
9 6 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 0 0 7 4 0 - 7 4 5 9 / 0 0 / $ 1 0 . 0 0 © 2 0 0 0 I E E E

team. This is due to the nature of the cus-
tomer being not generic or commercial, but
rather being very specific stakeholders in
the project. The small project often must
achieve quality goals that are just as strin-
gent as those of any large project, yet with
fewer team members. Finally, the small-
project team might include several people
with only part-time participation on the
project, such as domain experts, architects,
and system test personnel, which requires
more coordination and interaction to effec-
tively utilize their skills. A process focuses
the efforts of all the team members so that
dependencies can be managed more effi-
ciently to achieve the project’s goals.

We have adapted portions of several
standard process models to provide a soft-
ware development process for small proj-
ects. The process integrates many activities
that might appear in separate processes in a

larger project. Its goal is to produce the
high quality and timely results required for
today’s market without imposing a large
overhead on a small project.

Small Projects and Process
A process can be important to small

projects for reasons other than the large
number of dependencies. Consider the fol-
lowing three scenarios.

My Favorite Activity Gets All My Attention
In this scenario, the development team

does an outstanding job with whichever de-
velopment phases its members care most
about and does little or nothing about the
other phases. For example, if the team con-
sists of mostly domain-literate personnel,
the domain model will be fully elaborated,
but the code will not meet performance
goals or might experience significant fail-

focus
A Software Develop-
ment Process for
Small Projects

Melissa L. Russ and John D. McGregor,
Korson-McGregor, A Software Technology Company

The authors’
development

process integrates
portions of an

iterative,
incremental

process model
with a quality

assurance process
and a measure-

ment process used
for process

improvement.
Their process aims

to produce high
quality and timely

results with less
overhead.

A
software development process can be just as critical to a small
project’s success as it is to that of a large one. A small project
might appear to have less need for the coordination that a process
provides. However, such projects often have a larger number of

external dependencies per team member. For example, the small-project de-
velopment team often has a closer association with its customers, requiring
more team member interaction than does the large project development

SE in the small

ures. If the team favors code, the system will
run but might not satisfy system require-
ments. A process provides a context that re-
minds team members of the steps necessary
for producing a quality product.

Stuck in a Rut and Just Digging Deeper
This scenario includes the often-cited

“paralysis by analysis” syndrome. In a rapidly
changing domain, by the time a team com-
pletes a phase of the development process,
some of its work is out of date. The team tries
to repair this before moving to the next phase.
The result: the team never moves on. You can
overcome this quest for completeness by
adopting a process that defines iterative passes
through the phases. In this way, exit criteria ul-
timately require “absolute completeness” but
accept partial results in initial iterations.

What Will I Do Today?
Here, the team makes little progress be-

cause it is unsure about what to do next.
This scenario implies wasted time as team
members try to complete activities for
which they have insufficiently prepared. For
example, attempting class implementation
before properly specifying the methods usu-
ally results in incomplete handling of errors
and special cases. So, routines for handling
these special cases and error-handling must
be added later in an ad hoc fashion. In this
scenario, the team has no flow of activities
to guide it. Grady Booch claims that every
successful project has a rhythm.1 Process es-
tablishes and guides that rhythm.

Our Development Process
Our experience and that of others in our

company range from single-developer, in-
house projects, to multiple small teams in a
multinational corporation’s business unit, to
large projects with hundreds of developers
and a full complement of support personnel.
We have drawn on all those experiences to
compare and contrast the process issues for
large and small projects. (To see how we de-
termine that a project is small, read the side-
bar, “What Makes a Project Small?”)

The software development process we
describe here began as a process for our
own in-house development projects, but
we’ve also used elements of it in a variety of
client projects. Our goal was to capture the
activities essential for building a quality

software product and to arrange the activi-
ties into a process that a small number of
people can use effectively.

S e p t e m b e r / O c t o b e r 2 0 0 0 I E E E S O F T W A R E 97

Many environmental factors determine whether we should classify a project
as small. If we understand these factors, we can define a process and tailor it to
meet a small project’s needs. Here are four factors and their potential impact on
a project’s dynamics.

The Development Organization’s Size
A small project in an organization that runs hundreds of projects probably

has access to an infrastructure of services and advice. In contrast, an organiza-
tion with only one or a few projects probably cannot provide process writers,
trained inspection moderators, and other supporting process and development
services. For example, we were involved with a project, which was one of only
a few projects, in an organization that mostly did system administration for
third-party software. This organization did not perform or even understand stan-
dard process activities such as release scheduling and design reviews.

The Project’s Complexity
One way of classifying a project’s complexity is by examining the sophisti-

cation of the domain knowledge required for the project. For example, a classi-
fication might range from simple business processes to embedded real-time ap-
plications. The more complex the domain, the greater the need to formally
structure the project activities. (We would probably all agree that following a
checklist is more important for an airplane pilot than for a carpool driver.) The
more complex a small project is, the more difficult it is to staff that project with
a sufficient breadth of expertise. The development process should clearly define
roles that allow persons with appropriate knowledge and skills to be assigned
part-time responsibilities that the project team needs.

Quality Attributes
A system can have a number of specified quality attributes, such as relia-

bility, security, and performance. The more exactly we can measure an at-
tribute, the more we need specific process activities to achieve that attribute.
Systems that must meet real-time performance requirements need more
process support, such as detailed models and performance prototypes, than
do those that have vaguely defined human-time performance criteria. Small
projects usually involve less code, which means they often can achieve the
required quality goals more easily. The exception to this might be quality at-
tributes involved with the development of complex systems.

Personnel Interactions
Studies have shown that even small increases in the number of personnel

can greatly increase the number of interactions necessary to make progress
in a development project.1 Small projects have an advantage in that the in-
teractions are usually informal. Small projects also often benefit from a rela-
tively shallow management structure. Occasionally the project staff will take
an action that, after it percolates to higher management, must be reversed.
The small project will be able to react more quickly because of the fewer
layers of management involved.

Reference
1. J.O. Coplien, “A Development Process Generative Pattern Language,” www.bell-

labs.com/user/cope/Patterns/Process/index.html (current August 2000).

What Makes a Project Small?

An Integrated Approach
Most software develop-

ment organizations use an
iterative development ap-
proach to lower risk and
improve quality.2 These
organizations also use an
incremental approach to
define customer releases
and to divide a large prob-
lem into more manageable
pieces. Small projects tend
to be highly iterative both
because synchronizing the
developers requires less ef-

fort and because the management structure is
sufficiently shallow, allowing quick feedback.

Our process integrates this basic itera-
tive, incremental model with our Guided In-
spection technique3 and the measurement
framework provided by Watts Humphrey’s
Personal Software Process.4 Guided Inspec-
tions examine the products of software de-
velopment for defects, using formal test
cases based on specifications for the prod-
ucts. PSP defines tools and measures that
help developers analyze and improve their
personal productivity and quality. A num-
ber of organizations have successfully used
it, and it has proven effective in facilitating
individual improvement. However, PSP by
itself does not fulfill the need for a project-
level software development process that co-
ordinates all the project’s work.

Our process guides the developer on what
steps to follow and what emphasis to place on
activities in each development phase. The
process uses Guided Inspection to ensure
quality, and it uses a variation of PSP’s meas-
urement strategy to collect data for individual
and project-level process improvement. To
describe our process, we use a fairly typical
set of attributes such as entry and exit criteria.

Merely combining several processes into
one does not necessarily save time. So, we re-
duce the process overhead through several
specific actions. First, management can re-
quire less formal communication among the
project staff, resulting in developers creating
fewer documents.

Second, by integrating processes we re-
arrange some of the tasks into more efficient
configurations. This eliminates the startup
overhead that would be incurred for a set of
related tasks if those tasks were performed

separately. For example, team members test-
ing the integration of new software with the
existing product are the same developers who
created the new software. This eliminates the
learning curve because the testers already un-
derstand the new software’s functionality.

Finally, we eliminate some tasks or inte-
grate them into other tasks. For example,
integrating the Guided Inspection sessions
into the development activities eliminates
the need for formal design reviews.

Actuals and By-Products
Unlike PSP and other processes, our process

defines two categories of artifacts: actuals and
by-products. We base this on Walter Royce’s
advice5 and on what we’ve learned about
avoiding work-product-driven processes.

Actuals are those artifacts that are cen-
tral to the product’s successful development.
For example, the actual output of the appli-
cation analysis phase is “an understanding
of the problem to be solved.” By-products
are the side-effects of the attempt to create
the actuals—for example, diagrams, meet-
ings, and prototypes. They can, and are in-
tended to, help produce the actuals.

Unfortunately, some process writers be-
lieve that creating the by-products always re-
sults in achieving the actuals. Nothing could
be further from the truth. By concentrating on
completing each individual diagram because
the process requires it, developers often miss
important relationships among the diagrams
that constitute the analysis model. They most
often miss causal relationships in the domain
that explain much of the problem. By-prod-
ucts are a necessary part of the process but are
insufficient to reach the end goal: a quality,
completed software application.

Roles
We assign roles for the different responsi-

bilities required in the process; these roles
guide interactions throughout the process
cycle. One or more people can hold a par-
ticular role, and a person can simultane-
ously hold many roles. We determined the
need for at least these roles:

� The conceptualizer has the original con-
cept or idea for the project.

� The customer funds the project.
� The user/domain expert is knowledgeable

about the domain and will use the system.

9 8 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 0

Requirements

Domain
analysis

Application
design

Application
analysis

Architecture

Program
implementation

Integration

System test

Ti
m

e
lin

e

Figure 1. Temporal
relationships
between process
phases.

� The manager coordinates and facilitates
the project.

� The architect creates and owns the ar-
chitecture.

� The developer creates artifacts while per-
forming some set of activities in the process.

� The tester performs some set of testing
activities in the process.

Additional expertise is often needed—for
example, an expert in foreign languages
who will translate all messages presented to
the user into a different language. This
might require defining additional roles;
however, most of this expertise is just a spe-
cialization of the developer role.

The Development Phases
Historically, people have solved prob-

lems using these steps: (1) determine the
problem to be solved; (2) understand the
problem to be solved; (3) develop a plan for
solving the problem; (4) execute the plan;
(5) assess whether the solution works.

Our software development process com-
prises eight phases that follow the problem-
solving method:

1. Requirements scoping. Requirements
definition captures from a variety of per-
spectives what the application is that we
are trying to create. Requirements help
define the scope of analysis activities and
are the standards to which the final im-
plementation is held accountable.

2. Domain analysis. This phase captures
the concepts and relationships within the
bodies of knowledge that underlie the
basic problem to be solved by the appli-
cation. Operating within the scope de-
fined by requirements, domain analysis
provides a superset of concepts and rela-
tionships needed for application analysis.

3. Application analysis. Using the captured
concepts and relationships, this phase
creates an understanding of what this
specific application will become.

4. Architecture. This phase determines the
basic structure of application components.
This structure must be compatible with the
structure of knowledge as revealed in do-
main analysis. It must also define sufficient
functionality to enable the application to
satisfy its requirements. The structure de-
fines interfaces for the components.

5. Application design. This phase details the
internals of each application component.
The component designs must be compati-
ble with the defined architectural interfaces
and should be sufficiently detailed to sup-
port immediate implementation.

6. Program implementation. This phase
translates information and concepts
from domain analysis, architecture, and
application design into a machine-exe-
cutable form. The developers then run
the executable machine code, using a va-
riety of inputs to determine the correct-
ness of their individual code.

7. Integration. This phase verifies program
implementation in the context of domain
analysis, architecture, and application
design by clearly identifying interface
ambiguities and implementation errors.

8. System test. This phase verifies that the
program as assembled meets the require-
ments. If all the requirements are satisfied,
the application is ready to place in service.

Figure 1 illustrates the temporal relation-
ships between the process phases. The size of
the boxes represents the relative amounts of
time for each phase, and the concurrent
threads show the relative starting times. This
figure does not show the iterative nature of
our process, which is shown in Figure 2.

Because of space limitations, we have
only summarized the phases. To illustrate
the process’s characteristics and our process
definition style, Figure 3 shows a complete
outline of the domain analysis phase.

Planning a Project’s Process
The first part of planning a specific proj-

ect’s process is laying out the increments.

S e p t e m b e r / O c t o b e r 2 0 0 0 I E E E S O F T W A R E 99

Requirements

Domain analysis

Application
analysis

Architecture

Application
design

Program
implementation

Integration

System test

Figure 2. The itera-
tive process model.

Each increment is the complete development
of an identified piece of system functionality.
The initial increment is usually some level of
architectural prototype and the infrastruc-
ture needed for much of the remainder of the
system. In some cases, it is an opportunity for
the team to investigate the new technologies
to be used in the project. The next increments
are the system’s main functionality, followed
finally by increments that add the system’s
unusual, seldom-used features. Increments
are usually planned by reasonably partition-
ing the use cases or parts of use cases into sets
so that the team members assigned to an in-
crement can complete the work within one
to two months. The smaller the team, the
smaller each increment should be.

Each increment is constructed in a succes-
sion of iterations. Each iteration should move
the functionality closer to its final maturity.
Figure 2 illustrates the flow between the
process phases. The team determines in
which previous phase to begin an iteration,
on the basis of the reason for halting forward
progress and the entry criteria for previous
phases. We usually handle the first and last it-

erations a bit differently from the others. The
first is the “ramp-up” iteration, in which the
team explores the work to be done in the in-
crement. The final iteration is a “cooldown”
iteration, which finalizes work for integra-
tion with previous increments.

As the team progresses through iterations,
from ramp-up to cooldown, the relative
amount of time spent in each development
phase shifts. In the initial iterations, analysis
receives the most attention, but we design
and code enough to try out our understand-
ing of the problem. In later iterations, with a
reasonable understanding of the problem, we
emphasize design, but only after reviewing
the lessons learned in the previous iteration
about the problem. The final iterations focus
on developing code, modifying both the
analysis and design models on the basis of
concrete feedback from writing the code.

Evaluating a Project’s Process
Small projects need process evaluation

techniques that are easily applied; where
possible, the techniques should contribute
directly to producing quality actuals. To
achieve this, each process phase specifies an
assessment activity and a set of metrics.

Assessment Activities
An assessment activity’s primary goal is

to evaluate a particular phase’s exit criteria.
Also, assessment activities often guide the
team to explore missed relationships.

For example, the architecture phase uses
change cases6 to guide the team to consider fu-
ture requirements and industry trends and their
impact on the architecture. Can the architec-
ture accommodate those changes? Would
modifying the architecture make it more
amenable to those future changes? Guided In-
spection modifies a typical design review
process by providing a technique to select test
cases. Using the change cases as the basis for
test cases assesses the architecture’s ability to
accommodate certain types of changes.

Assessment activities produce as by-
products information such as the quantity
and types of defects found. The development
team can use this information to evaluate the
effectiveness of the phase’s development ac-
tivities. On the basis of this information, the
team might revise the phase to require a dif-
ferent set of activities.

For example, in the domain analysis and

1 0 0 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 0

Figure 3. A detailed
outline of the domain
analysis phase.

Phase 2. Domain Analysis
2.1. Description: To capture the concepts and relationships within the

bodies of knowledge that underlie the basic problem to be solved by
the application.

2.2. Responsibility
� The conceptualizer helps determine the domain boundaries and serves

as a domain expert.
� The user/domain expert provides concepts and connections

between the concepts.
� The manager reviews this phase’s output to produce schedules,

resource allocations, and the software development plan.
� The architect gains an understanding of the domain to construct the

appropriate architecture.
� The tester ensures that the domain analysis by-products are testable.

2.3. Input
2.3.1. Actuals: An understanding of what the system should be. The

collective domain knowledge of those participating in the
analysis.

2.3.2. By-products: A business plan describing the concept or idea and
the requirements.

2.4. Entry criteria: Agreement has been reached that the requirements are
sufficiently scoped to begin this phase.

2.5. Activities
2.5.1. Domain modeling using UML models.
2.5.2. Guided Inspection of the domain model.

2.6. Output
2.6.1. Actuals: An understanding of specific domains related to the

problem being solved.
2.6.2. By-products: A UML model capturing the concepts and

relationships.
2.7. Exit criteria

2.7.1. Go to the next phase if the Guided Inspection’s results show
the domain model is complete, correct, and consistent.

2.7.2. Iterate back to the requirements phase if the requirements
are sufficiently incomplete that the domain analysis raises
significant questions about scope.

2.8. Metrics: Quality measures applied to the UML models.

application design phases, Guided Inspec-
tion provides an objective testing technique
that discovers defects in the design models.
Over time, if these assessments continue to
find the same types of defects in these mod-
els, the team should modify the process that
produced the models.

Both having an assessment activity for
each phase and the possibility of failing the
exit criteria point toward the need to iterate
on a variety of levels. We consider each de-
velopment phase to be a self-contained
process consisting of a set of activities. The
assessment for a given activity or phase
should provide information that helps deter-
mine whether to iterate back to a previous
phase, iterate over the activities within the
current phase, or move to the next phase.

Metrics
The metrics specified in a phase’s de-

scription measure the effectiveness and
quality of that phase’s activities. Some of
the metrics are product metrics; they meas-
ure attributes of the models. In some cases
they can be computed automatically if the
models were created using CASE tools. The
data gathered from these measures should
be used to improve the system’s quality
through either feedback in the current phase
or feedback to a previous phase.

Some of the metrics are process metrics;
they include measures such as defect detection
rates, for which the basic data is collected
during the development activities. The infor-
mation obtained from analyzing the process
metrics data crosses phase boundaries. The
knowledge gained from these measures guides
process modifications, including changing exit
criteria (for example, raising the bar if quality
is poor) or specifying additional activities
needed to make a phase more effective. Once
the project is delivering quality software on
schedule and within budget, that indicates an
effective process.

Outside Influences
A project that is behind schedule does

not necessarily indicate process failure. Sev-
eral problems that are external to the
process can hinder the project:

� Are all personnel devoting their as-
signed percentage of work on the proj-
ect? Most organizations assign person-

nel to several projects at the same time.
On one project recently, one person was
working approximately 5% of his time
for that project, as opposed to the 80%
he was assigned. In a small project, this
decrease in effort, even if it is to help
another project in the organization, will
cause deviations from the schedule.

� Are the estimates based on project actu-
als being respected? Often, market con-
ditions will be used to justify modifying
the estimates. If the project personnel
have been careful about collecting data
and estimating accurately, market adjust-
ments are probably doomed to failure.

� Are estimates based on a process differ-
ent from the one being used? For small
projects and immature organizations, this
can be a particular problem. Changes to
processes should be as evolutionary as pos-
sible so that you can anticipate how the
changes affect estimates.

F or a process to be successful, it must
be followed. We have tried to ensure
that our process is followed by mak-

ing it useful. This means that the activities
defined in a particular project’s process
clearly relate to achieving the project’s
goals. Small projects do not have spare cy-
cles to waste on activities that satisfy either
the egos of process writers or the misguided
attempts of managers to increase organiza-
tional maturity. As more of the process
monitoring and evaluation can be auto-
mated, this will further free team members
to focus on the project’s goal of producing a
quality software system.

References
1. G. Booch, Object Solutions: Managing the Object-Ori-

ented Project, Addison-Wesley, Reading, Mass., 1995.
2. B.W. Boehm, “A Spiral Model of Software Develop-

ment and Enhancement,” Computer, Vol. 21, No. 5,
May 1988, pp. 61–72.

3. J.D. McGregor, “The Fifty Foot Look at Analysis and
Design Models,” J. Object-Oriented Programming, Vol.
11, No. 4, July/Aug. 1998, pp. 10–15.

4. W. Humphrey, A Discipline for Software Engineering,
Addison-Wesley, Reading, Mass., 1995.

5. W. Royce, Software Project Management: A Unified
Framework, Addison-Wesley, Reading, Mass., 1998.

6. E.F. Ecklund Jr. and L.M.L. Delcambre, “Change Cases:
Use Cases that Identify Future Requirements,” Proc. OOP-
SLA ’96, ACM Press, New York, 1996, pp. 342–358.

S e p t e m b e r / O c t o b e r 2 0 0 0 I E E E S O F T W A R E 101

About the Authors

Melissa L. Russ is a software con-
sultant and men-
tor in addition to
being a project
manager
for Korson-
McGregor, A
Software Tech-
nology Company.
During consulting

work with some larger computer compa-
nies, she helped develop, implement, and
improve software processes; taught basic
object-oriented development techniques;
and mentored staff concerning general
software development. She has also
worked with smaller companies providing
consulting services, from domain analysis
for project definition to use-case analysis
for producing test plans. She is a highly
rated instructor and often makes presen-
tations at conferences regarding software
engineering and object-oriented technol-
ogy. She has a master’s in computer sci-
ence from Clemson University, where she
has also been a PhD student and has
taught computer courses. Contact her at
Korson-McGregor, PO Box 3104, Col-
legedale, TN 37315; melissa.russ@
korson-mcgregor.com; www.korson-
mcgregor.com/~melissa.

John D. McGregor is a senior
partner in Korson-
McGregor, A Soft-
ware Technology
Company, special-
izing in object-
oriented tech-
niques and is an
associate profes-
sor of computer
science at Clemson University. He is also a
visiting scientist at the Software Engineer-
ing Institute. He has developed testing
techniques for object-oriented software
and custom testing processes for a variety
of companies. He is coauthor of Object-
Oriented Software Development: Engi-
neering Software for Reuse (Int’l Thomp-
son Publishers, 1992) and of A Practical
Guide to Testing Object-Oriented Software,
to be published by Addison-Wesley. He
also writes a monthly column on testing
objects in the Journal of Object-Oriented
Programming. Contact him at Korson-Mc-
Gregor, PO Box 263, Clemson, SC 29633;
john.mcgregor@korson-mcgregor.com;
www.korson-mcgregor.com/~johnmc.

