorname{det}(g_i) \in B\}.$$
(6)

Let  $\overline{G}$  be the covering of G = GL(r, F) given by (5) and  $\overline{Z}$  the center of  $\overline{G}$ . Suppose  $\pi_i$ ,  $i = 1, \dots, l$ , are admissible irreducible representations of  $\overline{ZG_i}$ . Denote  $G_i^B = \{g \in G_i : \det(g) \in B\}$ . Observe  $[\overline{ZG_i^B}, \overline{ZG_j^B}] = 1, \forall i \neq j$ . The definition of the tensor product of  $\pi_i$ 's in [1, 26.2] is given as follows.

Pick up any irreducible subrepresentation  $\pi'_i$  of  $\pi_i|_{\overline{ZG_i^B}}$ . Form the tensor product representation  $\pi' = \pi'_1 \otimes \cdots \otimes \pi'_l$  of  $\overline{M^B Z}$ . The tensor product of  $\pi_1, \cdots, \pi_l$  is defined to be the induced representation  $(\pi')^{\overline{M}}$ .

The well-definedness of the "tensor product" depends on the following claim: For any  $m \in \overline{M} - \overline{M^B Z}$ ,  $(\pi')^m$  is not equivalent to  $\pi'$ . Actually the above claim is not true in general. Indeed, we are going to construct examples to show that the centralizer of  $\overline{M^B Z}$  in  $\overline{M}$  is not contained in  $\overline{M^B Z}$  in general. Let

$$B^* = \{ x \in F^{\times} : (x, b) = 1, \forall b \in B \}.$$

It is not hard to see that the centralizer of  $\overline{M^BZ}$  in  $\overline{M}$  is

$$\left\{a\operatorname{diag}\left(\lambda_{1}I_{r_{1}},\cdots,\lambda_{l}I_{r_{l}}\right):\lambda_{i}\in B^{*},a^{r-1}\in B^{*}\right\}.$$
(7)

If the base field is the field **R** of real numbers, such an example is easy to find. In this case,  $B = \mathbf{R}^+$ ,  $B^* = \mathbf{R}^{\times}$ . Let r = 2s be any even number. Consider  $M = GL(s) \times GL(s)$ . By (7), any scalar matrix is in the centralizer of  $\overline{M^B Z}$  in  $\overline{M}$ , while any scalar in  $\overline{M^B Z}$  must be a positive multiple of the identity matrix.

For *p*-adic field, we construct as follows. Let *p* be a prime and  $n = 4p^2$ . Let *F* be a *p*-adic field containing 2*n*-th roots of unity whose residue field has characteristic *p*, say,  $F = \mathbf{Q}_p\left(e^{\pi\sqrt{-1}/4p^2}\right)$ . Then -1 is an *n*-th power and  $B^* = B$ . Observe that  $(x^{2p}, y^{2p}) = 1$  for any  $x, y \in F^{\times}$ . So we may choose *B* containing  $F^{\times 2p}$ .

Let r = 2p + 1 and consider  $M = GL(p) \times GL(p+1)$ . Take any  $u \in F^{\times} - B$ . By (7),  $s(uI_r)$  is in the centralizer of  $\overline{M^BZ}$  in  $\overline{M}$ . If  $s(uI_r) \in \overline{M^BZ}$ , then  $uI_r = bI_r \cdot zI_r$  with  $bI_r \in p(\overline{M^B})$  and  $zI_r \in p(\overline{Z})$ . By (6), both  $b^p$  and  $b^{p+1}$  are in B and so is b. Hence u = bz with  $b \in B$  and  $z^{2p} \in F^{\times 4p^2}$ , i.e.,  $u = bz \in BF^{\times 2p}\mu_{2p} = B$ . This contradicts with the choice of u and hence the centralizer of  $\overline{M^BZ}$  in  $\overline{M}$  is not contained in  $\overline{M^BZ}$ .

#### Acknowledgments

I would like to thank J. Adams, B. Roberts and G. Savin for many helpful discussions.

### References

- Y Z Flicker and D A Kazhdan. Metaplectic correspondence. Publ. Math. IHES, 64:53–110, 1986.
- [2] S S Gelbart and A W Knapp. L-indistinguishability and R groups for the special linear group. Adv. in Math., 43(2):101–121, 1982.

- [3] A Kable. Exceptional Representation of the Metaplectic Double Cover of the General Linear Group. PhD thesis, Oklahoma State University, 1997.
- [4] D A Kazhdan and S J Patterson. Metaplectic forms. Publ. Math. I.H.E.S., 59:35–142, 1984.
- [5] A W Knapp and E M Stein. Intertwining operators for semisimple groups, II. Inventiones Math., 60:9–84, 1980.
- [6] G Savin. A nice central extensor of GL(r). preprint.

Department of Mathematics University of Toronto 100 St. George Street Toronto, Ontario M5S 3G3 sun@math.utoronto.ca