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Preface

Hilbert C*-modules are generalizations of Hilbert spaces by allowing the in-
ner product to take values in a C*-algebra rather than the field of complex
numbers. The notion of Hilbert module over a commutative C*-algebra first
appeared in the work of Kaplansky [25], who used it to prove that derivations
of type I AW™*-algebras are inner. The general theory of Hilbert C*-modules
has appeared 32 years ago in the basic papers of Paschke [36] and Rieffel [41,
42]. This theory has prove to be a convenient tool in the theory of operator
algebras, allowing to study C*-algebras by studying Hilbert C*-modules over
them. Thus, the theory of Hilbert C*-modules is an important tool for studying
Morita equivalence of C*-algebras and its application to group representation
theory and crossed product C*-algebras, K-theory and K K -theory of operator
algebras, completely positive maps between C*-algebras, unbounded operators
and quantum groups, vector bundles, non-commutative geometry, mathemati-
cal and theoretical physics. Beside these, theory of Hilbert C*-modules is very
interesting on it’s own.

The finitely generated modules equipped with inner products over some topo-
logical * -algebras and the standard Hilbert module H 4 over a locally C*-algebra
A were first considered by Mallios [32], who used them to construct the index
theory for elliptic operators over a locally C*-algebra. Locally C*-algebras are
generalizations of C*-algebras. Instead of being given by a single C*-norm, the
topology of a locally C*-algebra is defined by a directed family of C*-seminorms.
Such many concepts as Hilbert C*-module, adjointable operator, compact op-
erator, (induced) representation, strong Morita equivalence can be defined with
obvious modifications in the framework of locally C*-algebras. Most of the basic
properties of Hilbert C*-modules are still valid for Hilbert modules over locally
C*-algebras, but the proofs are not always straightforward. Many important
results have been obtained about module homorphisms of Hilbert modules over
locally C*-algebras [16], [18], [20], [23], [24], [38], [45], representations of locally
C* -algebras [15], [17], [22], frames and bases in Hilbert modules over locally



C*-algebras [28] and Finsler modules over locally C*-algebras [27].

This book is an introduction in theory of Hilbert modules over locally C*-
algebras. We did not purpose to discuss here all aspects of Hilbert modules
over locally C*-algebras, but we have tried to explain the basic notions and
theorems of this theory, a number important of examples and some results about
representations of locally C* -algebras. A significant part of the results presented
here was obtained by the author [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24].

The detailed bibliography of the theory of Hilbert C*-modules can be found
in Hilbert C*-Modules Homepage

(http: / /www.imn.htwk-leipzig.de/ ~mfrank/hilmod.html).

Reader’s Guide

Chapter 1 begins with some results about locally C*-algebras, which will
be necessary for us further on. The notion of Hilbert module over a locally
C*-algebra is discussed in Section 1.2 and there are presented some examples
of Hilbert modules over locally C*-algebras. In Section 1.3 it is shown that a
Hilbert module F over a locally C*-algebra A induces a structure of Hilbert
C*-module on the set b(E) of bounded elements in E, i.e. of those elements for
which any admissible seminorm applied to them takes a finite value, and the
connection between b(Hg) and Hy g is discussed.

Chapter 2 is about module homomorphisms.

In Section 2.1 it is shown that the set of bounded module homomorphisms on
a Hilbert module can be equipped with a structure of complete locally m -convex
algebra. Moreover, this algebra can be identified with an inverse limit of Banach
algebras. In Section 2.1, by analogy with the case of Hilbert C*-modules, it is
proved that a module homomorphism which has an adjoint is bounded. Also it

is proved that the set of adjointable operators on a Hilbert module is a locally
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C*-algebra. Section 2.3 is devoted to ”compact ” operators on Hilbert modules.
It is shown that the set K 4(F) of compact operators on the Hilbert A -module E
is a locally C* -algebra, the algebra M L(K4(E)) of left multipliers of K 4(F) is
isomorphic with the locally m -convex algebra B4 (F) of bounded module homo-
morphisms on E and the algebra M (K 4(F)) of multipliers of K 4(F) is isomor-
phic with the locally C* -algebra L 4(F) of adjointable module homomorphisms
on F. In Section 2.4, it is introduced the notion of strongly bounded module
homomorphism, that is a module homomorphism for which any admissible semi-
norm applied to it takes a finite value. It is established an isometric isomorphism
between the Banach space b(B4(FE, F)) of all strongly bounded module homo-
morphisms from E to F and the Banach space By(4)(b(E), B(F)) of all bounded
b(A)-module homomorphisms the bounded part b(E) of E to the bounded part
b(F') of I, where b(A) denotes the bounded part of A. In particular, b(Ba(E)) is
a Banach algebra isometrically isomorphic to By4)(b(E)), and b(La(FE)) is a C*-
algebra isometrically isomorphic to Ly 4)(b(£)). Most remarkably, the respective
sets of ”compact” operators b(Ka(E, F)) and Ky 4)(b(E),b(F)) are not isomor-
phic, in general, as shown by an example. Another class of operators on Hilbert
modules, unitary operators, is discussed in Section 2.5. Also in Section 2.5 a
result of Brown, Lin, Lance and Frank [10] concerning isomorphisms of Hilbert
C*-modules and *-isomorphisms of related operator C*-algebras is extended in
the context of locally C*-algebras. Thus it is proved that Hilbert A-modules
(E,(-,-);) and (E,(-,-),) are isomorphic as Hilbert modules if and only if the
locally C*-algebras of adjointable operators on (E, (-,-);) and (E, (-,-),) are iso-
morphic if and only if the locally C* -algebras of compact operators on (E, (-, -);)
and (E, (-, -),) are isomorphic if and only if the C* -algebras of compact operators
on (b(E),(:,-);) and (b(E),(:,-),) are isomorphic.

Chapter 3 concerns projections on Hilbert modules over locally C*-algebras,
orthogonally complemented submodules and the polar decomposition of an ad-
jointable operator on Hilbert modules. It is proved that a closed submodule Ejy

of a Hilbert module E is complemented if and only if b(Ep) is complemented if
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and only if Ej is the range of an adjointable operator on E. Also it is proved a
necessary and sufficient condition for an adjointable operator to admit a polar

decomposition.

Chapter 4 is about tensor products of Hilbert modules over locally C*-
algebras and operators on tensor products. By analogy with the case of Hilbert
C*-modules, in Section 4.1 it is defined the notion of exterior tensor product
of Hilbert modules over locally C*-algebras and it is shown that the exterior
tensor product £ ® F' of E/ and F' is in fact an inverse limit of exterior tensor
products of Hilbert C*-modules. In Section 4.2 it defined the notion of inner
tensor product of Hilbert modules over locally C*-algebras and the connection
between the bounded part of the Hilbert A -module F ®¢ F' and the Hilbert C*-
module b(E) ®g),,, b(F) over b(A) it is discussed. In Section 4.3 it is constructed
an injective *-morphism j from L4(F)® Lp(F') to Lagp(E ® F) and it is shown
that the locally C*-algebras K4(F)® Kp(F') and Kagp(E ® F') are isomorphic.
Also it is constructed a x-morphism ®, from La(F) to Lp(E ®¢ F'), which is

injective if @ is an injective *-morphism .

Chapter 5 concerns full Hilbert modules, countably generated Hilbert mod-
ules and strong Morita equivalence of locally C*-algebras. In Section 5.1, the
full Hilbert modules over locally C*-algebras are characterized. It is clear that
E is a Hilbert module over a locally C*-algebra A such that b(E) is full, then
FE is full. The converse of this statement is not true in general. We present
some example in this sense. Section 5.2 is devoted to famous Kasparov stabiliza-
tion theorem [26]. It is showed that the stabilization theorem is still valid for
countably generated Hilbert modules over arbitrary locally C*-algebras and it is
proved a necessary and sufficient condition that a Hilbert module over a Fréchet
locally C*-algebra to be countably generated. Also it is extended to context of
locally C*-algebras a result of Mingo and Phillips [35], which states that if F is
a full countably generated Hilbert C*-module over a o-unital C*-algebra A then
the Hilbert C*-modules H4 and Hg are unitarily equivalent. In Section 5.3, it

is extended the notion of strong Morita equivalence in the context of locally C*-



algebras. It is shown that strong Morita equivalence is an equivalence relation
on the set of locally C*-algebras and it is proved that two Fréchet locally C*-
algebras are strongly Morita equivalent if and only if they are stably isomorphic
(this extends a well-known theorem of Brown, Green and Rieffel [5]).

Chapter 6 is devoted to representations of locally C*-algebras on Hilbert
modules. The non-degenerate representations of a locally C*-algebra A on a
Hilbert module E over a locally C*-algebra B are characterized in Section 6.1.
Also in this section it is shown that any locally C*-algebra A admits a non-
degenerate representation on Hp, where B is an arbitrary locally C*-algebra.
Section 6.2 is about completely positive linear maps between locally C*-algebras.
In Section 6.3 is obtained a construction of type KSGNS (Kasparov, Stinespring,
Gel’'fand, Naimark, Segal) for continuous strict completely positive linear maps
between locally C*-algebras.

Chapter 7 is about induced representations of locally C*-algebras.

By analogy with the case of C*-algebras, in Section 7.2 it is extended the
notion of induced representation in the context of locally C*-algebras and it is
shown that theorem on induction in stage [Theorem 5.9, 41] is still valid. Also
in Section 7.3 it is proved an imprimitivity theorem for representations of locally

C*-algebras.
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Chapter 1

Hilbert modules over locally

(C*-algebras

1.1 Locally C*-algebras

The basic information about locally C*-algebras can be found in the works [7, 8,
9, 11, 33, 38, 39]. We will present some results on locally C*-algebras, which
will be necessary for us further on.

Recall that a C*-seminorm on a topological x-algebra A is a seminorm p such
that p(ab) < p(a)p(b) and p(aa*) = p(a)? for all a and b in A.

Definition 1.1.1 A locally C*-algebra is a Hausdorff complete complex topolog-
ical x -algebra A whose topology is determined by its continuous C*-seminorms
in the sense that a net {a;};c; converges to 0 if and only if the net {p(a;)}ier
converges to O for all continuous C*-seminorm p on A.

A pre-locally C*-algebra is Hausdorff complex topological x -algebra whose the

topology is determined by a directed family of C*-seminorms.

These objects are called pro-C*-algebras in [2, 3, 38, 39]. If the topology
is determined by only countably many of C*-seminorms, then we have o-C*-
algebras in [38, 39] and Fréchet locally C*-algebras in [7, 8, 9, 11, 33].
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Example 1.1.2 Any C*-algebra is a locally C*-algebra.

Example 1.1.3 Any closed subalgebra of a locally C*-algebra is a locally C*-

algebra.

Example 1.1.4 If {Ax; Ty, Fa>puuca @5 an inverse system of C*-algebras, then

lim Ay is a locally C*-algebras with the topology defined by the family of C*-

A
seminorms {px}ren defined by py ((a#)“> = |lax|ly, where ||-||, denotes the C*
-norm on Ay, A € A.

Example 1.1.5 If X is a compactly generated space, then C(X), the set of all
continuous complex valued functions on X with the topology of uniform conver-

gence on compact subsets is a locally C*-algebra.

Definition 1.1.6 Let A and B be two locally C*-algebras. A * -morphism from
A to B is a linear map ® : A — B such that ® (ab) = ® (a) D (b) and P (a*) =
® (a)* for all a and b in A.

A morphism of locally C*-algebras from A to B is a continuous * -morphism
from A to B.

An isomorphism of locally C*-algebras from A to B is a bijective morphism
of locally C*-algebras ® : A — B such that ®~1 : B — A is a morphism of locally
C*-algebras.

Two locally C*-algebras A and B are isomorphic if there is an isomorphism
of locally C*-algebras from A to B.

Remark 1.1.7 ([8]). If A is a locally C*-algebra and B is a Fréchet locally C*-

algebra, then any x -morphism from A to B is a morphism of locally C*-algebras.

Let A be a locally C* -algebra. We denote by S(A) the set of all continuous
C*-seminorms on A. For p € S(A), we let kerp be the set {a € A;p(a) = 0},
which is a closed * -ideal in A. We also let A, be the quotient x -algebra A/
ker p. The canonical map from A to A, is denoted by m,. It is not difficult to

2



check that A, is a pre-C*-algebra with respect to the norm ||-[|,, induced by p (
that is, [|a + ker p||,, = p(a) for all @ in A). We will prove that Ay, is a C*-algebra
(Theorem 1.1.16). The set S(A) is directed with the order p > ¢ if p (a) > ¢ (a)
for all @ in A. Then for p and ¢ in S(A) with p > g, there is a canonical surjective
 -morphism 7, : A, — A, such that mp,(7p (a)) = m4(a) for all a in A. For
each p € S(A) we denote by ;l;, the completion of the pre-C*-algebra A,. If p,
g € S(A) and p > g, then clearly the surjective * -morphism m,, : 4, — A,

extends to a surjective % -morphism 7,4 : ;1; — ;1;.
Theorem 1.1.8 (/1, 9, 11, 33]). Let A be a locally C*-algebra. Then:

1. {;1\;,;7%}])2(17@(165(14) is an inverse system of C*-algebras.

2. The map & : A — lim;l; defined by

P
® (a) = (mp(a)),
18 an isomorphism of locally C*-algebras.

Proof. 1. It is a simple verification.

2. The topology on lim :4; is defined by the family of C*-seminorms {p},cs(4),

P

where p((aq)q) = llapll,, for all (aq)q € lim :4;. It is not difficult to check that &

p

is a * -morphism from A to lim Zivp. Since

for all p € S(A) and for all a € A, ® is an injective morphism of locally C*-
algebras with closed range. Then, by Lemma III 3.2, [33], we have
®(A) =limx, (P(A)) = limm,(A) = lim 4,

—
p p p

where x,,p € S(A) are the canonical maps from 1im24\; to 2{\;, and x,(®(A))

P

denotes the closure of the vector subspace x, (®(4)) in 2{; for each p € S(A).

3



From these facts we conclude that @ is a bijective morphism of locally C*-algebras
and ®~! is continuous. Therefore ® is an isomorphism of locally C*-algebras. B
If A is a unital locally C*-algebra, then the pre-C*-algebras A,, p € S(A)
are unital. Moreover, if 1 is the unity of A, then 7,(1) is the unity of A, for all
peS(A).
An element a in A is invertible if there is an element in A, denoted by a™!,

1 1

such that aa™* =a 'a = 1.

Remark 1.1.9 Let A be a unital locally C* -algebra and let a € A. Then a is
invertible if and only if mp(a) is invertible in A, for all p € S(A). Moreover,
mp(a)~t =my(a™t) for all p € S(A).

Let A be a locally C*-algebra without unity, and let A™ = A@® C. Then A"

under the multiplication
(a,A) (b, ) = (ab+ Ab+ pa, Au)

and the involution

(a, )" = (a*,X)

is an algebra with involution. Any continuous C*-seminorm p can be extended
up to a C*-seminorm p™ on A" and thus A" with the topology determined by
the family of C*-seminorms {p™,p € S(A)} is a locally C*-algebra. Moreover,
AT can be identified with lgn :4vp+, where Z;ﬁ is the unitization of :4;, p e S(A).
»
Definition 1.1.10 Let A be a unital locally C*-algebra and let a be an element
in A. The spectrum of A, Sp(a) is the set of all complex numbers \ such that
a — Al is not invertible in A. If A is not unital, Sp(a) is the set of all complex

numbers X\ such that a — A1 is not invertible in A™T.

Remark 1.1.11 Sp(a) = JSp(mp(a)) .

An element a in A is self-adjoint if a* = a.

4



Remark 1.1.12 Let A be a locally C* -algebra and a € A. Then the following

assertions are equivalent:

(a) a is self-adjoint;
(b) Sp(a) CR;
(c) mp(a) is self-adjoint for all p € S(A).

An element a in A is called positive and we write a > 0, if there is an element
b in A such that a = b*b. In particular, for ¢ and b in A we will write a > b if
a—b>0.

Remark 1.1.13 Let A be a locally C*-algebra and a € A. Then the following

assertions are equivalent:

(a) a>0;

(b) mp(a) >0 for all p € S(A);
(c) a= h? for some h in A;
(d) Sp(a) € [0,00)

The set of all positive elements in A is denoted by P(A) and it is a closed
convex con in A such that P(A) N {-P(A)} = {0}.

Proposition 1.1.14 (/11, 38]) Let A be a locally C*-algebra, and let a € A be a
normal element (that is aa® = a*a ). There is a unique morphism of locally C*-
algebras from the locally C*-algebra of all continuous functions f : Sp(a) — C
such that f(0) = 0 to A which sends the identity function to a. If A is unital,
then this map extends uniquely to a morphism from the locally C*-algebra of all

continuous functions f : Sp (a) — C to A which sends 1 to 1.

Proof. Let f € {h € C( Sp (a)); h(0) = 0}, and let p,q € S(A) with p > q.
Then

Tpg (f(mp())) = f(mpg (mp(a))) = f(mq(a))-

5



Thus we can define a map ® : {h € C( Sp (a)); h(0) = 0} — A by ®(f) =
(f(mp(a))), - It is not difficult to check that the required map is ®. B

Definition 1.1.15 Let A be a locally C*-algebra. An element a in A is bounded
if
sup{p(a);p € A} < <.
The set of all bounded elements in A is denoted by b(A).
Theorem 1.1.16 Let A be a locally C*-algebra. Then:

1. The map ||| : b(A) — [0,00) defined by

lallo = sup{p(a);p € A}
is a C*-norm on A.
2. b(A) equipped with the C*-norm |||, is a C*-algebra.
3. b(A) is dense in A,

4. For each p € S(A), A, is a C*-algebra.

Proof. 1. It is a simple verification.

2. Let {an}n be a Cauchy sequence in b(A). Then there is a positive number
M such that ||ay||, < M for all n and {a,}, is a Cauchy sequence in A and so
it converges in A to an element a.

To show that a is bounded, let p € S(A). Then

p(a) < pla—an) +plan) < pla—an) + M

for all n. This implies that p(a) < M. Therefore a € b(A).
Let € > 0. Since {a,}n is a Cauchy sequence in b(A), there is a positive

integer ng such that

lan — amllo < ¢

6



for all m > ng and for all n > ng. Then
pla — ayp) = limp(am — ap) < lim |lay, — apll, <€
m m

for all p € S(A) and for all n > ng. This implies that the sequence {a,}, is
convergent in b(A), and the assertion is proved.
3. Let a € A. For each positive integer n, the element 1 + %a*a is invertible

in AT. Let a, = a (1 + %a*a)_1 . By functional calculus, we have

I

and

1 1,\" 2 1,\"
pla—a,) = p| —aa*a (1 + —a*a) ) < pla) P (a <1 + —a*a) )
n n n n

pla)?

vn

for all p € S(A). From these facts, we conclude that {a,}, is a sequence in b(A)

<

which converges in A to a. This shows that b(A) is dense in A.

4. Let p € S(A) and let N, = b(A) Nkerp. Clearly, N, is a closed * -ideal of
b(A), and then b(A)/N, is a C*-algebra with respect to the topology determined
by the norm ||-|| definrd by |la + Np|| = inf{|ja + || ; b € Np}, a € b(A). Since

la + ker pl|, = p(a) < p(a +b) < [la+bl,

for all b € N, we can define a map ¢ : b(A)/N, — :4;, by ¢ (a + Np) = a+ kerp.
Clearly, ¢ is an injective morphism of C*- algebras. Moreover, ¢ (b(A)/N,) C A,,.

On the other hand, we seen that for a € A there is a sequence {ap}p in b(A)
which converges to a. Then the sequence {a,,+ker p},, converges to a+ ker p in ;l;.
From thise facts and taking into account that ¢ (a, + Np) = a, +ker p and ¢ has
closed range we conclude that A, C ¢ (b(A)/N,). Therefore ¢ (b(A)/N,) = A,.
Thus, we showed that ¢ : b(A)/N, — A, is an isomorphism and so A, is a
C*-algebras. B



Definition 1.1.17 Let A be a locally C*-algebra. An approximate unit for A is
an increasing net {e;}icr of positive elements in A such that p(e;) < 1 for all
p € S(A) and for all i € I, and, for all a € A we have p(a —ae;) — 0 and
p(a—eja) — 0 for allp € S(A).

Remark 1.1.18 From Theorem 1.1.16 and Definition 1.1.17, we conclude that

any locally C*-algebra has an approximate unit.

A locally C*-algebra A is strongly spectrally bounded if b(A) = A as set.

Let A be alocally C*-algebra. A left multiplier of A is a linearmap{: A — A
such that I(ab) = I(a)b for all a and b in A, and a right multiplier of A is a
linear map r : A — A such that r(ab) = ar(b) for all a and b in A. The set
LM(A) of all left multipliers of A is an algebra. For each p € S(A), the map
pru(ay : LM(A) — [0, 00) defined by prasa)(l) = sup{p(l(a));a € 4, p(a) < 1}
is a seminorm on LM (A) such that prara)y(lil2) < prasay(l)praca)(lz) for all
I1,lo € LM(A).

A multiplier of A is a pair (I,r), where [ is a left multiplier and r is a right
multiplier, such that al(b) = r(a)b for all @ and b in A. The set M(A) of all
multipliers of A is an algebra with involution; addition is defined as usual, multi-
plication is (I1,71) (I2,72) = (I1l2,7172) and involution is (I,7)" = (r*,1*), where
r*(a) = r(a*)* and I*(a) = [(a*)" for all a € A. For each p € S(A), the map
Paray  M(A) = [0,00) defined by parcay(1,7) = sup{p(i(a)); a € A, pla) < 1} is
a C*-seminorm on M (A).

Exactly as in the case of C* -algebras, any left (right ) multiplier of a locally
C*-algebra A is automatically continuous. Moreover, if | € LM (A), then for each
p € S(A), there is a unique l, € LM (A,) such that m, ol = [, o, ( see [24]),
and if (I,7) € M(A), then for each p € S(A), there is a unique (I, 7p) € M(Ay)

such that 7, ol = I, omp and 7y o 7 = 1 0 T, (see, for example, [38]).
Theorem 1.1.19 Let A be a locally C*-algebra. Then:

1. LM(A) equipped with the topology determined by the family of seminorms

{pLM(A)}pGS(A) s a complete locally m -convex algebra.
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2. M(A) is a locally C*-algebra with respect to the topology determined by the

family of C*-seminorms {prr(a)}tpes(a)-

Proof. Let p,q € S(A) with p > ¢. Since 7, is surjective, it extends uniquely to
a morphism of W*-algebras qu from A; to A;', where A; is the enveloping W*-
algebra of Ap,. Morover, m,, (LM (A,)) € LM (Ay) and m,, (M(Ap)) € M(A,). It
is not difficult to check that { LM (A,); 71';(1|LM(AP) }p>q.pges(A) 1S an inverse sys-
tem of Banach algebras and {M(A,); qu| M(A) }p>qpaeS(A) 18 an inverse system
of C*-algebras.

1. Since lim LM (Ay) is a complete locally m -convex algebras, to show
p
that LM (A) is a complete locally m-convex algebra it is sufficient to prove

that LM (A) is isomorphic to lim LM (A,). Let [ € LM(A). It is not difficult
p
to check that (l,),, where m, ol = [, o, for all p € S(A), is a coherent se-

quence in LM (A,). Then we can define a map ¥ : LM(A) — lim LM (A,) by
p

U (1) = (Ip)p- A simple calculus shows that ¥ is linear and W (I;l2) = ¥ (I;) ¥(l)
for all Iy,lo € LM(A). We denote by {p},cg(4) the family of seminorms which
defines the topology on lim LM (Ay). Clearly, ﬁ((lq)q> = HlpHLM(Ap) . Then

p

FOWD) = lpllara, = st l(mp(@)l, : Imp(@l, <1}

= sup{|my(I(a))ll 4, ; lmp(a)l] o, <1}

= sup{p(l(a)); p(a) <1} = prara) ()
for all p € S(A) and for all [ € LM(A). From this fact we conclude that ¥ is
an injective morphism of locally m -convex algebras with closed range. To show
that W is surjective, let (I,), be a coherent sequence in LM (Ay). Define a map
[ A— Aby l(a) = (Ip(mp(a))), - Since

" " "

Tpq (lp(Wp(a))) = 7qu<lp<77p(a)) = qu(lp)ﬂpq(ﬂp(a)) =l (Wq(a))

for all @ € A and for all p,q € S(A) with p > ¢, [ is well defined. Moreover,
l € LM(A), since

l(ab) = (lp(mp(ab))),,

I
—
~
S
8
S
—
S
~—
~—
|
bS]
—
=
~
N—r
hS]
Il
~
—
S
~—
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for all a,b € A. Clearly, ¥ (1) = (l,)p. Therefore W is surjective. Thus we showed
that W is a bijective continuous morphism from LM (A) onto lim LM (A,) and

p
since p(V (1)) = pra(ay(l) for all p € S(A) and for all | € LM(A), ¥ is an
isomorphism of locally m -convex algebras.

2. In the same manner as in the proof of the assertion 1, we show that the map
®: M(A) — lim M (4p) defined by @ (I,r) = ((l,7p)),, is a bijective morphism

p
from M (A) onto lim M(A,) and ®~! is a continuous morphism. From these facts

P

and taking into account that lim M(A,) is a locally C*-algebra and M(A) is a

p
pre-locally C*-algebra, we conclude that M(A) is a locally C*-algebra. B

Corollary 1.1.20 Let {Ax;mx,}a>papuen be an inverse system of C*-algebras

such that the canonical maps xy from lim Ay to Ax are all surjective. If A =
A

lim Ay, then the complete locally m -convex algebras LM(A) and lim LM (Ay)

A A

as well as the locally C*-algebras M(A) and lim M (A)) are isomorphic.

A

Proof. The topology on A is defined by the family of C* -seminorms {p) }xea,

where pA((au)M) = ||ax|| 4, - Since the canonical maps x from lim Ay to Ay are

all surjective, it is not difficult to check that the C*-algebras fiA and A,, are
isomorphic for each A\ € A. Then to prove the corollary we apply Theorem 1.1.19
for the locally C*-algebra A. B

Let A be a locally C*-algebra and let H be a Hilbert space. A representation
of A on H is a continuous *-morphism ¢ from A to L(H). If ¢ is a representation
of A, then there is p € S(A) such that ||¢ (a)|| < p(a) for all @ € A and so there
is a unique representation ¢, of A, such that ¢, om, = m, 0 . Clearly, if ¢, is
a representation of the C*-algebra A, then ¢, o 7, is a representation of A.

Let R(A) = {y; ¢ is a representation of A} and for each p € S(A), let
Rp(A) = {¢ € R(A); ¢ (a)]| < p(a) for all a € A}. Clearly, R(A) = Ry(A).

P

Let A and B be two locally C*-algebras. For p € S(A) and ¢ € S(B) define

10



tpg) A Qalg B — [0,00) by

tp.g) (¢) = sup{ll(¢ @ V) (o)l ;¢ € Rp(A), ¥ € Ry(B)}-

Clearly, t,,) is a C*-seminorm on A ®,); B. The minimal or injective tensor
product of the locally C* -algebras A and B, denoted by A® B, is the completion
of the algebraic tensor product A®,1, B with respect to the topology determined
by the family of C*-seminorms {t(, o) }(p,q)es(4)x S(B)-

Proposition 1.1.21 Let A and B be two locally C*-algebras. Then the C*-
algebras (A® B)
q € S(B).

(:a) and A, ® By are isomorphic for all p € S(A) and for all

Proof. Let p € S(A) and let ¢ € S(B). Since
o (Saen) —swlfes e (£oon)

i=1

;¢ € Rp(A), ¢ € Ry(B)}

= supf (9 ) (35 molan) 940 |y € R0, € BB
> mplai) @ g (b)

=1

Ap®B,

for all Z a; @ b; € A®gyy B, we can define a linear map Cpag) - A Ralg
B/ ker (t, q)) — Ap ® By by

pq)<2az®b —|—ker pq)> praZ ® mq(bi).

=1

It is not difficult to check that P(p,g) 18 an isometric * -morphism from A ®,1g
B/ ker (t(p,q)) to A, ® B,. Moreover, Cpq) (A ®alg B/ ker (t(p,q))) = Ap ®ap B

From these facts and taking into account that A, ®,1s By is dense in A, ® B, and
A®q1g B/ ker (t(,.q)) is dense in (A ® B) (n.q) (See, for example, [38]), we conclude

that ¢, ) extends to an isomorphism from (A ® B), ) onto 4, @ B;. W

(pa

Corollary 1.1.22 Let A and B be two locally C*-algebras. Then the locally
C*-algebras A ® B and lim A, ® B, are isomorphic.

(p,a)

11



Corollary 1.1.23 Let A be a locally C*-algebra. Then the locally C*-algebras
A®A andlim A, ® A, are isomorphic as well as A® C and A.

P

1.2 Definitions, notation and examples of Hilbert mod-

ules

In this Section we introduce the notion of Hilbert modules over a locally C*-
algebra and we present some examples of Hilbert modules.
Let A be a locally C*-algebra.

Definition 1.2.1 A pre-Hilbert A-module is a complex vector space E which is
also a right A-module, compatible with the complex algebra structure, equipped
with an A-valued inner product (-,-) : E X E — A which is C- and A-linear in

its second variable and satisfies the following relations:

@) (&n)" = n,&) for every {,n € E;
(b) (§,§) 20 for every € € E;
(c) (£,€) =0 if and only if £ = 0.

Proposition 1.2.2 (Cauchy-Schwarz Inequality, [14, 45]). Let E be a right A -
module equipped with an A -valued inner-product (-,-) which is C - and A -linear

in its second variable and satisfies the conditions (a) and (b) from Definition
1.2.1. Then for each p € S(A) and for all §,n € E, we have

p((&m)” <p((&E) p((nm).
Proof. When £,7€ F and a € A,
OS <§a_77a£a_n> =a" <§,§>CL—CL* (fﬂl) - <7775>a+<77:77>

By taking a = A (£, 1), where )\ is a positive number, we obtain

0 <2X(Em)" (&m) < N (&) (6,8 (Em) + (n,m) -

12



From this relation and Corollary 2.3 in [11], we conclude that

0 <22 ((&,m)* < p (&) p (&) +p ((n,n) -
If p((€,€)) #0, for A= p((£,€))”", we obtain

2p ((€,) " p (&) <p (&) p (&) +p((n,m)),
whence
pUEM)? <P (&) p((mm) .

If p((6,€)) = 0, we have 2Xp((€,7)? < p((n,m)), whence, since A is an
arbitrary positive number, we conclude that p (({,n)) = 0. Therefore

p&m)* =p (&) p((n.n) =0

and so the inequality is true in this case too. B

Corollary 1.2.3 ([45]). Let E be a pre-Hilbert A-module. Then for each p €
S(A) the map p: E — [0,00) defined by

pE) =vp((&8), (€E

is a seminorm on E. Moreover, the following relations hold:
i. p(€a) <D(&)p(a) for all ¢ € E and for all a € A;

ii. p(§) = sup{p((§,n));D(n) <1};
iii. p(§) =0 for all p € S(A) implies & = 0.

Remark 1.2.4 If E is a pre-Hilbert A -module, then E equipped with the topol-
oqy determined by the family of seminorms {ﬁ}pe S(4) 1s a separable locally convex

space.

Definition 1.2.5 A Hilbert A-module is a pre-Hilbert A -module E which is

complete with respect to the topology determined by the family of seminorms

{Phpesia)-
We will use the notation pg in place p, when we are dealing with more than

one Hilbert module over the same locally C*-algebra.

13



Definition 1.2.6 Two Hilbert A -modules E and F' are isomorphic if there is a

surjective module homomorphism ® from E onto I such that

(@(8),®(n) =(&m
forallé,m € E.

Remark 1.2.7 Let E be a right A -module equipped with an A -valued inner-
product (-,-) which is C - and A -linear in its second variable and satisfies the
conditions (a) and (b) of Definition 1.2.1. From Proposition 1.2.2, we conclude
that

N={{e€E; (¢ =0}
is a closed A -submodule of E. On the quotient A -module E/N, we define an A

-valued inner-product (-,-), by

<§+N’,’7+N>O:<£a77>7£7776E-

According to Proposition 1.2.2, this inner-product is well -defined. Moreover,

E/N equipped with this inner-product becomes a pre-Hilbert A -module.

Remark 1.2.8 If Ey is a pre -Hilbert A -module and E is its completion with
respect to the topology induced by the inner-product, then E is a Hilbert A -

module.

Proof. Indeed, for { and 7 in E there are the nets {{;}icr and {n;}jes in Eo
such that £ = lim¢; and n = lim#;. Then for each p € S(A), the nets of real
i J

numbers {H(&;) }ier and {P(n;)}jes are convergent and so they are bounded.

Let p € S(A), M, > 0 such that p(&;) < M, for all i € I and p(n,) < M, for
all j € J and € > 0. Then there is i9 € I and jy € J such that

P(&i, — &ip) < Mpe/2 and B(nj, —nj,) < Mpe/2
for all 41 and i in I with i1 > 49 and i3 > ig and for all j; and js in J with
jJ1 > jo and jo > jo. Moreover,
P((&amz) = (i ia)) < P&y = &) + P&y = 132)

P&, — &,)D(nj,) +D(&3,)P(0j, —my,) <€

IN
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for all (i1, /1) and (iz, j2) in I x J with (i1,]1) = (i, Jjo) and (i2,j2) = (i, jo)-
So the net {<£i,nj>}(i’j)€1w is convergent in A.
Let {EZ/} ver and {1}y be another nets in Ey such that { = ligngi/ and
n= lim'ﬁj/ and a € A. From '
j

B(&a—Eya) < (B — &) +B(E — & ))pla)

foralli € I and i € I and

P((&my) = (€371 ) < (Bl& — ) +P(E = &))p(ny)

+(ﬁ(77j —n)+ ﬁ(ﬁj’ - ?7))]5(5/)
for all (i, j) € IxJand forall (i’,j) € I'x.J', we conclude that lim &;a = lim €, a

and %m% <§i,17j> = lim <gi/,’ﬁj/> . Thus the module action of A on Ej extends
By (i/ ’j/)
to a module action of A on E by

§a =lim¢;a
and the inner-product on Ej extends to an inner-product on E by
5 - llm i) s ).
(&) = Jim (&irmy)
In this way, E becomes a Hilbert A -module. H

Remark 1.2.9 Let Ay be a pre-locally C*-algebra and let A be its completion.
Suppose that E is a Hilbert Ag-module, that is, E is a right Ay -module equipped
with an Ag -valued inner-product which is C - and Ag -linear in its second variable
and verifies the conditions from Definition 1.2.1, and is complete with respect to
the topology induced by the inner-product.

Leta in A and & in E. Then there is a net {a; }icr in Ao such that a = lim a;.
From Corollary 1.2.3 (i), we deduce that {{a;}ier is a fundamental net in EZ and
so it is convergent. If {bj};ey is another net in Ay which converges to a, then
from Corollary 1.2.3 (i), we conclude that the nets {£a;}ier and {&bj}jcs have
the same limit. Thus we can extend the module action of Ay on E by continuity

to a module action of A on E and thus E becomes a Hilbert A -module.

15



Remark 1.2.10 Let Ag be a pre-locally C*-algebra and let Ey be a pre-Hilbert
Ag-module. If A is the completion of Ay and E is the completion of Ey, by
Remarks 1.2.8 and 1.2.9, E becomes a Hilbert A -module.

Remark 1.2.11 Let A and B be two isomorphic locally C*-algebras. If E is a
Hilbert A -module, then E becomes a Hilbert B -module with the module action
of B on E defined by

Eb=¢d7Yb),6 € E,be B

and the B -valued inner-product defined by

<£a 77>B = (<£7 77>A)

where ® is an isomorphism from A onto B and (-,-) , denotes the A -valued

inner-product on E.

Let F be a Hilbert A -module. Then the closed span of the set {({,7);&,n €
E} is a two-sided * -ideal in A. We denote it by (F, E) .

Proposition 1.2.12 If E is a Hilbert A -module, then E (E, E) is dense in E.

Proof. Let {u;};c; be an approximate unit for (F,FE), £ € F and p € S(A).
Then

P (€u; — €)? (Gui — &, éus — €))
<fa £> - <€a £> Ui — Us <§7 §> + u; <£7 €> uz)

2p(<§7§> Ui — <§7§>) — 0.

ESAEERS

(
(

IN

This shows that {{u;}ier converges to € and so E'(E, E) is dense in E. B
Corollary 1.2.13 If E is a Hilbert A -module, then EA is dense in E.

Remark 1.2.14 If E is a Hilbert A -module and A is unital, then £1 = £ for
all§ € E.

If A is not unital and AT is the unitization of A, then E becomes a Hilbert
A" -module if we define £1 =& for all £ € E.
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Example 1.2.15 Any locally C*-algebra A is a Hilbert A -module with the
inner-product defined by (a,b) = a*b, a,b € A.

Example 1.2.16 Any closed right ideal I of a locally C*-algebra A equipped
with the inner product (a,b) = a*b, a,b € I is a Hilbert A -module.

Example 1.2.17 If {E;}]", is a finite set of Hilbert A -modules, then the direct
n

sum @ E; is a right A -module in the obvious way and it becomes a Hilbert A
i=1

-module if we define the inner-product by

n

((€i)izr - (mi)iza) = Z (&> i) -

i=1
Example 1.2.18 Let {E,}, be a countable set of Hilbert A -modules. We de-
note by @ E, the set of all sequences (,,),, with &, in E, such that Y (£,,&,)
converges in A. Then @ E,, becomes a Hilbert A -module with the action of A

n

on @ E, defined by (£,),, a = (§,a),, and the inner product defined by

(Endns (M)n) = Y Ensin) -

To show that the module action of A on @ E, and the A -valued inner-

product on @ E,, are well-defined, let a € A, (£,),,, (M), € D En, p € S(A)
and e > 0. Tzlhen there is ng such that "

P> (€ €x)) <€ and p(>_ (n,mi)) <€
k=n k=n

for all positive integers n and m with m > n > ng and so

P> (€ha &pa)) = p(a* > (€4 &k) @) < pla)’e
k=n k=n
and
PO &em))? = p U (i)
k=n

17



( ¢f. Cauchy-Schwarz Inequality )
P ({(Er)ren » (Erken)) P (M) ks > (M) ))

m

= p(z (§k75k>)P(Z (M, mx)) < €2
k=n

k=n

IA

for all positive integers n and m with m > n > ng. These relations show that the

module action of A on @ Ey, and the A -valued inner-product on @ E,, are well-

defined. It is not diﬂicu?t to check that @ Ey, becomes a pre—Hz'lbe?“t A -module.

To show that @ E,, is complete wit;LL respect to the topology induced by the

inner-product, let {n(fﬁl)n}zel be a fundamental net in @ Ep, € >0 andp € S(A).
n

Since {(€)n}Yier is a fundamental net in @ E,, there is ig in I such that
n

p(z@s— i?,éi%—fi?}) < efs

n

for all i1,15 € I with i1 > 19 and i > ig. From this inequality, we conclude that
p (& — &2 6n —€2)) <¢/8

for all i1,i9 € I with i1 > ig and ia > ig and for all positive integer n. Therefore,
for any positive integer n, {f%}iel 18 a fundamental net in E,, and so it converges
to an element &,, in E,.

We show that (§,,)n is an element in @ Ey,. Let is € I such that i3 > io.
n

Since (£3),, is an element in @ E,, there is a positive integer ng such that
n

b 3 (e0.6) ] <ers
k=mno

for all positive integer n with n > ng. From

n

p(3 ) < o(S-na-a) o 3 ()

k=ng k=no

18



n

+2p | 3 (G-¢.6)

k=ng
< ¢/8+¢/8
. 1/2 . 1/2
= DIRG R RIEISN I PR NS
k=no k=ng
1/2

e/A+e/2p | Y (€6

k=ng

IN

for all positive integer n with n > ng and for all i € I with i > i3, we obtain

n

p| D (&g <e

k=ng

for all positive integer n with n > ng and for oll © € I with i > i3.

Therefore

p Z <£k>fk> = h{np Z <§§ca€}c> S 3
k=ng k=ng

for all positive integer n with n > ng. This shows that (&,,)n is an element in
P E,.
n

From

p< y <sk—5§:,fk—5§3>> = limp (i@i—f?vﬁ%—f@)

k=1 k=1
< oy ({6 -6t 6 ) ) <o
n

for all positive integer n and for all iy € I with i1 > ig, we conclude that the net

{(&)n}ier converges to (€,)n.
The direct sum of a countable number of copies of a Hilbert A -module E will
be denoted by Hp.
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Let A be a locally C*-algebra. Let M, (A) denote the * -algebra of all n x n
matrices bover A, with the usual algebraic operations and the topology obtained
by regarding it as a direc sum of n? copies of A. Thus M,(A) is a locally C*-
algebra and moreover, M, (A) is isomorphic with lim M, (Ap).

P
Example 1.2.19 Let E be a Hilbert A -module and let n be a positive integer.
It is not difficult to check that ETB E is a right M, (A) -module with the action of

=1

My (A) on @ E defined by (&;); layl; ;=) = <;§iaij> . The map (-, ) pr,,(a)

i=1 j=1

from <e§ E> Y <e§ E> to M, (A) defined by
(€7t s i) ar, ) = [

is a My (A) -valued inner-product on @ E which is C - and My(A) -linear in its

second vamable and verifies the condmon (a) and (¢) from Definition 1.2.1. Let

(&) € @E Since

> a6 ¢) Z<faz,£ag <Zfaz,zga3>z
i,j=1 i,j=1

forallay,...,an € A, [(&, £j>]zj:1 is positive in My, (A) and so ((&;)i—; , (5i)?:1>Mn(A)
> 0. Therefore (En% E, (., '>Mn(A)) is a pre-Hilbert M, (A) -module. It is not dif-
ficult to check that éé E is complete with respect to the topology induced by the
inner-product (-, ")y (a) - Hence Zi‘n}lE is a Hilbert M,(A) -module.

Definition 1.2.20 Let {Ax;mau}a>papuen be an inverse system of C*-algebras
and let {Ex; o x> uca be an inverse system of vector spaces. We say that
{Ex;oxu Axs Taphrspauen 8 an inverse system of Hilbert C*-modules if for
each A € A, E is a Hilbert C*-module over Ay, and the following conditions are
satisfied:
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(@) oxu(€ran) = oxu(€x)maulan) for all £\ € Ey and ay € Ay;

(b) <o-)\,u.(£)\)ao->\u(n)\)> = Txu (<£)\777)\>) fO’f’ all E)\vn)\ € E)\-

Proposition 1.2.21 Let {Ex;0,; Ax; Tautra>uauca be an inverse system of
Hilbert C*-modules. Then lim E is a Hilbert lim Ay -module with the action of

A A
lim Ay on lim Ey defined by

(EA),\ (CLA))\ = (f)\%),\

and the inner-product defined by

() (ma)a) = (s mad)x -

Proof. Let (£,),,(ny), € limE) and (ay), € lim Ay. Since

oau(§ran) = oxnu(§x)maulan) = & a,

and
T ((Exs0)) = (0au(€x)s o)) = (€pus )
for all A\,u € A with A > pu, the module action of lim Ay on lim F\ and the

A A
inner-product on lim 'y are well-defined. It is not hard to check that in this way
A
lim E)\ becomes a pre-Hilbert lim Ay -module.
A A

To show that lim F is a Hilbert lim Ay-module, let {(ff\))\}ig be a funda-
A A
mental net in lim E. Then, for any ¢ > 0 and for any A € A, there is ig € I such

A

that

11 ¢i2
A

=B — () <=

for all 41,49 in I with iy > g and iy > 49, where [|-||, means the norm on E)
induced by the inner-product. Therefore for any A € A, the net {ff\}ie 7 converges

in E) to an element . Since
oxau(én) = hgnﬂxm(ff\) = li?lift =&,
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for all A\, pp € A with A > p, (§,), € lim E}.
A

Let A € A. Then

PA((E)u = (€)u) = (€4 = &[], — 0.
This shows that lim Fy is complete and the proposition is proved. B

A
References for Section 1.2: [14], [29], [38], [45].

1.3 Bounded elements

In this Section we consider the set b(E) of all bounded elements in a Hilbert
module E over a locally C*-algebra A, and we show that E induces on b(F) a
structure of Hilbert C*-module over b(A). Also we prove that a Hilbert module

E over A can be identified with lim £, up to an isomorphism of Hilbert modules
P
and we study the connection between b(Hg) and Hyg).

Let A be a locally C*-algebra and let F be a Hilbert A-module.
Definition 1.3.1 An element & in E is said to be bounded if
€. = sup {7 (€) p € S(4)) < oo.
The set of all bounded elements of E is denoted by b(E).
Theorem 1.3.2 (18, 38, 45]). Let E be a Hilbert A-module. Then:

1. b(E) is a Hilbert b(A)-module;

2. b(E) is dense in E.

Proof. 1. First we will show that the restriction of the inner product (-,-) on
b(E) is a b(A)-valued inner-product on b(E). Let {,n € E. Then, by Cauchy-

Schwarz Inequality, we have

p((&m) < V(&) p((n.0) =B E) B () < |IEll Il
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for all p € S(A). This means that (£,n) € b(A), and so b(E) is a pre-Hilbert
b(A)-module. We remark that

1€llce = A/11{€: E)lloo

for all £ € b(E). Hence |||, is the norm on b(F) induced by the inner-product.
To show the completeness of b(E) with respect to the norm ||-|| , induced by

the inner-product, let {{,, }» be a fundamental sequence in b(E). Since

for all positive integers n and m and for all p € S(A), the sequence {{,}, is a
fundamental sequence in F, and since E is complete, it converges to an element

¢ in E. From
for all positive integers m and n, we conclude that the sequence of positive

numbers {[|{, ||}, is a fundamental sequence and so it is bounded. Let M > 0

such that ||€,||,, < M for all positive integer n. Then

P() <P =8 +DP (&) <P -+ M
for all positive integer n and for all p € S(A). This implies that p () < M for
all p e S(A), and so & € b(E).
To show that {£,}, converges to £ with respect to the norm ||-|| , let € > 0.

Since {,, }n is a fundamental sequence in b(E), there is a positive integer n. such

that

an - fm”oo <e
for all positive integers n and m with n > n, and m > n.. Then

for all positive integer n with n > n. and for all p € S(A). This shows that the
sequence {&, }, converges to { with respect to the norm |-, and the assertion

1. is proved.
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2. According to Remark 1.2.14 we can suppose that A has a unit 1. Let
¢ € E. For any positive integer n, the element 1 + = (5 &) is an invertible
element in A, [11]. Consider the sequence {¢,}, of elements in F, where
& =6 (142 (¢, 6) 7" By functional calculus

Pl,) = (<§§>%< %<£,€>)1>§¢ﬁ

for all p € S(A). This shows that {,,}, is a sequence of elements in b(E), and

(1 %(s,@)_l)
<1+%<£,£>>_1>
<29, <<s ot (1 %(s,@)_l)

P
Vn

for all p € S(A), {¢,,}n converges to £. Therefore b(E) is dense in E. B

since

Bl
N

= lp ((§,£>

n

Njw

N

<

Remark 1.3.3 If A is a strongly spectral bounded locally C*-algebra and E is a
Hilbert A -module, then b(E) = E as set.

Remark 1.3.4 Let {E,}, be a countable set of Hilbert A -modules. If € = (§,,),,

is an element in @ b(E,,), then Y (£,,,&,,) converges in b(A), and so it converges

n n
with respect to the topology determined by the family S(A) of C* -seminorms
to an element in b(A). This shows that £ is an element in b(@ E,). Therefore

EBb( E,) is a subset of b(EBE ), and moreover, since the restm'gtz'on of the b(A)-
Ualued inner-product from b(@E ) to @b( E,) coincides with the b(A)-valued
inner-product on @b( n)s @ b(E,) is a closed submodule of b(@E ).

In general, EBb( n) does not coincide with b(@E ).
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Example 1.3.5 Let A = C(Z"), the locally C* -algebra of all C-valued functions
on ZT endowed with the topology pointwise convergence. Then Hya) G b(Hy).
Indeed, for any positive integer n, we consider the function f, from Z+ to C
defined by
1 ifm=n
fn(m) = .
0 ifm#n

It is easy to check that |fn|2 converges in A to the function f from ZT to C

defined by f(m) = 1 for all positive integer m. Hence (fn)n is an element in
b(Hy). Since
sup{| Y [ful> (m)sm e ZF} =1

n>ng

for any positive integer ng, S |fnl?* is not convergent in b(A), and so (fy)n ¢
n

Hb(A)'

Example 1.3.6 Let A = C..[0,1], the locally C*-algebra of all C-valued contin-
uous functions on [0, 1] endowed with the topology of uniform convergence on the
countable compact subsets of [0,1], [8] . In this case, Hyay = b(Ha).

Indeed, if (f)n € b(Ha), then S | fol|® converges in A, and by Dini’s Theorem

n

it converges in b(A). Therefore (fn)n € Hya)-

Remark 1.3.7 If {E;}T, is a finite set of Hilbert A -modules, then b(€D Ej)
i=1

coincides with @ b(E;).
i=1

Indeed, we seen that € b(E;) is a closed submodule of b(@ E;). Let & =
i=1 =1
n n
()i be an element in b(ED E;). Then Y (&;,&;) is a positive element in b(A),
i=1 i=1

and since
n

=1
for all k = 1,...,n, & is an element in b(Ey) for all k = 1,...,n. Hence & €
n

@117@0'
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Lemma 1.3.8 Let {E,}, be a countable set of Hilbert A -modules. Then @ b(Ey,)
is dense in @@ En,.

Proof. Since b(EP E,) is dense in @ E,, it is enough to show that b(EP Ey,) is
contained in the (;Llosure of Pb(Ey) zvith respect to the topology induceg by the
inner-product on @ E,,. "

Let & = (En)nne b( E,). For each positive integer m, we denote by 7,,
the element in @ F, er;lich has all the components zero except at the first m

n

components which are &1, ...,&,,. Since §,, € b(E,,) for all positive integer n, and
m

since <77m7 77m> = Z <§n7£n> s NMm is an element @b(En)
n=1 n

Let € > 0 and p € S(A). Since Y (£,,§,) converges in A, there is a positive

integer ne such that

Then

n>m
for all positive integer m with m > n.. This shows that {n,,}. converges to
& with respect to the topology induced by the inner product on € E,, and the
lemma is proved. B "

Let E be a Hilbert A -module and let p € S(A). Using Cauchy-Schwarz
Inequality, it is easy to check that N, = {{ € E;p((£,£)) =0} is a closed A
-submodule of F and N, = {£ € b(E); p ((£,£)) = 0} is a closed b(A) -submodule
of b(E). The quotient vector space E/N,, is denoted by E,,.

Theorem 1.3.9 (/38, 45]). Let E be a Hilbert A -module and p € S(A). Then
E, is a Hilbert Ay-module.

Proof. We define an action of A, on I, by

(€ + Np)mp(a) =8a+ Np, € E,ac A
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and an A, -valued inner-product on E, by

<§+NP’U+NP> :ﬂ-P(<Ean>)v faUGE-

It is not difficult to check £, with the action of A, on E, and the A, -valued
inner-product defined above becomes a pre-Hilbert A, -module. It remains to
show that F), is complete with respect to the norm induced by the inner-product.
The norm on F, induced by the inner- product is denoted by ||-|5-

We know that the vector space b(E)/N, is a Banach space with respect to
the topology determined by that norm

1€+ Nl = inf {[[€ +nll o 57 € N}, € € B(E).

To show that E, is complete, it is enough to show that the map @ : b(E)/N, —
E, defined by
P (+Np) =&+ Np, £ €B(E).

is a linear isometry with dense range. Clearly, ® is well-defined and it is linear.
Let £ € b(E). Then

1 (€ +Np)lly = 1€+ Npll; = \/H<§ + Np, &+ Ny,
= Vr((§8)=D(E).

Thus, to show that ® is an isometry, we must show that 7 (§) = ||{ + Np|| for all
§ € b(E). Let n € Npp. Then

P <pE+n)+DMn) =DE+n) <€+l

From this relation we conclude that p (&) < [|€ + Np|| .
On the other hand, if {e;};cs is an approximate unit for ker p Nb(A), then

N

6+ Nl < lim € — €eill, = Tim /1€ — e € — Eeidl
= tim (6.8 — .02 e = |m (€.0)2)|
= Vr(€8) =5(¢)
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(see, for example, [37], 1.5.4). Hence ® is a linear isometry.
Let £ € E. Since b(E) is dense in E, there is a sequence {¢,,},, in b(E) such
that p (£ —¢,,) — 0 for all p € S(A). Then

1D (& + Np) = (€ + Np)lly = 1§ = §+ Npllz =P (&, — &) — 0.

This implies that ® has dense range and the theorem is proved. B

Let E be a Hilbert A -module. The canonical maps from E onto Ep, p € S(A)
are denoted by 05 , p € S(A) and the image of £ under 05 by &,

Let p,q € S(A) with p > ¢. Since N, C Ny, there is a unique canonical
map 051 5
{Ep; 0% Api Tpg }paes(a) p>q 18 an inverse system of Hilbert C*-modules in the

sense of Definition 1.2.19.

from E, onto E, such that 051 ooy = af. It is easy to see that

Proposition 1.3.10 Let E be a Hilbert A -module. Then the Hilbert A -modules

E and lim E,, are isomorphic.

P

Proof. Define ® : ' — lim E, by

Clearly @ is linear. From
(@), @) = ({7 (&), (n)))
= (&m)

for all £, € E, we conclude that ® (F) is a closed A -submodule of lim E,. By

P

= (mp (€M),

p

4
@ () = $(E) = lm, (8 (E)) = lima, (E) = lm B,

p p p
where X means the closure of the vector space X with respect to the topology
determine by the inner- product and o, p € S(A) are the canonical maps from

lim E, to E,. Thus we showed that ® is a surjective linear map which preserves

P
the inner product and the proposition is proved. B
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Corollary 1.3.11 Let E be a Hilbert A -module and let o be a real number such
that 0 < a0 < % . Then for each & € E there is n € E such that £ = n(£,6)“ .

Proof. For each positive integer n, we consider the function f, : R — R defined
by

n®/? if X< 1/n
fa(N) = .
A2 N> 1/n

Let p € S(A). Then the sequence {op(§) frn({op(§), ap(§)>1/2}n converges in Ej,
to an element 7, and moreover, o,(§) = 1, (0p(&),0p(£))" (see, for example,
[29]). By functional calculus, the sequence {&f,({(&,¢ >1/ 21, converges in E to an
element 7. Moreover, o, () = n, for all p € S(A) and then £ =7 (£,£)". W

Lemma 1.3.12 Let {E,}, be a countable set of Hilbert A -modules. Then, for
each p € S(A), the Hilbert A,-modules (@ En> and € (En),, are isomorphic.
n D n

Proof. Let (¢,), be an element in @ E, and p € S(A). Then Y (£,,&,)
n n
converges in A, and since m, is continuous, Y m, (({,,&,)) converges in A,,.
n

From this fact, knowing that

ﬂ—P (<£n7 £n>) = <U;L (gn) 70_2 (fn)>

for all positive integer n, where o} is the canonical map from E, onto (En)p,

we conclude that Y- (o7 (&,,), 00 (£,)) converges in A, and so (o (gn))n is an

element in P (E,),. Moreover,
n

(5 Endn >0y (€n)n) = Tp ({(En)n» (En)n) -

Thus we can define a map U, from (@ En> to @ (En), by
n p n

UP ((gn)n + Np) = (UZ (én))n :

29



It is not difficult to check that U, is C - and A - linear and it preserves the inner
product.
To show that the Hilbert A, -modules <@ En> and P (Ey), are isomorphic
n n

it is enough to show that U, has dense range. Let { = (£%),, be an element in

@ (Eyn), - For each positive integer m, we consider the element &, in @ (En),

n n
which has all the components zero at except the first m components which are

P, .., &0 . A simple calculus shows that the sequence {Em}m converges to £. Since

n
p?

an element 7,, in @ E,, such that U,(7,, + Np) = ¢, . Hence Up has dense range

the maps o}, n = 1,2, ..., are all surjective, for each positive integer m there is

n
and the lemma is proved. W

Remark 1.3.13 If E is a Hilbert A -module, then the Hilbert A, -modules (Hg),

and Hg, are isomorphic.

References for Section 1.3: [14], [18], [23], [36], [38], [45].
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Chapter 2

Operators on Hilbert modules

2.1 Bounded operators

In this Section we introduce the notion of bounded module morphism between
two Hilbert modules, and we show that the set B4(FE) of all bounded module
morphisms on F is a locally m -convex algebra which can be identified with

lim B, (Ep), where By, (E,) is the Banach space of all bounded module mor-

P
phisms on E, for each p € S(A), up to a topological isomorphism.
Let A be a locally C*-algebra and let E, F' and G be Hilbert A -modules.

Definition 2.1.1 A C- and A- linear map T from E to F is said to be a bounded
operator from E to F if for each p € S(A) there is M, > 0 such that

pr (TE) < Mypg (§)

forallé € F.
The set of all bounded operators from E to F is denoted by Bao(E, F) and we
write BA(E) for B4(E, E).

Remark 2.1.2 Let T,S € Bus(E,F), R € Bo(F,G), A € C, p € S(A) and
€ E. Then:
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L. pr((T + 5)(&)) < Pr(T€) +Pp(S€) < Mp1Pg(§) + Mp,sPp(§) = (Mpr +
Mp,S)I_?E(E)Q

2. pr((AT)(§)) = [Mpp(T€) < |\ [Mp1PE(8);
3. Pa(RTE) < My rpp(TE) < My rRMp1Dp(§).

From these facts we conclude that B4(E, F) is a vector space and Ba(FE) is

an algebra.
Lemma 2.1.3 For each p € S(A), the map p: Ba(E, F) — [0,00) defined by

p(T) =sup{pp (T€);Pg (§) < 1}

is a seminorm on Ba(E,F). Moreover, if F = E, then p is a submultiplicative

seminorm on Ba(E).
Proof. It is straightforward. l

Theorem 2.1.4 The set B4(E, F) is a Hausdorff complete locally convex space
with respect to the topology determined by the family of seminorms {f)}peS(A)'

Proof. Let T' € Ba(E, F) such that p(T) = 0 for all p € S(A). Then pp(T€) =0
for all p € S(A) and for all £ € E, and since F' is separable, T¢ = 0 for all £ € E.
Therefore T' = 0. Thus we showed that Ba(E, F) is a Hausdorff locally convex
space.

To show the completeness of Ba(FE, F'), let {T;};c; be a fundamental net in
B4 (E, F). First, we show that the net {T;¢};cr converges in F for each € E.
For this, let p € S(A), £ € E and ¢ > 0.

If (&) # 0, then, since {T;}ier is a fundamental net in Ba(FE, F), there is
1o € I such that

BT — Tiy) < &/Ps(€)

for all 41,19 € I with i1 > iy and 792 > ig, and so
TQF(Thé - ng) S €
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for all 11,72 € I with i1 > ig and 19 > 1.
If py(€) = 0, then

Pr(Ti & — T;,8) < p(T;, — T;,)PE(§) =0

for all 41,49 € I . Hence {T;{ }icy is a fundamental net in F' and so it is convergent.
Define a map T': £ — F by

T¢ =limTiE.
(3

It is not hard to check that 7" is C - and A - linear. Since {7} };cr is a fundamental
net in B4(FE, F), for each p € S(A), {p(T;) }ier is a fundamental net of positive
numbers and so it is bounded. Let M, > 0 such that p(T;) < M, for all i € I.

Then we have

pr(TE) = lizmﬁF(Tif) < 11?5(Ti)ﬁE(5) < Mypg(§)

for all £ € F and for all p € S(A). This means that T' € Ba(E, F).

To show that {7;};cr converges to T, let ¢ > 0, p € S(A) and £ € F such
that pg(§) < 1. Since {T;}ier is a fundamental net in B4(F, F), there is ig € I
such that

p(Ti, —Ti,) < ¢

for all i1,i9 € I with i1 > ig and i5 > ig. Then

< hmﬁ(ﬂ - E1) S €

for all 4; € I with i; > ig. Therefore

p(T' = T;,) = sup{Dp(Tn — T;,n); Pp(n) <1} <e¢

for all iy € I with i1 > ip. This means that the net {7;};e;r converges to T and

the theorem is proved. B

Corollary 2.1.5 The algebra B4(E) is a Hausdorff complete locally convex alge-
bra with respect to the topology determined by the family of seminorms {P}pes(A)-
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Let {Ex; o Ax; Tapaspaper and {Fx; X5 Ax Tagtaspauea be two in-

verse systems of Hilbert C*-modules such that the canonical maps o from lim E
A
to E, x) from lim Fy to F) and 7y from lim Ay to Ay, A € A are all surjective.
A A
Then the connecting maps o, from Ey to Ey, x,, from F) to F), and 7, from

Ay to Ay, A > p, A, € A are all surjective.
Let A, € A with A > pu, T € Ba,(Ex, F)), ( € E, and { € E) such that
oxu(§) = ¢. Then

o @O, = 100 (T X, (TN = Il (TETE) 4,
(cf. [36], 2.8)

1713 s (6 ML, = ITI3 1oru(€)s oru(€l 4,
= |ITI3 <13,

IN

where ||-||y is the norm on By, (E), F)). Therefore we can define a map (my,), (T')
from E,, to F, by

(), (T)(C) = X (T€) if o3 (§) = ¢
Moreover,
(), (D), < TN ¢l g, -

Let ¢1,Cs € Eu, &1,& € E) such that 0y,(&;) = ¢; and 03,(&) = (2, a € Ay,

b € Ay such that 7),(b) = a and the complex numbers a; and as. Then, since

(€ + @ey) = a1y + azly and 03, (§10) = oxu(&1)TAu(b) = Gy a,
we have:
(@) (mau), (T) (1€ + @als) = X, (T (1€ + @2€y))

= a1 (T€) + X (T€2) = a1 (mau), (T)(C1) + az (mau), (T)(C2)

and

(b) (mau), (T)(€10) = xxu(T(€10)) = X2 (T(€1)0) = Xau(T€1)Tru (D)
= (M), (T)(¢1)a-
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Therefore (my,), (T') is an element in Ba, (Ey, F,). Thus we have obtained
a map (my,), from By, (E), F)) to Ba, (Ey, Fy,). From

H(ﬂ-)‘/‘)* (T)H

= supd]|(ma), @O, 15, < 13 < 1715

for all ' € Ba, (E\, Fy), we conclude that (my,), is continuous. It is not hard
to check that (my,), is linear and {Ba, (Ex, F)\); (Tau), }a>papuea is an inverse
system of Banach spaces.

Let A =lim Ay, E =lim Ey and F = lim F}.

A A A

Theorem 2.1.6 Let A, E and F be as above. Then the Hausdorff complete

locally convex spaces BA(E,F') and lim By, (Ey, F)\) are isomorphic.
A

Proof. Let A € A, T € B4(E,F), £, € E) and £ € FE such that o) (§) = &,.
Then

o M5, = ([0 (T€)  xa (T 4,
= |lmx ((T&, TE)| 4,

pa ((T€,TE)) =Dy p(TE)*

T 2

| N

ﬁE()
pA(T)*px ((£,€))

pA(T)

(T)
PA(T)? |mx (€,€))ll
(T)?]

[
=™ R

T

|
=

(T [|enl, -

This implies that the map (), () from E) to F) defined by
(m2), (T)(€x) = X (T€) i oA (€) = &x
is well-defined, and moreover,

12 (E gy, < PAD) [|E0] s, -
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It is not difficult to check that (my), (T') is an element in By, (Ex, Fy). In this
way we have defined a map (7)), from B4(E, F) to B, (Ex, Fy). Also it is not

difficult to check that (7y), is linear. Moreover, since

(7). (D), = sup{[|(mx), (T)(EN) |, 5

[6xllp, =1} =PA(T)

for all T'€ Ba(E, F), (7)), is continuous.
Define ¥ from Ba(E, F) to lim Ba, (Ey, Fy) by

U(T) = ((mr), (1)), -

Let \,pp € Awith A > p, T € By(E,F), ¢ € E, and § € E) such that 0),(§) =¢
and 7 € E such that oy (n) = £. Then, since o, (1) = oxu(or(n)) = oau(§) = ¢,

we have

(), (T2), (1)) (€)= X (M), (T)(€)) = X (X2 (T))
= X (Tn) = (m4), (T) (C)-

Therefore W is well-defined. It is not hard to check that W is linear.
To show that W is surjective, let (T))x € lim By, (Ex, F)) and £ = (¢,), €

A
lim E. Define T' from E to F by T¢ = (T)\g)\)A . Let \,u € A with A > . Then

XAM(TAfA) = (ﬂ')\u)* (Ty) (U)\,u(fA)) = T,ugu-

This shows that T is well-defined. It is easy to check that T is C -and A -linear,

and since

PAp(TE) = HT/\§>\HFA < I Tl Hf,\HEA = | Txllx Pa,e(&)

for all £ € F and for all A € A, T is a bounded operator from E to F. Moreover,

since
(7). (T) (02 (8)) = xA(T€) = Ta(0A(£))
for all £ € F and for all A € A, ¥(T') = (7). Therefore ¥ is surjective.
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Let {gx }aea be the family of seminorms which define the topology on lim By,
A

(Ex, Fy) (that is, gx((Ty)n) = || 72|, From

o (¥(T)) = [I(mx), (D)l = pa(T)

for all A € A and for all T € B4(E, F), we conclude that ¥ is injective, and

moreover, ¥ and its inverse are continuous. l

Corollary 2.1.7 Let A be a locally C* -algebra and let E and F be Hilbert A
-modules. Then {Ba,(Ep, Fp); (Tpg)s}p>qpqes(a) 15 an inverse system of Ba-
nach spaces and the Hausdorff complete locally convex spaces Ba(E,F) and
lim Ba, (Ey, F,) are isomorphic.
P
Let {Ex;0au; Ax; Tapta>pauen be an inverse system of Hilbert C*-modules

such that the canonical maps o) from lim E) to £y and 7 from lim Ay to Ay,
A A
A € A are all surjective.

Let A\, € A with A\ > p. We seen that the map (my,), from Ba, (E)) to
Ba, (E,) defined by

(M), (T)(C) = oxu (TE) if oru(§) = ¢

is a continuous morphism of Banach spaces. To show that (7),), is a morphism
of algebras, let T',S € Ba, (Ey), ¢ € E, and & € E) such that 0y,(£) = ¢. Then

(Taw), (TS)(C) = oxu (T'SE) = (man), (T)(oau (SE))
= (W)\u)* (T) (W)\u)* (S)(C)

Therefore (7),), is a continuous morphism of Banach algebras and { By, (E));
(), Ja>paueA is an inverse system of Banach algebras.
Let A=1lim Ay and £ = lim FE).

A A

Proposition 2.1.8 Let A and E be as above. Then the Hausdorff complete

locally m -convex algebras BAo(E) and lim B, (Ey) are isomorphic.
A
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Proof. By Theorem 2.1.6, to prove the proposition it remains to show that
the map ¥ from B4(F) onto lim By, (Ey) defined by ¥(T') = ((mx)«(T))x is a

A
morphism of algebras. Let A € A, T, S € By(FE), £ € E and ¢ € E) such that
oA(§) = ¢. Then

(7). (TS)(C) = ox (T'SE) = (mx), (T)(ox (55))
= (ma), (T) (m), (5)(C)-

Therefore (7)), is a morphism of algebras for all A € A. This implies that U is

a morphism of algebras and the proposition is proved. B

Corollary 2.1.9 Let A be a locally C* -algebra and let E be a Hilbert A -module.
Then {Ba,(Ep); (Tpqg)s }p>q,pqes(a) s an inverse system of Banach algebras and

the Hausdorff complete locally m-conver algebras Ba(E) and lim By, (E,) are

p
1somorphic.

References for Section 2.1: [12], [14], [24], [29], [36], [38], [45].

2.2 Operators admitting an adjoint

In this Section we consider the notion of adjointable module morphism between
two Hilbert A-modules E and F, and we prove that the set La(E) of all ad-
jointable module morphisms on FE is a locally C*-algebra which can be identified

with lim L4, (Ep), where La,(E,) is the C*-algebra of all adjointable module
p
morphisms on E, for each p € S(A), up to an isomorphism of locally C*-algebras.

Let A be a locally C* -algebra and let F, F' and G be Hilbert modules.

Definition 2.2.1 A map T from E to F is said to be adjointable if there is a
map T from F to E such that

(n, T¢) = (T"n, &)
for all € € E and for all n € F.
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The set of all adjointable operators from E to F is denoted by La(E,F).
When F = E, for simplifying, we write L(E).

Remark 2.2.2 Let T, S € Ly(E,F), R€ Ls(F,G),{ € E,ne F, (€ G and

the complex numbers o, 3. Then:

L. (n, (oI + BS)E) = a(n, TE) + B (n,5) = a (T, &) + B (5™, §)
= (@™ + 35" )n,&);

2. ((,RT¢) = (R*(,T¢) = (I"R*(,€) and

3..(& T ) = ((T"n,€))" = (0, T€))" = (T¢,n).

Therefore La(E, F') is a vector space, La(E) is an algebra and moreover,

(a) (aT + BS)* =aT* + 3S*;
(b) (RT)" = T*R";
(c) (T*)" =T.

Lemma 2.2.3 If T is an adjointable operator from E to F, thenT' and T* are
bounded operators, and moreover, p(T') = p(T*) for all p € S(A).

Proof. Let £, € E,n€ F,a € A and )\ € C. Then:
1. (n,TE+CQ) =(T*n,6+¢) = (T*n,&) + (T™n,¢)
=(n,TE + (n,T¢) = (n,TE+TC);
2. (0, T(AS)) = (T"n, A§) = A(T™n, &) = A (n,T¢) = (n,\T¢) ; and

3. 0, T(a)) = (T"n,8a) = (T*n,§)a= (n,T¢)a= (n,(T¢)a).

From these relations we conclude that T is C - and A -linear. In the same

way we show that T is a C - and A -linear map from F' to E.
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To show that T is a bounded operator from F to E, first we show that
T(NF)C N[ for all p e S(A). Let p € S(A) and £ € N. Then
Pr(T€)? = p((T¢, TE)) = p((T*TE,£))
(cf. Cauchy-Schwarz Inequqlity)
< Pp(I*TE) p(E) = 0.

Hence T(NJ) C NI for all p € S(A). In the same way we show that T*(N[') C
Nf for all p € S(A). Then, for each p € S(A), we can define the maps T}, from
E, to F, by

Ty (o3 (€) = oy (T€)
and T} from F}, to E}, by

Moreover, we have

{7y (), (03, (9))) = (o3 ()05, (TE))
= 7rp(<77,T€>) =mp (T",€))
= {0y (T™n), 03 (©)) = (T; (o3 (m) 0 ()
for all £ € E and for all n € F. This means that T}, is an adjointable operator from
E, to F}, and so T}, and T, I;" are bounded operators between Hilbert C*-modules

(see, for example, [36]).
Then

Pr (T€)? = p((TE,TE)) = ||mp (TE, TE),
oy (T€) 0 (TE))],
Ty (o7 (€)) . T (o ()))]],,
< Bl Koy ©) .05 ()],

(cf. [36], 2.8)
= 1Tl [l ((65 NI,
1Tl B (6)°
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for p € S(A) and for all £ € E. Hence T is bounded. Moreover,

p(T) = sup{pr (T€) ;¢ € E, pp(§) <1}
sup{[| Ty (o3 (©))[l5, € € B, loy (O], <1}
= Tl

In the same way we show that 7™ is a bounded operator from F' to E and
p(T*) = ||T|| - Moreover, since || T || = || T,]| for all p € S(A), p(T) = p(T*) for
allpe S(A). 1

Remark 2.2.4 The map T — T* defines an involution on La(E).

Proposition 2.2.5 The set Lao(E, F) of all adjointable operators from E to F
is a closed subspace of B4(E, F).

Proof. By Remark 2.2.2 and Lemma 2.2.3, L4(E, F) is a vector subspace of
Ba(E, F).

To show that La(E, F) is closed, let {T;};cr be a net in La(F,F) which
converges to an element 7" in Bo(E, F'). According to Lemma 2.2.3, {1} }icr is a
fundamental net in B4(E, F), and so it converges to an element S in B4 (FE, F).
Then

(n, T€) = lim (n, ;€) = lim (T3"n, §) = (1, &)
for all ¢ € F and for all € F. This means that T' is adjointable, and the

proposition is proved. l
Let p € S(A) and T € La(E). We seen that p(T") = p(T™*). Moreover,

P(T*T) < p(T)B(T) = B(T)*.
On the other hand,

p(T"T)

sup{pg (T*T€);pp(§) < 1} =
= sup{sup{p((T*T¢,n));n € E,pp(n) <1};¢ € E,pp(§) < 1}
sup{p((T*T¢,€)); € € E,pg(€) < 1} = p(T)>.

v
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Therefore p is a C*-seminorm on L4 (E).

Theorem 2.2.6 The set L4(E) of all adjointable operators on E is a locally C*-
algebra with respect to the topology determined by the family of C*-seminorms
{P}pes(a) and the involution defined by T — T™.

Proof. By Proposition 2.2.5, L4(E) equipped with the topology determined
by the family of seminorms {p},cg(4) is a Hausdorff complete locally convex
space, and since L4(E) is an algebra with involution and {p}peg(a) is a family
of C*-seminorms, L4(F) is a locally C*-algebra. B

Let {Ex; oau A Taptaspauer and {Fx; X5 Ax; Tapaspauea be two in-
verse systems of Hilbert C* -modules such that the canonical maps o) from

lim Ey to Ey, x, from lim F) to F)\ and 7 from lim Ay to Ay, A € A are all sur-
A A A

jective. We seen (pp. 36-37) that {Ba, (Ex, F)); (Tau)« }a>papuea is an inverse
system of Banach spaces.

Let A\, u € A with A > p, T € La, (Ex, Fy), §, € E, and £, € E) such that
oxu(ér) =&, my, € Fy and my € F), such that x,,(1,) =7, Then

M (), (TNEL)) = ) X (TEX)) = mau((ny, TEN))
= 7T/\u(<T*77,\>f,\ <7r)\,u T* 77# 5 >

where (7my,), is the canonical map from Ba, (F), Ex) to Ba,(Fy, E,). This
shows that (mau), (T) € La, (Ey, F,,) and moreover, (mx,), (T)* = (7au), (T7).
The restriction of (my,), on La, (Ex,F)) is also denoted by (m),),. There-
fore {La, (Ex, F)); (Tau)«fa>papuen is an inverse system of Banach spaces and
{La, (Ex); (Taw)s }a>papen is an inverse system of C*-algebras.

Let A= IEnAA, E = lEnEAand F = lgnF)\.

A A A

Proposition 2.2.7 Let A, E and F be as above. Then:

1. The Hausdorff complete locally convex spaces La(E, F) andlim L4, (Ej, F))
A

are isomorphic.
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2. The locally C*-algebras La(E) and lim L, (E\) are isomorphic.

A

Proof. 1. Let A € A, T € Lao(E,F), &, € E) and £ € E such that 0,(¢) =
€y, € Fy and n € F such that x,(n) =n,. Then

(xs (m2). (T)(€3)) = O, xa(T€)) = ma((n, TE))
= m((T™,8)) = ((mx), (T7)(nr),6x) »
where (7)), is the canonical map from B4(E, F) to By, (Ej, Fy). This shows
that (my), (T') € La,(Ex,F\) and (my), (T)* = (7)), (T*).The restriction of
(mx), on La(E,F) is also denoted by (7)), . Thus, if ¥ is the isomorphism
from Ba(F, F) onto IEHBA)\ (Ey, Fy) defined by ¥(T') = ((mx), (T))x (Theorem

A
2.1.6), then ¥( La(E,F)) C lim Ly, (E\, Fy). To show that La(E,F) is iso-
A
morphic with lim L4, (Ej, F)) it remains to show that the restriction of ¥ on
A

LA(E, F) is a surjective map from L4 (E, F') to lim La, (Ey, F)).
A
Let (Th)x € im L, (Ey, Fy). Then there is T' € Ba(E, F') such that U(T') =

(T\)x- Moreover,ATg = (Ta(oA(&)))a for all € € E. Let S € By (F, E) defined by
Sn = (Tx(ox(m)r, £ = (€x)r € E and n = (ny)a € F. Then

(1, T = () (Tx(Ex))a) = (0 Ta(§x)))a
= ((TX(Mx): (&) = ((Tx (), (Ex)r) = (S, €) .

Therefore, T € La(FE, F') and the assertion 1. is proved.
2. By the first part of the proposition, the map ¥ from L4(E) to lim L, (Ey)

A

defined by ¥(T') = ((wx), (T))x is an isomorphism of locally convex spaces.
Moreover, from the proof of Proposition 2.1.8, ¥ is also morphism of algebras.
Let T € La(E), § = (§x)x,n = (m)x € E. Then

(n, (T)E) = {(nx)x, (ma). (T)ENN) = (s (7a) 4 (T)EX)) 5
= () (1) 030 00D 5 = (ma), (T, €30) 5
= () (T7)ma)x, (Ex)x) = (B(T7)n, €) -
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This shows that ¥(7)* = ¥(7T™) and so V¥ is an isomorphism of locally C*
-algebras. W

Corollary 2.2.8 Let A be a locally C*-algebra and let E and F be two Hilbert
A-modules. Then :

1. The Hausdorff complete locally convex spaces La(E, F) andlim L o, (E,p, F},)

D
are isomorphic.

2. The locally C*-algebras La(E) and lim L o,(E,) are isomorphic.
P

Corollary 2.2.9 Let A be a locally C*-algebra, let E be Hilbert C*-module
and let n be a positive integer. Then the locally C*-algebras Lao(€ E) and
=1

M, (LA(E)) are isomorphic.

n

Proof. By Lemma 1.3.12 and Corollary 2.2.8, the locally C*-algebras La(EP FE)
i=1

and lim L4, (€D E,) are isomorphic as well as M, (L4(E)) and lim M, (L4, (Ep)).
— i=1 —

p p

From this fact, taking into account that the C*-algebras L4, (@ E,) and My(La,
i=1

n

(Ep)) are isomorphic, we conclude that the locally C*-algebras La(€D E) and
i=1
My, (La(E)) are isomorphic ll
References for Section 2.2: [12], [14], 24], [29], [36], [39], [40], [45].

2.3 Compact operators

In this Section we introduce the notion of ”compact operators” on Hilbert mod-
ules on locally C*-algebras, and we prove that the set K4(F) of all compact
operators on is a closed two -sided * -ideal of L4(F) can be identified with

lim K4, (Ep), where K4,(E)) is the set of all compact operators on F, for each

p
p € S(A), up to an isomorphism of locally C*-algebras. It is well -known that
the left multiplier algebra of the C*-algebra of compact operators on a Hilbert
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C*-module F is isomorphic with the Banach algebra of all bounded operators
on E and the multiplier algebra of the C*-algebra of compact operators on F is
isomorphic with the C*-algebra of all adjointable operators on E. We show that
these properties of the compact operators on a Hilbert C*-modules are still hold
in the context of Hilbert modules over locally C*-algebras.

Let A be a locally C*-algebra, let F, F' and G be Hilbert A -modules. For
§ € E and n € F define 0, ¢ from E to I’ by

We have

<7717977,§ (C) a> = <771a77<§7 C>> = <771777> <§7 C>
= (&), = <9§,n (771):C>

for all ¢ € E and for all n; € F. Therefore 0, € Ls(E,F) and moreover,
9;"7’5 = 0O¢ . We say that 0, ¢ is an "one-rank” module homomorphism from E to
F. The vector subspace of L4(F, F') generated by {0,¢:& € E,n € F} is denoted
by ©4 (E,F). When F = E, for simplifying we write © 4 (E). We say that an
element in O4 (E, F) is a finite-rank operator from E to F.

Remark 2.3.1 It is easy to check that:

L. O¢myOni6 = Octnym) e = Oc ety m) for all & € B, my,mg € F and ¢ € G
2. T Op¢=0pye forallé € E,n e F and T € Ba(F,G);

3. 0,eS =0p5+¢ forallé € E,ne F and S € La(G, E).

Remark 2.3.2 1. LA(F,G)O4 (E,F) C0O4(E,G);
2. O4(E,F)LA(G,E) COA(G,E);
3. ©4(E) is a two-sided * -ideal of La(E).
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The closed subspace of La(F,F) generated by ©4 (E, F) is denoted by
Ka(E,F). We write Kq(F) for Kao(F, E). An element in K4(F, F) is said ”-

compact operator” from F to F.

Remark 2.3.3 1. LAo(F,G)KA(E,F) C Ka(E,G);
2. KA(E,F)La(G,E) € KA (G, E);
3. K4 (F) is a two-sided * -ideal of La(E)

Let {Ex; o Ax; Taupfazpaper and {Fx; X5 Ax Tagtaspauea be two in-

verse systems of Hilbert C*-modules such that the canonical maps o from lim F)
A
to Ey, x) from lim Fy to F\ and 7y from lim Ay to Ax, A € A are all surjective.
A A
We seen (pp. 44) that {La, (Ex, F)); (Tau)s Fa>pauen is an inverse system of

Banach spaces.
Let \,p € A with A > pu, £ € Ey,n € F), ¢ € E, and (; € E) such that
oxu(¢1) = ¢. Then

(Ta)s (One) (C) = Xou (B (C1)) = X (1 (&5 C1))
= Xxu (77) <0)\#(£)7 0A#(Cl)> = exAu(n),aAu(ﬁ) (C)

From this relation we conclude that (), (Ka, (Ex, F))) € Ka, (Ey, F,,). More-
over, since x,, and oy, are surjective, the closure of (), (Ka, (Ex,Fy)) in
L4, (Ey, Fy) coincides with K, (E,, F,). Therestriction of (my,), on K4, (Ey, Fy)
is also denoted by (my,), . Therefore {Ka, (Ex, F)); (Txu)s Fa>ppuen is an in-
verse system of Banach spaces and {Ka, (E)); (Tap)«fa>u ucA i an inverse
system of C*-algebras with the connecting maps (my,),, A > p, A, p € A all
surjective.
Let A=lim Ay, E = lim Ey and F = lim Fy.

A A A

Proposition 2.3.4 Let A, E and F be as above. Then:

1. The Hausdorff complete locally convex spaces Ka(E, F) andlim K4, (Ex, Fy)
A

are isomorphic.
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2. The locally C*-algebras KA(E) and lim K 4, (Ey) are isomorphic.

A

Proof. 1. Let A€ A, { € E, n € F, (, € E) and ¢ € E such that o)({) = (,.
Then

(M), (One)(Cx) = Xa((One)(Q)) = xa(n (€, 0)) = xa(mM)ma((£,C))
= X)\(n) <O'A(£)70'A(C)> = QX)\(V]),UA(g)(C)\)'

Therefore (7)), (Ka(E, F)) € Ka, (Ex, F)). Moreover, since o and x, are sur-
jective, the closure of (my), (Ka(E, F))in La, (Ey, F)) coincides with K4, (Ey, Fy).
The restriction of (7)), on K4(E,F) is also denoted by (my),. Thus, if ¥
is the isomorphism from L4(F,F’) onto liin L, (Ex,Fy) defined by ¥(T) =

A
((m2), (T))a (Proposition 2.2.7 (1)), then W (K4(E, F)) is a closed subspace of
lim K 4, (Ey, F)). Thus to show that K 4(E, F) is isomorphic with lim K4, (Ex, F))

A A
it remains to show that the restriction of ¥ on K4(F, F) is a surjective map from

KA(E,F) to im K4, (Ey, Fy).

A
By Lemma IIT 3.2, [33],

U (Ka(E, F)) = V(Ka(E, F)) = limmy (¥ (Ka(E, F)))

A

= lgn (ﬂ-)\)* (KA(E7F)) = I@KAA (E)\vF)\)a

A A

where 7y, A € A are the canonical maps from lim K4, (Ey, F)) to Ka, (Ex, F)).
A
2. By the first part of the proposition, the restriction of the isomorphism

U from L4(E) to limLa, (Ey) on K4(F) is an isomorphism of locally convex
A
spaces from K4 (E) to lim K4, (E)), and since ¥ is also morphism of « -algebras,
A
the assertion is proved. B

Corollary 2.3.5 Let A be a locally C*-algebra and let E and F be two Hilbert
A-modules. Then :

47



1. The Hausdorff complete locally convex spaces KA(E, F) andlim K 4, (Ey, Fy)

p
are isomorphic.

2. The locally C*-algebras Ka(E) and lim K, (E,) are isomorphic.

P

Corollary 2.3.6 Let A be a locally C*-algebra. Then K4(A) is isomorphic with
A.

Proof. Let p € S(A). We know that the map ¢, from K4,(A;) to A, defined
by ¢, (0a) = ab* is an isomorphism of C*-algebras (see, for example, [26, 34]).
Let p,q € S(A) with p > ¢. Since

(7pq © ‘pp) (0a,p) = mpg(ab®)

and

(SOq o (qu)*) (Ha,b) = ¥q (aﬂ'pq(a)vﬂ'pq(b)) = Tpq(a)Tpq(D)* = Tpg(ab®)

foralla,b € Ap, mpq0p, = ¢,0(mpg), - Therefore (p,), is an inverse system of C*-

isomorphisms. Let ¢ = lim¢,,. Then ¢ is an isomorphism of locally C*-algebras
p
from lim K 4,(Ep) to lim A,. Therefore K4(A) is isomorphic with A. B

LetpA be a locally pC’* -algebra and let F be a Hilbert A -module. For £ € F
, consider the map T¢ from E to A defined by T¢(n) = (£,7n) . It is easy to check
that T¢ is a module morphism from E to A and p(T¢) = pg(§) for all p € S(A).
Exactly as in the case of Hilbert C*-modules, we show that any element in
K4(E, A)is of the form T¢, £ € E. This is a version of the Riesz-Fréchet theorem

for Hilbert modules over locally C*-algebras.

Corollary 2.3.7 Let A be a locally C* -algebra and let E be a Hilbert A -module.
Then any element in KA(E, A) is of the form T¢, £ € E.

Proof. Forp € S(A), the map v, from E, to Ka,(Ey, Ap) defined by 9, (§) = T¢

is an isometric isomorphism of Banach spaces.
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Let p,q € S(A) with p > ¢. Since

(lﬁq © qu) (C) = Tqu(C)

and
((WPQ)* 0 wp) (g) = (WP(I)* (Tg) = Tqu(O

for all £ € Ay, ¥, 00py = (mpq), © ¥, Therefore (¢,), is an inverse system

of isometric isomorphisms of Banach spaces. Let ¢ = lim,. Then ¢ is an
p
isomorphism of locally convex spaces from lim E, to lim K4, (Ep, Ap). Therefore

P P

E is isomorphic with K4(E, A). Moreover, ¢)(£) = (¢, (op (f)))p = (Tgp(g))p =
Te forall{ € E.

Remark 2.3.8 Let A be a unital locally C* -algebra and let E be a Hilbert A
-module. If T € La(E,A), then T = Tr-(1), where 1 is the unity of A and so
T € Ka(E,A). Therefore Ko(E,A) = La(E,A).

Proposition 2.3.9 Let A be a locally C* -algebra and let E be a Hilbert A

-module. Then:

1. LM(K4(E)) is isomorphic to Ba(E) as locally convex algebras.

2. M(KA(FE)) is isomorphic to Ls(E) as locally C* -algebras.

Proof. Since {Ka,(Ep); (Tpq), }p>qpqes(4) is an inverse system of C* -algebras
and the canonical maps (), ,p € S(A) are all dense range, by Corollary 1.1.20,
LM (K A(FE)) is isomorphic with lim LM (K4, (E,)) and M (K 4(E)) is isomorphic

with lim M (K (E)). ’

Onpthe other hand, by Corollary 2.1.9, B4 (F) is isomorphic with lgn By, (Ep),
and by Corollary 2.2.8 (2), La(FE) is isomorphic with liinLAp(E:). Thus to
prove the proposition it is sufficient to prove that the lociilly convex algebras
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lim B 4, (Ep) and lim LM (Ka,(Ep)) are isomorphic likewise the locally C* -
azljgebras M(KA(E)§ and lim M(Ka,(Ep)).
1. For each p € S(A), :he map ¢, from By, (E,) to LM(Ka,(E))) defined
by
pp(T)(S) =TS

is an isometric isomorphism of Banach algebras (see, for example, [ 31], Theorem
1.5).
Let p,q € S(A) with p > ¢, T € Ba,(E,), S € Ka,(E,) and S € Ka,(E,)

such that (mpq), (S) = S. Then

((Fpa). 0 2) (1) (5) = ((Fpa).. (9p(T))) (Tpa)., ()
= (), (TS)

and
(g ° (Tp0),) (1)) (S) = (Tpa),, (T) (Tpa)., (5) = (Tpa),, (T'S).
Therefore (gop)p is an inverse system of isometric isomorphisms of Banach

algebras. Let ¢ = lim ¢,,. Then ¢ is an isomorphism of locally m -convex algebras

P
from lim B, (E)) onto lim LM (K4, (Ep)).
P

2. For each p € S(A), the map 1, from La,(E}) to M(Ka,(Ep)) defined by
wp(T)(5) = (T'S, ST)

is isomorphism of C* -algebras (see, for example, [26], Theorem 1).
It is not hard to check that (wp)p is an inverse system of isomorphisms of C*

-algebras. Let ¢ = lim1),. Then ¢ is an isomorphism of locally C* -algebras

P
from lim By, (Ep) onto lim LM (K4, (E,)). R

p p

Corollary 2.3.10 If A is a locally C*-algebra, then M(A) is isomorphic to
La(A).

References for Section 2.3: [12], [24], [26], [31], [38].
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2.4 Strongly bounded operators

In this Section we introduce the notion of strongly bounded module morphism be-
tween Hilbert modules and we study the connection between the set b(Ba(E, F'))
of all strongly bounded module morphisms from E to F' ( respectively the set
b(LA(FE,F)) of all strongly adjointable module morphisms from F to F, respec-
tively the set b(K4(E, F')) of all strongly compact module morphisms from E to
F') and the Banach space By(4)(b(E),b(F)) of all bounded module morphisms
from b(E) to b(F) (respectively, the Banach space Ly 4)(b(E),b(F)) of all ad-
jointable module morphisms from b(E) to b(F), respectively the Banach space
K4y (b(E), b(F)) of all compact module morphisms from b(E) to b(F) ).
Let A be a locally C*-algebra and let E and F' be Hilbert A -modules.

Definition 2.4.1 A bounded operator T from E to F is strongly bounded if
sup{p(T);p € S(A)} < cc.

The set of all strongly bounded operators from E to F' is denoted by b(Ba(E, F))
and we write b(Ba(E)) for b(Ba(E, E)).

It is not difficult to check that b(Ba(F, F)) is a vector subspace of B4(E, F)
and the map T'— ||T'|| . , where

1Tl = sup{P(T);p € S(A)}

defines a norm on b(B4(FE, F)). Also it is not difficult to check that b(B4(E)) is
a subalgebra of By(FE) and ||-||, is a submultiplicative norm on b(Ba(E)).

The connection between b(Ba(E, F)) and By a)(b(E),b(F)), the set of all
bounded operators from b(E) to b(F'), is given by the following theorem.

Theorem 2.4.2 Let A be a locally C*-algebra and let E and F be Hilbert A

-modules. Then:

1. The vector space b(Ba(E, F)) equipped with the norm |-|| is a Banach
space which is isometrically isomorphic to By 4)(b(E),b(F)).

51



2. The set l(LA(E, F)) of all strongly bounded adjointable operators from E
to F' is a closed subspace of b(Ba(E, F')). Moreover, b(La(E,F)) is iso-
metrically isomorphic with Ly 4)(b(E),b(F)).

3. The set b(KA(E,F)) of all strongly bounded compact operators from E to
F is a closed subspace of b(BA(E, F)).

Proof. Let {T,}, be a fundamental sequence in b(B4(FE, F)). Since
(T — Tm) < sup{q(Th — Tin);q € S(A)} = |Th — Tl oo

for all positive integers m and n and for all p € S(A), {T,}» is a fundamental
sequence in Ba(F, F) and so it converges to an element T' € B4(E, F). From

H‘TnHoo - ||TmHoo| < ||Tn _TmHoo

for all positive integers n and m we conclude that {[|T5,| . }» is a fundamental
sequence of positive numbers and so it is bounded. Let M > 0 such that |||, <

M for all positive integer n. Then
P(T) = 1 p(Ty) < lim [Ty, < M

for all p € S(A). This shows that T' € b(Ba(F, F)).

To show that {73, },, converges to T" with respect to the norm |||, , let € > 0.
Since {7}, },, is a fundamental sequence in b(B4(E, F')), there is a positive integer
ng such that

[T = Tl < €

for all positive integers n and m with n > ng and m > ng. Then
5(T - Tn) = hTInnﬁ(Tm - Tn)
< lm||T, —Thll, <¢
m

for all positive integer n with n > ng. This means that {7}, },, converges to T" with
respect to the norm ||-|| . Hence b(Ba(F, F)) is a Banach space with respect to

the norm |||, -
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Let T € b(Ba(E, F)). From

pr(T€) < p(T)PE(§) < ITls €l

for all p € S(A) and for all £ € b(E), we conclude that the restriction T'[yg) of
T on b(E) is an element in By 4)(b(E), b(F)) and moreover, ||Tym)|| < 1T
where |||| is the norm on By 4)(b(E), b(F)).

On the other hand, using the fact that 7" is continuous and b(E) is dense in

E, from

Pr(TE)? = p((T€,TE)) = p((T|pm)& Tlh(m)€))
(ct. [36], 2.8)

< p(|Tluwy||” (€. €)) = | Tlom) || * B (€)?

for all p € S(A) and for all & € b(E) we deduce that p(T) < ||Ty(s)|| for all
p € S(A) and so ||T|o < ||T|p(s)]| - Therefore || T o = ||T]s(m)]| -

Consider the map W from b(Ba(E, F')) to By4)(b(E), b(F)) defined by ¥(T') =
Tlyg). Clearly W is well-defined and moreover, it is a linear isometry from
b(Ba(E, F)) to Byay(b(E),b(F)). To prove that b(Ba(FE,F)) is isometrically
isomorphic with By 4)(b(E), b(F)), it remains to prove that W is surjective. Let
S € Bya)(b(E),b(F)). Since

pr(S€)? = p((S€,8€) < ||SIP Bu(€)?

for all £ € b(F) and for all p € S(A), and since b(F) is dense in E, S extends
by continuity to a linear map S from E to F. From Lemma 2.1.3 (1), taking
into account that b(A) is dense in A, we conclude that S is A -linear. Moreover,
P(S) < ||S|| for all p € S(A). Therefore S € b(B4(E, F)) and ¥(S) = S.

2. Let {T,}» be a sequence in b(L4(E, F')) which converges with respect to
the topology induced by the norm |||, to an element T" in b(B4(E, F')). Then
it is convergent with respect to the topology induced by the family of seminorms
{P}pes(a)- From these facts and taking into account that La(F, F) is a closed
subspace of B4 (FE, F'), we conclude that T' € b(L4(E, F')). Therefore b(La(E, F))
is a closed subspace of b(B4(E, F)).
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To show that b(La(F, F)) is isometrically isomorphic with Ly 4y (b(E), b(F)),
it is enough to show that W (b(La(FE, F))) = Lya)(b(E),b(F)), where W is the
isomorphism from b(B(F, F)) onto By4)(b(E),b(F)) constructed above.

Let T € b(L(E, F)). Then T* € b(La(F, E)) and (T|yg))" = T*|(). Con-
sequently, @ (b(La(E, F))) € Ly (b(E), b(F).

Let S € Lya)(b(E), b(F)). Then thereis S in b(Ba(E, F)) and S in b(Ba(F, E))
such that g\b(E) = 8 and Solpry = S*. Let £ € F and {{,,}n in b(E) such that
&= hran €, and let n € F' and {n,, }, in b(F') such that n = liyrln Ny Then

(n.5€) = tim (i . 56,)) = tim (1 (577, 1)
= tim (lim ($9,, €,)) = (S0, €) .

From this relation, we conclude that S € b(L(E, F)) and so Ly ay(b(E),b(F)) C
W (B(LA(E, F))).

3. Let {T},}» be a sequence in b(K4(E, F')) which converges with respect to
the topology induced by the norm ||-||  to an element 7" in b(L o(E, F')). Then it
is convergent with respect to the topology induced by the family of seminorms
{P}pes(a), and since K4(E, F') is a closed subspace of L4(E, I'), T is an element
in K4(E,F). Therefore T is an element in K4(E,F) Nb(La(E,F)) and the

assertion 3. is proved. H

Remark 2.4.3 From the proof of Theorem 2.4.2, the map ¥ from b(Ba(E, F))
to Bya)(b(E),b(F)) defined by W(T) = T|ygy is an isomorphism of Banach
spaces. It is clear that W~ (Ky 4y (b(E),b(F))) C b(Ka(E, F)). Therefore Kya
(b(E),b(F)) is isometrically isomorphic with a closed subspace of b(K4(E, F)).
In general, b(KA(E, F)) is not isomorphic with Ky y(b(E),b(F)) (see Example
2.4.11).

Remark 2.4.4 Since K4(F, F) is the closure of the vector subspace © 4(E, F) in
LA(E, F) and Ky a)(b(E),b(F)) is the closure of the vector subspace Oy 4y(b(E),
b(F)) in Lya)(b(E),b(F)) and since the Hilbert b(A)- modules b(E) and b(F)
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are dense in E respectiv F, it is not difficult to check that Ky ay(b(E),b(F)) is
dense in Ka(E,F).

Remark 2.4.5 If E. F and G are Hilbert A -modules, then
1. 6(KaA(E,F))b(LA(G,E)) Cb(KA(G, F));
2. b(LA(F,GQ))b(KA(E,F)) Cb(K4(E,QG)).

Corollary 2.4.6 Let E be a Hilbert A-module. Then:

1. b(Ba(E)) equipped with the norm |-||, is a Banach algebra which is iso-
metrically isomorphic with By a)(b(E)).

2. b(LA(E)) equipped with the norm ||-||,, is a C*-algebra which is isomorphic

Proof. 1. By Theorem 2.4.2 (1), b(Ba(E)) equipped with the norm ||| is
a Banach space, and since the norm ||-||, is submultiplicative, b(Ba(E)) is a
Banach algebra. From the proof of Theorem 2.4.2 (1), the map ¥ from b(B4(E))
to By(a)(b(E)) defined by ¥(T') = Ty is an isomorphism of Banach spaces,
and since (ST) |pgy = Sly(e) T lo(r) for all S, T € b(Ba(FE)), ¥ is an isomorphism
of Banach algebras.

2. Since {p}pes(a) is a family of C*-seminorms on La(FE), |-/, is a C*-
seminorm on b(L(FE)) and by Theorem 2.4.2 (2), b(La(FE)) equipped with the
norm ||-||, is a C*-algebra. It is not difficult to check that (T|b(E))* = T"|yp)
and so the map V¥ from b(La(FE)) to Ly 4)(b(E)) defined by W(T') = Ty is an

isomorphism of C*-algebras. B

Remark 2.4.7 If E is a Hilbert A-module, then b(La(E)) coincides with the
set of bounded elements in the locally C*-algebra L A(FE).

Corollary 2.4.8 If A is a strongly spectrally bounded locally C*-algebra and FE
is a Hilbert A -module, then La(F) is a strongly spectrally bounded locally C*-

algebra.
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Proof. Indeed, if A is strongly spectrally bounded, then b(E) = E as set. Let
T € La(E). Then T is a map from b(E) to b(F) and there is a map 7™ from
b(E) to b(E) such that

(n, T€) = (I"n,§)

for all £,n € b(E). This implies that T" € Ly4)(b(E)). From this fact and Corol-
lary 2.4.6 (2) we conclude that b(L4(FE)) = La(FE) as set. Therefore, L4(F) is a
strongly spectrally bounded locally C*-algebra. B

Remark 2.4.9 Let E be a Hilbert A -module. From Theorem 2.4.2 (3), Remark
2.4.5 and Corollary 2.4.6(2) we conclude that b(K4(E)) is a closed two-side
-ideal of b(La(E)).

Remark 2.4.10 By Remarks 2.4.3 and 2.4.9, Kya)(b(E)) is isomorphic to a
closed two-side * - ideal of b(Ka(E)). In general Ky 4)(b(E)) is not isomorphic
with b (Ka(E)) .

Example 2.4.11 (/38], Example 4.9) Let A = C(Z"), which is just [ C, and

n=1
let E = IO_O[ C". We make E into a Hilbert A -module via (&,),, (an),, = (,an),,
and <(§n7)L:1, M)n) = (&> Mn)n),, » Where (-, ), denotes the usual C-inner product
on C".

For each positive integer n consider the map p, : A — [0,00) defined by
pn((an)n) = sup{|ax|; 1 < k < n}. Clearly, p, is a continuous C*-seminorm on
A and the topology on A is determined by the family of C*-seminorms {pn }n. It
is not difficult to check that Ay, can be identified with the product of the first n
factors of A, and E,,, can be identified with the product of the first n factors of E,
for each n. Therefore K, (Ep,) = La,, (Ep,) for each positive integer n. From
this fact and Corollaries 2.2.8 and 2.3.5, we conclude that Lao(E) = Ka(F).

Suppose that b(Ka(E)) is isomorphic with Ky 4)(b(E)). Then, since K4 (E)
= La(E), from Corollary 2.4.6 we deduce that Lya)(b(E)) is isomorphic with
Ky(4)(b(E)). This implies that the Hilbert b(A) -module b(E) is finitely generated.
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On the other hand, it is not difficult to check that b(A) = {(an)n € A;sup{|an|;
n=1,2,..} < oo} and b(E) = {(&,), ;sup{|({n. &n)5m = 1,2,...} < oo} and
so b(E) is not finitely generated as b(A)-modules, a contradiction. Therefore,
b(Ka(E)) is not isomorphic with Ky ay(b(E))

n
Example 2.4.12 Let A be a locally C*-algebra and E = @ A for some positive
k=1

integer n. We seen that b(E) = @ b(A) and E, is isomorphic with @ A, for
all p € S(A). Since Ka,(Ep) is zsomorphzc to M,(C) @Ay, where M, (C) is the
set of all n x n matrices over C, for all p € S(A), from Corollary 2.3.5 and [2],
we conclude that KA(E) can be identified with M,(C) @A and so b(K(E)) is
isomorphic with b(M,(C) QA).

On the other hand Ky 4)(b(E)) can be identified with M,(C) @b(A) and since
b(Mn(C) ®A) is isomorphic with M, (C) @b(A), we conclude that b(K4(F)) is
isomorphic with Ky 4)(b(E)).

References for Section 2.4: [18], [24], [45].

2.5 Unitary operators on Hilbert modules

In this Section we characterize the unitary operators on Hilbert modules over
locally C*-algebras, and show that a map ® : £ — F' is an isomorphisms of
Hilbert modules if and only if ® is a unitary operator from F to F. Also we
how that the Hilbert A -modules E' and F' are isomorphic if and only if the
Hilbert C*-modules b(E) and b(F') are isomorphic. Frank [10] showed that the
two Hilbert C*-modules structures on a Banach module F over a C*-algebra A
are isomorphic if and only if so are the corresponding C*-algebras of adjointable
operators as well as the corresponding C*-algebras of compact operators. In this
Section we extend the result of Frank in the context of Hilbert modules over
locally C*-algebras.
Let A be a locally C*-algebra and let F and F' be two Hilbert A -modules.
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Definition 2.5.1 An adjointable operator U from E to F is said to be unitary
if UU =idg and UU* =idp.

Remark 2.5.2 Let U € Ly(E, F). Then U is unitary if and only if (7p), (U) is
a unitary operator from E, to F, for all p € S(A).

Proposition 2.5.3 Let U be a linear map from E to F. Then the following

statements are equivalent:
1. U is a unitary operator from E to F;
2. (UL UE) = (&,&) forall§ € E and U is surjective;

3. pp(U&) =Dg(§) for all £ € E and for all p € S(A) and U is a surjective

module homomorphism from E to F.

Proof. 1. = 2. Suppose that U is unitary. Then clearly U is surjective. Using
Remark 2.5.2 and Theorem 3.5 in [29], we obtain

T (UE,UE) = (£,€)) = ((mp), (U)ap (&) (mp), (U)o () = (0 (€)1 05 ()
=0

for all p € S(A) and for all £ € E. This implies that (U£,UE) = (£,€) for all
e L.
2.= 3. Let pe S(A) and £ € E. Then

Pr(U€)? =p (U UE)) = p((£,€)) = Pr(§)*.

By polarization (U{;,U&,) = (&1,&s) for all £;,&, € E. Let £ € F and a € A.
Then

(U (§a) = (U&) a,U (§a) — (U§) a) =0
and so U (§a) = (UE) a. Hence U is a surjective module homomorphism.
3.= 1. Let £ € E and p € S(A). Then, since

|7y (a®) mp (U, UE)) mp (a)[l, = p((U (€a),U (§a)))
= Pr(U (£2))* = Pg(8a)?
= p((§a,&a)) = [[mp (a®) mp ((€,€)) Tp ()],
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for all @ € A, by Lemma 3.4 in [29], m, (UL, UE)) = mp ((£,€)). Therefore
(UL, UE) = (£,¢) for all £ € F and by polarization (U&;,U&y) = (£1,&,) for all
517 52 S

Clearly, U is a bijective module momorphism from E to F. Let U~! be the

inverse of U. Then U~! is a module homomorphism from F to E and

{U& ) =(UEU (U n)) = (&, U ')

for all £ € F and for all n € F. Therefore U is unitary. B

Corollary 2.5.4 Two Hilbert A -modules E and F are isomorphic if and only

if there is a unitary operator from E to F.

Corollary 2.5.5 If the Hilbert A -modules EE and F' are isomorphic, then the
Hilbert A, -modules E, and F, are isomorphic for all p € S(A).

Proposition 2.5.6 Let E and F be Hilbert A -modules and let U € La(E, F).
Then U is a unitary operator from E to F if and only if U € b(LA(E, F)) and
Uly) s a unitary operator from b(E) to b(F). Moreover, there is a bijective

correspondence between the set Us(E, F) of all unitary operators from E to F
and the set Uy 4)(b(E),b(F)) of all unitary operators from b(E) to b(F).

Proof. If U is a unitary operator from FE to F, then p(U) = 1 for all p € S(A).
Therefore U € b(La(E, F')) and since idyg) = (U*U) gy = U*|pm)Uly(m) and
idyry = (UU*) lor)y = UloeyUlor), Ulpr) is a unitary operator from b(E)
to b(F). It is easy to check that the restriction of the isomorphism ¥ from
b(La(E, F)) onto Lya)(b(E),b(F)) defined by W(T) = T|yg) to Ua(E, F) is a
bijective correspondence between the sets Ua(E, F) and Uy a)(b(E),b(F)) (see
Theorem 2.4.2). R

Corollary 2.5.7 Two Hilbert A-modules E and F' are isomorphic if and only if
the Hilbert b(A)-modules b(E) and b(F') are isomorphic.
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Let E be a complex vector space which is also right A-module, compatible
with the structure of complex algebra and equipped with two an A -valued inner-
products (-,-); and (-,-), which induce either a structure of Hilbert A-module
on E. We denote by E; the Hilbert A-module (E, (-,-);) and by E> the Hilbert
A-module (E, (-,-)5) .

The following proposition is a generalization of a result of Frank [10] in the

context of Hilbert modules over locally C*-algebras.

Proposition 2.5.8 Let E be as above. Then the following statements are equiv-

alent:
1. E1 and Es are isomorphic as Hilbert A -modules.
2. The locally C*-algebras Ka(FE1) and Ka(E2) are isomorphic.
3. The locally C*-algebras Lao(FE1) and La(Fs3) are isomorphic.
4. The C*-algebras Ly ay(b(E1)) and Ly ay(b(E2)) are isomorphic.
5. The C*-algebras Ky 4)(b(E1)) and Ky ay(b(E2)) are isomorphic.

6. The Hilbert b(A) -modules b(E1) and b(E2) are isometrically isomorphic as
Banach b(A) -modules.

7. b(E1) and b(E3) are isomorphic as Hilbert b(A) -modules.

Proof. 1. = 2. Since F; and FEj are unitarily equivalent, there is a unitary
operator U in L4(E1, Es). It is not hard to check that the map ® from K4(Ey)
to K4(FE2) defined by ®(7') = UTU* is an isomorphism of locally C*-algebras.

2. = 3. Let ® be an isomorphism of locally C*-algebras from K 4(FE;) onto
Ka(FE2). By [13, Lemmas 2.4, 2.7 and Corollary //], there is a unique iso-
morphism of locally C*-algebras ® : M(Ka(F1)) — M(Ka(Fs)) such that
DB|x (5 = P

On the other hand, the locally C*-algebras M (K (F1)) and La(F;) are
isomorphic as well as M (K 4(F2)) and La(F2) ( Proposition 2.3.9). Therefore
the locally C*-algebras L4(F1) and L4(F2) are isomorphic.
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3. = 4. If the locally C*-algebras L4(FE;) and L4(F2) are isomorphic, then
the C*-algebras b(La(E1)) and b(La(FE2)) are isomorphic [38, Corollary 2.6].
But b(La(E;)) is isomorphic with Ly 4)(b(E;)), i € {1,2} (Corollary 2.4.6 ).
Therefore the C*-algebras Ly(4)(b(E1)) and Ly4)(b(E2)) are isomorphic.

The implications 4. = 5. = 6. were proved in [9], the equivalence 6. < 7.
was proved in [29] and the implication 7. = 1. was showed in Corollary 2.5.7. B

References for Section 2.5: [10], [23], [29], [40].
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Chapter 3

Complemented submodules in
Hilbert modules

3.1 Projections on Hilbert modules

In this Section we characterize the projections and the partial isometries on
Hilbert modules over locally C*-algebras.

Let E be a Hilbert module over a locally C*-algebra A. An adjointable
module momorphism P from E to E is said to be a projection in L4(FE) if it is
self-adjoint ( that is, P* = P ) and PP = P.

Remark 3.1.1 Let P € Lao(F). Then P is a projection in La(F) if and only if
(mp), (P) is a projection in L, (Ep) for all p € S(A).

Proposition 3.1.2 Let P € La(FE). Then P is a projection in La(E) if and
only if P € b(La(E)) and Plyg) is a projection in Ly 4)(b(E)). Moreover, there
is a bijective correspondence between the set Po(E) of all projections in L(E)
and the set Py 4)(b(E)) of all projections in Ly 4y(b(E)).

Proof. If P is a projection in L4(FE), then p(P) = 1 for all p € S(A) and so
P € b(La(E)). It is not hard to check that P|yg) is a projection in Ly4)(b(E))
and the map P — P|yg) from Pa(E) to Pya)(b(E)) is bijective. B
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An element V' in La(F, F) is said to be a partial isometry if V*V is a pro-

jection in LA (FE).

Remark 3.1.3 Let V € Lo(E,F). ThenV is a partial isometry in Lao(E, F) if
and only if (mp), (V') is a partial isometry in La,(Ep, F) for all p € S(A).

Proposition 3.1.4 LetV € La(E, F). Then the following statements are equiv-

alent:
1. V is a partial isometry in Lao(E, F);
2. VV* is a projection in La(F);
3. VvV =V;
4. V*VV*=V*,
Proof. It is a simple verification. H

Proposition 3.1.5 LetV € Lo(E,F). Then'V is a partial isometry in La(E, F)
if and only if V- € b(La(E, F)) and V |y gy is a partial isometry in Ly ay(b(E), b(F)).
Moreover, there is a bijective correspondence between the set Zo(E,F) of a all
partial isometries in La(E, F') and the set Ty 4)(b(E), b(F)) of a all partial isome-
tries in Ly4)(b(E), b(F)).

Proof. If V is a partial isometry from E to F, then p(V) < 1 for all p €

S(A). Therefore V' € b(La(E, F)), and since (V]yg))*ViyEe) = V' ]er)Vise =

(V*W)le), Vs is a partial isometry in Ly 4)(b(E),b(F)). It is not hard to

check that the map V' — V|yg) from Za(E, F) to Iy 4)(b(E), b(F)) is bijective. B
References for Section 3.1: [16], [29], [40].

3.2 Orthogonally complemented submodules

It is well known that the closed submodules of Hilbert C*-modules do not have

in general orthogonal complements. Therefore, the closed submodules of Hilbert
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modules over locally C*-algebras are not in general complemented. Mishchenko
showed that certain submodules of Hilbert C*-modules are complemented ( see,
for example, [29], Theorem 3.2). In this Section we show that these results still
hold for submodules of a Hilbert module over a locally C*-algebra.
Let A be a locally C*-algebra and let £ and F' be two Hilbert A-modules.
We say that a closed submodule Fy of F is complemented if F = Fg &® EOL7
where Ef- = {¢ € E; (¢,n) = 0 for every ) € Ep}.

Proposition 3.2.1 Let E be a Hilbert A -module and let Ey be a closed sub-
module of E. Then Eq is complemented if and only if there is a projection Py in
LA(E) such that Ey is the range of Py.

Proof. If Ey is a complemented submodule of F, then any & € F can be
uniquely written as sum of two elements £; and &,, with &; in Ey and &, in
E3-. Tt is easy to check that the map Py from E to E defined by Py (&) = &, is
a projection in L4(FE) whose the range is Ey. Conversely, if Py is a projection
in La(F), then the range ranPFy of Py is a complemented submodule of E and
ran(Py)+ =ran(idg — Py). B

Remark 3.2.2 Let Ey be a closed submodule of E. Then Eqy is complemented
if and only if b(Ey) is complemented.

Lemma 3.2.3 LetT € Lo(E,F). ThenT*F, T*TE, |T| E, where |T| = (T*T)%,

1
and |T|2 E have the same closure.

Proof. We have

T*F = limoJ(T*F) ( using Proposition 9 and Corollary at p. 52 in [4])

= lim (7p), (T%) o (F) = lim (mp), (1) F
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= lim o (T*TE)
P

= T*TE ( using Proposition 9 and Corollary at p. 52 in [4]),

where X denotes the closure of a space X with respect to the topology induced
by the inner product.

In the same manner, using the fact that (mp), (T*T) E,, (mp), (|T]) Ep and
(7p), (\T|)% E, have the same closure for all p € S(A), we deduce that T*T'FE,
|T| E and |T|% E have the same closure. B

Theorem 3.2.4 Let T € LAo(E,F). If T has closed range then:
1. kerT' is a complemented submodule of F;
2. rand, the range of T, is a complemented submodule of F.

Proof. 1. Since pg(|T|€) = pp(T¢€) for all £ € E and for all p € S(A), and since

T has closed range, |T| has closed range. From

T2 E=]T|E=|T|EC|T|?E

we conclude that |T|% has closed range, and moreover, |T| E = |T |% E. Clearly,
(T} B € (ker|TJE)

Let £ € E. Since |T|E = |T|%E, there is € E such that |T|n = |T|%f.
Then ¢ — |T\% n e ker(\T|%) and £ = <§ - \T|% 17) + |T\% n. This shows that F =
ker |T\% @ \T|% E. From this relation, and taking into account that ker(|T|é) =
ker(T) and |T\% E =|T| E, we conclude that E =kerT & |T| E.

2. First we will show that T*T has closed range. For this we show that
|T|E = T*TE. Clearly, T*TE C |T| E. Let £ € |T| E. Then { = |T'|n and since
n =mn, +ny with n; € kerT and n, € |T|E, £ = |T|ny, € T*TE. Therefore,
IT|E = T*TE = (kerT)*. By Lemma 4.2.1, T*F = T"TE = T*TE C T*F.
This implies that 7™ has closed range, and according to the assertion 1. of this
theorem, ker T* is complemented and (ker 7*)* = |T*|F. But, from Lemma 3.2.3
and taking into account that T has closed range we conclude that |T*|F = TE.

Hence the range of T' is complemented. B
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Remark 3.2.5 Let T be an element in Lo(E, F) with closed range. By the proof
of Theorem 3.2.4 and Lemma 3.2.83 , we deduce that T* has closed range, and
moreover, E =kerT ®T*F and F =kerT* @ TE.

Corollary 3.2.6 A closed submodule Ey of a Hilbert A -module E is comple-

mented if and only if it is the range of an adjointable operator on E.

Proposition 3.2.7 Let E and F be two Hilbert modules over A and let V €
LA(E,F). Then V is a partial isometry if and only if V' has closed range and
V\(ker V)L 18 a unitary operator from (ker V) to VE.

Proof. Suppose that V is a partial isometry. Then VV* is a projection in
L4(F) and so VV*F' is a closed submodule of F. From this fact and Lemma
3.2.3 we conclude that V' has closed range and then £ = kerV & V*F and
F =%kerV* @ VE (Remark 3.2.5).

Since (ker V) = V*F = V*VE and since V*V is a projection in L4 (E), we

have:

(@) (V(£),V (&) = (&0, V*VE) = (€0, &) for all § € (ker V)" ; and
(b) V ((ker V)L) — VV*F =VE.

From these relations and Proposition 2.5.3 we conclude that V\(ker vyt is a
unitary operator from (ker V)* to VE.

Conversely, suppose that V' has closed range and V| (ker V)* is a unitary opera-
tor from (ker V)™ to VE. Then, V*|y g is a unitary operator from V E to (ker V)=
. From this fact and taking into account that (ker V)™ = V*F (Remark 3.2.5),

we have

(VVEV =V) (), (VVV =V)(€) = (V(E),V(§) = (VV(E),VV(E)

(), V(&) =V (), V()



for all £ € E. This implies that VV*V — V and so V is a partial isometry. B
References for Section 3.2: [16], [29], [40].

3.3 Polar decomposition of a adjointable operator

We know that the adjointable operators between Hilbert C*-modules do not
generally have a polar decomposition. But, if both T" and T™ have the closures of
the ranges complemented, then T has a polar decomposition. In this Section we
show that this result is valid for adjointable operators between Hilbert modules
over locally C*-algebras.

Let A be a locally C*-algebra and let E and F' be two Hilbert A-modules.

Definition 3.3.1 An adjointable operator T from E to F' has a polar decompo-
sition if there is a partial isometry V' from E to F such that T = V |T|, and
kerV =kerT, ranV =TE, ker V* = ker T* and ranV* = |T| E.

Proposition 3.3.2 An adjointable operator T from E to F has a polar decom-
position if and only if (mp), (T') has a polar decomposition for each p € S(A).
Moreover, if T =V |T|, then (mp), (T) = (7p), (V) |(mp), (T)| for all p € S(A).

Proof. First we suppose that T has a polar decomposition 7" = V' |T'|. Let

p € S(A). Since V is a partial isometry, (75), (V) is a partial isometry. Moreover,

ran ((7p), (V) = ob (VE) =0l (VE) = of (TE)

and

ran ((mp), (V*)) = o) (V*F) = cB(V*F) = oE(T*F)

By functional calculus, (mp), (|T]) = |(7p), (T)|. Therefore (7p), (T') has a polar
decomposition, and (mp), (T) = (mp), (V) |(mp), (T)].
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Conversely, suppose that (), (T') has a polar decomposition, (mp), (T') =
Vp | (mp), (T)| for each p € S(A).
Let p,q € S(A) with p > ¢, and let ( € E;. Then, since the canonical map

pq : B, — FEg is surjective and since E, = kerV, @ ! Tp), )‘ E,, there is

&y € ker V,, and there is a net {¢;}ics such that

¢ = 0%, (€0) + o (|(my). (1] (€)

Thus we have:

(). (3 ©) = ok (1 (80 +1im (m). (D] ) )
= of, (1 ¥, (). (7] €9)) =t (). (1) €0)

= lim (), (T) (oh(&))

s

and
VO = Vo (o 60 + e (1. (7] €))
= Vg (opq (¢ )+hmV (|(mg), ()| (o5 (€0)))
(051 ) + hm (mq), (T) (ag(fi)) .
From these relations and taking into account that opq(ker V) = opq(ker (), (T))
ker (1), (T) = kerV, we conclude that (). (V,) = V. Hence there is V &

LA(E,F) such that (m,), (V) =V}, for all p € S(A). Moreover, V is a partial
isometry, T = VT,

- q

ranV = limof (VE) = im VB, = lim (m,), (T)E,

p P P
= lim o (TE) = TE

P

and

ranV* = limo (V*F) = im V7 F, = lim (), (T°)F,

P P P
= limo(T*F) = T*F.

P
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Hence T has a polar decomposition. l

Proposition 3.3.3 An adjointable operator T' from E to F' has a polar decom-
position if and only if TE is complemented in F and T*F is complemented in
E.

Proof. Suppose that T has a polar decomposition, T = V|T|. Then E =
ker V@ V*F and F = ker V* @ VE, whence, since V¥*F =T*F and VE =TE,
we conclude that TE is complemented in F and T*F is complemented in E.

Conversely, if TE and T*F are complemented, since (|T|E)" = kerT and
(TE)*: = ker T*, we have

E=keaT®|T|Eand F =kerT* & TE.

Define U from |T|E to TE by U|T|§ = T€. Since pp(T€) = pg(|T|E) forall§ € E
and for all p € S(A), U extends by linearity and continuity to a surjective A -
linear map, denoted also by U, from |T|E to TE. Moreover, by Proposition 2.5.3,

U is unitary. Consider the map V from E to F' defined by V(& @ &) = U&s.
By Proposition 3.2.7, V is a partial isometry in L4(E, F) with ranV = TE and
ranV* = |T|E = T*F. It is not difficult to verify that 7= V|T|. R

Corollary 3.3.4 Let T € La(E,F) such that T has closed range. Then T has

a polar decomposition.

Proof. By Theorem 3.2.4 and Remark 3.2.5, TE and T*F are complemented.
Then by Proposition 3.3.3, T" has a polar decomposition. l

Corollary 3.3.5 Two Hilbert A -modules E and F' are isomorphic as Hilbert A
-modules if and only if there is an adjointable operator T from E to F such that
both T and T* have dense range.

Proof. If E and F are isomorphic as Hilbert A -modules, then there is a unitary

operator U from F to F.
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Conversely, if there is an adjointable operator from E to F such that T and
T* have dense range, then by Proposition 3.3.3, T'= V|T|, where V is a partial
isometry from E to F such that ranV = TE = F and ranV* = T*F = E.
Therefore V is a unitary operator from F to F. H

References for Section 3.2: [16], [29].
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Chapter 4

Tensor products of Hilbert

modules

4.1 Exterior tensor product

In this Section we define the notion of exterior tensor product of Hilbert modules
over locally C*-algebras and we show that the exterior tensor product of the
Hilbert A -module E and the Hilbert B -module F' can be identified, up to an
isomorphism of Hilbert modules, with the Hilbert A ® B -module liin E,® Fy.

(p;q)

Let A and B be two locally C*-algebras, let F be a Hilbert A-module and
let F' be a Hilbert B-module. The algebraic tensor product £ ®gjs F' of E and F’
becomes a right A ®,1, B -module in the obvious way ({ ® n) (a ® b) = {a @ nb,
e EneF,acAandbe B.

It is not difficult to check that the map (-, ) from (E ®ag F) X (E ®a15 F) to
A ®a15 B defined by

<i§ ®m,i1§} ®?7}> = ii <€§J> ® <?777J>
P p

i=1 j=1

is C- and A ®,1, B -linear in its second variable and

(c) = (¢
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for all ¢, € E®alg F.

Let ¢ = Z £ ®n; € E®ay F. If By is the Hilbert submodule of £ generated
by {{;;1 = 1 2 ..,n} and Fp is the Hilbert submodule of F' generated by {n;;7 =
1,2,...,n}, then Ey ®,1, Fp is a submodule of F ®,), F' and by Theorem 5.2.7, Ey
can be identified with a Hilbert submodule of H4 and Fy can be identified with

a Hilbert submodule of Hg. Thus we can suppose that for each i € {1,2,...,n},
& = (aim),, and 1; = (b)), . Then

<Ca C) = Z <(azm)m ) (ajm)m> ® <(bzm)m ) (bjm)m>

1,j=1

7,7=1 m m
- Z Z a;majm ® b?mbjm

m 1,j=1

m \i=1 i=1

Moreover, if (¢,() = 0, then Z Aim R bim = 0 for all positive integer m and so

¢ = 0. Thus, we showed that E ®algF is a pre-Hilbert module over the pre-locally
C*-algebra A ®,1, B. Then by Remark 1.2.10, the completion £ ® F' of E @4, F
with respect to the topology induced by the inner-product is a Hilbert A ® B

-module.

Definition 4.1.1 The Hilbert A ® B -module E @ F' s said to be the exterior
tensor product of E and F.

For p € S(A) and q € S(B) we denote by E, ® Fy, the exterior tensor product
of the Hilbert C*-modules £, and Fj.
Let p1,p2 € S(A) with p; > pe and ¢1,q2 € S(B) with g1 > go. Then the

linear map Up1p2 ® Uq1q2 from Ej,, ®ug Fgto Ep, ®a, Fy, defined by (of Tpips ©
ol )E®@n) =ob (&) @ ok, (n) may be extended by contlnulty to a linear

map ol ®of

p1p2 q192 from Ep1 ® Fq1 into Ep2 ® Fq2, since
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(Tpipe @ g (E@N), (041, @ T ) (E@M)) =
= (0h1ps(€): T () @ (Th105 (M), Tl (M)
= Tpips ((§:€)) @ Tarq. ((1,7))
= (Tpips ® Tgr1q0) ((E @M, €@ 7))

for all ¢ € E,, and for all n € F,,. It is not difficult to check that {E, ®
Fq;aipg ® quz; Ap @ Bys Tpipy @ Tqiges P1,02 € S(A), p1 > p2, q1,q2 €
S(B), ¢1 > ¢2} is an inverse system of Hilbert C*-modules. We will show that
the Hilbert A ® B -modules £ ® F' and hm( ® Fy) are isomorphic.

(p q)

Proposition 4.1.2 Let A, B, E and F be as above. Then the Hilbert A ® B
-modules E® F and hm( ® Fy) are isomorphic.

(p )
Proof. First we will show that for each p € S(A) and ¢ € S(B) the Hilbert

Ap ® Bq -modules (E® F),  and E, @ Fy are isomorphic. Let p € S(A) and
q € S(B). Since

0 (€01.609) = 15, (£6) 7 (1),
= (o5 (©).05(9) @ {og (), 04 (n >HAP®Bq
= [[(oF(©) o ). 0E(©) @ F )] o,
for all § € £ and 1 € F, we can define a linear map Uy, ) : (£ ®a1g F) /N(P;;%F —
Ep ®q Fy by
Uy (§ @0+ NEST) = oF(&) @ 08 ().

Evidently U, ) is a surjective A ®a1g By -linear map and

Utp,q) (Z & D1 NE®F>

EQF
2151(8771 N(pq

Ep®Fy (E®F) (.2

n
for all Y &, ®n; € E®,1, F. From these facts, taking into account that A, ®,1, By
i=1

is dense in A, ® By; (E ®ag F) /N(i%F is dense in (E® F) and Ejp ®a14 Fy is

(p,q)
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dense in E, ® Fy, we conclude that Uy, ;) may be extended by continuity to an

isometric, surjective A, ® By-linear map Uy, o) from (E ® F) onto E, ® Fy.

(p,9)
According to Theorem 3.5 in [29], U, 5) is an isomorphism of Hilbert C*-modules

from (E'® F), . onto Ep, ® Fy.
Let p1,p2 € S(A) with p; > po and q1,¢2 € S(B) with ¢; > g2. Then

(08 1y @ 0s) © Uppnan)) (§ 00+ NEER ) = (o8, @ 0kh,,) (082 (€) @ oy (m)

= 0B (€) © 05 (0) = Uy (€ © 1+ NEEE)

_ EQF EQF
- (U(m,qz) © U(phql)(m,qz)) (f ®n+ N(p1 ,q1)>

for all £ € E and for all n € F, and so (U(p,q))(p )ES(A)xS(B) is an inverse

system of isomorphisms of Hilbert C*-modules. Let U = lim U, . Then U
(p;q)

1 p7q) to hin (Ep®Fq)

(€:X-)) (p,q)

Therefore the Hilbert A ® B -modules £ ® F' and lim (E, ® F;) are isomorphic.

(p,q)

is an isomorphism of Hilbert modules from lim (F ® F' )(

Remark 4.1.3 If H is a Hilbert space and E is a Hilbert A -module, then the
exterior tensor product H ® E of H and E is a Hilbert C® A -module. But the
locally C*-algebras CR A and A are isomorphic and then H ® E can be regarded
as a Hilbert A -module.

Corollary 4.1.4 Let E be a Hilbert A -module and let H be a separable infi-
nite dimensional Hilbert space. Then the Hilbert A-modules Hg and H @ E are

1somorphic.

Proof. Let {en;i = 1,2,...} be an orthonormal basis of H and let p € S(A).
Then the linear map U, from Hg, from H® E, defined by U, ((§,,),,) = >_en®¢,
is an isomorphism of Hilbert A, -modules. It is not difficult to check t}?at (Up) »
is an inverse system of isomorphisms of Hilbert C*-modules. From this fact,
Proposition 4.1.2 and Corollary 2.5.4, we conclude that the Hilbert A -modules
Hp and H ® E are isomorphic. B
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Remark 4.1.5 Let E be a Hilbert A -module and let F' be a Hilbert B -module.
Since the C*-algebras b(A @ B) and b(A) ® b(B) are not isomorphic in general
[88], we conclude that the Hilbert C*-modules b(E ® F) and b(E) @ b(F) are not

isomorphic in general.

References for Section 4.1: [20], [29].

4.2 Interior tensor product

In this Section we define the interior tensor product of two Hilbert modules and
we show that the inner tensor product of two Hilbert modules can be identified,
up to an isomorphism of Hilbert modules, with an inverse limit of Hilbert C*-
modules which are interior tensor products of Hilbert C*-modules. Also we
study the relation between the bounded part of the interior tensor product of
two Hilbert modules E and F' and the interior tensor product of the Hilbert C*
-modules b(E) and b(F).

Let A and B be two locally C*-algebras, let E be a Hilbert A-module, let
F be a Hilbert B-module and let & be a continuous # -morphism from A to
Lp(F). The Hilbert B -module F' becomes a left A-module with the action
of A on F defined by (a,n) — ®(a)n, a € A, n € F. The algebraic tensor
product E® 4 F of E and F over A, which is the quotient of the algebraic tensor
product E ®,1, I by the vector subspace Ng generated by elements of the form
Ca@n—E@P(a)n,a€ A, € E,n € F,is aright B-module in the obvious way
(€®n+ Ng,b) - E@nb+ No, be B, € E,ne F. It is not difficult to check
that the map (-, )3 from (E ®,14 F) x (E a4 F) to B defined by

n m 0 n m
(Saondgen) =33 (ne((6s))n)

=1 j=1 e i=1j=1
is C and B -linear in its second variable. Moreover,

((¢.H3) = (¢ g
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for all (,(’ € E ®u F.
For a positive integer n we denote by ®(™) the continuous * -morphism

from M, (A) to M,(Lg(F))) defined by &) ([aij]?j:1> = [®(ai)]; ;= - Since
M,(Lp(F)) can be identified with Lg(F") (Corollary 2.2.9), ®() ([aij]?j:1>
acts on F™ by

n

™ ([aij]ijl) ((n:)izy) = (é:lq) (aij)nj>

i=1
Let &4,...,&, € E and 7y, ...,n, € F. We denote by 1 the element in F™ whose
the components are 7y, ...,n, and by X the matrix in M, (A) with (¢, j)-entry

<§i,£j>. Then

<Z§z‘ ®77iaZ§i ®77i> = Z (n;, @ (<fia§j>) 77j> = <77a¢)(n)(X)77> >0

ij=1

since X is a positive element in M, (A).
Lemma 4.2.1 Let A, B, E,F and ® be as above. Then
N@ = {C er ®(ng F; <Ca C)% = 0}

Proof. Let { € E,n € F and a € A. Then

(Ca@n—ER®(a)n,ca@n—E2P(a)n)y =
(n, ® ((€a, Ea)) ) — (0, @ ((€a, £) ® (a) 1) — (P (a) m, ® (&, €a)) m) +
(@ (a) 1, @ ((£,€)) @ (a) ) = 0.

n
So No C {¢ € E®ug F; (¢, C)g = 0}. Let ¢ = 3 & ®n; € E@alg F such that
i=1
(¢, C)g, = 0. Then, since

(¢.Q)¢ = <?7,<I>(")(X)?7>,

where 7 is the element in F™ with the components 7, ...,n,, and X is the matrix
in M,(A) with (7, j)-entry <fi, fj> , o) (X%)n = 0 and so ®™ (X%)n = 0.
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If £ is the element in E™ with the components £, ...,¢,,, then in the Hilbert
M, (A) -module La(E™), (£,£) = X and according to Corollary 1.3.11, there is
an element E in E™ with the components El, e E,; such that £ = EX% Suppose
that X1 = [eij] Then, for each j € {1,...,n},

=36
i=1

3,=1"

and for each i € {1,...,n}

n

D@ (cij) ;-
j=1
n ~
Therefore ( = (EZCU ®n; — & @ P (ciy) 77]-> and the lemma is proved. B
,j=1
In the particular case when F' = B, the above lemma was proved in [38],

pp.181.
According to Lemma 4.2.1, we can define a B -valued inner-product (-,-)4
on F®a F by
(C+ Na ¢ Ny, = (G0
Moreover, E ® 4 F' equipped with this B -valued inner-product is a pre-Hilbert
B -module. An element £ ® n + Ng in £ ®4 F is denoted by £ ®¢ 7.

Definition 4.2.2 The completion of the pre-Hilbert space E ® 4 F' with respect
to the topology induced by the inner-product defined above, denoted by E Qg F,

is said to be the interior tensor product of E and F using ®.

For each ¢ € S(B), the map ®,: A — Lp, (Fy) defined by ®; = (74)« 0 ® is
a continuous * -morphism.

Let ¢1,q2 € S(B) with ¢; > go. Since

(€@ 00 E@ 0L,y = (0h50), a (6:€) 051, ()
= (0h (M), (7)< (D ((€,€)) 75 (m)
= (O (1) T (7 )+ (2 ({6,))) m))
= Tauqa (1, Doy ({6,)) )
= Tqige <f®77>f®77>q>q1)

90
Tq

s Bl |
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for all £ € F and n € Fy,, there is a unique linear map xg, 4, : £ ®ag Fyy /Nq,q1 —
E ®@ag Fy, [Na,, such that by

Xq1g2 (E ®n+ N‘I’ql) ={® Uqquz(n) + N'i>q2

for all £ € £ and n € Fy,. Moreover, x,,,, is continuous and it extends uniquely

to a linear map, denoted also by x,,4,, from F ®e, Fy to E'®e,, Iy, such that

F
Xq1q2 (5 ®(I>q1 77) = 5 ®(I>q2 UQ1q2 (77)

for all £ € E and n € Fy,.
Proposition 4.2.3 Let A, B, E, F and ® be as above. Then

{E ®s, Fy; Be; Xqrqos Targzr @1 = @2, q1,q2 € S(B)}

is an inverse system of Hilbert C*-modules, and the Hilbert B-modules E @4 F
and lim (E Ra, Fq) are isomorphic.

q

Proof. To show that {E ®a, Fy; Bys Vg0 @1 2 @25 1,42 € S(B } is an in-
verse system of Hilbert C*-modules, let q1, g2, q3 € S(A) such that ¢; > g2 > g3,
&, € E,nn € F, and b € By, Then:

(@) Xgigs ((£ @2,y 1) D) = Xgpq, (§ @y, Mb) =€ @a,, 04,4, (ND)
= ®<Dq2 U(I;qg (77)7rq1q2 (b) = Xqiqo (5 ®<I>q1 77) Tq1q2 (b)§

b) (Xaige (€ @y 1) s Xgugo (€ B0y 1)), = (71001 Pz ((6:€')) 715
= (041010410, (y ((6:6)) 7)) = Tarax (1, @ ((6:€7)) ')
= Toias (€ By 1.6 B0 1)y )

(€) (Xgaas © Xarga) (€ DBy 1) = Xgags (€ Dy, 010, (1)) = € Ra,, 0L 4 (1)
= Xqrgs (€ ®a,, 1)

(d) Xguqu (€ @2, 1) =€ Qs ok (1) =E@a, .
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From these facts we conclude that {E ®s, Fy; By; Vg O = G2, 15,02
€ S(B)} is an inverse system of Hilbert C*-modules.
Let ¢ € S(B). Since

(E@ofm),c@0r )y, =

Il
3
[}
—
=
i)
—~
—
oo
~
SN~—
=
~
N—r
|
3
[}
~~
_
Iy
oy
3
Iy
&
=
~
—

for all £ € FE and for all n € F, there is a unique linear map U0 from F ®4 F
to E ®4 Fy such that UL (£ ®gn) = £ ®a, o (n) for all £ € E and for all
n € F. Moreover, since U0 (E®aF) = E®y F; and HE Ko, O HE®AF <
Ggg . r (§®en) for all § € E and for all n € F, U(? extends to a surJectlve linear
map Ug from E®e¢ F' to E ®e, Fy. Then there is a surjective linear map U, from
(E®g F), to E ®g, Fy such that Uy o og®eF = U2 1t is not difficult to check

that U, is By -linear and since

(U (0 (€ @0 ) Ug (07 (€ @2 1)), = g (€ R0 0.€ B0 0)g)
= (oF® T (e n), ol®* T (E®e n))

for all £ € E and n € F. From these and Theorem 3.5 in [29], we conclude that
Uy is an isomorphism of Hilbert C* -modules from (£ ®¢ F), onto E ®q, Fy.
Let q1,q2 € S(B) with ¢1 > g2, £ € E'and n € F. Then

(Xq1q2 o UQ1) ( E®¢F(§ X 77)) = Xqiqo (f Xy, U(I; (77)) = Qe 052 (77)
= Ug (0 ( E®¢F(f X 77))

= (U ooga”) (05,7 (€@ n)).

Therefore (Ug) ¢ g(p) 1s an inverse system of isomorphism of Hilbert C* -modules.

Let U = lim U,. Then U is an isomorphism of Hilbert B -modules from F ®¢ F'
q
onto lim (E Re, Fq). [ |
q

Proposition 4.2.4 Let A and B be locally C*-algebras, let E be a Hilbert A-
module, let F' be a Hilbert B-module and let ® : A — Lp(F) be a continuous
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x-morphism such that ®(A)F is dense in F. Then the Hilbert B-modules Ha®q F
and H® F, where H is a separable infinite dimensional Hilbert space (as well as

A®g F and F) are unitarily equivalent.

Proof. Let H be a separable infinite dimensional Hilbert space and let {e,;n =
1,2, ...} be an orthonormal bases of H. By Corollary 4.1.4, the Hilbert A-modules
H,4 and H ® A are isomorphic.

The proof is partition in two steps.

Stepl. We suppose that B is a C*-algebra.

The continuity of ® implies that there is a continuous * -morphism ¥, from
Ap to Lp(F) such that ¥, o m, = ®. Since 7, is surjective, W, (A,)F is dense
in F'. Then, the Hilbert C*-modules H A, Qu, F and H ® F are isomorphic as
well as the Hilbert C* -modules A, ®y, F and F (see, for instance, [29] pp.
41-42). Moreover, an isomorphism from Hj,, ®y, F onto H ® F is given by
(en®a) ®w, N — €n ® Vp(a)n and an isomorphism from A, ®g, F' onto F is
given by a ®g, 7 — Vy(a)n.

On the other hand, we know that the Hilbert C*-modules H4 ®¢ F and
Hy, @y, F are isomorphic as well as the Hilbert C*-modules AQg¢ F' and Ap®\ppF
(see the proof of the Proposition 4.2.3). Moreover, the isomorphism U between
Hy ®¢p F and H ® F is defined by U ((e, ® a) ®s 1) = &, ® ®(a)n and the
isomorphism V between A®q F' and F' is defined by V (a®¢n) = ®(a)n. Therefore
the proposition is proved in this case.

Step 2. Now we suppose that B is an arbitrary locally C*-algebra.

For each ¢ € S(B), ®4(A)Fy is dense in Fy, where ®, is a continuous -
morphism from A into Lp, (Fy) defined by ®, = (m,), o ®, since ®,(A)F, =
(mq), (P(A)) Fy = 05 (P (A)F) and ®(A)F is dense in F. Then, according to
the first step of the proof, the Hilbert C*-modules Hs ®¢, Fy and H ® F, are
isomorphic as well as the Hilbert C*-modules A ®¢, F;; and Fy, and moreover,

the linear map U, from Hy ®e, Fy to H ® Fy defined by

Uy ((en ® a) @p, 1) = en @ Py(a)n
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is an isomorphism of Hilbert C* -modules as well as the linear map V, from
A ®e, Iy to Fy defined by

Vola ®a, m) = Pg(a)n.
Let q1,q2 € S(B) with ¢1 > q2. Then

(cH2F o Uy,) ((en ® a) ®a,, ok (n)) = ol2F (e, @ @, (a)ol (1))
= e, ® aqu (<I>q1 (a)a(i (n))
= &, ® Dy, (a)o(i (n)
= Uy ((en®a) D, 052 (n)

= (Uq2 © Ugézé%F) ((En ®a) ®a, 051 (77))

and

(Utl;qz °© V;ll) (a D, U(i (77)) = 051(12 ((I)(Jl (a)a(i (77)) = Gy, (Q)UCI]Z (n)
= Vg (a s, (752 ()

= (Vq2 © U:?l%;F) (“ Qg (751 (77))

for all a € A, for all n € F' and for all positive integer n. Therefore (Uy) 4 18 an
inverse system of isomorphisms of Hilbert C* -modules as well as (‘/Zl)q. Then

the Hilbert B -modules lim (H4 ®g, Fy;) and lim (H ® F,) are isomorphic as
q

q
well as the Hilbert B -modules lim (A Qo, Fq) and lim F},. From these facts and
q q
Propositions 4.2.3 and 1.3.10, we conclude that the Hilbert B -modules H4 ®g¢ F'
and Hg are isomorphic as well as the Hilbert B -modules A ®4 F and F. B

Remark 4.2.5 Putting F' = B in Proposition 4.2.4 and using Corollary 4.1.4,
we deduce that the Hilbert B-modules Hpy Q¢ B and Hp are isomorphic as well
as the Hilbert B -modules A ¢ B and B.

Remark 4.2.6 If® is a continuous x -morphism from A to Lg(F'), then ® (b(A)) C
b(Lp(F)), and since the C*-algebras b(Lp(F)) and Ly p)(b(F)) are isomorphic,
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we can regard the restriction ®|y 4y of ® on b(A) as a * -morphism from b(A) to
Ly gy(b(F)). In general, the Hilbert b(B) -modules b(E ®¢ F') and b(E) Ry )

b(F), where E is a Hilbert A -module, are not isomorphic.

Example 4.2.7 Let A = C.([0,1]), B = C(Z") and let ® be a unital contin-
uous * -morphism from A to B. Then ® (A) B = B and by Remark 4.2.5, the
Hilbert B -modules H4 ®¢ B and Hp are isomorphic. From this and Corollary
2.5.7, we conclude that the Hilbert b(B) -modules b(H4 ®¢ B) and b(Hp) are
1somorphic.

Suppose that the Hilbert b(B) -modules b(H ®¢ B) and b(Ha) @g|, ,, b(B)
are isomorphic. But, by FExample 1.8.6, the Hilbert b(A)-modules b(H,4) and
Hy(a) coincides and by Remark 4.2.5, the Hilbert b(B) -modules Hy 4 Ry ) b(B)
and Hypy are isomorphic. Therefore the Hilbert b(B) -modules b(Ha ®¢ B) and
Hyp) are isomorphic.

From these facts, we conclude that the Hilbert b(B) -modules Hy gy and b(Hp)
are isomorphic, a contradiction (Example 1.3.5). Therefore the Hilbert b(B) -
modules b (Ha ®¢ B) and b(Hy) Ry, b(B) are not isomorphic.

Example 4.2.8 Let A and B be two locally C*-algebras with A unital, let F
be a Hilbert B -module and let ® be a unital continuous *x -morphism from A
to Lp(F'). Then, clearly ®(A)F is dense in I and ®|y4)(b(A))b(F) is dense in
b(F). By Remark 4.2.5, the Hilbert B -modules A®¢ F' and F' are isomorphic as
well as the Hilbert b(B) -modules b(A) Ry ) b(F') and b(F). Since the Hilbert
B -modules A ®g F' and F are isomorphic, by Corollary 2.5.7, the Hilbert b(B)
-modules b(A®g¢ F) and b(F) are isomorphic. Therefore, the Hilbert b(B) -
modules b(A ®@g F') and b(A) Ry, b(F) are isomorphic.

References for Section 4.2: [20], [29],[38].

4.3 Operators on tensor products of Hilbert modules

In this Section, by analogy with the case of Hilbert C*-modules, we study the
relation between the locally C*-algebras La(F) ® Lp(F) and La(F) ® Lp(F)
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respectively K4(E) @ Kg(F) and Kagp(E ® F). Also we study the relation
between the locally C*-algebras L4(E) and Lp (F ®¢ F), respectively K4(E)
to Kp (E R F)

Proposition 4.3.1 Let A and B be locally C*-algebras, let E be a Hilbert A-
module and let F' be a Hilbert B-module. Then the locally C*-algebras Lagp(E ®
F) and lim La,oB,(Ep,®@F,;) aswell as Kagp(E®F) andlim Kp,gB, (@)

(p;2) (p,q)
are isomorphic.

Proof. By Corollaries 2.2.8 and 2.3.5, the locally C*-algebras Lagp(E ® F)
and lim La,qp,((E ® F), ) are isomorphic as well as the locally C*-algebras

(p,q)

Kagp(E @ F) and  lim Ka,0B,((E® F), ). From these facts, Propositions

(p,q)

4.1.2, 2.2.7 and 2.3.4, we conclude that the locally C* -algebras Lagp(E ® F)
and lim La,eB,(E, ® Fy) as well as Kagp(E ® F) and lim Ka, B, (E, ® I)

(p;9) (p,q)
are isomorphic. l

Proposition 4.3.2 Let A and B be locally C*-algebras, let E be a Hilbert A-
module and let F' be a Hilbert B-module. Then there is a continuous * -morphism
Jj from Ly(E) ® Lp(F) into Lagp(E ® F) such that

JT@S)(E®n) =T¢x 8, T € La(E), S€ Lp(F), {€E, neF.
Moreover, j is injective and j(Ka(E)® Kp(F)) = Kagp(E ® F).

Proof. Let p € S(A) and g € S(B). Then, since A, and B, are C*-algebras,
E, is a Hilbert Ap-module and Fj is a Hilbert B,-module, there is an injective
morphism of C*-algebras j, oy from La,(E,)® Lp,(F;) to La,ep,(E,® F;) such
that

Jpa)(Tp @ Sq)(§p @ ny) = Tp&, ® Sqng

for all T, € La,(Ep), Sq € Lp,(Fy), &, € Ep, n, € Fy and
J(p.9) (KAp(EP) ® Kp, (Fq)) = Ka,08,(Ep ® Fy)
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( see, for instance, [29] pp. 35-37).

Since

and

<((7T(P17‘11)(P27q2)) pmh)) (Tp, ® Stn)) (04, (&) @ ol (1))

E F F
(f’m(m ) (Jm,ql Tm ® Sq)) (0B (€) ® oL (1))
E®F F

- (m q1)(r2,92) (Tpl Pl th q1( ))

= 0511)2 (Tpl (051(5))) ® 0q1q2 (Sql (051(77)))

for all Ty, € La, (Ep,), for all S € Lp, (Fy,), for all £ € E, for all
n € F and for all p1,p» € S(A) with p; > ps and q1,¢2 € S(B) with ¢1 > ¢o,

( j(p,q)) (.0)ES(A)xS(B) is an inverse system of injective morphisms of C* -algebras.

Moreover, |( ) is an inverse system of isomor-
j(p7Q)|KAP(EP)®KBq(Fq) ( q)GS( )XS(B) Y
phisms of C*-algebras. Let j = hm J(p,g)- Then j is an injective continuous x*

(p )
-morphism from lim L4, (E,) ® Lp,(F,) to lim La,gB,(E, ® I}), and since the
(€2)) (p,a)
locally C* -algebras lim L, (Ep) ® Lp, (F,;) and Ls(E) ® Lp(F) can be identi-

(p,q)

fied up to an isomorphism (Corollary 4.11, [8]) as well as the locally C*-algebras
lim La,eB,(Ep ® Fy) and Lagp(E ® F) (Proposition 4.3.1), j can be regarded

(p,q)
as an injective continuous * -morphism from L4 (E) ® Lg(F) to Lagp(E ® F)

such that
JT®S)(Ewn) =TE¢® Sy, T € La(E), S€ Lp(F), {€E, n€F.

Moreover, since j| lim K apo g (Bp@Fy) = lgnj(p,q)|KAP(Ep)®KBq(Fq)> and since the
(p,q) (p,q)

locally C* -algebras lim K4, (E,)® Lp,(Fy) and KA(E)® Lp(F') can be identified

(p,a)
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up to an isomorphism (Corollary 4.11, [8]) as well as the locally C*-algebras
lim Ka,0B,(E,®F,;) and Kagp(£® F) (Proposition 4.3.1), we have j(K4(EF)®

(p,q)

KB(F)) :KA®B(E®F). |

Proposition 4.3.3 Let E be a Hilbert module over the locally C*-algebra A, let
F' be a Hilbert module over the locally C* -algebra B, and let ® be a morphism of
locally C* -algebras from A to Lg(F'). Then the locally C*-algebras Lp (E ®4 F)
and IEHLBq (E R, Fq) as well as Kp(E ®g¢ F) and IEHKBQ (E Ry, Fq) are

q q
isomorphic.

Proof. By Corollaries 2.2.8 and 2.3.5, the locally C*-algebras L (E ®g¢ F') and
lim L, ((E ®4 F)q) are isomorphic as well as the locally C*-algebras K4 (F Q¢

q

F) and lim Kp, ((F ®¢ F),). From these facts, Propositions 4.2.2, 2.2.7 and

q
2.3.4, we conclude that the locally C* -algebras L, (£ ®¢ F') and lim Lp (E ®s,
q
Fy) as well as Kp(E ®¢ F) and lim K, (E ®g, I;) are isomorphic. B
Kl
Proposition 4.3.4 Let A and B be locally C*-algebras, let E be a Hilbert A-
module, let F' be a Hilbert B-module and let ® : A — Lp(F) be a continuous

x-morphism.

1. Then there is a continuous x-morphism @, : La(F) — Lp (F ®¢ F) such
that

®*(T)<£®<I> 77) :T(g) Qe 1, fEE, 77€F7 TGLA(E)

Moreover, if ® is injective, then ®, is injective.

2. If ®(A) C Kp(F), then @, (Ka(FE)) C Kp(E ®4 F). Moreover, if ®(A)
is dense in KA(F), then ®, (K(FE))is dense in Kp (E Q¢ F).

Proof. We partition the proof in two steps.
Step 1. We suppose that B is a C* -algebra.
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1. The continuity of ® implies that there is a continuous * -morphism ¥,
from A, to Lg(F') such that ¥, o m, = ®. Then, from the theory of Hilbert C*
-modules (see, for instance, [29]), there is a morphism of C*-algebras (V,), from
La, (Ep) to Lp(E, ®g, F) such that (¥,), (T) (65 (&) @w, n) =T (5 (§)) @, 7
forall { € E,n € Fand T € La,(Ep). We will show that the Hilbert C*
-modules £ ®¢ I’ and E, ®y, F' are isomorphic. For this, we define a linear map
U from E®g¢ F to £, @y, F by U (§ ®e 1) = 05(5) ®y, 1. Clearly, U is B -linear
and U (E ®¢ F) = Ep @y, F . Since

(o7 @w, 1,03 (€) @, m)y = (0, %y ((07(6),0,(€)) 1))
= (0, (Ypomp) ((§,6)n))
= (N, (&) = ({®en, Do M)y

for all £ € E and for all n € F, U extends to an isometric, surjective linear B
-map U from E ®¢ F onto E, ®y, F, and by Theorem 3.5 in [29], the Hilbert B
-modules F ®¢ F' and Ej, @y, F' are isomorphic.

We consider the map @, from Ly(E) to Lp (E ®¢ F) defined by ®.(T) =
U* (Up), ((mp), (T)) U. Clearly, ®, is a morphism of locally C*-algebras. More-

over,

P, (T) (f ®e 77) = U~ (\ij)* ((771))* (T)) (Uf(f) Xw, 77)
= U*((mp), (1) (€) @w, n)

forall ¢ € E, for all p € F and for all T € La(FE).
Suppose that @ is injective. Let T' € L4(FE) such that ®,(T") = 0. Then
T¢ ®pm =0 for all £ € E and for all n € F' and so

0= <T£ ®e 10, TE @a 77,>¢ = <777 P (<T€7T€>)T//>

for all £ € E and for all n,n’ € F. This implies that ® ((T'¢,T¢)) = 0 for all for

all £ € F, and since ® is injective, T is the null operator.
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2. 1f <I>(A) C Kp(F), then ¥, (A,) C Kp(F') and according to Proposition 4.7
of [29], (V,), (Ka, (Ep)) € Kp(E, ®y, F). Since (7p), (Ka (E)) = Ka, (Ep),

we have

O, (Ka(E)) = U™ (p), ((mp), (Ka(E) U
cCU* KB( ®\1; F)U KB(E®¢>F)

If ®(A) is dense in K4(F'), then ¥, (A,) = Kp(F) and according to Propo-
sition 4.7 of [29], (¥,), (K4, (Ep)) = Kp(Ep ®g, F). Then

D, (Ka(E))

U™ (¥p), ((mp), (Ka(E))) U
= U*KB(EP Rw, F)U:KB(E(Z)q) F)

Step 2. Now we suppose that B is an arbitrary locally C* -algebra.
1. For each ¢ € S(B), the map ®, from A to Lp, (F,;) defined by ®; =
(mq), o @ is a continuous * -morphism, and by the first step of the proof, there

is a continuous * -morphism (®,), from L4 (E) to L, (E ®s, I;) such that

(@q), (T) (€ ®a, 0 (n))) = T(€) ®a, o ()

for all £ € E for allp € Fand for all T € La(E).

Let Wy be the map from La(E) to Lp,((E®e F),) defined by ¥y(T) =
Uy (®q), (T) Uy, where Uy is the isomorphism of Hilbert B, -modules from (£ ®g F),
onto ' ®g, Fy defined in the proof of Proposition 4.2.3, and let q1,q2 € S(B)
with g1 > ¢o. Since

(Tqia2), © Way) (1)) (0,77 (€ @am)) = ogigr” (Vo (T) (07" (€ @a 1))

= e (GEW (T¢ 0 1))
= o " (T @ )

= Wy(T) (04,27 (T€ @0 1))

for all T' € La(F) and for all £ € E and n € F, (7g,4,), © Vg = Vg,. Therefore
there is a continuous * -morphism ®. from L4 (FE) to Lp, (E ®¢, Fy) such that
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(mq), © ®x = VY, for all ¢ € S(B). Moreover, ®,(T)(§ ®o 1) = TE ®¢ 1, for all
€ FEforallne Fandforal T € Ly(FE), since

oPS T (@,(T)(E o) = (mg). (®o(T)oFT (¢ @ 1))
= U, (T) (o5 F (¢ 24 1))
= oPO P (T g ).

It is easy to check that if @ is injective, then @, is injective.

2. If ®(A) € Kp(F), then ®,(A) C Kp,(F,) for each ¢ € S(B), and ac-
cording to the first part of the proof, (®,), (Ka(F)) € Kp,(F ®s, F;) and
so Uy (Ka(E) C Kp,((E®s I),). From these, since (mq), o @, = ¥4 for each
q € S(B), we conclude that ®, (Ka(F)) C Kp(F ®g¢ F).

If ®(A) is dense in K 4(F), then for each ¢ € S(B), ®4(A) is dense in Kp,_ (Fy)
and according to the first half of this proof, (®,), (Ka(FE)) is dense in K, (E®s,
Fy) and so W, (K4(F) is dense in Kp, ((E ®¢ F),). Thus we have

P, (Ka(E)) = lim ¥, (KA(E))
q
= lgnKBq((E@cp F)q) = Kp (E®q> F) .
q
|
In the case when B is a C*-algebra and ' = B, the above proposition was

proved in [38], pp.184-185.

Corollary 4.3.5 Let A and B be locally C*-algebras, let E be a Hilbert A-
module, let F be a Hilbert B-module and let ® : A — Lg(F) be a continuous
x-morphism such that ®(A) = Kg(F). If for each ¢ € S(B) there is p; € S(A)
such that q(®(a)) = py(a) for all a € A and if {pg;q € S(B)} is a cofinal subset
of S(A), then ®,(Ka(F)) = Kp(E ®9 F).

Proof. According to Proposition 4.3.4, ®,(K4(F)) is dense in Kp(F Qg F).
To show that ®,(K4(E)) is closed, let ¢ € S(A) and p;, € S(A) such that
q(®(a)) = pg(a) for all a € A. Then there is a continuous * -morphism @,
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Ap, — Lp,(F,) such that &, om, = (mq), o ®. Moreover, ®, (Ap,) = Kp,(F,)
and then according to Proposition 4.7 of [29], ||(®p,), (T)|| = |T|| for all T in
K(Ep,). If Uy, is the isomorphism of Hilbert B, -module from £ It is easy to
verify that (®p,), o (7p,), = (7¢), 0 (®), . Then for each T € K4(E) we have

§(®), (1) = ||(7g), (@), @D = [|(2p,). ((7p,), (D))
= || (7p,) , (T)|| = Pa(T).

From this, since {pq;q € S(B)} is a cofinal subset of S(A), it follows that ®,(
K4(E)) is closed. B

References for Section 4.3: [20], [29], [38].
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Chapter 5

Stabilisation

5.1 Full Hilbert modules

In this Section we characterize the full Hilbert modules over locally C*-algebras
and we show that, in general, a full Hilbert module E does not induce a structure
of full Hilbert C*- module on b(E).

Let A be a locally C*-algebra.

Definition 5.1.1 A Hilbert A -module E is full if the closed two-sided * -ideal
(E,E) coincides with A.

Remark 5.1.2 Since A has an approximate unit, the Hilbert A -module A is
full.

Proposition 5.1.3 Let A be a locally C*-algebra and let E be a Hilbert A-
module. Then E is full if and only if E, is full for all p € S(A).

Proof. First we suppose that E is full. Let p € S(A). Since af(E) = E,, and

since (o5 (€),05(n)) = mp ((&,n)) for all £, € E, the closed vector subspace
(Ep, Ep) of Ay coincides with 7, ((E, E)). But (E,E) = A and m,(A) = A,.

Therefore E,, is full.
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Conversely, if E, is full for all p € S(A), then we have

(E.E) = limm, ((E.B))

(cf.[33], Lemma II1.3.2 )
= lim(E,, E,) =limA, = A

P p

Therefore E is full. H
Corollary 5.1.4 For any locally C*-algebras A, the Hilbert A-module H 4 is full.

Let E and F be Hilbert A -modules. It is not difficult to check that K 4(E, F)
is a pre-Hilbert K 4(F) -module with the action of K4(F) on K4(F, F) defined
by (T,S) - TS, T € Ko(E,F) and S € K4(F) and the inner-product defined
by (T,S) = T*S, T,S € K4(E,F). Since the topology on K4(E, F) induced
by the inner-product is the same as the topology on K4(E, F') induced by the
family of seminorms {p},cs(a), Ka(E, F) is a Hilbert K4(F) -module. A simple
calculus shows that {K,(Ep, Fp); (mpq), s Ka,(Ep),p > ¢,p,q € S(A)} is an
inverse system of Hilbert C*-modules.

Let p € S(A). Define a linear map U, from (Ka(E, F)), to Ka,(Ep, F},) by

Up(T + Ny A = (my), (T)

T € Ka(E,F). It is not difficult to check that U, is a unitary element in
Lp,((Ka(E, F))p, Ka,(Ep, I}p)), where B, = Ky, (Ep). Also it is not difficult

to check that

Ka(EF)

(WPIPQ)* o Upl = UPQ © Uplpg

for all p1, p2 € S(A) with p1 > pa. Therefore (U,), is an inverse system of isomor-
phisms of Hilbert C*-modules. Let U = lim U,. Then U is an isomorphism of

P

Hilbert modules from lim (Ka(E, F)),, onto lim K4, (Ep, F)), and so the Hilbert

p p
KA(E) -modules K(E, F) and lim K4, (E),, I},) are isomorphic.

P
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Remark 5.1.5 By Corollary 3.2.8, the locally C*-algebras Ly , (g (Ka(E, F))
andlim Lp, (K, (Ep, Fy)) as well as K, (g)(Ka(E, F)) andlim Kp, (K a,(Ep, F}))

P

p
(Corollary 3.3.5) are isomorphic.

Remark 5.1.6 Let E and F' be two Hilbert A -modules such that F is full. Since
F is full, E(F,F) is dense in E (Corollary 1.2.13) and so K4(F) is generated
by the elements in the form O¢e, ¢, §,C € E, n,u € F. From this fact and
taking into account that O¢(y, .y ¢ = O¢ 1,0y ¢ for all §,¢ € E and for all n,pu € F,
we conclude that (K4(E, F), Ka(FE,F)) coincides with K4(E). Therefore, if F
is full, then the Hilbert Ka(F) -module K4(E, F) is full.

Remark 5.1.7 If E is a Hilbert A -module such that b(E) is a full Hilbert b(A)
-module, then, taking into account that b(A) is dense in A and b(E) is dense in

E, we deduce that E is full. In general, the converse implication is not valid.

Example 5.1.8 Let A=C (Z") and E =[[C". Then E is a Hilbert A-module

(see, Example 3.4.10). It is not difficult to check that the Hilbert modules E and
b(E) are full.

Example 5.1.9 Let A and E as above and let F' = KA(E,A). Then F is a full
Hilbert Ka(E) -module. We will show that b(F) is not full.

Suppose that b(F') is full. Then the C*-subalgebra of b(KA(F)) generated by
b(KA(E,A)*)b(Ka(E,A)) coincides with b(K4(FE)). On the other hand, since A
is unital, Ko(E, A) = La(E, A) and Ly )(b(E),b(A)) = Kya)(b(E),b(A)), and
then by Theorem 3.4.2, the C*-algebras b(Ka(E, A)) and Ky 4)(b(E),b(A)) are
isomorphic. Therefore the C* -subalgebra of b(K Ao(E)) generated by b(Ka(E, A)*)
b(Ka(E, A)) is isomorphic with Ky 4)(b(E)). From these facts, we conclude that
the C*-algebras b(Ka(E)) and Ky 4)(b(E)) are isomorphic, a contradiction (see
Example 3.4.10). Therefore b(F') is not full.

Remark 5.1.10 Let E be a full Hilbert A -module and let F' be a full Hilbert
B -module. Then E® F is full, since the closed ideal of A @ B generated by
(E®F,E®F) coincides with the ideal of AQ B generated by (E, E) ®q, (F, F) .
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Remark 5.1.11 Let E be a full Hilbert A -module, let F' be a full Hilbert B
-module and let ® : A — Lp(F) be a morphism of locally C* -algebras such that
O(A)F is dense in F'. Then EQgF is full, since the closed ideal of B generated by
(E®¢ F,E Q¢ F) coincides with the ideal of B generated by (F,® ((E,E)) F) .

References for Section 5.1: [21], [29].

5.2 Countably generated Hilbert modules

In this Section we show that the Kasparov stabilisation theorem for countably
Hilbert C*-modules is valid in the context of Hilbert modules over locally C*-
algebras and we prove a criterion for a Hilbert module over a Fréchet locally
C*-algebra be countably generated. Also, we show that if F is a full countably
Hilbert module over a separable Fréchet locally C*-algebra, then the Hilbert
A-modules Hy and Hg are unitarily equivalent.

Let A be a locally C*-algebra.

Definition 5.2.1 A Hilbert A -module E is countably generated if there is a
countable subset G of E such that the Hilbert -submodule of E generated by G is
exactly E.

Lemma 5.2.2 Let E be a countably generated Hilbert A -module. Then there is
a countable subset Gy of b(E) such that Gy is a generating set for E.

Proof. Let {,;n = 1,2,...} be a generating set for . By Theorem 1.3.2 (2),
for each positive integer n there is a sequence {¢,,,, }m of elements in b(E) which
converges to §,,. Let Go = {&,,,,,;n,m = 1,2, ...}. Clearly, Gy is a countable subset
of b(E) and {&,;n =1,2,...} is a subset of the Hilbert A -module generated by
Go. Therefore Gy is a generating set for £. B

Remark 5.2.3 If G is a generating set for the Hilbert A -module E, then op(G)
is a generating set for E, for each p € S(A). Therefore if E is a countably gen-
erated Hilbert A -module, then the Hilbert Ap-module E, is countably generated

for each p € S(A).
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Example 5.2.4 If A has a countable approximate unit {uy},, then the Hilbert
A-module A is countably generated.

Indeed, let h =" 27"uy. Then mp(h) is a strictly positive element in Ay for
each p € S(A), smrée {mp(un)}n is a countable approximate unit for A, (see,
[87], Proposition 3.10.5), and by Lemma III 3.2, [33],

hA =lim7,(hA) =lim7,(h)A, =lim A, = A.

p p P

Therefore {h} is a generating set for A.

Example 5.2.5 If A has a countable approximate unit {uy},, then the Hilbert

A-module H 4 is countably generated.

Example 5.2.6 If E is a countably generated Hilbert A -module, then the Hilbert

A-module Hg is countably generated.

If A is a C*-algebra, Kasparov [26] shoved that H4 is big enough to absorb
any countably generated Hilbert A -module. This result is known as Kasparov’s
stabilization theorem, and it is also true in the context of Hilbert modules over

locally C*-algebras.

Theorem 5.2.7 Let E be a countably generated Hilbert A -module. Then the
Hilbert A -modules E ® H4 and H 4 are isomorphic.

Proof. First we suppose that A is unital. Then {e,;n = 1,2,...}, where e, is an
element in H4 whose all the components are zero except at the n'® component
which is 1, is a generating set for H 4.

Let {{,;n = 1,2,...} be a generating set for E' with each element repeated
infinitely often. By Lemma 5.2.2, we can suppose that for each positive integer
n, &, is an element in b(E) and ||€,||,, < 1. Clearly, {{,, @ en;n =1,2,...} is a
generating set for £ @ H 4.

Let p € S(A). Then {¥(&,) @ of4(en);in = 1,2,...} is a generating set

for E} © Ha, and according to the proof of Kasparov’s stabilization theorem
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for countably generated Hilbert C*-modules ( see, for example, [35]), the linear

operator Tj, from Hy, to E, ® H,, defined by

_ -n
Ty =2 2705 ¢ JonnoAen)0 4 (en)
n

and its adjoint have dense range. It is not difficult to check that (7,), is a
coherent sequence in La,(Ha,, B, ® Ha,). Let T € La(Ha, E® Hy) such that
(mp), (T') = T, for each p € S(A). Then:

THx = lin (o8 & T (T HA) — lim (), (T) (014 (H1.)

p p

= limTp(HAp) = limEp@HAP =FE®Hy

p P

and

T*(E® Ha) = limoy'*(T* (E @ Ha))

P

= lim (m,), (T") (o} @ 0}*) (E® Ha))

)
= limT;(E, © Ha,) =lim Ha, = Ha.

) )

Therefore T and T* have dense range and by Corollary 3.3.5, the Hilbert A
-modules Hy and E & Hy4 are isomorphic.

If A is not unital, let AT be the unitization of A. Since E can be regarded as
Hilbert AT -module, according to the first part of the proof, there is a unitary
operator Ut from H 4+ onto E®H 4+. Clearly , the restriction U of Ut on H 4+ A
is a unitary operator from H 4+ A onto m. It is not difficult to check
that the linear maps: (an)na — (ana), from Ha+ A to Ha and (€ ® (an)n)a —
(£ @ (ana)y) from (E@® Hy+)A to E @ Hy are unitary operators. From these
facts we conclude that the Hilbert A -modules H and E & H 4 are isomorphic. B

For countably generated Hilbert modules over Fréchet locally C*-algebras,

this theorem was proved in [38], Theorem 5.12.

Remark 5.2.8 If E is a Hilbert A-module such that the Hilbert b(A)-module
b(E) is countably generated, then E is countably generated.
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Corollary 5.2.9 If A is a locally C*-algebra such that b(Ha) = Hy sy, and E
is a countably generated Hilbert A-module, then the Hilbert b(A)-module b(E) is

countably generated.

Proof. By Theorem 5.2.7, the Hilbert A-modules £ @ H4 and H,4 are isomor-
phic. From this, using Corollary 2.5.7 and Remark 1.3.7, we conclude that the
Hilbert b(A)-module b(E) @© Hy(4) and Hy 4y are isomorphic, and since Hy 4 is
countably generated, b(F) is countably generated. B

It is known that a Hilbert C*-module is countably generated if and only if
the C*-algebra K 4(F) has a countable approximate unit (see, for example, [29],
Proposition 6.7). This result can be extended in the context of Hilbert modules

over Fréchet locally C*-algebras.

Proposition 5.2.10 Let A be a locally C*-algebra and let E be a Hilbert A

-module. Then:
1. If E is countably generated, then K 4(F) has a countable approximate unit.

2. If A is a Fréchet locally C*-algebra and if K4(E) has a countable approxi-

mate unit, then E is countably generated.

Proof. 1. Suppose that A is unital. Then, for each p € S(A), Hy, is countably
generated and by [29], Proposition 6.7, K4, (H,) has a countable approximate

1

n

unit. Moreover, {U}},,, where U} = ;2_"905/4(%)70514(%) is an approxi-
mate unit for K4, (H,). It is not difficult to check that, for each positive integer
n, (UR)p is a coherent sequence in K, (Hpa,). For each positive integer n, let
U, = (UE)p. Then {U,}, is an approximate unit in K 4(H4). Since F is count-
ably generated, by Theorem 5.2.7, there is an element P in L 4(H 4, E) such that
PP* =idg. Then {PU, P*},, is an approximate unit for K 4(FE).

2. Let {V,,}, be a countable approximate unit of K4(F) and let T'= 27"
Vi For each p € S(A), {(7p)«(Vx) }n is a countable approximate unit for KAZ (Ep)
and (7,)«(T") is an element in K4,(E),) with dense range ( see, for instance, [12]).
Then
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TE = limoB(TE) = lim (7). (1) (5)

p p
— limE, = E.

P

Therefore T' has dense range. Let {pn}, be a cofinal subset of S(A). Since T

€ K(E), for each positive integer n, there are &7, ...,&5,  nt,...,ny,, in E such

that
Mn 1
Pn <T — 295277,2) < %
k=1
We show that {¢}};1 < k <my,,n=1,2,..} is a system of generators for E.
Let £ € E, € > 0 and let ng be a positive integer. Since T' has dense range,

there is € E such that D, (£ — 1) < 5. Let n = max{no, [ITOT(W)] + 1}, where

t| means the integer part of the positive number ¢. Then p,, < p, and
[ g 0

Pro (5 -> & <772,77>> < Dy (€ = TN) + Py (Tn - Z9§z,ng(n)>
k=1 k=1
e =
< 5+ Py (1) Prg <T - 9§z,nz>
k=1
+ Pno (1) Pn (T - 2952,77;) <e
k=1

This shows that {£};1 < k < mp,n = 1,2,...} is a system of generators for £

<

Do | M

and therefore F is countably generated. W

Corollary 5.2.11 Let A be a Fréchet locally C*-algebra and let E be a Hilbert
A -module. Then E is countably generated if and only if K4(E) has a countable

approximate unit.

The following theorem extends Theorem 1.9, [35] in the context of Hilbert

modules over locally C*-algebras.

Theorem 5.2.12 Let A be a Fréchet locally C*-algebra with countable approzi-
mate unity and let E be a full Hilbert A -module.
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1. There is a Hilbert A -module F such that the Hilbert A -modules Hg and
A& F are isomorphic.

2. If E is countably generated, then the Hilbert A -modules Hg and Ha are

1somorphic.

To prove this theorem we will use the same arguments as in the proof of The-
orem 1.9, [35]. Thus, first we extend Lemma 1.7, [35] which plays an important

role in the proof of Theorem 1.9.

Lemma 5.2.13 Let A be a Fréchet locally C*-algebra with countable approzi-
mate unit and let E be a Hilbert A -module. If E is full, then there is a sequence

n

{{,}n in E such that p (Z (Eps &) a — a) — 0 for all p € S(A) and for all
k=1
ac A

Proof. First we show that A has a countable approximate unit contained in the
C*-subalgebra (b(E),b(E)) of b(A).

Let {en}n be a countable approximate unit for A and let {u;};cr be an ap-
proximate unit for (b(E),b(E)) .

We show that {u;};cs is an approximate unit for A. Let a € A, p € S(A) and
e > 0. Since E is full, there are &4,...,¢,,, 71, ..., 0, € E such that

pla— 3 (Em)) < /8,

k=1

and since b(F) is dense in E, there is El, ...,En € FE such that
e —E) < /83 Pl +1)

for all positive integer k with 1 < k < n, and there are 7, ...,7,, € F such that
Pl = 1) < =/8(3 PEw) +1)

for all positive integer k£ with 1 < k < n. Then
n n

pla— 3 (i) < pla= 3 Eomd) +p(3 (6 — &)

k=1 k=1 k=1
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+p(k§1 <gk:a M — 77k>)

< /8 + 3 B~ EB0n) + 3 Bl ~ T)(E)
< 3¢/8.

On the other hand, since {u;}icr is an approximate unit for (b(E),b(E)), there
is ig € I such that
n

) <Ekaﬁk> U — il <Ekaﬁk>

k=1 k=

' <e/4

for all 4 € I with i > ig. From these relations we obtain

(&) + (3 (€)= 3 (B i))

M=

plau; —a) < p((a -
k

+pla— 3 <gk7ﬁk>)
k=1
< 3e¢/8+¢/4+3¢/8=¢

I

for all i € I with ¢ > ip and so {u;}ics is an approximate unit for A.
We choose a countable subnet {v,, },, of {w;};cr such that with {p, }, a cofinal
subset of S(A), we have pp(vper — ex)+ Prlervn —e) < £ forall 1 <k < n.
Let a € A, pm, € S(A) and € > 0. Then there is a positive integer kg such

that
€
pm(aeko —a) +pm(ekoa —a) < 3
and there is a positive integer ng, ng = max {ko, m, [M]}, where [t] is the

integer part of the real number ¢, such that

Pm(avn — @) + pm(vna — a) < pm (vn) (Pm(ack, — a) + pm(era — a)) +
+pm (@) (Pm(vneky — €ky) + Pm(€kgUn — k) +
+ (Pm(aek, — a) + pm(er,a — a))
< 2 (pm(aeg, —a)+ pm(ex,a — a)) +
+Pm (@) (Pr(vneky — ko) + PrleryUn — €ky))

€ 1
< 2§+pm(a)ﬁ§€
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for all positive integer n, n > ng. This shows that {v,}, is an approximate unit
for A.

Let h =) 2"™vy,. Since {mp(vn)}n is an approximate unit for Ay, mp(h) is a
strictly posit?ve element in A, for each p € S(A) and so m,(h)A, is dense in A,
for each p € S(A). Then

hA =lim7,(hA) = lim7,(h)A, = lim A, = A.
P > >
Therefore hA is dense in A.
On the other hand, since h is an element in (b(E),b(E)) and b(FE) is a full
Hilbert (b(E),b(E)) -module, according to the proof of Lemma 1.7 in [35],

S (€& h—h

k=1

there is a sequence {{,}n in b(E) such that — 0 and

o0

< 1 for all positive integers n. Then

En: <§k> §k>
k=1

[e.o]

PO (&pr &) ha — ha) — 0
k=1

for all @ € A and for all p € S(A).
Leta € A, p € S(A) and e > 0. Since hA is dense in A, there is b € A such that
p(a—hb) < /3. Let ng be a positive integer such that p( > (£, &) hb—hb) < /3

k=1
for all positive integer n with n > ng. Then

n

Z & €p) @ — a) P(Z (€k> &x) (@ — hD)) Z & Ek) M — hb) + p(a — hb)
k=1 k=1 k=1
< e/3+¢/3+¢/3=¢

for all positive integer n with n > ng. W

The proof of Theorem 5.2.12.
1. Let {£,}n be a sequence in E such that p <E (€ &) a — a> — 0 for

k=1
all p € S(A) and for all @ € A. Thus we can define a map T from A to Hg by

T(a) = (§pa)y, -
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Let (n,),, € Hg and p € S(A). Then

IN

o($ <§k,nk>)2

k=n

p <kin <§k7£k>> p ( > <77k777k>>

k=n

(cf. Cauchy -Schwartz Inequality)

i (€ k) Oop (kin <77k777k>)

IN

k=1

<p <§I <77ka77k>>

k=n
for all positive integers n and m with m > n. This shows that > (£,,n,)
n

converges in A and so we can define a map S from Hg to A by S((n,),) =

> (€ne1n) - From
(@), (1)) = 0" X (€)= (.S ((12),)

for all @ € A and for all (n,,),, € Hg, we deduce that T' € Ls(A, Hg) and T* = S.
Since (T'(a),T(a)) = (a,a) for all a € A, T has closed range and moreover, the
Hilbert A -modules A and ran(7") are isomorphic. Then by Remark 3.2.5, Hg
is isomorphic with ker(7™) @& A. Therefore there is a Hilbert A -module F' =
ker(T™) such that the Hilbert A -modules Hg and F' & A are isomorphic.

2. If F is countably generated, since A is also countably generated and since
the Hilbert A-modules Hg and F' & A are isomorphic, F' is countably generated
and so Hp is countably generated. Then, by Theorem 5.2.7, the Hilbert A-
modules Hr & H 4 and H4 are isomorphic.

On the other hand, since the Hilbert A -modules Hg and F' & A are isomor-
phic, the Hilbert A -modules Hg and Hr & H,4 are isomorphic. Therefore the
Hilbert A -modules Hg and H 4 are isomorphic. l

We don’t know if Theorem 5.2.12 is valid in the general case. If A is an

arbitrary locally C*-algebra we have the following result:

Proposition 5.2.14 Let A be a unital locally C*-algebra such that b(Hs) =
Hyay, and let E be a countably generated Hilbert A -module such that b(E) is
full. Then the Hilbert A -modules Hg and H4 are isomorphic.
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Proof. By Corollary 5.2.9, the Hilbert b(A) -module b(FE) is countably gener-
ated, and then by Theorem 1.9, [35], the Hilbert b(A) -modules Hy gy and Hy )
are isomorphic. From this and Lemma 1.3.8, we conclude that the Hilbert A
-modules Hg and H 4 are isomorphic. B

References for Section 5.2: [14], [16], [19], [23], [26], [29], [35], [38].

5.3 Strong Morita equivalence

In this Section we extend the concept of strong Morita equivalence in the context
of locally C*-algebras and we show that a well-known result of Brown, Green and
Rieffel [5] which states that two C*-algebras are stably isomorphic if and only if
they are strongly Morita equivalent is valid for Fréchet locally C*-algebras.

Definition 5.3.1 Two locally C*-algebras A and B are strongly Morita equiva-
lent, written A ~p B, if there is a full Hilbert A-module E such that the locally
C*-algebras Ka(F) and B are isomorphic.

Proposition 5.3.2 Strong Morita equivalence is an equivalence relation in the

set of all locally C*-algebras.
To prove this proposition, the following lemma will be necessary.

Lemma 5.3.3 Let A be a locally C*-algebra and let E and F be Hilbert A -
modules. If E is full, then the locally C*-algebras Lo(F') and Lp(G) respectively
KA(F) and Kp(QG) are isomorphic, where G = KA(E,F) and B = KA (F).

Proof. Let p € S(A). By Proposition 5.1.3, Ej, is full and then the C*-algebras
La,(Fp) and Lp,(Gp) are isomorphic as well as K4, (F},) and Kp, (Gp), where
By = Ka,(Ep) and G, = K4, (E)p, F},) (see, for example, [29], Proposition 7.1 ).
Moreover, the isomorphism is given by oy, : La,(Fp) — Lp,(Gp), ap(1p)(Sp) =
TpSp, Ty € La,(Fp), Sp € G) respectively OCp‘KAp(FP)-

Let p,q € S(A) with p > ¢g. Then
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for all T, € La,(Fp) and for all S € G. This implies that (ap),, is an inverse system
of isomorphisms of C*-algebras as well as (ap| Kay( Fp)> and so the locally C*

-algebras lim L4, (F},) and lim Lp,(G)) are isomorphic as well as lim K4, (F})

p p p

and lim K, (Gp). From these facts, Corollaries 2.2.8 and 2.3.5, we conclude that

the lopcally C*-algebras L4(F') and Lp(G) are isomorphic as well as K4(F) and
Kp(G), and the lemma is proved. B

The proof of Proposition 5.3.2.

Proof. Since A is a full Hilbert A -module and the locally C*-algebras A and
K A(A) are isomorphic, we have A ~j; A. So the relation is reflexive.

If A ~j; B, then there is a full Hilbert A -module E such that the locally C*-
algebras B and K 4(F) are isomorphic. By Lemma 5.3.3, the locally C*-algebras
A and Kp(G) are isomorphic, where G is the Hilbert K4(E) -module K4(E, A),
and since G is full (Remark 5.1.6), B ~js A. Therefore the relation is symmetric.

To show that the relation is transitive, we suppose that A, B, C are locally
C*-algebras such that B is isomorphic to K 4(E) for some full Hilbert A -module
E and C is isomorphic to Kg(F) for some full Hilbert B -module F. By Remark
1.2.11, F' can be regarded as a Hilbert K4(E) -module and so the C*-algebras
C and Kj4)(F) are isomorphic.

Let i be the natural embedding of K 4(F) into L4(FE) and let F' ®; E be the
interior tensor product of F' and E using i. By Proposition 4.2.3, the Hilbert
Ap-modules (F ®; E),, and F ®r,) o Ep are isomorphic for each p € S(A4). On
the other hand, from the proof of Proposition 4.3.4 (1) (Stepl), the Hilbert
Ap-modules F' @) oi Ep and F) ®;, Ej, where iy is the natural embedding of
K, (Ep) into Ly, (E)) are isomorphic for each p € S(A). Therefore, for each
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p € S(A), the Hilbert A, -modules(F' ®; E),, and F), ®;, E;, are isomorphic and
since F, ®;, L), is full [29], according to Proposition 5.1.3, F' ®; E is full.

Let p € S(A). Then the map (ip), from Ki,, (5,) (Fp) to Ka, (Fp ®i, Ep) de-
fined by (ip), (Tp) (1, ®i, &) = Tp (1) 4, &, is an isomorphism of C' *-algebras
(see [29], Proposition 4.7). It is not difficult to check that ((ip)*)p is an in-
verse system of isomorphisms of C*-algebras and so the locally C*-algebras

liin KKAp (E,)(Fp) and liin Ka, (Fp ®q,, Ep) are isomorphic. But the locally C*-
P p
algebras lim Ky, ( 5,)(Fp) and K, (g (F) (Corollary 2.3.5) are isomorphic as
p
well as lim K4, (Fp ®;, Ep) and K4 (F ®; E) (Proposition 4.3.3 ). From these
p

facts, we conclude that the locally C*-algebras C' and K4 (F ®; E) are isomor-
phic, and since F ®; F is full, A ~j; C. Thus we showed that the relation is

transitive. B

Proposition 5.3.4 Let A1, Ay, Biand By be locally C*-algebras. If Ay ~p
Biand Ay~ Bs, then A1 ® Ay ~pr B1 ® Bs.

Proof. Since Ay ~j; By and Ay ~ps Bs, there is a full Hilbert Aj-module
E; such that the locally C*-algebras K4, (F1) and Bj are isomorphic and there
is a full Hilbert As-module E5 such that the locally C*-algebras K4, (FE>) and
By are isomorphic. Then by Proposition 3.4 in [13], the locally C*-algebras
B; ® By and Ky, (E71) ® K4,(FEs) are isomorphic. But according to Proposition
4.3.2, the locally C*-algebras Ka,(F1) ® Ka,(E2) and Ka,p4,(E1 ® Eq) are
isomorphic, where E; ® Es is the exterior tensor product of Hilbert modules F4
and Es. From these facts and taking into account that Ey ® E5 is full ( Remark
5.1.10) we conclude that A; ® As ~y B1 ® By, W

Corollary 5.3.5 Let A be a locally C*-algebra. Then the locally C*-algebras A
and K ® A are strongly Morita equivalent.

Proof. From A ~p; A, K ~j) C and Proposition 5.3.4, we conclude that
K® A ~p C® A and since the locally C*-algebras A and C ® A are isomorphic

the corollary is proved. B

107



Definition 5.3.6 We will say that two locally C*-algebras are stably isomorphic
if the locally C*-algebras K @ A and K ® B are isomorphic.

Proposition 5.3.7 Let A and B be locally C*-algebras. If A and B are stably

isomorphic, then A and B are strongly Morita equivalent.

Proof. By Corollaries 4.1.4 and 2.3.6 and Proposition 4.3.2, Kg(Hp) is isomor-
phic with K® B, and since A and B are stably isomorphic, Kp(Hp) is isomorphic
with K ® A. From these facts and taking into account that Hpg is a full Hilbert
B-module, we conclude that K ® A ~j; B. But, by Corollary 5.3.5 C® A ~p A.
Therefore A ~y; B. R

The following theorem is a generalization of a well-known theorem of Brown,
Green and Rieffel ( [5], Theorem 1.2) for Fréchet locally C*-algebras.

Theorem 5.3.8 Let A and B be Fréchet locally C*-algebras with countable ap-
proximate units. Then A is strongly Morita equivalent to B if and only if A and

B are stably isomorphic.

Proof. If A and B are stably isomorphic, then by Proposition 5.3.7, A and B
are strongly Morita equivalent.

To show the converse implication, let £/ be a full Hilbert A -module such
that K4(F) is isomorphic with B. Since A has a countably approximate unit,
E is countably generated (Corollary 5.2.11) and then by Theorem 5.2.12, the
Hilbert A -modules Hg and H 4 are isomorphic. Therefore the locally C*-algebra
K 4(Hg) is isomorphic with the locally C*-algebra K 4(H 4) which is K4(H4) is
isomorphic with  ® A.

On the other hand, £ ® B is isomorphic with X ® K 4(E) which is isomorphic
with K4(Hg) (Proposition 4.3.2). From these facts we conclude that the locally
C*-algebras K ® A and K ® B are isomorphic and so the locally C*-algebras A
and B are stably isomorphic. W

References for Section 5.3: [5], [21], [29],[42], [43].
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Chapter 6

Representations of locally
C*-algebras on Hilbert

modules

6.1 Representations of locally C*-algebras

In this Section we introduce the notion of representation of a locally C*-algebra
on a Hilbert module and we characterize the non-degenerate representations of
locally C*-algebras on Hilbert modules. Also we show that given a locally C*-
algebra B, then any separable locally C*-algebra A admits a non-degenerate
representation on the Hilbert module Hp.

Let A and B be two locally C*-algebras.

Definition 6.1.1 A representation of A on a Hilbert B -module E is a contin-
uous x-morphism ® from A into Lp(E). We say that the representation ® is
non-degenerate if ®(A)E is dense in E.

Definition 6.1.2 Two representations ®1 and ®o of A on the Hilbert B -modules
B4 respectively Eo are said to be unitarily equivalent if there is a unitary operator
U in Lp(E1, E2) such that U®y(a) = ®2(a)U for all a in A.
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Remark 6.1.3 If A is a Fréchet locally C*-algebra, then any x -morphism from
A to Lg(F) is a representation of A on E.

Proposition 6.1.4 Let A be a locally C*-algebra, let ® be a representation of

A on a Hilbert B -module E. Then the following statements are equivalent:

1. ® is non-degenerate;

2. there is a unique unital continuous *-morphism ® from M(A) into Lp(E)
such that:

(a) |4 =@,

(b) ®|¢ is strictly continuous whenever C is a bounded selfadjoint subset

of M(A);

3. for some approximate unit {e;};cr of A, {®(e;)}icr converges strictly to

11, (E)s the identity map on E.

Proof. 1. = 2. Let ¢ € M(A). We consider the map ®(c) from ®(A)E into E
defined by

n

() | Y ®(a)g, ZZ‘P(C%)Q-

J=1

|

Let {u;}ier be an approximate unit for A, > ®(a;)¢; € ®(A)E and g € S(B).

7=1
Then
. n n
7[ @) | D ®ayg; = limg > d(cuiay)g,
j=1 j=1

< 11?1 q(®(ce))q Z P(az)&;
j=1

< py(c)g Z¢(aj>£j
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for some p, € S(A). Hence ®(c) can be extended on E by continuity. It is easy
to check that ®(c) is an element in Lp(E) and ® (c)* = ®(c*). Also it is not
difficult to that the map @ is a unital continuous * -morphism from M (A) to
Lp(E). Evidently, ®|4 = ®.

Let C be a bounded selfadjoint subset of M (A). To show that ®|¢ is strictly
continuous, let {c; };cr be a net in C' which converges strictly to an element ¢ in C,
£ € FE,qe S(B) and € > 0. Since ® is a morphism of locally C* -algebras, there
is pg € S(A) such that g (® (b)) < pq(b) for all b € M(A), and since ®(A)E is
dense in F, there is zn:l ®(a;)¢; € (A)E such that

j=

_ " 9
J=1 1

where M, = sup{p,(c);c € C}. Let M = sup{q(¢;);j = 1,2,...,n}. Since the
net {c¢;}icr converges strictly to ¢, there is iy € I such that
€
pq (ciaj — caz) +pq (cia; — c'aj) < =

for all j € {1,2,...,n} and for all ¢ € I with i > ig. Then

T(P(c)E—P(0)€) +7(D(cHE— P (c)€)

<7 (6(01' —c) <5 - é‘b(aj)ij))
+q (5(62‘ —c") (5 - ilfb(aj)fj))

+7 (6 (03 @(aﬂ@-) +7 (acz -~ 3 @(a»fj)

J

—

< (pg(ci =) +pg(cf =<))7 (é =3 (e

n
2 (pg (cia; = cag) +pq (cia; — "a;)) T (&)
]:

< 2Mp, gpp- Mgy =€
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for all i € I with i > 4g. Therefore the net {®(c;)};c; converges strictly to
@(c).

To show that @ is unique, let ® be another unital continuous *-morphism from
M(A) to Lp(F) which verifies the conditions (a) and (b) and ¢ € M(A). Then

n

B0) [ Yo | = ()

= 3wty =T | Yootark

for all 3 ®(a;)¢; € ®(A)E. From this, since ®(A)E is dense in F, we conclude
j=1

that ®(c) = ®(c) and so & = P.

2. = 3. Let {e; }ier be an approximate unit for A. Then C' = {e; }ierU{1ar(a)}
is a bounded selfadjoint subset of M (A) and since {e;};c; converges strictly to
Lar(a), and | is strictly continuous, {®(e;) };es converges strictly to 5(1M(A)) =
LLp(B)-

3. = 1. Let {e;}icr be an approximate unit of A such that {®(e;)}icr con-
verges strictly to 17, (g) and let £ € E. Then the net {®(e;){}icr converges to
€. This shows that ®(A)E is dense in E. R

Remark 6.1.5 If ® is a non-degenerate representation of A on a Hilbert B
-module E, then for any approximate unit {e;}icr for A, the net {®(e;)}ier con-

verges strictly to 1, (g

We know that given a C*-algebra B, then any separable C*-algebra admits
a faithful non-degenerate representation on the Hilbert B -module Hp (see, for
example, [29], Lemma 6.4). Two natural questions arise: (1) Given two locally
C*-algebras A and B, is there a representation of A on the Hilbert B -module
Hp? (2) If there is a such representation, is it faithful? The following proposition

gives an answer to these questions.
Proposition 6.1.6 Let A and B be two locally C*-algebras with A separable.
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1. There is a non-degenerate representation of A on Hpg.

2. If A is a strong spectrally bounded Fréchet locally C*-algebra, then there is

a faithful, non-degenerate representation of A on Hp.

Proof. Since A is separable, the C*-algebras Ay, p € S(A) are all separable.

1. Let p € S(A). Since A, is separable, by Corollary 3.7.5 in [37], there
is a faithful, non-degenerate representation ¢, of A, on an infinite separable
Hilbert space H. Then ¢ = ¢, o 7, is a non-degenerate representation of A
on H. According to Corollary 4.1.4, the Hilbert B -modules Hg and H ® B are
isomorphic. Thus to prove the proposition, we will construct a representation
of Aon H® B . Consider the linear map i,z from L (H) to L (H) ® Lp (B)
defined by

i (T) =T ®idp.

It is not difficult to check that ifz) is a morphism of locally C*-algebras. Let
¢ = joirg) o ¢, where j is the the morphism of locally C*-algebras constructed

in Proposition 4.3.2. Then ® is a representation of A on H ® B. Moreover, since
®(A) (H @ayg B) = j((¢ (A) ®1idp)) (H @ay B) = ¢ (A) H @ayg B,

® is non-degenerate.

2. We will construct a faithful, non -degenerate representation of A on a
separable Hilbert space H (see, for example, [7]). Let {pp;n = 1,2,...} be a
cofinal subset of S(A). Then, for each positive integer n, there is a faithful
non-degenerate representation ¢,, of A,  on an infinite separable Hilbert space
H, (see, for example, [36]). Let H = @ H,. Then H is an infinite separable
Hilbert space. For each a € A, deﬁnena linear map ¢ (a) from H to H by
@) (D) = @ ulrma ()

From

<so(a) (@ 5n) #(a) (@ sn) > = 5 el (@) on(mn (@)6,)
< S llma (@, (€0:62)
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< suplpa(@)in=1,2,..} @@@@

for all @¢,, € H, we conclude that ¢(a) € L(H). In this way we have defined a
map ¢ 7fhblrom A to L(H). It is not hard to check that ¢ is a representation of A
on H. Let a € A such that ¢(a) = 0. Then ¢, (7, (a)) = 0 for all positive integer
n. From this fact and taking into account that ¢,, is injective for each positive
integer n, we conclude that 7, (a) = 0 for all positive integer n and so a = 0.

Therefore ¢ is a faithful representation of A on H . Moreover, since
(A H = D pn(Ap,)Hn
n

and since ¢,,(A,, )H,, is dense in H, for all positive integer n, ¢ is non-degenerate.

Let & = joir (g o ¢. Clearly, ® is a non-degenerate representation of A on
H ® B. Let a € A such that ®(a) = 0. Then

0 = (®(a)(h®Db),®(a)(h®@Db)) = (p(a)h @b, p(a)h & b)
= (p(a)h,p(a)h) b

for all h € H and for all b € B. This implies that (¢(a)h,p(a)h) = 0 and
so p(a)h = 0 for all h € H. From this fact and taking into account that ¢
is injective, we conclude that a = 0. Therefore ® is a faithful, non-degenerate
representation of Aon H @ B. &

References for Section 6.1: [13], [17], [19],[26], [29].

6.2 Completely positive linear maps

In this section we present some properties of the positive linear maps between
locally C*-algebras.

Let A and B be two locally C*-algebras. We say that a linear map p from
A into B is completely positive if for all positive integers n, the linear maps
p\™ 2 M, (A) — M,(B) defined by p(”)([aij]zjzl) = [p(ai;)]} ;=1 are positive.
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Proposition 6.2.1 Let p: A — B be a continuous linear map between locally

C*-algebras. Then the following statements are equivalent:

1. p is completely positive and for some approximate unit {e;}icr for A,
{p(ei) }icr is a bounded net in b(B);

2. p(b(A)) Cb(B) and plya) : b(A) — b(B) is completely positive.

Proof. 1. = 2. Let {e;}icsr be an approximate unit of A such that {p(e;)}icr
is a bounded net in b(B). Then there is M > 0 such that ||p(e;)||,, < M for all
1€l

To show that p(b(A)) C b(B) it is sufficient to prove that p(P(b(A))) C

P(b(B)), since an arbitrary element of b(A) may be written as a linear combina-

oo

tion of positive elements in b(A).

Let {9 € I and a € P(b(A)). Since e;yae;, < ||al|, €y

q(p(eigaei)) < llall alp(eir)) < M lallo

for every q € S(B). Therefore {p(e;ae;)}icr is a bounded net in b(B) and since
p is continuous and p(e;ae; — a) — 0 for every p € S(A), p(a) € b(B). Clearly,
Plyay : B(A) — b(B) is completely positive.

2. = 1. Let {e;}icr be an approximate unit of b(A). Then {e;}icr is an
approximate unit of A and {p(e;)}ier is a bounded net in b(B) since ||p(€;)||, <
Hp‘b(A)H for all i € I.

Let n be a positive integer. Since M, (b(A)) = b(M,(A)), (]2], Lemma 2.1),

we have
P (b(M,,(A))) = p™ (M (b(A))) € My (b(B)) = b(My(B)).

From this relation and taking into account that P(b(M,(A))) is dense in P(M,,(A))
and p(”) is continuous, we conclude that p(") is positive. Hence p is completely

positive. B
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Remark 6.2.2 Let p: A — B be a continuous completely positive linear map
between locally C*-algebras. If A is unital and p(la) € b(B) or if b(B) = B
as sets, then p is completely positive if and only if by restriction, it defines a

completely positive linear map between C*-algebras b(A) and b(B).

Remark 6.2.3 In the particular case when p : A — B is a unital continuous

linear map between locally C*-algebras we obtain the Corollary 2.3 in [2].

Corollary 6.2.4 Let p: A — B be a continuous completely positive linear map
between locally C*-algebras such that for some approximate unit {e;}icr of A,
{p(ei) }icr is a bounded net in b(B). Then there is M > 0 such that

P ((faefr=1) )P (ajalfi=r) < Mpt™ ((la5]] k1) [aje)fimr)

for every [“jkmj:l € M, (A), and consequently, [p(a;)p(ak)]ﬁkzl < M[p(ajak)];kzl

for every a, ..., a, € A.

Proof. By Proposition 6.2.1, p|b( 4) is a completely positive linear map from
b(A) to b(B). Then there is M > 0 such that

P (lagnlfe=1) )™ (ajulfamr) < Mp™ (([agn]}r=1)” [ajulfr=1)

for every [aji]};_; € Mn(b(A)), and

[p(a})p(ar)]} =1 < Mlp(ajar)]} =1

for every ay,...,a, € b(A) (see, for example, [29], Lemmas 5.3 and 5.4), and
since M, (b(A)) is dense in M, (A), b(A) is dense in A and p is continuous the

corollary is proved. B

Proposition 6.2.5 Let p : A — B be a continuous completely positive linear
map between locally C*-algebras such that for some approzimate unit {e;};cr of
A, {p(e;) }ier is a bounded net in b(B). Then there is a continuous completely pos-
itive linear map p* from A" into BT such that p™|a = p, where At ( respectively
BT ) is the unitization of A ( respectively B ).
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Proof. According to the Proposition 6.2.1, p[y(4) : b(A) — b(B) is a completely
positive linear map between C*-algebras. Let ¢ € S(B). The continuity of p
implies that there is K; > 0 and p, € S(A) such that ¢(p(a)) < Kypq(a) for
all a € A. Hence there is a continuous linear map p, : A,, — By such that

((In) o 7727;) = 71'((1”) o p(™ for all positive integers n and

pg © Tp, = mq © p. Clearly, p
so p, is a completely positive linear map between C*-algebras. Since H qu <
l|plocay ]|, the map p, : Aj — By defined by py(a,\) = py(a) + A | plbcay | is a
completely positive linear map between C*-algebras. Then the map p;r AT —
B defined by p = p, o w]‘fq , where 7@: is the canonical map from A™ into A;rq,
is a continuous completely positive linear map from A" into B;. It is easy to

f forall ¢,r € S(B), ¢ > r, where 7/, q,7 € S(B), ¢ > r

verify that 7,50 pf = p!
are the connecting maps of the inverse system {B; }4cg(p). This implies that
there is a continuous linear map p* from A" into BT such that 7} o p™ = p}
for all ¢ € S(B), where 7 is the canonical map from B* into B/ . Evidently p*
is completely positive and p* |4 = p. B

References for Section 6.2: (2], [15], [17], [29].

6.3 The KSGNS construction

In this Section we give a construction of type KSGNS( Kasparov, Stinespring,
Gel’fand, Naimark, Segal) for strict continuous completely positive linear maps
between locally C*-algebras. Also we extend the generalized Stinespring theorem
on dilatation of completely positive linear maps between C*-algebras [26] in the

context of locally C*-algebras.

Definition 6.3.1 Let A and B be locally C*-algebras and let E be o Hilbert B-
module. We say that a continuous completely positive linear map p : A — Lp(E)
is strict if for some approzimate unit {e;}icr of A, {p(e;)}icr is strictly Cauchy
in Lp(FE).

Remark 6.3.2 The condition of strictness is automatically satisfied if A is uni-
tal or B = C.
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Proposition 6.3.3 Let A and B be locally C*-algebras, let E and F be Hilbert
B-modules, let ® be a non-degenerate representation of A on F and let V be an
element in Lg(E,F). Then the map p: A — Lp(E) defined by

pla) =V*®(a)V, a€ A
18 a continuous strict completely positive linear map.

Proof. It is easy to check that p is a continuous completely positive linear map
from A to Lp(F). Let {e;};c; be an approximate unit for A. By Proposition
6.1.4, the net {®(e;) }ier converges strictly to 17, (r), and then the net {p(e;) }ier
converges strictly to V*V. Therefore p is strict. B

If A and B are two C*-algebras, then any strict completely positive linear map
p from A to Lp(E), where F is a Hilbert B -module, induces a non-degenerate
representation ®, of A on a Hilbert B -module E,. Moreover, this representation

is unique up to unitary equivalence and

(a) E, = A®, E, ®,(a) (c®,&) = ac®, £ for all a,c € A and for all
£ €k

(b) p(a) =V ®,(a)V, for all a € A, where V), is an adjointable operator
from E to E, defined by V,& = lim (¢; ®, §), {ei}icr being an ap-
proximate unit for A such that theZ net {p (e;) }ier is strictly Cauchy
in Lp(FE), and

(c) ®,(A)V,E is dense in E,,.

The construction of this representation is known that the KSGNS (Kasparov,
Sitinespring, Ge’lfand, Naimark, Segal) construction associated with p (see, for

example, [29]).We extend this construction in the context of locally C*-algebras.

Construction 6.3.4 Let A and B be locally C*-algebras, let E be a Hilbert B-
module and let p be a continuous completely positive linear map from A to Lg(E).

The algebraic tensor product A ®qy E is a right B -module in the obvious way
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(a®&)b=a®{b and the map (-, ->2 from (A®qy E) x (A®qqy E) to B defined
by
n m 0 n m
<Zai®§iazcj®nj> :Ez<fiap(afcj)77j>
i=1 j=1 ,  i=li=l

is C - and A -linear in its second variable, and
Nno\* . / 0
(¢c.c09) =0
for all (, ("' € A®qyy E. Since p is completely positive linear map and the locally
C*-algebras M, (L(E)) and Lg(E™) can be identified, we conclude that

(€.0) =0

for all{ € AQqyE. Then (A @y E) /Ny, where N, = {¢ € A®uyE; (¢, ()5 = 0},
is a pre-Hilbert B -module with the inner-product defined by

(CH+Np ¢+ Np), = (6.0,

The Hilbert B -module obtained by the completion of (A ®@qqy E) /N, with respect
to the topology induced by the inner -product is denoted by A ®, E.

Let g € S(B). Then p, = (7), © p is a continuous completely positive linear
map from A to Lg(Ey). For each q1,q2 € S(B) with q1 > qo, the linear map X, 4,
Jrom A®qiy Eqy to AQqy Eqy, defined by xg,q, (a @ &) =a®oll,, (€), extends to
a linear map X,,q4, from A ®p,, E, to A Doy Eq, such that X4, 4, (a Ry, g) =
a ®p,, Ufm (&) and in the same way as in the proof of Proposition 4.2.3, we
deduce that {A®pq Ey; Bgi Xqug05 Tara2: @ @1, @2 € S(B) with g1 > g} is an inverse

system of Hilbert C* -modules and the Hilbert B -modules A®, E and lim A ®p,

q
E, are isomorphic. Moreover, the Hilbert B, -modules (A ®p E)q and A Rp,
Eq, q € S(B) are isomorphic and so the locally C*-algebras Lp (A ®p E) and
lim Lp, (A ®p, Eq) are isomorphic.
q

Theorem 6.3.5 Let A and B be two locally C*-algebras, let E be a Hilbert B-
module and let p : A — Lp(E) be a continuous strict completely positive linear

map.
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1. Then there is a Hilbert B-module E,, a representation ®, of A on E, and
an element V, in Lp(E, E,) such that:

(a) pla) =V, ®,(a)V, for every a € A,
(b) ®,(A)V,E is dense in E,,.

2. If F' is a Hilbert B-module, ® is a representation of A on F, W is an
element in Lg(E, F) such that:

(a) p(a) = W*®(a)W for every a € A,
(b) ®(A)WE is dense in F,

then there is a unitary operator U in Lp(E,, F') such that
®(a) =UP,y(a)U"
for everya € A and W =UV,,.

The triple (E,,®,,V),) constructed in the Theorem 6.3.5 will be called the
KSGNS (Kasparov, Stinespring, Gel’fand, Naimark, Segal) construction associ-

ated with the continuous strict completely positive linear map p.

Remark 6.3.6 The above construction is a generalization of the ordinary KS-
GNS construction. In particular we obtain the Kasparov’s construction in [26]
as well as the ordinary GNS construction.

On the other hand, we also obtain the Stinespring’s construction for locally
C*-algebras (Theorem 2.2, [15]).

The proof of Theorem 6.3.5. We partition the proof in two steps.

Stepl. We suppose that B is a C* -algebra.

1. The continuity of p implies that there is p € S(A) and M > 0 such that
[p(a)|| < Mp(a) for all @ € A and so there is a linear map p,, from A, to Lp(F)
such that p, o m, = p. Clearly p, is a strict completely positive linear map be-

tween C* -algebras A, and Lp(E). Moreover, p, is strict, since if {e;}ics is an
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approximate unit for A such that the net {p (e;) }ier is strictly Cauchy in Lp(FE),
then {7, (€;)}iesr is an approximate unit for A, and the net {p, (7} (€;)) }ier is
strictly Cauchy in Lp(E). Let (E, ,®, ,V, ) be the ordinary KSGNS construc-
tion associated with p, (see, Theorem 5.6, [29]). Define a linear map U, from

A ®a1g B to Ap @415 E by Up (a ®§) = mp(a) ® . Since

(Up(@®8),Up(a®8)), = (& pp(mp(a*a)€)
= (&,p(a*a)f) = (@& awe))

for alla € Aand for all { € E, U, ((a®&)b) =Up (a®&)b for all b € B, for all
a € A and for all £ € F, and since Uy, (A Qag £) = Ap ®aig E, U, extends to an

isometric, surjective, B -linear map U, from A ®, E onto E,, such that

Up (a @, &) = mp(a) ®p, &

for all a € A and for all { € E. Therefore U is a unitary element in Lp(A ®,
E,E,).

Let E, = A®, E, V, = U,V, and let ®, be a map from A to Lp(E,)
defined by ®,(a) = Uy®, (mp(a))Up. It is not difficult to check that @, is a
representation of A on E, and ®,(a) (c®, §) = ac®, £ for all a,c € A and for
all &£ € E. Moreover,

Vi, (a)V, = Vi UpUs®y, (@) UpUs Vi, = Vi 8, (my(a)V),

= pp(mp(a)) = p(a)

for all a € A. From
Dy (A)VE = U;(I)pp(Ap)%pE
and taking into account that @, (Ap)VpPE is dense in Ej, , we conclude that
®,(A)V,E is dense in E,.
2. Since ® and p are continuous, and since S(A) is directed, we can choose
p € S(A) such that ||® (a)|| < p(a) for all p € S(A) and ||p (a)|| < Mp(a) for some
M > 0 and for all a € A. Then there is a strictly continuous completely positive
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linear map p,, from A, to Lp (E) such that pp o Tp = p and there is a continuous
#-morphism ®,, from A, to Lp(F') such that ®, o m, = ®. Moreover, p, (a) =
W*®,(a)W for all @ € Ay and ®,(A,)WE is dense in F, since ®,(A,)WE =
P(A)WE.

It (Epp, @y, Vpp) is the ordinary KSGNS construction associated with the
strict completely positive linear map Pps then there is a unitary operator Uy in

Lp (Epp, F) such that
®y(a) = Uo®p, (a)Ug

for all a € A, and W = UoVp, -
Let U = UyUp, where U, is the unitary operator in Lp(FE,, Epp) constructed
in the proof of the assertion 1. Then U is a unitary operator in Lg(E,, F'), and

moreover,

®(a) = @y (mp(a)) = Uo®y, (mp(a)) Ug
= UpUp®, (a)ULU§ = UD,(a)U*

for all a € A and W = UpV,, = UpU,V, = UV,

Step 2. Now we suppose that B is an arbitrary locally C*-algebra.

1. Let ¢ € S(B) and let p, = (mg), © p. Then p, is a strictly continuous com-
pletely positive linear map from A to Lp,(Ey). Let (£, , @, ,V,, ) be the KSGNS
construction associated with p, by the step 1 of the proof. By Construction 6.3.4,
{qu; By X100 Taraz3 4 415, G2 € S(B), q1 > g2} is an inverse system of Hilbert C*
-modules. Let E, = Iiin E,,. For qi, g2 € S(B) with g1 > g2, a,c € A, § € Ey,

q

and 1 € Ey such that aqEI g (1) = & we have:

(Tqra2) ((I)pql (a)) (C Dy, f) = Xaq1g2 (‘I)pql (a) (C Dpg, 77))
= Xq1q (ac ®pq1 77) = ac ®pq2 £
= @, (a) (c®p,, ¢)
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and
(Tq1g). (qul)é“ = Xag (qu1 77) = lim xg,q, (ei g, 77)
= lim (ei D, g) =V, &
These implies that <<I>pq (a))q is a coherent sequence in Lp,(E, ) for alla € A

and (qu>q is a coherent sequence in Lp, (Ey, E, ). Let V, € Lp(E, E,) such
that (7g), (V,) = p, and for each a € A, let ®,(a) € Lp(E,) such that
(mq), (®p (a)) = ®,, (a). Thus we have defined a map ®, from A to Lp(E)p). It

is not difficult to check that ®, is a representation of A on E,. Moreover, since
(m), (V;0p(@)V,) = (m0). (V)" (o), (2 (@) (my). (V)
=V, @, (a) Vy, = pyla) = (7q), (p(a))

for all ¢ € S(B) and for all a € A, V®,(a)V, = p(a) for all a € A.

From

&,(AV,F = lm, (B,(4)V,E)

q

— 1im (m,), (2,(4)) (vy), (V;) o (E)

= lim®, (A)V, E, = lim E, = E,

q q
we conclude that ®,(A)V,E is dense in E,,.
2. Let ¢ € S(B), &4 = (mg), 0 ® and let Wy, = (mg), (W). Then @, is a
representation of A on Fy;
pq (@) = (mq), (p(a)) = (mq), W@ (a) W) = W &y (a) W,y
for all @ € A and @, (A) W, E, is dense in Fy, since

Dy (A)WoE, = (), (@ (A W) 0P (B) = 0T (& (A) WE)

and ® (A) WE is dense in F. Thus, by the first step of the proof, there is a
unitary operator Ug in Lp, (E,_, Fy) such that

@y (a) = Ug®,, (a)Uy
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foralla € Aand W, = UgVp,- Let g1, g2 € S(B) with ¢1 > ¢z, a € Aand € € E.
Then

(o). ) (20, @V, 7(6)) = (Faar), Ua) ((Faa). (B, @)V, ) 7))
= (Tqiqe). ( pql pql) 052(5)
= (quqQ)*( (@) W) o (€)
= @4, () Wea0 3 () = Upa (@, (@)Vi,, 05 () -
From this relation, since ®, (A)V, ol (E) is dense in E,, . we conclude that
(Ug), is a coherent sequence in Lp,(Ep,, Fy). Let U € L (E,, F) such that
(mq), (U) = U, for all q € S(B). From
(), (P (a)) = Pq(a) =Us®y,(a)Uy
mq), (U) (7g), (®p(a)) (mq), (U7)
7q), (U®p(a)U”)

for all ¢ € S(B) and for all @ € A and

(
(

(mq), (W) = Wo=UgV,, = (mq), (U) (mg), (Vo)
= (Wq)* (U‘/P)
for all ¢ € S(B), we conclude that
® (a) = UD,(a)U”

forallac Aand W =UV,. R

If p: A— Lp(FE) is a continuous completely positive linear map which is not
strict but {p(e;)}ier is a bounded net in b(Lp(F)) for some approximate unit
{ei}icr of A, then we can find a representation ®, of A on a Hilbert B-module E,
and an element V, in Lp(E, E,) such that p(a) =V ®,(a)V, for every a € A. In

this case the *-representation ®, is not non-degenerate.

Corollary 6.3.7 Let A and B be two locally C*-algebras, let E be a Hilbert B-

module and let p : A — Lp(F) be a continuous completely positive linear map
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such that for some approximate unit {e;};icr of A, {p(e;)}icr is a bounded net in
b(Lp(E)). Then there is a Hilbert B-module E,, a representation ®, of A on
E,, and an element V, in Lp(E, E,) such that

pla) = Vi B, @)V,

for every a € A.

Proof. According to Proposition 6.2.5, there is a continuous completely positive
linear map p* from A% into Lg(F) such that p™|4 = p which is strict by Remark
6.3.2. Then, according to Theorem 6.3.5, there is a Hilbert B-module E,, a

representation ®,+ of At on E,, and an element V, in Lp(E, E,) such that
p+ (a) = V;)*(I)p+ (a)VP
for every a € A*. Let ®, = ®,4|4. Then ®, is a representation of A on E, and

pla) =V;®,(a)V), for every a € A. B

Corollary 6.3.8 Let A and B be two locally C*-algebras, let E be a Hilbert
B-module and let p: A — Lp(E). Then the following statements are equivalent:

1. p s a continuous strict completely positive linear map;

2. There is a unique continuous completely positive linear map p : M(A) —
Lp(FE) such that:

(a) pla = p;
(b) Dlc is strictly continuous whenever C' is a bounded selfadjoint subset

of M(A).

Proof. 1. = 2. Let (E,,®,,V,) be the KSGNS construction associated with
p. Since ®, is non-degenerate, there is a unique continuous *-morphism <}#p :
M(A) — Lg(E,) such that ®,|4 = ®, and ®,|¢ is strictly continuous whenever
C is a bounded selfadjoint subset of M(A). Evidently the map p : M(A) —
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Lp(F) defined by p(a) = Vp*<I>_p(a)Vp is a continuous completely positive linear
map which satisfies the conditions (a) and (b).

To show the uniqueness of p, let p : M(A) — Lp(E) be another continuous
completely positive linear map which satisfies the conditions (a) and (b). Let
{ei}ier be an approximate unit of A and let a be a selfadjoint element in
M(A). Then, since {e;ae;}icr is a bounded selfadjoint net in A and since it
converges strictly to a, p(a) = p(a). Therefore p = p.

2. = 1. From (a) it follows that p is a continuous completely positive linear
map. If {e;};cr is an approximate unit for A, then, from (b), since {e;}ier U
{1pr(4)} is a bounded selfadjoint subset of M(A), and since the net {e;}ies
converges strictly to 174, the {p(e;)}icr converges strictly to p(17(4)). This

shows that p is a continuous strict completely positive linear map. l

Remark 6.3.9 If p is a strict, continuous completely positive linear map from
A to Lp(FE), then for any approximate unit {e;}icr for A, the net {p(e;)}icr is
strictly Cauchy in Lp(FE).

Definition 6.3.10 Let A and B be two locally C*-algebras, let E be a Hilbert B-
module. A continuous completely positive linear map p from A to Lg(E) is non-
degenerate if the net {p(e;)}icr converges strictly to idg, for some approrimate
unit {e; }ier for A.

Remark 6.3.11 Any non-degenerate, continuous completely positive linear map

p from A to Lg(F) is strict.
From Corollary 6.3.8 and Remark 6.3.9 we obtain the following corollary.

Corollary 6.3.12 Let A and B be two locally C*-algebras, let E be a Hilbert
B-module and let p be a continuous completely positive linear map from A to

Lp(FE). Then the following statements are equivalent:

1. p is non-degenerate;
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2. There is a unique unital, continuous completely positive linear map p :
M(A) — Lp(F) such that:

(a) pla = p:
(b) plc is strictly continuous whenever C is a bounded selfadjoint subset

of M(A).

Remark 6.3.13 If p is a non-degenerate, continuous completely positive linear
map from A to Lg(FE), then for any approximate unit {e;};c; for A, the net

{p(ei) }ier converges strictly to idg.

The following theorem is an analogue of the generalized Stinespring theorem
on dilatations of completely positive maps between C*-algebras (Theorem 3 in

[26]) in the context of locally C*-algebras.

Theorem 6.3.14 Let A and B be two locally C*-algebras such that A is sep-
arable and B has a countable approximate unit and let p be a non-degenerate,
continuous completely positive linear map from A to Lg(Hpg). Then there is a
non-degenerate, continuous x-morphism ® from A to the 2 X 2 matriz algebra
My (Lp(Hg)) such that p(a) = (®(a)),, the (1,1) -entry of the matriz ®(a), for
all a € A. If moreover, A is metrizable and b(A) = A as set, the morphism ® is
faithful.

Proof. To proof this theorem, we use the same arguments as in the proof of
the generalized Stinespring theorem on dilatations of completely positive maps
between C*-algebras ( see, for example, [29] Theorem 6.5).

Let (E,,®,,V,) be the KSGNS construction associated with p. Since p is
non-degenerate, V'V, =idg, and so V, is a partial isometry from Hp to E,.
Then, by Corollary 3.2.7, the range of V,, is a complemented submodule of £,. On
the other hand, from the construction of E, (Construction 6.3.4) and taking into
account that A is separable and Hp is countably generated we deduce that E,

is countably generated, and so the range of V), is a countably generated Hilbert
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B -module. Let F' =ranV, and let P € Lg(E,, F') be the projection of £, on F.
By Theorem 5.2.7, the Hilbert B -modules F- @ Hp and Hp are isomorphic.
Let W be a unitary operator from Hp onto F+ @ Hp. Then PV, ® W is a
unitary operator from Hp @ Hp onto E, ® Hp . Let ®; be the non-degenerate
representation of A on Hp constructed in Proposition 6.1.6. Then the map ®
from A to Lp(Hp ® Hp) defined by

®(a) = (V;‘P* @ W*) () (a) ® @1 (a)) (PV, ®W)

is a non-degenerate representation of A on Hg @ Hp. Identifying Lg(Hp & Hp)
with M (Lp(Hp)), it is not difficult to see that

(®(a))y; = V;(I)p (a) Vp = p(a)

for all a € A.

If A is metrizable and A = b(A) as set, then by Proposition 6.1.6, the rep-
resentation ®; of A on Hp is faithful and since ® is unitarily equivalent with
¢, ® Py, P is faithful. B

As in the case of C*-algebras, if p is degenerate, then the representation ® is

not non-degenerate.

Proposition 6.3.15 Let A and B be two locally C*-algebras such that A is
separable and B has a countable approximate unit and let p be a continuous
completely positive linear map from A to L(Hp) such that {p (e;)}; is a bounded
net in b(L(Hp)) for some approzimate unit {e;}; of A. Then there is a continuous
« -morphism ® from A to My(L(Hp)) such that p(a) = (®(a)),; for all a € A.
If moreover, A is metrizable and A = b(A) as set, then ® is faithful.

Proof. By Proposition 6.2.5, p extends to a continuous completely positive
linear map p* from AT to Lp(E) such that p(1) = ||ply4)|/ida,. Let p =
mp+. Then p is a non-degenerate, continuous completely positive linear
map from A; to Lg(Hp) and by Theorem 6.3.14 there is a non-degenerate,

continuous *-morphism ® from A; to the 2 x 2 matrix algebra My(Lp(Hp))
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such that p(a) = (:IS(a))H, the (1,1) -entry of the matrix ®(a), for all a € Aj.
If moreover, A is metrizable and b(A) = A as set, the morphism ® is faithful.
Let ® = ®|4. Then ® is a continuous * -morphism ® from A to My(L(Hp))
such that p(a) = (®(a));; for all a € A. If moreover, A is metrizable and
A =b(A) as set, then ® is faithful. W
References for Section 6.3 : [2], [15], [17], [19], [26], [29],[44].
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Chapter 7

Induced representations of

locally C'*-algebras

7.1 Definitions, notation

In this Section we give some facts about representations of locally C*- algebras
on Hilbert spaces which will be necessary for the study of induced representations

of locally C*-algebras.

Proposition 7.1.1 Let A be a locally C* -algebra and ¢ be a representation of
A on a Hilbert space H. Then there is p € S(A) and a representation ¢, of Ay
on H such that ¢ = @, o mp.

Proof. Since ¢ is a continuous *- morphism from A to L(H), there is p € S(A)
such that
lp(a)ll < p(a)

for all @ € A. Then there is a map ¢, : A, — L(H) such that
pp(mp(a)) = p(a)

for all a € A. Clearly ¢, is a representation of A, on H. W

We say that ¢, is a representation of A, associated to (.
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Remark 7.1.2 If ¢, is a representation of A, on H, then ¢, 0, is a represen-
tation of A on H.

Remark 7.1.3 Any locally C* -algebra admits a representation on a Hilbert

space.

Remark 7.1.4 Let ¢ be a representation of A on a Hilbert space H and let ¢,
be the representation of A, associated to . Then ¢ is non-degenerate if and only

if ¢, is non-degenerate.
A representation ¢ of A on H is faithful if ¢ (a) = 0 implies that a = 0.

Remark 7.1.5 If o is a faithful representation of A on H and ¢, is a repre-
sentation of Ay associated to p, then p,, is faithful.

Definition 7.1.6 Let ¢ be a representation of A on the Hilbert space H. We
say that ¢ is irreducible if the only invariant subspaces of H under ¢ (A) are H
itself and {0}.

Remark 7.1.7 Let ¢ be a representation of A on a Hilbert space H and let o,
be a representation of Ay associated to . Then ¢ is irreducible if and only if ¢,

18 1rreducible.

Definition 7.1.8 Let ¢ and v be two representations of A on the Hilbert spaces
H, respectively Hy,. We say that ¢ and v are unitarily equivalent if there is a
unitary operator U from H, to Hy such that Uy (a) =1 (a) U for all a € A.

Proposition 7.1.9 Let ¢ and v be two representations of A on the Hilbert
spaces H, respectively Hy,,which are unitarily equivalent. Then there isp € S(A)
and there are two representations ¢, and ¥, of A, associated to ¢ respectively

Y such that o, 1s unitarily equivalent to 1,.

Proof. Let U be a unitary operator from H, to Hy such that Uy (a) =1 (a) U
for all @ € A, let ¢, be a representation of A, associated to ¢ and let ¢, be a

representation of A, associated to 1.
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Since S(A) is directed, there is p € S(A) such that p > r and p > ¢. Let
¢p = ¢, 0 Tpr and P, = Y, 0 mye. Clearly, ¢, and 1, are representations of A,

on H, respectively Hy. Moreover, since

Y =Ppr 0Ty = Pp O Tpr OTp

and
wzfﬁqowq:wqoﬁpqoﬂp

¢, and 1, are representations of A, associated with ¢ respectively 1. From

Uppy(mp(a)) = Up(a) =1 (a) U = ¢, (mp(a))U

for all a € A, we conclude that ¢, and 1, are unitarily equivalent. B

References for Section 7.1: [7].

7.2 Induced representations

In this Section, by analogy with the case of C* -algebras, we introduce the notion
of induced representation of a locally C*-algebra and we present some properties
of the induced representations of locally C*-algebras.

Let B be a locally C*-algebra, let ' be a Hilbert B -module and let ¢ be
a non-degenerate representation of B on a Hilbert space H. Then the interior
tensor product E®,, H of E'and H using ¢ is a Hilbert space and the map ¢, from
Lp(E) to L (E ®, H) defined by ¢, (T) (£ ®, h) = T @, h is a representation
of Lp(E) on E ®, H. Moreover, ¢, is non-degenerate.

Let A be a locally C*-algebra and let ® be a non-degenerate representation

of Aon E. Then ¢, o ® is a non-degenerate representation of A on £ ®, H.

Definition 7.2.1 The representation ¢, o ® of A on E®, H constructed above
is called the Rieffel-induced representation from B to A via E, and it will be
denoted by E —Indécp.
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Remark 7.2.2 If the representation @ of B is faithful, then by Proposition 4.3.4,
@, 18 a faithful representation of Lg(E) on E ®, H. Therefore, if ¢ and ® are
faithful, then the Rieffel-induced representation E —Indggo 1s faithful.

Proposition 7.2.3 Let p; and oy be two non-degenerate representations of B
on Hy respectively Ho. If the representations ¢, and ¢ of B are unitarily
equivalent, then the representations E -Ind’écpl and E —Indggog of A are unitarily

equivalent.

Proof. Let U be a unitary operator from Hj to Hs such that Uy, (b) = ¢o(b)U
for all b € B. Define a linear map V' from E ®,1z H1 to E ®,1, Ha by

V(E®h)=¢@Uh.
Since

(V(E®h),V(Eh),

(Uh, g ((§,€)) Uh) = (Uh, Uy ((§,€)) h)

= (o1 (6.6 h) = (VE@h.E@ h)g,
for all { € E and for all h € Hy, and since V (E Qg H1) = E ®a15 Ha, V can be
extended to an isometric, surjective, linear map V' from F'®, H; onto E®y, Ha

such that
4 (5 ®<P1 h) = g ®%’2 Uh.

Therefore V' is a unitary operator from F ®, H; onto FE ®,, Hs, and since
(V (B-Indfier) () (€ @, B) = V (@ ()€ @y, h) = @ ()€, U
= (B-Indgy,) (a) (€ @y, Uh)
= ((E-Ind3ep,) (a) V) (€ ®y, h)

for all € € E, for all h € H and for all a € A, the representations F —Indgtpl and
E —IndgapQ of A are unitarily equivalent. ll

Proposition 7.2.4 Let F be a Hilbert B -module which is isomorphic with E. If
U is a unitary operator in Lp(E, F), then the map ¥ from A to Lg(F) defined
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by ¥ (a) = UP(a)U* is a non-degenerate representation of A on F and the

representations F —Indggo and F —Indggo of A are unitarily equivalent.

Proof. It is not difficult to check that ¥ is a non-degenerate representation of

A on F. Consider the linear map W from E ®,, H onto F ®,1; H defined by
W(E®Rh)=UER h.

Since

(W(E@h),W(ERR), = (ho(UEUE) h) = (h, o ((£,€) )
= ((®@h,¢@h),

for all £ € E and for all h € H, and since W (E Qg H) = F Qg1 H, W can be
extended to an isometric, surjective linear map W from E ®, H onto F' ®, H
such that

W(E®yh) =UE®, h

for all £ € E and for all h € H. Therefore W is a unitary operator from £ ®, H
onto F'®, H, and since
((F-Ind3e) (a)) W (£ @y k) = (F-Indge) (a) (UE®y h) = U(a)UE @, h
= UP(a)f @y h=W (<I> (a) € @ h)
= (W (E—Indj%cp) (a)) (€ ®y h)

for all £ € F, for all h € H and for all a € A, the representations F —Indégp and
F —Indégp of A are unitarily equivalent. Bl

Lemma 7.2.5 Let ¢ be a non-degenerate representation of B on the Hilbert
space H. If ¢, is a non-degenerate representation of By associated to o, then
there is p € S(A) such that Ay, acts non-degenerately on E; and the representa-
tions E—Indﬁgp and (Eq—lndg’: cpq) omp of A are unitarily equivalent.

Proof. Define a linear map U from E ®,1, H into Eq ®,1, H by
Uoh) =cf¢ah
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Since

(UEan),UEah), = (he,((og €).0E,())h)
= <h7 (gpqoﬂ'q) (<€7€>E) h>
= ({®@h, Q)

forall { € E and h € H, and since U (E ®,1g H) = Eq®a1s H, U can be extended

to an isometric, surjective, linear map U from F ®, H onto E, R, H such that
U(§®y h) =07 (6) @y, h

for all { € F and h € H. Therefore U is a unitary operator from £ ®, H onto
Eq ®,, H. Moreover, Up,(T) = (24), ((mg), (T)) U for all T € Lp(FE), since

(Up,(T)) (E @y h) = U (TE®, h) = ol (T€) 2y, h
= (mq), (T)Uf(f) R, I

(20). (o). (1)) (o7 (€) @, 1)

((‘Pq)* ((mq), () U) (€@, h)

forall ¢ € Fand h € H.

The continuity of ® implies that there is p € S(A) such that g(®(a)) <
p(a) for all a € A. Therefore there is a morphism of C* -algebras ®, from
Ap to Lp,(E,) such that ®, o m, = (m,), o ®. Moreover, since ®,(A,)E; =
(7q), (®(A)) O'qE(E) = Uf (®(A)E), ®, is a non-degenerate representation of
Ap on E,. From

U (B-nde) (a) = Ug, (8(a)) = (¢,), ((ry), (®()) U
(Soq)* (‘pp(ﬂp(a))) U

— ((Brwdire,) om,) @)U

for all a € A, we conclude that the representations E—Indggo and (Eq—Inng g0q> o

mp of A are unitarily equivalent and the lemma is proved W
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Proposition 7.2.6 Let ¢ be a non-degenerate representation of B on a Hilbert
space H such that ¢ = @ p;, where p; is a non-degenerate representation of B
i€l

on the Hilbert space H;, for each i € I. Then the representations E—Ind’égp and
) (E—[nd’écpi) of A are unitarily equivalent.

el

Proof. Let ¢, be a representation of B, associated to ¢. Then, for each i € I,
there is a representation ¢;, of By on the Hilbert space H; such that p;,0mq = ¢;.

Moreover, ¢, = @ ¢;;- By Lemma 7.2.5, there is p € S(A) such that the
i€l

representations E—Indégp and (Eq—Inng gpq> o, of A are unitarily equivalent as

well as the representations E-Indsap, and (Eq—Indg’; @iq) om, for all 7 € I.
On the other hand, the representations Eq—Indg’; ¢, and P (Eq—Indg’; cpiq)of

i€l
A, are unitarily equivalent, Corollary 5.4, [41]. This implies that the representa-
tions (Eq—Inng (pq) omp and P (Eq—Inng cpiq) o, of A are unitarily equivalent.
el

From these facts, we conclude that the representations E—Indgap and P
i€l

(E—Indgcpi) of A are unitarily equivalent and the proposition is proved. W
Let A, B and C be three locally C*-algebras, let ®; be a non-degenerate
representation of A on a Hilbert B -module E and let 5 be a non-degenerate
representation of B on a Hilbert C-module F. The inner tensor product F®g, F' of

E and F using @ is isomorphic with the Hilbert C-module lim E®g,, F;, where
reSs(C)
®g, = (m,), 0Py, and the locally C*-algebras Lo(E®s, F)) and lim L, (E ®as,,
reS(C)
F,) are isomorphic as well as K¢(E®qg, F') and lim K¢, (E®s,, Fy), Proposition
reS(C)

4.3.3. Moreover, the continuous * -morphism (®2), from Lp(FE) to Lo(E ®g¢, F)
defined by (®2), (T) ({ ®a, 1) = TE ®a, 1 is a non-degenerate representation of
Lp(E)on E®ge, F. Let ® = (®3),0P1. Then ® is a non-degenerate representation
of Aon F ®g, F.

Let ¢ be a non-degenerate representation of C' on a Hilbert space H. Then ¢
induces a non-degenerate representation of A via F ®4, F' and a non-degenerate

representation of B via F' which induces a non-degenerate representation of A
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via E. As in the case of induced representations of C*-algebras, we will show

that these representations of A are unitarily equivalent.

Theorem 7.2.7 Let A, B,C,E,F, &1 and ®2 be as above. If ¢ is a non-
degenerate representation of C, then the representations (E ®q¢, F)-Ind4¢ and
E —[ndg(F —Indgcp) of A are unitarily equivalent.

Proof. Let ¢, be a non-degenerate representation of C associated to ¢. Then
there is ¢ € S(B) and a non-degenerate representation W9, of B, on F, such
that WUy, o 1y = (m,), o P2 and there is p € S(A) and two non-degenerate
representations ¥y, and ®, of A, on F, respectively (E ®s, F), such that ¥;,o0
mp = (mq), o @1 respectively ®, o m, = (m,), o ®. According to Lemma 7.2.5,
the representations (E ®g, F)-Ind3¢ and ((E R, F)T—Ind’éfgpr) o, of A are

unitarily equivalent as well as the representations F—Indgcp and (FT—Indgz goT) o

mq of B. Since the representations F' —Indgcp and (Fr—IndgjgoT> omg of B are
unitarilly equivalent, from Lemma 7.2.5 and Proposition 7.2.3, we conclude that
the representations E—Indg (F—Indgcp) and (Eq—Indg (FT—Indgfgor)) om, of A
are unitarily equivalent.

To prove the theorem it is sufficient to show that the representations (E®g,
F)T—Indgf ¢, and E,-Indg (Fr—Indgfgpr) of A, are unitarily equivalent. But,
according to Theorem 5.9, [41], the representations XT—Indgf ., where X, =
E,®v,, F;, and Eq—Indg (Fr—Indgf cpr) of A, are unitarily equivalent. Thus, tak-
ing into account Proposition 7.2.4, it is enough to show that there is a unitary op-
erator U in L¢, ( (E ®¢, F),. , Xy) such that ®,(mp(a)) = U* ((Vaq), © V1p) (mp(a) U
for all @ € A. Define a linear map U from E ®g, F; to Ey ®a, F by

U(¢@n,) =0y (&) @n,.
Since

U(en)e)=UE@nc)=0r (&) @nc=UE@n,)cr
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and

UE@n),UE@n) g, = (mVq ({0 €)o7 (€))) 1)
= (s (W2q 074) ((§,6)) 1y)
= (0, Par ((€,6)) )
= ({20, £®n,)4

2r

for all £ € E, for all n, € F, and for all ¢, € C,, and since U (E ®,15 F;) =
Eq ®a1g Fr, the linear map U can be extended to an isometric, surjective C.

-linear map U from F ®g,, F; onto £ ®@y,, F; such that

U (5 Xbs, nr) = Uf (f) ®‘I’2q Ny

for all £ € F and for all 7, € F,., which, according to Theorem 3.5 in [29], U is
a unitary operator in L¢, (E ®g,, Fr, E ®y,, F;). Let a € A. Then , since

(U(my(a))) (€ g, o (1) = (U (m2), (2), (21.(2)))) (€ Dy, oF (m))
or 2 (@), (@1 (@) (€ Ry ) )
(P1(a)€ Ray )

a) € ®a,, 0 (1))

a)§) @w,, oF (1)

= (79), (®1(a)) (07 (&) ®ws, 77 (M)

= Wi, (1p(a)) (oF (&) D, oF (1)

= (¥a,), (¥, (my())) (0F (&) s, oF (m))
= ((\I’Qq)* © \Ijlp) (mp(a)) U (5 @y, 05(77))

—~

for all £ € E and for all n € F, ®,(mp(a)) = U* ((¥2q), © ¥1p) (7p(a)) U and the
theorem is proved. B

References for Section 7.2: [22], [29], [30], [41].
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7.3 The imprimitivity theorem

In this Section we prove an imprimitivity theorem for induced representations of
locally C*-algebras.

Let A and B be two strong Morita equivalent locally C*-algebras, and let
be a Hilbert A -module which gives the strong Morita equivalence between A and
B.Let E =K A(E,A). Then E can be regarded as Hilbert B-module and it gives
the strong Morita equivalence between B and A, Proposition 5.3.4. Moreover,
the Hilbert A, -modules E;D and (E’)p are isomorphic for each p € S(A).

Lemma 7.3.1 Let A and B be two locally C*-algebras. If A ~yr B, then for
each p € S(A) there is q, € S(B) such that A, ~ur Bg,. Moreover, the set
{ap € S(B);p € S(A) and A, ~n By, } is a cofinal subset of S(B).

Proof. Let F be a Hilbert A -module which gives the strong Morita equivalence
between A and B, and let p € S(A). If ® is an isomorphism of locally C*-algebras
from B onto K4(E), then the map p o ®, denoted by ¢, is a continuous C*-
seminorm on B. Since ker m,, = ker ((Wp) O (IJ), there is a unique continuous *
-morphism &4, from B, onto K ,(Ej) such that &, oy, = (7;),0P. Moreover,
®,, is an isomorphism of C*-algebras, and since Ej, is a full Hilbert A,-module
(Remark 5.1.6), we conclude that A, ~ys By, .

To show that {g, € S(B);p € S(A) and A, ~ar Bg,} is a cofinal subset of
S(B), let ¢ € S(B). Then, since ® is an isomorphism of locally C*-algebras,
there is pp € S(A) such that

g (271 (2 (b)) < o (@ (b))

for allb € B. But ¢ (71 (® (b)) = q(b) and po (P (b)) = g, (b), and then ¢ < gp,.
Thus, we shoved that for any g € S(B) there is gp, € {g, € S(B);p € S(A) and
Ay~ By, } such that ¢ < g, and the lemma is proved. B

Remark 7.3.2 If E is a Hilbert A-module which gives the strong Morita equiv-
alence between the locally C*-algebras A and B, then E, gives the strong Morita

equivalence between the C*-algebras Ay and By,.
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Theorem 7.3.3 Let A and B be two strong Morita equivalent locally C*-algebras,
and let @ be a non-degenerate representation of A on a Hilbert space H. Then the
representations @ and E—In,dfé2 (E—Indﬁcp) of A, where E is a Hilbert A -module
which gives the strong Morita equivalence between A and B, are unitarily equiv-

alent.

Proof. Let ¢, be a non-degenerate representation of A, associated to ¢. By
Lemma 7.2.1, there is ¢ € S(B) such that A, ~j; B,;. Moreover, the Hilbert
A,-module E, gives the strong Morita equivalence between A, and B, (Remark
7.2.2). Then the representations ¢, and vap—Indg;’ (Eq—Indfz go) of A, are unitar-
ily equivalent, Theorem 6.23, [41]. But, according to Theorem 7.2.7, the repre-
sentations E\;—Indg’; (Eq—IndjiZ gp) and Ep—Inng (Eq—Ind§Z<p> of A, are unitarily
equivalent. Therefore the representations ¢ and (Ep—lndg’; (Eq—Indﬁicp)) o mp
of A are unitarily equivalent.

On the other hand, according to Lemma 7.2.5, the representations E—Indggo
and <Ep—Ind§Z4p) o mq of B are unitarily equivalent. From this and Proposition
7.2.3 and Lemma 7.2.5, we deduce that the representations E—Indg (E—Indﬁgo)
and (Eq—Inng (Ep—IndEZgo>> o m, of A are unitarily equivalent. Therefore the

representations ¢ and E—Indg (E—Ind]jcp) of A are unitarily equivalent. W

Theorem 7.3.4 Let A and B be two strong Morita equivalent locally C*-algebras.
Then there is a bijective correspondence between equivalence classes of non-
degenerate representations of A and B which preserves direct sums and irre-

ducibility.

Proof. Let E be a Hilbert A -module which gives the strong Morita equiva-
lence between A and B. By Theorem 7.3.3 and Proposition 7.2.3, the map ¢ —
E—Indﬁcp from the set of all non-degenerate representations of A to the set of
all non-degenerate representations of B induces a bijective correspondence be-
tween equivalence classes of non-degenerate representations of A respectively B.

Moreover, this correspondence preserves direct sums, Proposition 7.2.6.
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To show this correspondence preserves irreducibility, let ¢ be an irreducible,
non-degenerate representation of A. Suppose that E—Ind]jgo is not irreducible.
Then E—Indﬁgp = 1 @ Yy and by Proposition 7.2.6 and Theorem 7.3.3, the
representations (E—Indgwl) &) (E—Indéq/g) and ¢ of A are unitarily equiva-
lent, a contradiction. So the bijective correspondence defined above preserves
irreducibility. &

References for Section 7.3: [22], [30], [41].
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