
35 SEL-94-102

Chapter 4. Core Measures

Chapter Highlights

COST

•• Reporting period dates
•• Total effort
•• Effort by development and maintenance activity

ERRORS

•• Dates error reported and corrected
•• Effort to isolate and correct the error
•• Source and class of error

-- Test for double value

if X = 3 * Y then
 raise Double;
end if;

PROCESS CHARACTERISTICS

•• Identification of programming languages
•• Indication of the use of significant processes
•• Description of measurement study goals

PROJECT DYNAMICS

•• Changes to requirements
•• Changes to code
•• Growth of code
•• Predicted characteristics

PROJECT CHARACTERISTICS

•• Development dates
•• Total effort
•• Product size
•• Component information
•• Software classification

SEL-94-102 36

his chapter describes a set of core measures that any organization can use to begin a
measurement program. There is no universal, generally applicable collection of measures
that will satisfy the needs and characteristics of all organizations. However, on the basis

of the experiences of mature measurement programs throughout NASA, a set of measures in the
following five categories will typically be required by any software development and maintenance
organization:

1. Cost

2. Errors

3. Process characteristics

4. Project dynamics

5. Project characteristics

Although organizations beginning a measurement program may want to use the core set as a
baseline, they will soon find that additional information is required to satisfy their specific goals
and that some of the core measures are not required. Each organization should use those
measures that reflect its own goals. As its measurement program matures, the organization will
recognize which measures support those goals and which provide no added value.

The recommended core measures in each of the categories exhibit the following important
attributes. They

• Address the three key reasons for measurement

1. Understanding

2. Managing

3. Guiding improvement

• Support both software development and software maintenance activities

• Are easy to collect and archive

• Are based on the experience of mature NASA measurement programs

The following sections provide further information on the core measures.

4.1 Cost

Cost is the most universal and commonly accepted measure for understanding and managing
software processes and products. Consequently, cost data represent the most essential part of any
measurement program. Although many development organizations assume that the cost data must
be extensive and detailed to capture the overall cost characteristics of a software project
adequately, the cost data should actually be easy to capture. If a programmer needs more than a
few minutes each week (on the average) to record his or her effort, then the forms require too
much data. As long as the managers are aware of the total amount of effort required for the
software projects, an organization can gain a significant amount of insight by observing the trends

T

37 SEL-94-102

over time. The simplest, yet most critical, cost measure is the record of the total expenditures for
a project.

4.1.1 Description

Collect effort data at least monthly.

Every project must capture staff effort data on a consistent, periodic basis. A monthly schedule is
recommended, at a minimum; however, many major NASA measurement programs capture effort
data biweekly or even weekly. The higher frequency requires little additional work and provides
more project characterization detail.

Clarify the scope of effort data collection.

The scope of the effort data collection depends on the organization’s goals. Each organization
must determine precisely who will supply effort data, at what point during the software life cycle
measurement will begin, and when data collection will terminate. Typically, effort data must be
collected for all personnel who charge their time to the software project, specifically, technical,
management, secretarial, and publications staff.

For every data reporting period, each individual must minimally report the total number of hours
of effort and a breakout of the number of hours per activity (e.g., design, code, test, or other).

A decision concerning the reporting of unpaid extra hours of effort must be based on whether the
intent is to measure the actual effort expended or the actual effort charged. Some organizations
maintain separate records of unpaid overtime hours.

Within the SEL, every programmer and every first- or second-line manager provide effort data.
Data collection starts when the functional requirements have been completed and the software life
cycle begins with the requirements analysis phase.6 For development projects, data collection
continues until the system is turned over for operational use. For maintenance projects, data
collection starts at the beginning of the operations phase and continues until the analysts
determine that no additional value will be gained from further collection. Each maintenance
project is judged on its own merits. Some may provide data for 1 year only, whereas others
provide data until the software is retired.

4.1.2 Data Definition

When the measurement program is first established, personnel from the analysis component must
define the activities to ensure clarity and internal consistency. Focus should be on using locally

6 For all five categories of measures, the SEL begins to capture data no earlier than the beginning of the software

requirements analysis phase. System requirements definition is normally performed by a different organization
from the one that develops the software.

SEL-94-102 38

developed definitions for the activities. Excessive time should not be spent trying to be consistent
with outside organizations.

All project personnel (e.g., programmers, managers, QA staff, CM staff, and testers) provide the
data listed in Table 4-1. Additional resource data on the documentation effort (total hours by
publications) and the clerical effort (total hours charged by secretarial support) may be extracted
from project management accounting records, as long as there is a definition of scope and
characteristics. The data must be consistent from project to project and should provide an
accurate history of the cost required to produce and to maintain the software product.

Table 4-1. Data Provided Directly by Project Personnel

Data Descriptions

All Effort

Date Date of the end of the reporting period

Total effort Total hours charged to the project during that period

Development Activity Only

Hours by development activity Predesign
Create design
Read and review design
Write code
Read and review code
Test code units
Debugging
Integration test
Acceptance test
Other

Maintenance Only

Hours by maintenance class Correction
Enhancement
Adaptation
Other

Hours by maintenance activity Isolation
Change design
Implementation
Unit test and system test
Acceptance test and benchmark test
Other

The SEL Personnel Resources Forms (see Figures A-5 and A-6 in Appendix A) and the Weekly
Maintenance Effort Form (see Figure A-13) are examples of forms used to capture effort data for
development and maintenance projects, respectively. Programmers and managers typically
complete a form every week. Both forms provide space for recording total hours and the
distribution of hours by activities. To reduce questions and confusion, the definitions of the

39 SEL-94-102

activities are supplied on the forms. Other organizations may use different definitions as long as
they are applied consistently throughout the organization’s measurement program.

Figure 4-1 summarizes the life-cycle phases, sources, and frequency for cost data collection.
Typically, organizations separate the costs of development and maintenance activities.

Requirements
Definition

Requirements
Analysis

Preliminary
Design Design

Detailed Coding and
Unit Testing

System
Testing Testing

Acceptance
Maintenance

Operation and

Phases:

Source:

Frequency:

COST

Managers, programmers, and accounting records

At least monthly; more frequently if needed

Figure 4-1. Cost Data Collection Summary

4.2 Errors

Error data make up the second most important category of core measures. A better understanding
of the characteristics of software defects is necessary to support a goal of higher quality and
greater reliability. Error data may minimally include only counts of defects detected during a
specific life-cycle phase; at the other extreme, error data may include detailed descriptions of the
characteristics of the errors and information on where the errors came from, how they were
found, and how they were corrected. The level of detail must be driven by the goals and needs of
the particular organization. This section recommends core error measures based on those
collected within a successful measurement program in a medium-sized NASA organization.

4.2.1 Description

The core error measures consist of the

• Date the error was found

• Date the error was corrected

• Effort required to isolate and correct the error

• Source of the error

• Error class

When the measurement program is first established, the measurement analysts must define the
scope of the error reporting activity.

Collect error data only for controlled software.

Error data should be captured only after a unit of software has been placed under configuration
management control. This recommendation, which is based on 17 years of experience, may seem

SEL-94-102 40

counterintuitive. However, until CM checkout and checkin procedures have been established as
prerequisites for making changes, consistent error reporting cannot be guaranteed. Within the
SEL, a unit is turned over for configuration control only after it has been coded. Other NASA
organizations (e.g., JPL) have reported significant improvements from collecting and analyzing
data about defects detected and corrected during formal inspections of requirements documents
(see Reference 26).

Do not expect to measure error correction effort precisely.

Programmers focusing on their technical activities may not be able to report the exact amount of
time required for a particular change. Forms should allow them to estimate the approximate time
expended in isolating and correcting an error.

4.2.2 Data Definition

After completing a software change, a programmer submits the appropriate change form with the
data shown in Table 4-2. A change form is required whenever a controlled software component is
modified, whether or not the detection of an error necessitated the change. Experience has shown
that the process of reporting such changes enhances configuration management and that the
information proves useful in modeling the dynamics of the software in an organization. In addition
to the measures already cited, a maintenance change form must include the type of modification.
As always, it is important to focus locally when defining the error classes.

Table 4-2. Change Data

Data Descriptions

All Changes

Date error reported Year, month, and day

Date error corrected Year, month, and day

Source of error Requirements, specification, design, code,
previous change, other

Class of error Initialization, logic/control, interface, data,
computational

Effort to isolate error Approximate number of hours

Effort to implement
change

Approximate number of hours

Maintenance Changes Only

Type of modification Correction, enhancement, adaptation

41 SEL-94-102

The SEL Change Report Form and the Maintenance Change Report Form (see Figures A-1 and
A-4 in Appendix A) are examples of forms used to capture error data for development and
maintenance projects, respectively. In either case, a single form is used to report both software
errors detected and software changes to correct the errors. Programmers use only one form to
report one error that requires changes to multiple components.

Figure 4-2 summarizes the life-cycle phases, sources, and frequency for error data collection.

Phases:

Source:

Frequency:

Requirements
Definition

Requirements
Analysis

Preliminary
Design Design

Detailed Coding and
Unit Testing

System
Testing Testing

Acceptance
Maintenance

Operation and
ERRORS

Programmers and automated tools

Whenever a controlled unit is modified

Figure 4-2. Error Data Collection Summary

4.3 Process Characteristics

Do not expect to find generalized, well-defined process measures.

Focusing on the process characteristics category of software measures allows investigation into
the effectiveness of various software engineering methods and techniques. Looking at process
characteristics also provides insight into which projects use related processes and can thus be
grouped together within the measurement program to derive models and relationships or to guide
improvements.

Because few process features are consistently defined and can be objectively measured, few core
measures are recommended in this category. Rather than capturing extensive process
characteristics, it is suggested that some basic information be collected about the development
process used for the project being measured.

4.3.1 Description

The recommended core process measures are limited to the following three:

1. Identification of development language(s)

2. Indication of the use of specific processes or technology [e.g., the Cleanroom method or a
particular computer-aided software engineering (CASE) tool]

3. Description of measurement study goals

Common descriptions of measures do not exist for such fundamental software engineering
process elements as methodology, policies, automation, and management expertise. Therefore,

SEL-94-102 42

recommending that such measures be included in the core set is not useful. Measures such as
these must be defined and analyzed locally for consistency with the organization’s goals.

Do not expect to find a database of process measurements.

Detailed process descriptions cannot be stored in a database. Instead, important process
information is often provided in papers and reports. For example, if an organization is studying
the impact of using different testing strategies, the analysts must capture the detailed information
about the results of applying different techniques and report on the results.

Understand the high-level process characteristics.

Before attempting to capture advanced process measurement data, an organization must have a
clear understanding of the core process measures. Experience within the SEL has shown that the
most important process characteristic is the choice of programming language; the availability of
this information may provide further insight during the analysis of other measurement data.

4.3.2 Data Definition

Table 4-3 summarizes the core process characteristics measures. Figure 4-3 summarizes the life-
cycle phases, sources, and frequency for process characteristics data collection.

Table 4-3. Process Characteristics Data

Data Descriptions

Development language Language name: percentage used
Language name: percentage used
...

Important process characteristics
(if any)

One-line textual description (e.g.,
“used Cleanroom”)

Study goals Brief description of the goals and
results of the measurement study
associated with the project

43 SEL-94-102

Phases:

Source:

Frequency:

Requirements
Definition

Requirements
Analysis

Preliminary
Design Design

Detailed Coding and
Unit Testing

System
Testing Testing

Acceptance
Maintenance

Operation andPROCESS

Analysis and packaging personnel

At the completion of the development phase

CHARACTERISTICS

Figure 4-3. Process Characteristics Data Collection Summary

4.4 Project Dynamics

The next category of core measures—project dynamics—captures changes (to requirements, to
controlled components, and in the estimates for completion) during the software life cycle.
Experience has shown that such information aids management and improves understanding of the
software process and product.

4.4.1 Description

The core measures in this category characterize observed changes in the project requirements and
the product code, as well as updated estimates of the final project characteristics (see Section
4.5). These measures consist of

• Changes to requirements

• Changes to baseline code

• Growth in baseline code

• Predicted project characteristics

Requirements changes represent the overall stability of the software requirements and can be used
effectively to manage the development effort and to improve understanding of the characteristics
of the software problem definition in the local environment.

Records of changes to the code and the growth of the code provide insight into how the various
phases of the life cycle affect the production of software, the most tangible product that a
development process generates. Change measures are useful in managing ongoing configuration
control processes, as well as in building models of the development process itself.

The measures of predicted project characteristics are excellent management aids and are useful for
studying the cause and effect of changes, as well as process and problem complexity. The
characteristics should be captured on a regular basis, at least monthly.

4.4.2 Data Definition

The Project Estimates Form (see Figure A-8 in Appendix A) is an example of a form used to
provide predicted project characteristics at the start of the project and periodically throughout the
life cycle. Table 4-4 summarizes the core project dynamics measures, and Figure 4-4 summarizes
the life-cycle phases, sources, and frequency for project dynamics data collection.

SEL-94-102 44

Table 4-4. Project Dynamics Data

Data Descriptions

Changes to requirements Count and date of any change
made to the baselined
requirements specifications

Changes to code Weekly count of the number of
software components changed

Growth of code Biweekly count of the total
number of components and total
lines of code in the controlled
library

Predicted characteristics Monthly record of the estimated
completion dates and software
size

Dates End design
End code
End testing
System completed

Size Total components
Total lines of code (new, reused,
modified)

Effort Total staff months (technical,
management, support services)

Phases:

Source:

Frequency:

Requirements
Definition

Requirements
Analysis

Preliminary
Design Design

Detailed Coding and
Unit Testing

System
Testing Testing

Acceptance
Maintenance

Operation andPROJECT

Automated tools and managers

Weekly, biweekly, or monthly (see Table 4-4)

DYNAMICS

Figure 4-4. Project Dynamics Collection Summary

4.5 Project Characteristics

The core measures that characterize the completed project constitute another essential part of the
measurement program. Organizations derive models and relationships from project characteristics
in the historical database. Without a basic description of the overall software project effort, it is
difficult to apply the other measurement information in a meaningful manner.

45 SEL-94-102

4.5.1 Description

The project characteristics can be broken down into five categories of core measures:

1. Development dates

2. Total effort

3. Project size

4. Component information

5. Software classification

Use simple definitions of life-cycle phases.

The important dates are the beginning and the end of each life-cycle phase and the final project
completion date. If the organization is using a strict waterfall life cycle with nonoverlapping
phases, then the end of a nonterminal phase is defined by the beginning of the subsequent phase.
When a different life-cycle methodology is applied, the organization will have to adjust the
structure of the project characteristics data. Each organization must determine how it wants to
capture details of the key phase dates within the software life cycle. The simplest approach is to
use the classical phase definitions of a standard life-cycle methodology. However, as long as an
organization has its own consistent internal definitions, there is no overwhelming reason to adopt
an external standard. Multiple releases can be treated as multiple projects or as a single project
followed by maintenance enhancements.

The total effort expended on the project should be divided into hours used by programmers,
managers, and support services. At the conclusion of the project, the totals should be determined
from accounting information or another official source. The sum of the effort data collected
during the development or maintenance project should be compared with the value obtained from
the alternative source to cross-check the accuracy.

The core size measures are the total size of the software product and the total number of
components within the product. NASA experience shows that archiving additional details about
the origin of the code (e.g., whether it is new, reused, or modified) can lead to useful models.

Use lines of code to represent size.

NASA programs typically measure software size in terms of lines of code. Some authorities
recommend other size measures [e.g., function points (see Reference 17)]. However, no other
measure is as well understood or as easy to collect as lines of code.

This guidebook also recommends collecting size and origin information for software components
and defines a software component as a separately compilable unit of software for the project being
measured. Some organizations define components as subprograms or subsystems, which is fine as
long as the organization applies that definition consistently and derives useful results. The SEL

SEL-94-102 46

captures the basic information for each separately compilable unit of source code and has found
that the overhead required to extract the information using an automated tool is trivial. As a
result, programmers can be freed from expending additional effort in providing that information.

The final category of project characteristics core measures is software classification. This measure
is abstract and of limited value. Consequently, most organizations are advised to spend only
limited effort collecting and analyzing classification data. Nevertheless, several NASA
organizations have found a high-level classification scheme to be both adequate and useful. These
organizations use three broadly defined classes:

1. Business or administrative applications

2. Scientific or engineering applications

3. Systems support

Other organizations may want to record more detailed classification data, such as

• Embedded versus nonembedded

• Real-time versus nonreal-time

• Secure versus nonsecure

4.5.2 Data Definition

The recording of project characteristics data can often be substantially automated to minimize the
burden on the development and maintenance organization. Dates and effort, for example, are
normally available from management accounting reports; automated tools frequently can be used
to report size and component information, and the time and effort needed to indicate software
classification is minimal. Table 4-5 summarizes the project characteristics data.

No universally accepted definition exists for the start and stop times of various phases, such as
when a project starts or when a design ends. Experience within NASA has led to the use of phase
dates as follows:

• Start of software development—delivery of system requirements documents

• End of requirements analysis—completion of specifications review

• End of design—completion of design review

• End of coding—completion of code and unit test

• End of testing—delivery to acceptance testing

• End of development—delivery to operations

47 SEL-94-102

Table 4-5. Project Characteristics Data

Data Descriptions

Dates

Phase start dates (year, month, and day) Requirements analysis
Design
Implementation
System test
Acceptance test
Cleanup
Maintenance

End date Project end

Effort

Total hours Project total
Management personnel
Technical personnel
Support personnel (e.g.,

publications), if applicable

Size

Project size (lines of code) Delivered
Developed
Executable
Comments
New
Extensively modified
Slightly modified
Reused

Other (count) Number of components
Pages of documentation

Component information (for each component)

Component size (lines of code) Total
Executable

Component origin New
Extensively modified
Slightly modified
Reused

Software classification Business/administrative
Scientific/engineering
Systems support

SEL-94-102 48

The effort data, compiled at the conclusion of the project, are used as part of the high-level
summary information for the project. The information represents the total cost of the project
broken down among developers, managers, and support services.

Table 4-5 lists several measures for lines of code. Consensus may never be reached on what
constitutes a line of code. Therefore, to facilitate various forms of comparison and analysis, this
guidebook recommends recording multiple values. The core measures include counts of

• Total lines delivered—every logical line, including comments, blanks, executable, and
nonexecutable

• Developed lines—total lines with a reuse factor

• Executable statements—total number of executable statements

• Comment lines—total number of lines containing only comments or blanks

The SEL captures source lines of code in four categories:

1. New—code in new units

2. Extensively modified—code for reused units in which 25 percent or more of the lines were
modified

3. Slightly modified—code for reused units in which fewer than 25 percent of the lines were
modified

4. Reused verbatim—code for units that were reused with no changes

For estimation purposes, lines of code are often classified into two categories that combine newly
written and extensively modified units as new code and slightly modified and verbatim code as
reused code. Consequently, the SEL relationships (see Reference 9) for estimating developed
lines are

FORTRAN developed lines = new lines + 20% of reused lines

Ada developed lines = new lines + 30% of reused lines

(See Sections 2.2.1 and 6.1.2 for more discussion of developed lines of code.)

Specify which software is to be counted.

It is important to be specific about which software is to be included in the size counts. For
example, it is usually appropriate to exclude throw-away prototypes, test harnesses, and
commercial off-the-shelf (COTS) software from the reported totals.

Component information can provide insight into the overall development characteristics. Although
the total amount of information may be extensive, it should be easy to compile at the conclusion
of the project and can be almost completely retrieved via automated software tools such as code
counters, auditors, or analyzers.

49 SEL-94-102

The Project Completion Statistics Form (see Figure A-7 in Appendix A) is an example of a form
used for collecting project characteristics at the completion of a project. Figure 4-5 summarizes
the life-cycle phases, sources, and frequency for project characteristics data collection.

Phases:

Source:

Frequency:

Requirements
Definition

Requirements
Analysis

Preliminary
Design Design

Detailed Coding and
Unit Testing

System
Testing Testing

Acceptance
Maintenance

Operation andPROJECT

Automated tools and managers

At the completion of the development phase

CHARACTERISTICS

Figure 4-5. Project Characteristics Collection Summary

