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Preface

Hilbert C∗-modules are generalizations of Hilbert spaces by allowing the in-

ner product to take values in a C∗-algebra rather than the field of complex

numbers. The notion of Hilbert module over a commutative C∗-algebra first

appeared in the work of Kaplansky [25], who used it to prove that derivations

of type I AW ∗-algebras are inner. The general theory of Hilbert C∗-modules

has appeared 32 years ago in the basic papers of Paschke [36] and Rieffel [41,

42]. This theory has prove to be a convenient tool in the theory of operator

algebras, allowing to study C∗-algebras by studying Hilbert C∗-modules over

them. Thus, the theory of Hilbert C∗-modules is an important tool for studying

Morita equivalence of C∗-algebras and its application to group representation

theory and crossed product C∗-algebras, K-theory and KK -theory of operator

algebras, completely positive maps between C∗-algebras, unbounded operators

and quantum groups, vector bundles, non-commutative geometry, mathemati-

cal and theoretical physics. Beside these, theory of Hilbert C∗-modules is very

interesting on it’s own.

The finitely generated modules equipped with inner products over some topo-

logical ∗ -algebras and the standard Hilbert module HA over a locally C
∗-algebra

A were first considered by Mallios [32], who used them to construct the index

theory for elliptic operators over a locally C∗-algebra. Locally C∗-algebras are

generalizations of C∗-algebras. Instead of being given by a single C∗-norm, the

topology of a locally C∗-algebra is defined by a directed family of C∗-seminorms.

Such many concepts as Hilbert C∗-module, adjointable operator, compact op-

erator, (induced) representation, strong Morita equivalence can be defined with

obvious modifications in the framework of locally C∗-algebras. Most of the basic

properties of Hilbert C∗-modules are still valid for Hilbert modules over locally

C∗-algebras, but the proofs are not always straightforward. Many important

results have been obtained about module homorphisms of Hilbert modules over

locally C∗-algebras [16], [18], [20], [23], [24], [38], [45], representations of locally

C∗ -algebras [15], [17], [22], frames and bases in Hilbert modules over locally



C∗-algebras [28] and Finsler modules over locally C∗-algebras [27].

This book is an introduction in theory of Hilbert modules over locally C∗-

algebras. We did not purpose to discuss here all aspects of Hilbert modules

over locally C∗-algebras, but we have tried to explain the basic notions and

theorems of this theory, a number important of examples and some results about

representations of locally C∗ -algebras. A significant part of the results presented

here was obtained by the author [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,

24].

The detailed bibliography of the theory of Hilbert C∗-modules can be found

in Hilbert C*-Modules Homepage

(http://www.imn.htwk-leipzig.de/~mfrank/hilmod.html).

Reader’s Guide

Chapter 1 begins with some results about locally C∗-algebras, which will

be necessary for us further on. The notion of Hilbert module over a locally

C∗-algebra is discussed in Section 1.2 and there are presented some examples

of Hilbert modules over locally C∗-algebras. In Section 1.3 it is shown that a

Hilbert module E over a locally C∗-algebra A induces a structure of Hilbert

C∗-module on the set b(E) of bounded elements in E, i.e. of those elements for

which any admissible seminorm applied to them takes a finite value, and the

connection between b(HE) and Hb(E) is discussed.

Chapter 2 is about module homomorphisms.

In Section 2.1 it is shown that the set of bounded module homomorphisms on

a Hilbert module can be equipped with a structure of complete locallym -convex

algebra. Moreover, this algebra can be identified with an inverse limit of Banach

algebras. In Section 2.1, by analogy with the case of Hilbert C∗-modules, it is

proved that a module homomorphism which has an adjoint is bounded. Also it

is proved that the set of adjointable operators on a Hilbert module is a locally
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C∗-algebra. Section 2.3 is devoted to ”compact ” operators on Hilbert modules.

It is shown that the set KA(E) of compact operators on the Hilbert A -module E

is a locally C∗ -algebra, the algebra ML(KA(E)) of left multipliers of KA(E) is

isomorphic with the locally m -convex algebra BA(E) of bounded module homo-

morphisms on E and the algebra M(KA(E)) of multipliers of KA(E) is isomor-

phic with the locally C∗ -algebra LA(E) of adjointable module homomorphisms

on E. In Section 2.4, it is introduced the notion of strongly bounded module

homomorphism, that is a module homomorphism for which any admissible semi-

norm applied to it takes a finite value. It is established an isometric isomorphism

between the Banach space b(BA(E,F )) of all strongly bounded module homo-

morphisms from E to F and the Banach space Bb(A)(b(E), B(F )) of all bounded

b(A)-module homomorphisms the bounded part b(E) of E to the bounded part

b(F ) of F , where b(A) denotes the bounded part of A. In particular, b(BA(E)) is

a Banach algebra isometrically isomorphic to Bb(A)(b(E)), and b(LA(E)) is a C∗-

algebra isometrically isomorphic to Lb(A)(b(E)). Most remarkably, the respective

sets of ”compact” operators b(KA(E,F )) and Kb(A)(b(E), b(F )) are not isomor-

phic, in general, as shown by an example. Another class of operators on Hilbert

modules, unitary operators, is discussed in Section 2.5. Also in Section 2.5 a

result of Brown, Lin, Lance and Frank [10] concerning isomorphisms of Hilbert

C∗-modules and ∗-isomorphisms of related operator C∗-algebras is extended in
the context of locally C∗-algebras. Thus it is proved that Hilbert A-modules

(E, 〈·, ·〉1) and (E, 〈·, ·〉2) are isomorphic as Hilbert modules if and only if the
locally C∗-algebras of adjointable operators on (E, 〈·, ·〉1) and (E, 〈·, ·〉2) are iso-
morphic if and only if the locally C∗ -algebras of compact operators on (E, 〈·, ·〉1)
and (E, 〈·, ·〉2) are isomorphic if and only if the C∗ -algebras of compact operators
on (b(E), 〈·, ·〉1) and (b(E), 〈·, ·〉2) are isomorphic.

Chapter 3 concerns projections on Hilbert modules over locally C∗-algebras,

orthogonally complemented submodules and the polar decomposition of an ad-

jointable operator on Hilbert modules. It is proved that a closed submodule E0

of a Hilbert module E is complemented if and only if b(E0) is complemented if

ix



and only if E0 is the range of an adjointable operator on E. Also it is proved a

necessary and sufficient condition for an adjointable operator to admit a polar

decomposition.

Chapter 4 is about tensor products of Hilbert modules over locally C∗-

algebras and operators on tensor products. By analogy with the case of Hilbert

C∗-modules, in Section 4.1 it is defined the notion of exterior tensor product

of Hilbert modules over locally C∗-algebras and it is shown that the exterior

tensor product E ⊗ F of E and F is in fact an inverse limit of exterior tensor

products of Hilbert C∗-modules. In Section 4.2 it defined the notion of inner

tensor product of Hilbert modules over locally C∗-algebras and the connection

between the bounded part of the Hilbert A -module E⊗Φ F and the Hilbert C∗-
module b(E)⊗Φ|b(A) b(F ) over b(A) it is discussed. In Section 4.3 it is constructed
an injective ∗-morphism j from LA(E)⊗LB(F ) to LA⊗B(E⊗F ) and it is shown
that the locally C∗-algebras KA(E)⊗KB(F ) and KA⊗B(E⊗F ) are isomorphic.
Also it is constructed a ∗-morphism Φ∗ from LA(E) to LB(E ⊗Φ F ), which is

injective if Φ is an injective ∗-morphism .

Chapter 5 concerns full Hilbert modules, countably generated Hilbert mod-

ules and strong Morita equivalence of locally C∗-algebras. In Section 5.1, the

full Hilbert modules over locally C∗-algebras are characterized. It is clear that

E is a Hilbert module over a locally C∗-algebra A such that b(E) is full, then

E is full. The converse of this statement is not true in general. We present

some example in this sense. Section 5.2 is devoted to famous Kasparov stabiliza-

tion theorem [26]. It is showed that the stabilization theorem is still valid for

countably generated Hilbert modules over arbitrary locally C∗-algebras and it is

proved a necessary and sufficient condition that a Hilbert module over a Fréchet

locally C∗-algebra to be countably generated. Also it is extended to context of

locally C∗-algebras a result of Mingo and Phillips [35], which states that if E is

a full countably generated Hilbert C∗-module over a σ-unital C∗-algebra A then

the Hilbert C∗-modules HA and HE are unitarily equivalent. In Section 5.3, it

is extended the notion of strong Morita equivalence in the context of locally C∗-
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algebras. It is shown that strong Morita equivalence is an equivalence relation

on the set of locally C∗-algebras and it is proved that two Fréchet locally C∗-

algebras are strongly Morita equivalent if and only if they are stably isomorphic

(this extends a well-known theorem of Brown, Green and Rieffel [5]).

Chapter 6 is devoted to representations of locally C∗-algebras on Hilbert

modules. The non-degenerate representations of a locally C∗-algebra A on a

Hilbert module E over a locally C∗-algebra B are characterized in Section 6.1.

Also in this section it is shown that any locally C∗-algebra A admits a non-

degenerate representation on HB, where B is an arbitrary locally C∗-algebra.

Section 6.2 is about completely positive linear maps between locally C∗-algebras.

In Section 6.3 is obtained a construction of type KSGNS (Kasparov, Stinespring,

Gel’fand, Naimark, Segal) for continuous strict completely positive linear maps

between locally C∗-algebras.

Chapter 7 is about induced representations of locally C∗-algebras.

By analogy with the case of C∗-algebras, in Section 7.2 it is extended the

notion of induced representation in the context of locally C∗-algebras and it is

shown that theorem on induction in stage [Theorem 5.9, 41] is still valid. Also

in Section 7.3 it is proved an imprimitivity theorem for representations of locally

C∗-algebras.

xi





Chapter 1

Hilbert modules over locally

C∗-algebras

1.1 Locally C∗-algebras

The basic information about locally C∗-algebras can be found in the works [7, 8,

9, 11, 33, 38, 39]. We will present some results on locally C∗-algebras, which

will be necessary for us further on.

Recall that a C∗-seminorm on a topological ∗-algebra A is a seminorm p such

that p(ab) ≤ p(a)p(b) and p(aa∗) = p(a)2 for all a and b in A.

Definition 1.1.1 A locally C∗-algebra is a Hausdorff complete complex topolog-

ical ∗ -algebra A whose topology is determined by its continuous C∗-seminorms

in the sense that a net {ai}i∈I converges to 0 if and only if the net {p(ai)}i∈I
converges to 0 for all continuous C∗-seminorm p on A.

A pre-locally C∗-algebra is Hausdorff complex topological ∗ -algebra whose the
topology is determined by a directed family of C∗-seminorms.

These objects are called pro-C∗-algebras in [2, 3, 38, 39]. If the topology

is determined by only countably many of C∗-seminorms, then we have σ-C∗-

algebras in [38, 39] and Fréchet locally C∗-algebras in [7, 8, 9, 11, 33].
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Example 1.1.2 Any C∗-algebra is a locally C∗-algebra.

Example 1.1.3 Any closed subalgebra of a locally C∗-algebra is a locally C∗-

algebra.

Example 1.1.4 If {Aλ ;πλµ}λ≥µ,λ,µ∈Λ is an inverse system of C∗-algebras, then
lim
←
λ

Aλ is a locally C∗-algebras with the topology defined by the family of C∗-

seminorms {pλ}λ∈Λ defined by pλ
(
(aµ)µ

)
= ‖aλ‖λ , where ‖·‖λ denotes the C∗

-norm on Aλ, λ ∈ Λ.

Example 1.1.5 If X is a compactly generated space, then C(X), the set of all

continuous complex valued functions on X with the topology of uniform conver-

gence on compact subsets is a locally C∗-algebra.

Definition 1.1.6 Let A and B be two locally C∗-algebras. A ∗ -morphism from

A to B is a linear map Φ : A → B such that Φ(ab) = Φ (a)Φ (b) and Φ(a∗) =

Φ (a)∗ for all a and b in A.

A morphism of locally C∗-algebras from A to B is a continuous ∗ -morphism
from A to B.

An isomorphism of locally C∗-algebras from A to B is a bijective morphism

of locally C∗-algebras Φ : A→ B such that Φ−1 : B → A is a morphism of locally

C∗-algebras.

Two locally C∗-algebras A and B are isomorphic if there is an isomorphism

of locally C∗-algebras from A to B.

Remark 1.1.7 ([8]). If A is a locally C∗-algebra and B is a Fréchet locally C∗-

algebra, then any ∗ -morphism from A to B is a morphism of locally C∗-algebras.

Let A be a locally C∗ -algebra. We denote by S(A) the set of all continuous

C∗-seminorms on A. For p ∈ S(A), we let ker p be the set {a ∈ A; p(a) = 0},
which is a closed ∗ -ideal in A. We also let Ap be the quotient ∗ -algebra A/
ker p. The canonical map from A to Ap is denoted by πp. It is not difficult to
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check that Ap is a pre-C
∗-algebra with respect to the norm ‖·‖p induced by p (

that is, ‖a+ ker p‖p = p(a) for all a in A).We will prove that Ap is a C
∗-algebra

(Theorem 1.1.16). The set S(A) is directed with the order p ≥ q if p (a) ≥ q (a)

for all a in A. Then for p and q in S(A) with p ≥ q, there is a canonical surjective

∗ -morphism πpq : Ap → Aq such that πpq(πp (a)) = πq(a) for all a in A. For

each p ∈ S(A) we denote by Ãp the completion of the pre-C
∗-algebra Ap. If p,

q ∈ S(A) and p ≥ q, then clearly the surjective ∗ -morphism πpq : Ap → Aq

extends to a surjective ∗ -morphism π̃pq : Ãp → Ãq.

Theorem 1.1.8 ([1, 9, 11, 33]). Let A be a locally C∗-algebra. Then:

1. {Ãp; π̃pq}p≥q,p,q∈S(A) is an inverse system of C∗-algebras.

2. The map Φ : A→ lim
←
p

Ãp defined by

Φ(a) = (πp(a))p

is an isomorphism of locally C∗-algebras.

Proof. 1. It is a simple verification.

2. The topology on lim
←
p

Ãp is defined by the family of C
∗-seminorms {p̃}p∈S(A),

where p̃ ((aq)q) = ‖ap‖p for all (aq)q ∈ lim
←
p

Ãp. It is not difficult to check that Φ

is a ∗ -morphism from A to lim
←
p

Ãp. Since

p̃(Φ (a)) = p(a)

for all p ∈ S(A) and for all a ∈ A, Φ is an injective morphism of locally C∗-

algebras with closed range. Then, by Lemma III 3.2, [33], we have

Φ(A) = lim
←
p

χp (Φ(A)) = lim
←
p

πp(A) = lim
←
p

Ãp

where χp, p ∈ S(A) are the canonical maps from lim
←
p

Ãp to Ãp, and χp(Φ(A))

denotes the closure of the vector subspace χp (Φ(A)) in Ãp for each p ∈ S(A).

3



From these facts we conclude that Φ is a bijective morphism of locallyC∗-algebras

and Φ−1 is continuous. Therefore Φ is an isomorphism of locally C∗-algebras.

If A is a unital locally C∗-algebra, then the pre-C∗-algebras Ap, p ∈ S(A)

are unital. Moreover, if 1 is the unity of A, then πp(1) is the unity of Ap for all

p ∈ S(A).
An element a in A is invertible if there is an element in A, denoted by a−1,

such that aa−1 = a−1a = 1.

Remark 1.1.9 Let A be a unital locally C∗ -algebra and let a ∈ A. Then a is

invertible if and only if πp(a) is invertible in Ap for all p ∈ S(A). Moreover,

πp(a)
−1 = πp(a

−1) for all p ∈ S(A).

Let A be a locally C∗-algebra without unity, and let A+ = A⊕C. Then A+

under the multiplication

(a, λ) (b, µ) = (ab+ λb+ µa, λµ)

and the involution

(a, λ)∗ =
(
a∗, λ
)

is an algebra with involution. Any continuous C∗-seminorm p can be extended

up to a C∗-seminorm p+ on A+ and thus A+ with the topology determined by

the family of C∗-seminorms {p+, p ∈ S(A)} is a locally C∗-algebra. Moreover,
A+ can be identified with lim

←
p

Ãp
+
, where Ãp

+
is the unitization of Ãp, p ∈ S(A).

Definition 1.1.10 Let A be a unital locally C∗-algebra and let a be an element

in A. The spectrum of A, Sp(a) is the set of all complex numbers λ such that

a − λ1 is not invertible in A. If A is not unital, Sp(a) is the set of all complex

numbers λ such that a− λ1 is not invertible in A+.

Remark 1.1.11 Sp(a) =
⋃
p
Sp(πp(a)) .

An element a in A is self-adjoint if a∗ = a.

4



Remark 1.1.12 Let A be a locally C∗ -algebra and a ∈ A. Then the following

assertions are equivalent:

(a) a is self-adjoint;

(b) Sp(a) ⊆ R;

(c) πp(a) is self-adjoint for all p ∈ S(A).

An element a in A is called positive and we write a ≥ 0, if there is an element

b in A such that a = b∗b. In particular, for a and b in A we will write a ≥ b if

a− b ≥ 0.

Remark 1.1.13 Let A be a locally C∗-algebra and a ∈ A. Then the following

assertions are equivalent:

(a) a ≥ 0;

(b) πp(a) ≥ 0 for all p ∈ S(A);

(c) a = h2 for some h in A;

(d) Sp(a) ⊆ [0,∞)

The set of all positive elements in A is denoted by P (A) and it is a closed

convex con in A such that P (A) ∩ {−P (A)} = {0}.

Proposition 1.1.14 ([11, 38]) Let A be a locally C∗-algebra, and let a ∈ A be a
normal element (that is aa∗ = a∗a ). There is a unique morphism of locally C∗-

algebras from the locally C∗-algebra of all continuous functions f : Sp(a) → C

such that f(0) = 0 to A which sends the identity function to a. If A is unital,

then this map extends uniquely to a morphism from the locally C∗-algebra of all

continuous functions f : Sp (a)→ C to A which sends 1 to 1.

Proof. Let f ∈ {h ∈ C( Sp (a)); h(0) = 0}, and let p, q ∈ S(A) with p ≥ q.

Then

πpq (f(πp(a))) = f(πpq (πp(a))) = f(πq(a)).

5



Thus we can define a map Φ : {h ∈ C( Sp (a)); h(0) = 0} → A by Φ(f) =

(f(πp(a)))p . It is not difficult to check that the required map is Φ.

Definition 1.1.15 Let A be a locally C∗-algebra. An element a in A is bounded

if

sup{p(a); p ∈ A} <∞.

The set of all bounded elements in A is denoted by b(A).

Theorem 1.1.16 Let A be a locally C∗-algebra. Then:

1. The map ‖·‖∞ : b(A)→ [0,∞) defined by

‖a‖∞ = sup{p(a); p ∈ A}

is a C∗-norm on A.

2. b(A) equipped with the C∗-norm ‖·‖∞ is a C∗-algebra.

3. b(A) is dense in A;

4. For each p ∈ S(A), Ap is a C
∗-algebra.

Proof. 1. It is a simple verification.

2. Let {an}n be a Cauchy sequence in b(A). Then there is a positive number
M such that ‖an‖∞ ≤M for all n and {an}n is a Cauchy sequence in A and so
it converges in A to an element a.

To show that a is bounded, let p ∈ S(A). Then

p(a) ≤ p(a− an) + p(an) ≤ p(a− an) +M

for all n. This implies that p(a) ≤M. Therefore a ∈ b(A).
Let ε > 0. Since {an}n is a Cauchy sequence in b(A), there is a positive

integer n0 such that

‖an − am‖∞ < ε

6



for all m ≥ n0 and for all n ≥ n0. Then

p(a− an) = lim
m
p(am − an) ≤ lim

m
‖an − am‖∞ < ε

for all p ∈ S(A) and for all n ≥ n0. This implies that the sequence {an}n is
convergent in b(A), and the assertion is proved.

3. Let a ∈ A. For each positive integer n, the element 1 + 1
na
∗a is invertible

in A+. Let an = a
(
1 + 1

na
∗a
)−1

. By functional calculus, we have

p(an) =
√
p (a∗nan) =

√√√√p

(
a∗a

(
1 +

1

n
a∗a

)−2)
≤ √n

and

p(a− an) = p

(
1

n
aa∗a

(
1 +

1

n
a∗a

)−1)
≤ p(a)2

n
p

(
a

(
1 +

1

n
a∗a

)−1)

≤ p(a)2√
n

for all p ∈ S(A). From these facts, we conclude that {an}n is a sequence in b(A)
which converges in A to a. This shows that b(A) is dense in A.

4. Let p ∈ S(A) and let Np = b(A) ∩ ker p. Clearly, Np is a closed ∗ -ideal of
b(A), and then b(A)/Np is a C

∗-algebra with respect to the topology determined

by the norm ‖·‖ definrd by ‖a+Np‖ = inf{‖a+ b‖∞ ; b ∈ Np}, a ∈ b(A). Since

‖a+ ker p‖p = p(a) ≤ p(a+ b) ≤ ‖a+ b‖∞

for all b ∈ Np, we can define a map ϕ : b(A)/Np → Ãp, by ϕ (a+Np) = a+ ker p.

Clearly, ϕ is an injective morphism of C∗- algebras. Moreover, ϕ (b(A)/Np) ⊆ Ap.

On the other hand, we seen that for a ∈ A there is a sequence {an}n in b(A)
which converges to a. Then the sequence {an+ker p}n converges to a+ ker p in Ãp.

From thise facts and taking into account that ϕ (an +Np) = an+ker p and ϕ has

closed range we conclude that Ap ⊆ ϕ (b(A)/Np) . Therefore ϕ (b(A)/Np) = Ap.

Thus, we showed that ϕ : b(A)/Np → Ap is an isomorphism and so Ap is a

C∗-algebras.

7



Definition 1.1.17 Let A be a locally C∗-algebra. An approximate unit for A is

an increasing net {ei}i∈I of positive elements in A such that p(ei) ≤ 1 for all

p ∈ S(A) and for all i ∈ I, and, for all a ∈ A we have p (a− aei) → 0 and

p (a− eia)→ 0 for all p ∈ S(A).

Remark 1.1.18 From Theorem 1.1.16 and Definition 1.1.17, we conclude that

any locally C∗-algebra has an approximate unit.

A locally C∗-algebra A is strongly spectrally bounded if b(A) = A as set.

Let A be a locally C∗-algebra. A left multiplier of A is a linear map l : A→ A

such that l(ab) = l(a)b for all a and b in A, and a right multiplier of A is a

linear map r : A → A such that r(ab) = ar(b) for all a and b in A. The set

LM(A) of all left multipliers of A is an algebra. For each p ∈ S(A), the map

pLM(A) : LM(A)→ [0,∞) defined by pLM(A)(l) = sup{p(l(a));a ∈ A, p(a) ≤ 1}
is a seminorm on LM(A) such that pLM(A)(l1l2) ≤ pLM(A)(l1)pLM(A)(l2) for all

l1, l2 ∈ LM(A).

A multiplier of A is a pair (l, r), where l is a left multiplier and r is a right

multiplier, such that al(b) = r(a)b for all a and b in A. The set M(A) of all

multipliers of A is an algebra with involution; addition is defined as usual, multi-

plication is (l1, r1) (l2, r2) = (l1l2, r1r2) and involution is (l, r)
∗ = (r∗, l∗) , where

r∗(a) = r(a∗)∗ and l∗(a) = l (a∗)∗ for all a ∈ A. For each p ∈ S(A), the map

pM(A) :M(A)→ [0,∞) defined by pM(A)(l, r) = sup{p(l(a));a ∈ A, p(a) ≤ 1} is
a C∗-seminorm on M(A).

Exactly as in the case of C∗ -algebras, any left (right ) multiplier of a locally

C∗-algebra A is automatically continuous. Moreover, if l ∈ LM(A), then for each

p ∈ S(A), there is a unique lp ∈ LM(Ap) such that πp ◦ l = lp ◦ πp ( see [24]),
and if (l, r) ∈M(A), then for each p ∈ S(A), there is a unique (lp, rp) ∈M(Ap)

such that πp ◦ l = lp ◦ πp and πp ◦ r = rp ◦ πp (see, for example, [38]).

Theorem 1.1.19 Let A be a locally C∗-algebra. Then:

1. LM(A) equipped with the topology determined by the family of seminorms

{pLM(A)}p∈S(A) is a complete locally m -convex algebra.
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2. M(A) is a locally C∗-algebra with respect to the topology determined by the

family of C∗-seminorms {pM(A)}p∈S(A).

Proof. Let p, q ∈ S(A) with p ≥ q. Since πpq is surjective, it extends uniquely to

a morphism of W ∗-algebras π
′′

pq from A
′′

p to A
′′

q , where A
′′

p is the enveloping W
∗-

algebra of Ap.Morover, π
′′

pq (LM(Ap)) ⊆ LM(Aq) and π
′′

pq (M(Ap)) ⊆M(Aq). It

is not difficult to check that {LM(Ap);π
′′

pq|LM(Ap) }p≥q,p,q∈S(A) is an inverse sys-
tem of Banach algebras and {M(Ap);π

′′

pq|M(Ap)}p≥q,p,q∈S(A) is an inverse system
of C∗-algebras.

1. Since lim
←
p

LM(Ap) is a complete locally m -convex algebras, to show

that LM(A) is a complete locally m-convex algebra it is sufficient to prove

that LM(A) is isomorphic to lim
←
p

LM(Ap). Let l ∈ LM(A). It is not difficult

to check that (lp)p, where πp ◦ l = lp ◦ πp for all p ∈ S(A), is a coherent se-

quence in LM(Ap). Then we can define a map Ψ : LM(A) → lim
←
p

LM(Ap) by

Ψ(l) = (lp)p. A simple calculus shows that Ψ is linear and Ψ(l1l2) = Ψ(l1)Ψ(l2)

for all l1, l2 ∈ LM(A). We denote by {p̃}p∈S(A) the family of seminorms which
defines the topology on lim

←
p

LM(Ap). Clearly, p̃
(
(lq)q

)
= ‖lp‖LM(Ap)

. Then

p̃ (Ψ (l)) = ‖lp‖LM(Ap)
= sup{‖lp(πp(a))‖Ap ; ‖πp(a)‖Ap ≤ 1}

= sup{‖πp(l(a))‖Ap ; ‖πp(a)‖Ap ≤ 1}
= sup{p(l(a)); p(a) ≤ 1} = pLM(A)(l)

for all p ∈ S(A) and for all l ∈ LM(A). From this fact we conclude that Ψ is

an injective morphism of locally m -convex algebras with closed range. To show

that Ψ is surjective, let (lp)p be a coherent sequence in LM(Ap). Define a map

l : A→ A by l(a) = (lp(πp(a)))p . Since

πpq (lp(πp(a))) = π
′′

pq(lp(πp(a)) = π
′′

pq(lp)π
′′

pq(πp(a)) = lq (πq(a))

for all a ∈ A and for all p, q ∈ S(A) with p ≥ q, l is well defined. Moreover,

l ∈ LM(A), since

l(ab) = (lp(πp(ab)))p = (lp(πp(a))πp(b))p = l(a)b
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for all a, b ∈ A. Clearly, Ψ(l) = (lp)p. Therefore Ψ is surjective. Thus we showed

that Ψ is a bijective continuous morphism from LM(A) onto lim
←
p

LM(Ap) and

since p̃ (Ψ (l)) = pLM(A)(l) for all p ∈ S(A) and for all l ∈ LM(A), Ψ is an

isomorphism of locally m -convex algebras.

2. In the same manner as in the proof of the assertion 1, we show that the map

Φ : M(A) → lim
←
p

M(Ap) defined by Φ(l, r) = ((lp, rp))p is a bijective morphism

fromM(A) onto lim
←
p

M(Ap) and Φ
−1 is a continuous morphism. From these facts

and taking into account that lim
←
p

M(Ap) is a locally C
∗-algebra and M(A) is a

pre-locally C∗-algebra, we conclude that M(A) is a locally C∗-algebra.

Corollary 1.1.20 Let {Aλ;πλµ}λ≥µ,λ,µ∈Λ be an inverse system of C∗-algebras

such that the canonical maps χλ from lim
←
λ

Aλ to Aλ are all surjective. If A =

lim
←
λ

Aλ, then the complete locally m -convex algebras LM(A) and lim
←
λ

LM(Aλ)

as well as the locally C∗-algebras M(A) and lim
←
λ

M(Aλ) are isomorphic.

Proof. The topology on A is defined by the family of C∗ -seminorms {pλ}λ∈Λ,
where pλ(

(
aµ
)
µ
) = ‖aλ‖Aλ . Since the canonical maps χλ from lim

←
λ

Aλ to Aλ are

all surjective, it is not difficult to check that the C∗-algebras Aλ and Apλ are

isomorphic for each λ ∈ Λ. Then to prove the corollary we apply Theorem 1.1.19

for the locally C∗-algebra A.

Let A be a locally C∗-algebra and let H be a Hilbert space. A representation

of A on H is a continuous ∗-morphism ϕ from A to L(H). If ϕ is a representation

of A, then there is p ∈ S(A) such that ‖ϕ (a)‖ ≤ p(a) for all a ∈ A and so there
is a unique representation ϕp of Ap such that ϕp ◦ πp = πp ◦ ϕ. Clearly, if ϕp is
a representation of the C∗-algebra Ap, then ϕp ◦ πp is a representation of A.
Let R(A) = {ϕ; ϕ is a representation of A} and for each p ∈ S(A), let

Rp(A) = {ϕ ∈ R(A); ‖ϕ (a)‖ ≤ p(a) for all a ∈ A}. Clearly, R(A) = ⋃
p
Rp(A).

Let A and B be two locally C∗-algebras. For p ∈ S(A) and q ∈ S(B) define
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t(p,q) : A⊗alg B → [0,∞) by

t(p,q) (c) = sup{‖(ϕ⊗ ψ) (c)‖ ;ϕ ∈ Rp(A), ψ ∈ Rq(B)}.

Clearly, t(p,q) is a C
∗-seminorm on A ⊗alg B. The minimal or injective tensor

product of the locally C∗ -algebras A and B, denoted by A⊗B, is the completion
of the algebraic tensor product A⊗algB with respect to the topology determined
by the family of C∗-seminorms {t(p,q)}(p,q)∈S(A)×S(B).

Proposition 1.1.21 Let A and B be two locally C∗-algebras. Then the C∗-

algebras (A⊗B)(p,q) and Ap ⊗ Bq are isomorphic for all p ∈ S(A) and for all

q ∈ S(B).

Proof. Let p ∈ S(A) and let q ∈ S(B). Since

t(p,q)

(
n∑
i=1

ai ⊗ bi

)
= sup{

∥∥∥∥(ϕ⊗ ψ)

(
n∑
i=1

ai ⊗ bi

)∥∥∥∥ ;ϕ ∈ Rp(A), ψ ∈ Rq(B)}

= sup{
∥∥∥∥
(
ϕp ⊗ ψp

)( n∑
i=1

πp(ai)⊗ πq(bi)

)∥∥∥∥ ;ϕp ∈ R(Ap), ψq ∈ R(Bq)}

=

∥∥∥∥
n∑
i=1

πp(ai)⊗ πq(bi)

∥∥∥∥
Ap⊗Bq

for all
n∑
i=1

ai ⊗ bi ∈ A ⊗alg B, we can define a linear map ϕ(p,q) : A ⊗alg
B/ ker

(
t(p,q)
)
→ Ap ⊗Bq by

ϕ(p,q)

(
n∑

i=1

ai ⊗ bi + ker
(
t(p,q)
)
)

=
n∑

i=1

πp(ai)⊗ πq(bi).

It is not difficult to check that ϕ(p,q) is an isometric ∗ -morphism from A ⊗alg
B/ ker

(
t(p,q)
)
to Ap ⊗Bq. Moreover, ϕ(p,q)

(
A⊗alg B/ker

(
t(p,q)
))

= Ap ⊗alg Bq.

From these facts and taking into account that Ap⊗algBq is dense in Ap⊗Bq and

A⊗algB/ker
(
t(p,q)
)
is dense in (A⊗B)(p,q) (see, for example, [38]), we conclude

that ϕ(p,q) extends to an isomorphism from (A⊗B)(p,q) onto Ap ⊗Bq.

Corollary 1.1.22 Let A and B be two locally C∗-algebras. Then the locally

C∗-algebras A⊗B and lim
←
(p,q)

Ap ⊗Bq are isomorphic.
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Corollary 1.1.23 Let A be a locally C∗-algebra. Then the locally C∗-algebras

A⊗A and lim
←
p

Ap ⊗Ap are isomorphic as well as A⊗C and A.

1.2 Definitions, notation and examples of Hilbert mod-

ules

In this Section we introduce the notion of Hilbert modules over a locally C∗-

algebra and we present some examples of Hilbert modules.

Let A be a locally C∗-algebra.

Definition 1.2.1 A pre-Hilbert A-module is a complex vector space E which is

also a right A-module, compatible with the complex algebra structure, equipped

with an A-valued inner product 〈·, ·〉 : E × E → A which is C- and A-linear in

its second variable and satisfies the following relations:

(a) 〈ξ, η〉∗ = 〈η, ξ〉 for every ξ, η ∈ E;

(b) 〈ξ, ξ〉 ≥ 0 for every ξ ∈ E;

(c) 〈ξ, ξ〉 = 0 if and only if ξ = 0.

Proposition 1.2.2 (Cauchy-Schwarz Inequality, [14, 45]). Let E be a right A -

module equipped with an A -valued inner-product 〈·, ·〉 which is C - and A -linear
in its second variable and satisfies the conditions (a) and (b) from Definition

1.2.1. Then for each p ∈ S(A) and for all ξ, η ∈ E, we have

p (〈ξ, η〉)2 ≤ p (〈ξ, ξ〉) p (〈η, η〉) .

Proof. When ξ, η ∈ E and a ∈ A,

0 ≤ 〈ξa− η, ξa− η〉 = a∗ 〈ξ, ξ〉a− a∗ 〈ξ, η〉 − 〈η, ξ〉a+ 〈η, η〉 .

By taking a = λ 〈ξ, η〉, where λ is a positive number, we obtain

0 ≤ 2λ 〈ξ, η〉∗ 〈ξ, η〉 ≤ λ2 〈ξ, η〉∗ 〈ξ, ξ〉 〈ξ, η〉+ 〈η, η〉 .
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From this relation and Corollary 2.3 in [11], we conclude that

0 ≤ 2λp (〈ξ, η〉)2 ≤ λ2p (〈ξ, ξ〉) p (〈ξ, η〉)2 + p (〈η, η〉) .

If p (〈ξ, ξ〉) �= 0, for λ = p (〈ξ, ξ〉)−1, we obtain

2p (〈ξ, ξ〉)−1 p (〈ξ, η〉)2 ≤ p (〈ξ, ξ〉)−1 p (〈ξ, η〉)2 + p (〈η, η〉) ,

whence

p (〈ξ, η〉)2 ≤ p (〈ξ, ξ〉) p (〈η, η〉) .

If p (〈ξ, ξ〉) = 0, we have 2λp (〈ξ, η〉)2 ≤ p (〈η, η〉), whence, since λ is an
arbitrary positive number, we conclude that p (〈ξ, η〉) = 0. Therefore

p (〈ξ, η〉)2 = p (〈ξ, ξ〉) p (〈η, η〉) = 0

and so the inequality is true in this case too.

Corollary 1.2.3 ([45]). Let E be a pre-Hilbert A-module. Then for each p ∈
S(A) the map p : E → [0,∞) defined by

p(ξ) =
√
p (〈ξ, ξ〉), ξ ∈ E

is a seminorm on E. Moreover, the following relations hold:

i. p(ξa) ≤ p(ξ)p(a) for all ξ ∈ E and for all a ∈ A;
ii. p(ξ) = sup {p (〈ξ, η〉) ; p(η) ≤ 1} ;
iii. p(ξ) = 0 for all p ∈ S(A) implies ξ = 0.

Remark 1.2.4 If E is a pre-Hilbert A -module, then E equipped with the topol-

ogy determined by the family of seminorms {p}p∈S(A) is a separable locally convex
space.

Definition 1.2.5 A Hilbert A-module is a pre-Hilbert A -module E which is

complete with respect to the topology determined by the family of seminorms

{p}p∈S(A).
We will use the notation pE in place p, when we are dealing with more than

one Hilbert module over the same locally C∗-algebra.
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Definition 1.2.6 Two Hilbert A -modules E and F are isomorphic if there is a

surjective module homomorphism Φ from E onto F such that

〈Φ(ξ) ,Φ(η)〉 = 〈ξ, η〉

for all ξ, η ∈ E.

Remark 1.2.7 Let E be a right A -module equipped with an A -valued inner-

product 〈·, ·〉 which is C - and A -linear in its second variable and satisfies the

conditions (a) and (b) of Definition 1.2.1. From Proposition 1.2.2, we conclude

that

N = {ξ ∈ E; 〈ξ, ξ〉 = 0}

is a closed A -submodule of E. On the quotient A -module E/N , we define an A

-valued inner-product 〈·, ·〉0 by

〈ξ +N, η +N〉0 = 〈ξ, η〉 , ξ, η ∈ E.

According to Proposition 1.2.2, this inner-product is well -defined. Moreover,

E/N equipped with this inner-product becomes a pre-Hilbert A -module.

Remark 1.2.8 If E0 is a pre -Hilbert A -module and E is its completion with

respect to the topology induced by the inner-product, then E is a Hilbert A -

module.

Proof. Indeed, for ξ and η in E there are the nets {ξi}i∈I and {ηj}j∈J in E0
such that ξ = lim

i
ξi and η = lim

j
ηj . Then for each p ∈ S(A), the nets of real

numbers {p(ξi)}i∈I and {p(ηj)}j∈J are convergent and so they are bounded.
Let p ∈ S(A), Mp > 0 such that p(ξi) < Mp for all i ∈ I and p(ηj) < Mp for

all j ∈ J and ε > 0. Then there is i0 ∈ I and j0 ∈ J such that

p(ξi1 − ξi2) < Mpε/2 and p(ηj1 − ηj2) < Mpε/2

for all i1 and i2 in I with i1 ≥ i0 and i2 ≥ i0 and for all j1 and j2 in J with

j1 ≥ j0 and j2 ≥ j0. Moreover,

p(
〈
ξi1 , ηj1

〉
−
〈
ξi2 , ηj2

〉
) ≤ p(

〈
ξi1 − ξi2 , ηj1

〉
) + p(

〈
ξi2 , ηj1 − ηj2

〉
)

≤ p(ξi1 − ξi2)p(ηj1) + p(ξi2)p(ηj1 − ηj2) < ε
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for all (i1, j1) and (i2, j2) in I × J with (i1, j1) ≥ (i0, j0) and (i2, j2) ≥ (i0, j0).

So the net {
〈
ξi, ηj

〉
}(i,j)∈I×J is convergent in A.

Let {ξ̃i′}i′∈I′ and {η̃j′}j′∈J ′ be another nets in E0 such that ξ = lim
i′
ξ̃i′ and

η = lim
j′
η̃j′ and a ∈ A. From

p(ξia− ξ̃i′a) ≤ (p(ξi − ξ) + p(ξ − ξ̃i′ ))p(a)

for all i ∈ I and i′ ∈ I ′ and

p(
〈
ξi, ηj

〉
−
〈
ξ̃i′ , η̃j′

〉
) ≤ (p(ξi − ξ) + p(ξ − ξ̃i′ ))p(ηj)

+(p(ηj − η) + p(η̃j′ − η))p(ξ̃i′ )

for all (i, j) ∈ I×J and for all (i′ , j′) ∈ I ′×J ′ , we conclude that lim
i
ξia = lim

i′
ξ̃i′a

and lim
(i,j)

〈
ξi, ηj

〉
= lim

(i′ ,j′)

〈
ξ̃i′ , η̃j′

〉
. Thus the module action of A on E0 extends

to a module action of A on E by

ξa = lim
i
ξia

and the inner-product on E0 extends to an inner-product on E by

〈ξ, η〉 = lim
(i,j)

〈
ξi, ηj

〉
.

In this way, E becomes a Hilbert A -module.

Remark 1.2.9 Let A0 be a pre-locally C
∗-algebra and let A be its completion.

Suppose that E is a Hilbert A0-module, that is, E is a right A0 -module equipped

with an A0 -valued inner-product which is C - and A0 -linear in its second variable

and verifies the conditions from Definition 1.2.1, and is complete with respect to

the topology induced by the inner-product.

Let a in A and ξ in E. Then there is a net {ai}i∈I in A0 such that a = lim
i
ai.

From Corollary 1.2.3 (i), we deduce that {ξai}i∈I is a fundamental net in E and

so it is convergent. If {bj}j∈J is another net in A0 which converges to a, then

from Corollary 1.2.3 (i), we conclude that the nets {ξai}i∈I and {ξbj}j∈J have
the same limit. Thus we can extend the module action of A0 on E by continuity

to a module action of A on E and thus E becomes a Hilbert A -module.
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Remark 1.2.10 Let A0 be a pre-locally C
∗-algebra and let E0 be a pre-Hilbert

A0-module. If A is the completion of A0 and E is the completion of E0, by

Remarks 1.2.8 and 1.2.9, E becomes a Hilbert A -module.

Remark 1.2.11 Let A and B be two isomorphic locally C∗-algebras. If E is a

Hilbert A -module, then E becomes a Hilbert B -module with the module action

of B on E defined by

ξb = ξΦ−1(b), ξ ∈ E, b ∈ B

and the B -valued inner-product defined by

〈ξ, η〉B = Φ(〈ξ, η〉A)

where Φ is an isomorphism from A onto B and 〈·, ·〉A denotes the A -valued

inner-product on E.

Let E be a Hilbert A -module. Then the closed span of the set {〈ξ, η〉 ; ξ, η ∈
E} is a two-sided ∗ -ideal in A. We denote it by 〈E,E〉 .

Proposition 1.2.12 If E is a Hilbert A -module, then E 〈E,E〉 is dense in E.

Proof. Let {ui}i∈I be an approximate unit for 〈E,E〉 , ξ ∈ E and p ∈ S(A).

Then

p (ξui − ξ)2 = p (〈ξui − ξ, ξui − ξ〉)
= p (〈ξ, ξ〉 − 〈ξ, ξ〉ui − ui 〈ξ, ξ〉+ ui 〈ξ, ξ〉ui)
≤ 2p (〈ξ, ξ〉ui − 〈ξ, ξ〉)→ 0.

This shows that {ξui}i∈I converges to ξ and so E 〈E,E〉 is dense in E.

Corollary 1.2.13 If E is a Hilbert A -module, then EA is dense in E.

Remark 1.2.14 If E is a Hilbert A -module and A is unital, then ξ1 = ξ for

all ξ ∈ E.
If A is not unital and A+ is the unitization of A, then E becomes a Hilbert

A+ -module if we define ξ1 = ξ for all ξ ∈ E.
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Example 1.2.15 Any locally C∗-algebra A is a Hilbert A -module with the

inner-product defined by 〈a, b〉 = a∗b, a, b ∈ A.

Example 1.2.16 Any closed right ideal I of a locally C∗-algebra A equipped

with the inner product 〈a, b〉 = a∗b, a, b ∈ I is a Hilbert A -module.

Example 1.2.17 If {Ei}ni=1 is a finite set of Hilbert A -modules, then the direct
sum

n⊕
i=1

Ei is a right A -module in the obvious way and it becomes a Hilbert A

-module if we define the inner-product by

〈(ξi)ni=1 , (ηi)ni=1〉 =
n∑

i=1

〈ξi, ηi〉 .

Example 1.2.18 Let {En}n be a countable set of Hilbert A -modules. We de-

note by
⊕
n
En the set of all sequences (ξn)n with ξn in En such that

∑
n
〈ξn, ξn〉

converges in A. Then
⊕
n
En becomes a Hilbert A -module with the action of A

on
⊕
n
En defined by (ξn)n a = (ξna)n and the inner product defined by

〈(ξn)n , (ηn)n〉 =
∑

n

〈ξn, ηn〉 .

To show that the module action of A on
⊕
n
En and the A -valued inner-

product on
⊕
n
En are well-defined, let a ∈ A, (ξn)n , (ηn)n ∈

⊕
n
En, p ∈ S(A)

and ε > 0. Then there is n0 such that

p(
m∑

k=n

〈ξk, ξk〉) < ε and p(
m∑

k=n

〈ηk, ηk〉) < ε

for all positive integers n and m with m ≥ n ≥ n0 and so

p(
m∑

k=n

〈ξka, ξka〉) = p(a∗
m∑

k=n

〈ξk, ξk〉a) ≤ p(a)2ε

and

p(
m∑

k=n

〈ξk, ηk〉)2 = p (〈(ξk)mk=n , (ηk)mk=n〉)2
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( cf. Cauchy-Schwarz Inequality )

≤ p (〈(ξk)mk=n , (ξk)mk=n〉) p (〈(ηk)mk=n , (ηk)mk=n〉)

= p(
m∑

k=n

〈ξk, ξk〉)p(
m∑

k=n

〈ηk, ηk〉) < ε2

for all positive integers n and m with m ≥ n ≥ n0. These relations show that the

module action of A on
⊕
n
En and the A -valued inner-product on

⊕
n
En are well-

defined. It is not difficult to check that
⊕
n
En becomes a pre-Hilbert A -module.

To show that
⊕
n
En is complete with respect to the topology induced by the

inner-product, let {(ξin)n}i∈I be a fundamental net in
⊕
n
En, ε > 0 and p ∈ S(A).

Since {(ξin)n}i∈I is a fundamental net in
⊕
n
En, there is i0 in I such that

p

(∑

n

〈
ξi1n − ξi2n , ξ

i1
n − ξi2n

〉
)
≤ ε/8

for all i1, i2 ∈ I with i1 ≥ i0 and i2 ≥ i0. From this inequality, we conclude that

p
(〈
ξi1n − ξi2n , ξ

i1
n − ξi2n

〉)
≤ ε/8

for all i1, i2 ∈ I with i1 ≥ i0 and i2 ≥ i0 and for all positive integer n. Therefore,

for any positive integer n, {ξin}i∈I is a fundamental net in En, and so it converges

to an element ξn in En.

We show that (ξn)n is an element in
⊕
n
En. Let i3 ∈ I such that i3 ≥ i0.

Since (ξi3n )n is an element in
⊕
n
En there is a positive integer n0 such that

p




n∑

k=n0

〈
ξi3k , ξ

i3

k

〉

 ≤ ε/8

for all positive integer n with n ≥ n0. From

p




n∑

k=n0

〈
ξik, ξ

i
k

〉

 ≤ p

(∑

n

〈
ξin − ξi3n , ξ

i
n − ξi3n

〉
)

+ p




n∑

k=n0

〈
ξi3k , ξ

i3
k

〉
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+2p




n∑

k=n0

〈
ξik − ξi3k , ξ

i
k

〉



≤ ε/8 + ε/8

+2p




n∑

k=n0

〈
ξik − ξi3k , ξ

i
k − ξi3k

〉


1/2

p




n∑

k=n0

〈
ξik, ξ

i
k

〉


1/2

≤ ε/4 +
√
ε/2p




n∑

k=n0

〈
ξik, ξ

i
k

〉


1/2

for all positive integer n with n ≥ n0 and for all i ∈ I with i ≥ i3, we obtain

p




n∑

k=n0

〈
ξik, ξ

i
k

〉

 ≤ ε

for all positive integer n with n ≥ n0 and for all i ∈ I with i ≥ i3.

Therefore

p




n∑

k=n0

〈ξk, ξk〉


 = lim

i
p




n∑

k=n0

〈
ξik, ξ

i
k

〉

 ≤ ε

for all positive integer n with n ≥ n0. This shows that (ξn)n is an element in⊕
n
En.

From

p

(
n∑

k=1

〈
ξk − ξi1k , ξk − ξi1k

〉)
= lim

i
p

(
n∑

k=1

〈
ξik − ξi1k , ξ

i
k − ξi1k

〉)

≤ lim
i
p

(∑

n

〈
ξik − ξi1k , ξ

i
k − ξi1k

〉)
≤ ε/8

for all positive integer n and for all i1 ∈ I with i1 ≥ i0, we conclude that the net

{(ξin)n}i∈I converges to (ξn)n.

The direct sum of a countable number of copies of a Hilbert A -module E will

be denoted by HE .
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Let A be a locally C∗-algebra. Let Mn(A) denote the ∗ -algebra of all n× n

matrices bover A, with the usual algebraic operations and the topology obtained

by regarding it as a direc sum of n2 copies of A. Thus Mn(A) is a locally C∗-

algebra and moreover, Mn(A) is isomorphic with lim
←
p

Mn(Ap).

Example 1.2.19 Let E be a Hilbert A -module and let n be a positive integer.

It is not difficult to check that
n⊕
i=1

E is a right Mn(A) -module with the action of

Mn(A) on
n⊕
i=1

E defined by (ξi)
n
i=1 [aij ]

n
i,j=1 =

(
n∑
i=1

ξiaij

)n

j=1

. The map 〈·, ·〉Mn(A)

from

(
n⊕
i=1

E

)
×
(

n⊕
i=1

E

)
to Mn (A) defined by

〈(ξi)ni=1 , (ηi)ni=1〉Mn(A)
=
[〈
ξi, ηj

〉]n
i,j=1

is a Mn(A) -valued inner-product on
n⊕
i=1

E which is C - and Mn(A) -linear in its

second variable and verifies the condition (a) and (c) from Definition 1.2.1. Let

(ξi)
n
i=1 ∈

n⊕
i=1

E. Since

n∑

i,j=1

a∗i
〈
ξi, ξj

〉
aj =

n∑

i,j=1

〈
ξiai, ξjaj

〉
=

〈
n∑

i=1

ξiai,
n∑

j=1

ξjaj

〉
≥ 0

for all a1, ..., an ∈ A,
[〈
ξi, ξj

〉]n
i,j=1

is positive inMn(A) and so 〈(ξi)ni=1 , (ξi)ni=1〉Mn(A)

≥ 0. Therefore

(
n⊕
i=1

E, 〈·, ·〉Mn(A)

)
is a pre-Hilbert Mn(A) -module. It is not dif-

ficult to check that
n⊕
i=1

E is complete with respect to the topology induced by the

inner-product 〈·, ·〉Mn(A)
. Hence

n⊕
i=1

E is a Hilbert Mn(A) -module.

Definition 1.2.20 Let {Aλ;πλµ}λ≥µ,λ,µ∈Λ be an inverse system of C∗-algebras

and let {Eλ;σλµ}λ≥µ,λ,µ∈Λ be an inverse system of vector spaces. We say that

{Eλ;σλµ;Aλ ; πλµ}λ≥µ,λ,µ∈Λ is an inverse system of Hilbert C∗-modules if for

each λ ∈ Λ, Eλ is a Hilbert C
∗-module over Aλ , and the following conditions are

satisfied:
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(a) σλµ(ξλaλ) = σλµ(ξλ)πλµ(aλ) for all ξλ ∈ Eλ and aλ ∈ Aλ;

(b) 〈σλµ(ξλ), σλµ(ηλ)〉 = πλµ (〈ξλ, ηλ〉) for all ξλ, ηλ ∈ Eλ.

Proposition 1.2.21 Let {Eλ ;σλµ;Aλ;πλµ}λ≥µ,λ,µ∈Λ be an inverse system of

Hilbert C∗-modules. Then lim
←
λ

Eλ is a Hilbert lim
←
λ

Aλ -module with the action of

lim
←
λ

Aλ on lim
←
λ

Eλ defined by

(ξλ)λ (aλ)λ = (ξλaλ)λ

and the inner-product defined by

〈(ξλ)λ , (ηλ)λ〉 = (〈ξλ , ηλ〉)λ .

Proof. Let (ξλ)λ , (ηλ)λ ∈ lim
←
λ

Eλ and (aλ)λ ∈ lim
←
λ

Aλ. Since

σλµ(ξλaλ) = σλµ(ξλ)πλµ(aλ) = ξµaµ

and

πλµ (〈ξλ, ηλ〉) = 〈σλµ(ξλ), σλµ(ηλ)〉 =
〈
ξµ , ηµ

〉

for all λ, µ ∈ Λ with λ ≥ µ, the module action of lim
←
λ

Aλ on lim
←
λ

Eλ and the

inner-product on lim
←
λ

Eλ are well-defined. It is not hard to check that in this way

lim
←
λ

Eλ becomes a pre-Hilbert lim
←
λ

Aλ -module.

To show that lim
←
λ

Eλ is a Hilbert lim
←
λ

Aλ-module, let {
(
ξiλ
)
λ
}i∈I be a funda-

mental net in lim
←
λ

Eλ. Then, for any ε > 0 and for any λ ∈ Λ, there is i0 ∈ I such

that
∥∥∥ξi1λ − ξi2λ

∥∥∥
λ
= pλ((ξ

i1
µ )µ − (ξi2µ )µ) < ε

for all i1, i2 in I with i1 ≥ i0 and i2 ≥ i0, where ‖·‖λ means the norm on Eλ

induced by the inner-product. Therefore for any λ ∈ Λ, the net {ξiλ}i∈I converges
in Eλ to an element ξλ. Since

σλµ(ξλ) = lim
i
σλµ(ξ

i
λ) = lim

i
ξiµ = ξµ
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for all λ, µ ∈ Λ with λ ≥ µ, (ξλ)λ ∈ lim
←
λ

Eλ .

Let λ ∈ Λ. Then

pλ((ξ
i
µ)µ − (ξµ)µ) =

∥∥ξiλ − ξλ
∥∥
λ
→ 0.

This shows that lim
←
λ

Eλ is complete and the proposition is proved.

References for Section 1.2: [14], [29], [38], [45].

1.3 Bounded elements

In this Section we consider the set b(E) of all bounded elements in a Hilbert

module E over a locally C∗-algebra A, and we show that E induces on b(E) a

structure of Hilbert C∗-module over b(A). Also we prove that a Hilbert module

E over A can be identified with lim
←
p

Ep up to an isomorphism of Hilbert modules

and we study the connection between b(HE) and Hb(E).

Let A be a locally C∗-algebra and let E be a Hilbert A-module.

Definition 1.3.1 An element ξ in E is said to be bounded if

‖ξ‖∞ = sup {p (ξ) ; p ∈ S(A)} <∞.

The set of all bounded elements of E is denoted by b(E).

Theorem 1.3.2 ([18, 38, 45]). Let E be a Hilbert A-module. Then:

1. b(E) is a Hilbert b(A)-module;

2. b(E) is dense in E.

Proof. 1. First we will show that the restriction of the inner product 〈·, ·〉 on
b(E) is a b(A)-valued inner-product on b(E). Let ξ, η ∈ E. Then, by Cauchy-

Schwarz Inequality, we have

p (〈ξ, η〉) ≤
√
p (〈ξ, ξ〉) p (〈η, η〉) = p (ξ) p (η) ≤ ‖ξ‖∞ ‖η‖∞
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for all p ∈ S(A). This means that 〈ξ, η〉 ∈ b(A), and so b(E) is a pre-Hilbert

b(A)-module. We remark that

‖ξ‖∞ =
√
‖〈ξ, ξ〉‖∞

for all ξ ∈ b(E). Hence ‖·‖∞ is the norm on b(E) induced by the inner-product.

To show the completeness of b(E) with respect to the norm ‖·‖∞ induced by
the inner-product, let {ξn}n be a fundamental sequence in b(E). Since

p (ξn − ξm) ≤ ‖ξn − ξm‖∞

for all positive integers n and m and for all p ∈ S(A), the sequence {ξn}n is a
fundamental sequence in E, and since E is complete, it converges to an element

ξ in E. From

‖ξn‖∞ − ‖ξm‖∞ ≤ ‖ξn − ξm‖∞
for all positive integers m and n, we conclude that the sequence of positive

numbers {‖ξn‖∞}n is a fundamental sequence and so it is bounded. Let M > 0

such that ‖ξn‖∞ ≤M for all positive integer n. Then

p (ξ) ≤ p (ξn − ξ) + p (ξn) ≤ p (ξn − ξ) +M

for all positive integer n and for all p ∈ S(A). This implies that p (ξ) ≤ M for

all p ∈ S(A), and so ξ ∈ b(E).

To show that {ξn}n converges to ξ with respect to the norm ‖·‖∞, let ε > 0.

Since {ξn}n is a fundamental sequence in b(E), there is a positive integer nε such

that

‖ξn − ξm‖∞ ≤ ε

for all positive integers n and m with n ≥ nε and m ≥ nε . Then

p (ξn − ξ) = lim
m
p (ξn − ξm) ≤ lim

m
‖ξn − ξm‖∞ ≤ ε

for all positive integer n with n ≥ nε and for all p ∈ S(A). This shows that the

sequence {ξn}n converges to ξ with respect to the norm ‖·‖∞ , and the assertion

1. is proved.
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2. According to Remark 1.2.14 we can suppose that A has a unit 1. Let

ξ ∈ E. For any positive integer n, the element 1 + 1
n 〈ξ, ξ〉 is an invertible

element in A, [11]. Consider the sequence {ξn}n of elements in E, where

ξn = ξ
(
1 + 1

n 〈ξ, ξ〉
)−1
. By functional calculus

p (ξn) = p

(
〈ξ, ξ〉 12

(
1 +

1

n
〈ξ, ξ〉

)−1)
≤ √n

for all p ∈ S(A). This shows that {ξn}n is a sequence of elements in b(E), and

since

p (ξn − ξ) = p

(
〈ξ, ξ〉 12 − 〈ξ, ξ〉 12

(
1 +

1

n
〈ξ, ξ〉

)−1)

=
1

n
p

(
〈ξ, ξ〉 32

(
1 +

1

n
〈ξ, ξ〉

)−1)

≤ p (ξ)2

n
p

(
〈ξ, ξ〉 12

(
1 +

1

n
〈ξ, ξ〉

)−1)

≤ p (ξ)2√
n

for all p ∈ S(A), {ξn}n converges to ξ. Therefore b(E) is dense in E.

Remark 1.3.3 If A is a strongly spectral bounded locally C∗-algebra and E is a

Hilbert A -module, then b(E) = E as set.

Remark 1.3.4 Let {En}n be a countable set of Hilbert A -modules. If ξ = (ξn)n

is an element in
⊕
n
b(En), then

∑
n
〈ξn, ξn〉 converges in b(A), and so it converges

with respect to the topology determined by the family S(A) of C∗ -seminorms

to an element in b(A). This shows that ξ is an element in b(
⊕
n
En). Therefore

⊕
n
b(En) is a subset of b(

⊕
n
En), and moreover, since the restriction of the b(A)-

valued inner-product from b(
⊕
n
En) to

⊕
n
b(En) coincides with the b(A)-valued

inner-product on
⊕
n
b(En),

⊕
n
b(En) is a closed submodule of b(

⊕
n
En).

In general,
⊕
n
b(En) does not coincide with b(

⊕
n
En).
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Example 1.3.5 Let A = C(Z+), the locally C∗ -algebra of all C-valued functions

on Z+ endowed with the topology pointwise convergence. Then Hb(A) � b(HA).

Indeed, for any positive integer n, we consider the function fn from Z+ to C

defined by

fn(m) =





1 if m = n

0 if m �= n

.

It is easy to check that
∑
n
|fn|2 converges in A to the function f from Z+ to C

defined by f(m) = 1 for all positive integer m. Hence (fn)n is an element in

b(HA). Since

sup{|
∑

n≥n0

|fn|2 (m)|;m ∈ Z+} = 1

for any positive integer n0,
∑
n
|fn|2 is not convergent in b(A), and so (fn)n /∈

Hb(A).

Example 1.3.6 Let A = Ccc[0, 1], the locally C
∗-algebra of all C-valued contin-

uous functions on [0, 1] endowed with the topology of uniform convergence on the

countable compact subsets of [0, 1], [8] . In this case, Hb(A) = b(HA).

Indeed, if (fn)n ∈ b(HA), then
∑
n
|fn|2 converges in A, and by Dini’s Theorem

it converges in b(A). Therefore (fn)n ∈ Hb(A).

Remark 1.3.7 If {Ei}ni=1 is a finite set of Hilbert A -modules, then b(
n⊕
i=1

Ei)

coincides with
n⊕
i=1

b(Ei).

Indeed, we seen that
n⊕
i=1

b(Ei) is a closed submodule of b(
n⊕
i=1

Ei). Let ξ =

(ξi)
n
i=1 be an element in b(

n⊕
i=1

Ei). Then
n∑
i=1
〈ξi, ξi〉 is a positive element in b(A),

and since

0 ≤ 〈ξk, ξk〉 ≤
n∑
i=1
〈ξi, ξi〉

for all k = 1, ..., n, ξk is an element in b(Ek) for all k = 1, ..., n. Hence ξ ∈
n⊕
i=1

b(Ei).
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Lemma 1.3.8 Let {En}n be a countable set of Hilbert A -modules. Then
⊕
n
b(En)

is dense in
⊕
n
En.

Proof. Since b(
⊕
n
En) is dense in

⊕
n
En, it is enough to show that b(

⊕
n
En) is

contained in the closure of
⊕
n
b(En) with respect to the topology induced by the

inner-product on
⊕
n
En.

Let ξ = (ξn)n ∈ b(
⊕
n
En). For each positive integer m, we denote by ηm

the element in
⊕
n
En which has all the components zero except at the first m

components which are ξ1, ..., ξm. Since ξn ∈ b(En) for all positive integer n, and

since 〈ηm, ηm〉 =
m∑
n=1

〈ξn, ξn〉 , ηm is an element
⊕
n
b(En).

Let ε > 0 and p ∈ S(A). Since
∑
n
〈ξn, ξn〉 converges in A, there is a positive

integer nε such that

p(
∑
n≥nε

〈ξn, ξn〉) ≤ ε.

Then

p (ξ − ηm)
2 = p (〈ξ − ηm, ξ − ηm〉) = p(

∑
n≥m

〈ξn, ξn〉) ≤ ε

for all positive integer m with m ≥ nε . This shows that {ηm}m converges to

ξ with respect to the topology induced by the inner product on
⊕
n
En and the

lemma is proved.

Let E be a Hilbert A -module and let p ∈ S(A). Using Cauchy-Schwarz

Inequality, it is easy to check that Np = {ξ ∈ E; p (〈ξ, ξ〉) = 0} is a closed A

-submodule of E and Np = {ξ ∈ b(E); p (〈ξ, ξ〉) = 0} is a closed b(A) -submodule
of b(E). The quotient vector space E/Np is denoted by Ep.

Theorem 1.3.9 ([38, 45]). Let E be a Hilbert A -module and p ∈ S(A). Then
Ep is a Hilbert Ap-module.

Proof. We define an action of Ap on Ep by

(ξ +Np)πp(a) = ξa+Np, ξ ∈ E, a ∈ A
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and an Ap -valued inner-product on Ep by

〈ξ +Np, η +Np〉 = πp (〈ξ, η〉) , ξ, η ∈ E.

It is not difficult to check Ep with the action of Ap on Ep and the Ap -valued

inner-product defined above becomes a pre-Hilbert Ap -module. It remains to

show that Ep is complete with respect to the norm induced by the inner-product.

The norm on Ep induced by the inner- product is denoted by ‖·‖p .
We know that the vector space b(E)/Np is a Banach space with respect to

the topology determined by that norm

‖ξ +Np‖ = inf {‖ξ + η‖∞ ; η ∈ Np} , ξ ∈ b(E).

To show that Ep is complete, it is enough to show that the map Φ : b(E)/Np →
Ep defined by

Φ(ξ +Np) = ξ +Np, ξ ∈ b(E).

is a linear isometry with dense range. Clearly, Φ is well-defined and it is linear.

Let ξ ∈ b(E). Then

‖Φ(ξ +Np)‖p = ‖ξ +Np‖p =
√
‖〈ξ +Np, ξ +Np〉‖p

=
√
p (〈ξ, ξ〉) = p (ξ) .

Thus, to show that Φ is an isometry, we must show that p (ξ) = ‖ξ +Np‖ for all
ξ ∈ b(E). Let η ∈ Np. Then

p (ξ) ≤ p (ξ + η) + p (η) = p (ξ + η) ≤ ‖ξ + η‖∞ .

From this relation we conclude that p (ξ) ≤ ‖ξ +Np‖ .
On the other hand, if {ei}i∈I is an approximate unit for ker p ∩b(A), then

‖ξ +Np‖ ≤ lim
i
‖ξ − ξei‖∞ = lim

i

√
‖〈ξ − ξei, ξ − ξei〉‖∞

= lim
i

∥∥∥〈ξ, ξ〉
1
2 − 〈ξ, ξ〉 12 ei

∥∥∥
∞

=
∥∥∥πp
(
〈ξ, ξ〉 12

)∥∥∥
p

=
√
p (〈ξ, ξ〉) = p (ξ)

27



(see, for example, [37], 1.5.4). Hence Φ is a linear isometry.

Let ξ ∈ E. Since b(E) is dense in E, there is a sequence {ξn}n in b(E) such

that p (ξ − ξn)→ 0 for all p ∈ S(A). Then

‖Φ(ξn +Np)− (ξ +Np)‖p = ‖ξn − ξ +Np‖p = p (ξn − ξ)→ 0.

This implies that Φ has dense range and the theorem is proved.

Let E be a Hilbert A -module. The canonical maps from E onto Ep, p ∈ S(A)
are denoted by σEp , p ∈ S(A) and the image of ξ under σEp by ξp.
Let p, q ∈ S(A) with p ≥ q. Since Np ⊆ Nq, there is a unique canonical

map σEpq from Ep onto Eq such that σ
E
pq ◦ σEp = σEq . It is easy to see that

{Ep;σ
E
pq;Ap;πpq}p,q∈S(A),p≥q is an inverse system of Hilbert C∗-modules in the

sense of Definition 1.2.19.

Proposition 1.3.10 Let E be a Hilbert A -module. Then the Hilbert A -modules

E and lim
←
p

Ep are isomorphic.

Proof. Define Φ : E → lim
←
p

Ep by

Φ(ξ) =
(
σEp (ξ)

)
p
, ξ ∈ E.

Clearly Φ is linear. From

〈Φ(ξ) ,Φ(η)〉 =
(〈
σEp (ξ) , σEp (η)

〉)
p
= (πp (〈ξ, η〉))p

= 〈ξ, η〉

for all ξ, η ∈ E, we conclude that Φ(E) is a closed A -submodule of lim
←
p

Ep. By

[4],

Φ(E) = Φ(E) = lim
←
p

σ̃p (Φ (E)) = lim
←
p

σp (E) = lim
←
p

Ep

where X means the closure of the vector space X with respect to the topology

determine by the inner- product and σ̃p, p ∈ S(A) are the canonical maps from

lim
←
p

Ep to Ep. Thus we showed that Φ is a surjective linear map which preserves

the inner product and the proposition is proved.
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Corollary 1.3.11 Let E be a Hilbert A -module and let α be a real number such

that 0 < α < 1
2 . Then for each ξ ∈ E there is η ∈ E such that ξ = η 〈ξ, ξ〉α .

Proof. For each positive integer n, we consider the function fn : R→ R defined

by

fn(λ) =





nα/2 if λ ≤ 1/n

λ−α/2 if λ > 1/n

.

Let p ∈ S(A). Then the sequence {σp(ξ)fn(〈σp(ξ), σp(ξ)〉1/2}n converges in Ep

to an element ηp, and moreover, σp(ξ) = ηp 〈σp(ξ), σp(ξ)〉α (see, for example,
[29]). By functional calculus, the sequence {ξfn(〈ξ, ξ〉1/2}n converges in E to an
element η. Moreover, σp (η) = ηp for all p ∈ S(A) and then ξ = η 〈ξ, ξ〉α.

Lemma 1.3.12 Let {En}n be a countable set of Hilbert A -modules. Then, for

each p ∈ S(A), the Hilbert Ap-modules

(⊕
n
En

)

p

and
⊕
n
(En)p are isomorphic.

Proof. Let (ξn)n be an element in
⊕
n
En and p ∈ S(A). Then

∑
n
〈ξn, ξn〉

converges in A, and since πp is continuous,
∑
n
πp (〈ξn, ξn〉) converges in Ap.

From this fact, knowing that

πp (〈ξn, ξn〉) =
〈
σnp (ξn) , σ

n
p (ξn)

〉

for all positive integer n, where σnp is the canonical map from En onto (En)p,

we conclude that
∑
n

〈
σnp (ξn) , σ

n
p (ξn)

〉
converges in Ap, and so

(
σnp (ξn)

)
n
is an

element in
⊕
n
(En)p. Moreover,

〈
σnp (ξn)n , σ

n
p (ξn)n

〉
= πp (〈(ξn)n , (ξn)n〉) .

Thus we can define a map Up from

(⊕
n
En

)

p

to
⊕
n
(En)p by

Up ((ξn)n +Np) =
(
σnp (ξn)

)
n
.

29



It is not difficult to check that Up is C - and A - linear and it preserves the inner

product.

To show that the Hilbert Ap -modules

(⊕
n
En

)

p

and
⊕
n
(En)p are isomorphic

it is enough to show that Up has dense range. Let ξ = (ξpn)n be an element in⊕
n
(En)p . For each positive integer m, we consider the element ξ̃m in

⊕
n
(En)p

which has all the components zero at except the first m components which are

ξp1, ..., ξ
p
m. A simple calculus shows that the sequence {ξ̃m}m converges to ξ. Since

the maps σnp , n = 1, 2, ..., are all surjective, for each positive integer m there is

an element η̃m in
⊕
n
En such that Up(η̃m+Np) = ξ̃m. Hence Up has dense range

and the lemma is proved.

Remark 1.3.13 If E is a Hilbert A -module, then the Hilbert Ap -modules (HE)p

and HEp are isomorphic.

References for Section 1.3: [14], [18], [23], [36], [38], [45].
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Chapter 2

Operators on Hilbert modules

2.1 Bounded operators

In this Section we introduce the notion of bounded module morphism between

two Hilbert modules, and we show that the set BA(E) of all bounded module

morphisms on E is a locally m -convex algebra which can be identified with

lim
←
p

BAp(Ep), where BAp(Ep) is the Banach space of all bounded module mor-

phisms on Ep for each p ∈ S(A), up to a topological isomorphism.
Let A be a locally C∗-algebra and let E, F and G be Hilbert A -modules.

Definition 2.1.1 A C- and A- linear map T from E to F is said to be a bounded

operator from E to F if for each p ∈ S(A) there is Mp > 0 such that

pF (Tξ) ≤MppE (ξ)

for all ξ ∈ E.
The set of all bounded operators from E to F is denoted by BA(E,F ) and we

write BA(E) for BA(E,E).

Remark 2.1.2 Let T, S ∈ BA(E,F ), R ∈ BA(F,G), λ ∈ C, p ∈ S(A) and

ξ ∈ E. Then:
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1. pF ((T + S)(ξ)) ≤ pF (Tξ) + pF (Sξ) ≤ Mp,TpE(ξ) +Mp,SpE(ξ) = (Mp,T +

Mp,S)pE(ξ);

2. pF ((λT )(ξ)) = |λ|pF (Tξ) ≤ |λ|Mp,TpE(ξ);

3. pG(RTξ) ≤Mp,RpF (Tξ) ≤Mp,RMp,TpE(ξ).

From these facts we conclude that BA(E,F ) is a vector space and BA(E) is

an algebra.

Lemma 2.1.3 For each p ∈ S(A), the map p̃ : BA(E,F )→ [0,∞) defined by

p̃ (T ) = sup {pF (Tξ) ; pE (ξ) ≤ 1}

is a seminorm on BA(E,F ). Moreover, if F = E, then p̃ is a submultiplicative

seminorm on BA(E).

Proof. It is straightforward.

Theorem 2.1.4 The set BA(E,F ) is a Hausdorff complete locally convex space

with respect to the topology determined by the family of seminorms {p̃}p∈S(A).

Proof. Let T ∈ BA(E,F ) such that p̃(T ) = 0 for all p ∈ S(A). Then pF (Tξ) = 0

for all p ∈ S(A) and for all ξ ∈ E, and since F is separable, Tξ = 0 for all ξ ∈ E.
Therefore T = 0. Thus we showed that BA(E,F ) is a Hausdorff locally convex

space.

To show the completeness of BA(E,F ), let {Ti}i∈I be a fundamental net in
BA(E,F ). First, we show that the net {Tiξ}i∈I converges in F for each ξ ∈ E.

For this, let p ∈ S(A), ξ ∈ E and ε > 0.

If pE(ξ) �= 0, then, since {Ti}i∈I is a fundamental net in BA(E,F ), there is

i0 ∈ I such that
p̃(Ti1 − Ti2) ≤ ε/pE(ξ)

for all i1, i2 ∈ I with i1 ≥ i0 and i2 ≥ i0, and so

pF (Ti1ξ − Ti2ξ) ≤ ε
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for all i1, i2 ∈ I with i1 ≥ i0 and i2 ≥ i0.

If pE(ξ) = 0, then

pF (Ti1ξ − Ti2ξ) ≤ p̃(Ti1 − Ti2)pE(ξ) = 0

for all i1, i2 ∈ I . Hence {Tiξ}i∈I is a fundamental net in F and so it is convergent.
Define a map T : E → F by

Tξ = lim
i
Tiξ.

It is not hard to check that T is C - and A - linear. Since {Ti}i∈I is a fundamental
net in BA(E,F ), for each p ∈ S(A), {p̃(Ti)}i∈I is a fundamental net of positive
numbers and so it is bounded. Let Mp > 0 such that p̃(Ti) ≤ Mp for all i ∈ I.

Then we have

pF (Tξ) = lim
i
pF (Tiξ) ≤ lim

i
p̃(Ti)pE(ξ) ≤MppE(ξ)

for all ξ ∈ E and for all p ∈ S(A). This means that T ∈ BA(E,F ).

To show that {Ti}i∈I converges to T, let ε > 0, p ∈ S(A) and ξ ∈ E such

that pE(ξ) ≤ 1. Since {Ti}i∈I is a fundamental net in BA(E,F ), there is i0 ∈ I

such that

p̃(Ti1 − Ti2) ≤ ε

for all i1, i2 ∈ I with i1 ≥ i0 and i2 ≥ i0. Then

pF (Tξ − Ti1ξ) = lim
i
pF (Tiξ − Ti1ξ) ≤ lim

i
p̃(Ti − Ti1)pE(ξ)

≤ lim
i
p̃(Ti − Ti1) ≤ ε

for all i1 ∈ I with i1 ≥ i0. Therefore

p̃(T − Ti1) = sup{pF (Tη − Ti1η); pE(η) ≤ 1} ≤ ε

for all i1 ∈ I with i1 ≥ i0. This means that the net {Ti}i∈I converges to T and
the theorem is proved.

Corollary 2.1.5 The algebra BA(E) is a Hausdorff complete locally convex alge-

bra with respect to the topology determined by the family of seminorms {p̃}p∈S(A).
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Let {Eλ;σλµ;Aλ ;πλµ}λ≥µ,λ,µ∈Λ and {Fλ ;χλµ;Aλ ;πλµ}λ≥µ,λ,µ∈Λ be two in-
verse systems of Hilbert C∗-modules such that the canonical maps σλ from lim

←
λ

Eλ

to Eλ , χλ from lim
←
λ

Fλ to Fλ and πλ from lim
←
λ

Aλ to Aλ , λ ∈ Λ are all surjective.

Then the connecting maps σλµ from Eλ to Eµ , χλµ from Fλ to Fµ and πλµ from

Aλ to Aµ , λ ≥ µ, λ, µ ∈ Λ are all surjective.

Let λ, µ ∈ Λ with λ ≥ µ, T ∈ BAλ (Eλ, Fλ), ζ ∈ Eµ and ξ ∈ Eλ such that

σλµ(ξ) = ζ. Then

∥∥χλµ (Tξ)
∥∥2
Fµ

=
∥∥〈χλµ (Tξ) , χλµ (Tξ)

〉∥∥
Aµ

= ‖πλµ (〈Tξ, Tξ〉)‖Aµ
(cf. [36], 2.8)

≤ ‖T‖2λ ‖πλµ (〈ξ, ξ〉)‖Aµ = ‖T‖2λ ‖〈σλµ(ξ), σλµ(ξ)〉‖Aµ
= ‖T‖2λ ‖ζ‖2Eµ

where ‖·‖λ is the norm onBAλ (Eλ, Fλ). Therefore we can define a map (πλµ)∗ (T )

from Eµ to Fµ by

(πλµ)∗ (T )(ζ) = χλµ (Tξ) if σλµ(ξ) = ζ.

Moreover,
∥∥(πλµ)∗ (T )(ζ)

∥∥
Fµ
≤ ‖T‖λ ‖ζ‖Eµ .

Let ζ1, ζ2 ∈ Eµ , ξ1, ξ2 ∈ Eλ such that σλµ(ξ1) = ζ1 and σλµ(ξ2) = ζ2, a ∈ Aµ ,

b ∈ Aλ such that πλµ(b) = a and the complex numbers α1 and α2. Then, since

σλµ(α1ξ1 + α2ξ2) = α1ζ1 + α2ζ2 and σλµ(ξ1b) = σλµ(ξ1)πλµ(b) = ζ1a,

we have:

(a) (πλµ)∗ (T )(α1ζ1 + α2ζ2) = χλµ(T (α1ξ1 + α2ξ2))

= α1χλµ(Tξ1) + α2χλµ(Tξ2) = α1 (πλµ)∗ (T )(ζ1) + α2 (πλµ)∗ (T )(ζ2)

and

(b) (πλµ)∗ (T )(ζ1a) = χλµ(T (ξ1b)) = χλµ(T (ξ1)b) = χλµ(Tξ1)πλµ(b)

= (πλµ)∗ (T )(ζ1)a.
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Therefore (πλµ)∗ (T ) is an element in BAµ (Eµ , Fµ). Thus we have obtained

a map (πλµ)∗ from BAλ (Eλ, Fλ) to BAµ (Eµ, Fµ). From

∥∥(πλµ)∗ (T )
∥∥
µ
= sup{

∥∥(πλµ)∗ (T )(ζ)
∥∥
Fµ

; ‖ζ‖Eµ ≤ 1} ≤ ‖T‖λ

for all T ∈ BAλ (Eλ , Fλ), we conclude that (πλµ)∗ is continuous. It is not hard

to check that (πλµ)∗ is linear and {BAλ (Eλ , Fλ); (πλµ)∗}λ≥µ,λ,µ∈Λ is an inverse
system of Banach spaces.

Let A = lim
←
λ

Aλ, E = lim
←
λ

Eλ and F = lim
←
λ

Fλ .

Theorem 2.1.6 Let A, E and F be as above. Then the Hausdorff complete

locally convex spaces BA(E,F ) and lim
←
λ

BAλ (Eλ, Fλ) are isomorphic.

Proof. Let λ ∈ Λ, T ∈ BA(E,F ), ξλ ∈ Eλ and ξ ∈ E such that σλ(ξ) = ξλ.

Then

∥∥χλ (Tξ)
∥∥2
Fλ

=
∥∥〈χλ (Tξ) , χλ (Tξ)

〉∥∥
Aλ

= ‖πλ (〈Tξ, Tξ〉)‖Aλ
= pλ (〈Tξ, Tξ〉) = pλ,F (Tξ)

2

≤ p̃λ(T )
2pλ,E(ξ)

2

= p̃λ(T )
2pλ (〈ξ, ξ〉)

= p̃λ(T )
2 ‖πλ (〈ξ, ξ〉)‖Aλ

= p̃λ(T )
2
∥∥ξλ
∥∥2
Eλ

.

This implies that the map (πλ)∗ (T ) from Eλ to Fλ defined by

(πλ)∗ (T )(ξλ) = χλ (Tξ) if σλ(ξ) = ξλ

is well-defined, and moreover,

∥∥(πλ)∗ (T )(ξλ)
∥∥
Fλ
≤ p̃λ(T )

∥∥ξλ
∥∥
Eλ

.
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It is not difficult to check that (πλ)∗ (T ) is an element in BAλ (Eλ, Fλ). In this

way we have defined a map (πλ)∗ from BA(E,F ) to BAλ (Eλ , Fλ). Also it is not

difficult to check that (πλ)∗ is linear. Moreover, since

‖(πλ)∗ (T )‖λ = sup{
∥∥(πλ)∗ (T )(ξλ)

∥∥
Fλ

;
∥∥ξλ
∥∥
Eλ
≤ 1} = p̃λ(T )

for all T ∈ BA(E,F ), (πλ)∗ is continuous.

Define Ψ from BA(E,F ) to lim
←
λ

BAλ (Eλ , Fλ) by

Ψ(T ) = ((πλ)∗ (T ))λ .

Let λ, µ ∈ Λ with λ ≥ µ, T ∈ BA(E,F ), ζ ∈ Eµ and ξ ∈ Eλ such that σλµ(ξ) = ζ

and η ∈ E such that σλ(η) = ξ. Then, since σµ(η) = σλµ(σλ(η)) = σλµ(ξ) = ζ,

we have

(
(πλµ)∗ ((πλ)∗ (T ))

)
(ζ) = χλµ ((πλ)∗ (T )(ξ)) = χλµ(χλ (Tη))

= χµ (Tη) =
(
πµ
)
∗
(T ) (ζ) .

Therefore Ψ is well-defined. It is not hard to check that Ψ is linear.

To show that Ψ is surjective, let (Tλ)λ ∈ lim
←
λ

BAλ (Eλ , Fλ) and ξ =
(
ξλ
)
λ
∈

lim
←
λ

Eλ. Define T from E to F by Tξ =
(
Tλξλ

)
λ
. Let λ, µ ∈ Λ with λ ≥ µ. Then

χλµ(Tλξλ) = (πλµ)∗ (Tλ) (σλµ(ξλ)) = Tµξµ .

This shows that T is well-defined. It is easy to check that T is C -and A -linear,

and since

pλ,F (Tξ) =
∥∥Tλξλ

∥∥
Fλ
≤ ‖Tλ‖λ

∥∥ξλ
∥∥
Eλ

= ‖Tλ‖λ pλ,E(ξ)

for all ξ ∈ E and for all λ ∈ Λ, T is a bounded operator from E to F. Moreover,

since

(πλ)∗ (T )(σλ(ξ)) = χλ(Tξ) = Tλ(σλ(ξ))

for all ξ ∈ E and for all λ ∈ Λ, Ψ(T ) = (Tλ)λ. Therefore Ψ is surjective.
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Let {qλ}λ∈Λ be the family of seminorms which define the topology on lim
←
λ

BAλ

(Eλ , Fλ) (that is, qλ((Tµ)µ) = ‖Tλ‖λ From

qλ(Ψ(T )) = ‖(πλ)∗ (T )‖λ = p̃λ(T )

for all λ ∈ Λ and for all T ∈ BA(E,F ), we conclude that Ψ is injective, and

moreover, Ψ and its inverse are continuous.

Corollary 2.1.7 Let A be a locally C∗ -algebra and let E and F be Hilbert A

-modules. Then {BAp(Ep, Fp); (πpq)∗}p≥q,p,q∈S(A) is an inverse system of Ba-

nach spaces and the Hausdorff complete locally convex spaces BA(E,F ) and

lim
←
p

BAp(Ep, Fp) are isomorphic.

Let {Eλ ;σλµ;Aλ;πλµ}λ≥µ,λ,µ∈Λ be an inverse system of Hilbert C∗-modules
such that the canonical maps σλ from lim

←
λ

Eλ to Eλ and πλ from lim
←
λ

Aλ to Aλ,

λ ∈ Λ are all surjective.

Let λ, µ ∈ Λ with λ ≥ µ. We seen that the map (πλµ)∗ from BAλ (Eλ) to

BAµ (Eµ) defined by

(πλµ)∗ (T )(ζ) = σλµ (Tξ) if σλµ(ξ) = ζ

is a continuous morphism of Banach spaces. To show that (πλµ)∗ is a morphism

of algebras, let T, S ∈ BAλ (Eλ), ζ ∈ Eµ and ξ ∈ Eλ such that σλµ(ξ) = ζ. Then

(πλµ)∗ (TS)(ζ) = σλµ (TSξ) = (πλµ)∗ (T )(σλµ (Sξ))

= (πλµ)∗ (T ) (πλµ)∗ (S)(ζ).

Therefore (πλµ)∗ is a continuous morphism of Banach algebras and { BAλ (Eλ);

(πλµ)∗}λ≥µ,λ,µ∈Λ is an inverse system of Banach algebras.
Let A = lim

←
λ

Aλ and E = lim
←
λ

Eλ .

Proposition 2.1.8 Let A and E be as above. Then the Hausdorff complete

locally m -convex algebras BA(E) and lim
←
λ

BAλ (Eλ) are isomorphic.
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Proof. By Theorem 2.1.6, to prove the proposition it remains to show that

the map Ψ from BA(E) onto lim
←
λ

BAλ (Eλ) defined by Ψ(T ) = ((πλ)∗(T ))λ is a

morphism of algebras. Let λ ∈ Λ, T, S ∈ BA(E), ξ ∈ E and ζ ∈ Eλ such that

σλ(ξ) = ζ. Then

(πλ)∗ (TS)(ζ) = σλ (TSξ) = (πλ)∗ (T )(σλ (Sξ))

= (πλ)∗ (T ) (πλ)∗ (S)(ζ).

Therefore (πλ)∗ is a morphism of algebras for all λ ∈ Λ. This implies that Ψ is

a morphism of algebras and the proposition is proved.

Corollary 2.1.9 Let A be a locally C∗ -algebra and let E be a Hilbert A -module.

Then {BAp(Ep); (πpq)∗}p≥q,p,q∈S(A) is an inverse system of Banach algebras and

the Hausdorff complete locally m-convex algebras BA(E) and lim
←
p

BAp(Ep) are

isomorphic.

References for Section 2.1: [12], [14], [24], [29], [36], [38], [45].

2.2 Operators admitting an adjoint

In this Section we consider the notion of adjointable module morphism between

two Hilbert A-modules E and F, and we prove that the set LA(E) of all ad-

jointable module morphisms on E is a locally C∗-algebra which can be identified

with lim
←
p

LAp(Ep), where LAp(Ep) is the C
∗-algebra of all adjointable module

morphisms on Ep for each p ∈ S(A), up to an isomorphism of locally C∗-algebras.
Let A be a locally C∗ -algebra and let E, F and G be Hilbert modules.

Definition 2.2.1 A map T from E to F is said to be adjointable if there is a

map T ∗ from F to E such that

〈η, Tξ〉 = 〈T ∗η, ξ〉

for all ξ ∈ E and for all η ∈ F.
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The set of all adjointable operators from E to F is denoted by LA(E,F ).

When F = E, for simplifying, we write LA(E).

Remark 2.2.2 Let T, S ∈ LA(E,F ), R ∈ LA(F,G), ξ ∈ E, η ∈ F, ζ ∈ G and

the complex numbers α, β. Then:

1. 〈η, (αT + βS)ξ〉 = α 〈η, Tξ〉+ β 〈η, Sξ〉 = α 〈T ∗η, ξ〉+ β 〈S∗η, ξ〉

=
〈
(αT ∗ + βS∗)η, ξ

〉
;

2. 〈ζ,RTξ〉 = 〈R∗ζ, Tξ〉 = 〈T ∗R∗ζ, ξ〉 and

3. 〈ξ, T ∗η〉 = (〈T ∗η, ξ〉)∗ = (〈η, Tξ〉)∗ = 〈Tξ, η〉 .

Therefore LA(E,F ) is a vector space, LA(E) is an algebra and moreover,

(a) (αT + βS)∗ = αT ∗ + βS∗;

(b) (RT )∗ = T ∗R∗;

(c) (T ∗)∗ = T.

Lemma 2.2.3 If T is an adjointable operator from E to F, then T and T ∗ are

bounded operators, and moreover, p̃(T ) = p̃(T ∗) for all p ∈ S(A).

Proof. Let ξ, ζ ∈ E, η ∈ F, a ∈ A and λ ∈ C. Then:

1. 〈η, T (ξ + ζ)〉 = 〈T ∗η, ξ + ζ〉 = 〈T ∗η, ξ〉+ 〈T ∗η, ζ〉

= 〈η, Tξ〉+ 〈η, Tζ〉 = 〈η, Tξ + Tζ〉 ;

2. 〈η, T (λξ)〉 = 〈T ∗η, λξ〉 = λ 〈T ∗η, ξ〉 = λ 〈η, Tζ〉 = 〈η, λTζ〉 ; and

3. 〈η, T (ξa)〉 = 〈T ∗η, ξa〉 = 〈T ∗η, ξ〉 a = 〈η, Tζ〉a = 〈η, (Tζ)a〉 .

From these relations we conclude that T is C - and A -linear. In the same

way we show that T ∗ is a C - and A -linear map from F to E.
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To show that T is a bounded operator from F to E, first we show that

T (NE
p ) ⊆ NF

p for all p ∈ S(A). Let p ∈ S(A) and ξ ∈ NE
p . Then

pF (Tξ)
2 = p(〈Tξ, Tξ〉) = p(〈T ∗Tξ, ξ〉)

(cf. Cauchy-Schwarz Inequqlity)

≤ pF (T
∗Tξ) pE(ξ) = 0.

Hence T (NE
p ) ⊆ NF

p for all p ∈ S(A). In the same way we show that T ∗(NF
p ) ⊆

NE
p for all p ∈ S(A). Then, for each p ∈ S(A), we can define the maps Tp from

Ep to Fp by

Tp
(
σEp (ξ)

)
= σFp (Tξ)

and T ∗p from Fp to Ep by

T ∗p
(
σFp (η)

)
= σEp (T ∗η) .

Moreover, we have

〈
σFp (η) , Tp

(
σEp (ξ)

)〉
=
〈
σFp (η) , σFp (Tξ)

〉

= πp (〈η, Tξ〉) = πp (〈T ∗η, ξ〉)
=
〈
σEp (T ∗η) , σEp (ξ)

〉
=
〈
T ∗p
(
σFp (η)

)
, σEp (ξ)

〉

for all ξ ∈ E and for all η ∈ F. This means that Tp is an adjointable operator from
Ep to Fp and so Tp and T

∗
p are bounded operators between Hilbert C

∗-modules

(see, for example, [36]).

Then

pF (Tξ)2 = p (〈Tξ, Tξ〉) = ‖πp (〈Tξ, Tξ〉)‖p
=
∥∥〈σFp (Tξ) , σFp (Tξ)

〉∥∥
p

=
∥∥〈Tp

(
σEp (ξ)

)
, Tp
(
σEp (ξ)

)〉∥∥
p

≤ ‖Tp‖2
∥∥〈σEp (ξ) , σEp (ξ)

〉∥∥
p

(cf. [36], 2.8)

= ‖Tp‖2 ‖πp (〈ξ, ξ〉)‖p
= ‖Tp‖2 pE (ξ)2 ,
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for p ∈ S(A) and for all ξ ∈ E. Hence T is bounded. Moreover,

p̃(T ) = sup{pF (Tξ) ; ξ ∈ E, pE(ξ) ≤ 1}
= sup{

∥∥Tp
(
σEp (ξ)

)∥∥
pF

; ξ ∈ E,
∥∥σEp (ξ)

∥∥
pE
≤ 1}

= ‖Tp‖ .

In the same way we show that T ∗ is a bounded operator from F to E and

p̃(T ∗) =
∥∥T ∗p
∥∥ . Moreover, since

∥∥T ∗p
∥∥ = ‖Tp‖ for all p ∈ S(A), p̃(T ) = p̃(T ∗) for

all p ∈ S(A).

Remark 2.2.4 The map T → T ∗ defines an involution on LA(E).

Proposition 2.2.5 The set LA(E,F ) of all adjointable operators from E to F

is a closed subspace of BA(E,F ).

Proof. By Remark 2.2.2 and Lemma 2.2.3, LA(E,F ) is a vector subspace of

BA(E,F ).

To show that LA(E,F ) is closed, let {Ti}i∈I be a net in LA(E,F ) which

converges to an element T in BA(E,F ). According to Lemma 2.2.3, {T ∗i }i∈I is a
fundamental net in BA(E,F ), and so it converges to an element S in BA(E,F ).

Then

〈η, Tξ〉 = lim
i
〈η, Tiξ〉 = lim

i
〈T ∗i η, ξ〉 = 〈Sη, ξ〉

for all ξ ∈ E and for all η ∈ F. This means that T is adjointable, and the

proposition is proved.

Let p ∈ S(A) and T ∈ LA(E). We seen that p̃(T ) = p̃(T ∗). Moreover,

p̃(T ∗T ) ≤ p̃(T ∗)p̃(T ) = p̃(T )2.

On the other hand,

p̃(T ∗T ) = sup{pE (T ∗Tξ) ; pE(ξ) ≤ 1} =
= sup{sup{p(〈T ∗Tξ, η〉); η ∈ E, pE(η) ≤ 1}; ξ ∈ E, pE(ξ) ≤ 1}
≥ sup{p(〈T ∗Tξ, ξ〉); ξ ∈ E, pE(ξ) ≤ 1} = p̃(T )2.
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Therefore p̃ is a C∗-seminorm on LA(E).

Theorem 2.2.6 The set LA(E) of all adjointable operators on E is a locally C∗-

algebra with respect to the topology determined by the family of C∗-seminorms

{p̃}p∈S(A) and the involution defined by T → T ∗.

Proof. By Proposition 2.2.5, LA(E) equipped with the topology determined

by the family of seminorms {p̃}p∈S(A) is a Hausdorff complete locally convex
space, and since LA(E) is an algebra with involution and {p̃}p∈S(A) is a family
of C∗-seminorms, LA(E) is a locally C∗-algebra.

Let {Eλ;σλµ;Aλ ;πλµ}λ≥µ,λ,µ∈Λ and {Fλ ;χλµ;Aλ ;πλµ}λ≥µ,λ,µ∈Λ be two in-
verse systems of Hilbert C∗ -modules such that the canonical maps σλ from

lim
←
λ

Eλ to Eλ, χλ from lim
←
λ

Fλ to Fλ and πλ from lim
←
λ

Aλ to Aλ, λ ∈ Λ are all sur-

jective. We seen (pp. 36-37) that {BAλ (Eλ, Fλ); (πλµ)∗}λ≥µ,λ,µ∈Λ is an inverse
system of Banach spaces.

Let λ, µ ∈ Λ with λ ≥ µ, T ∈ LAλ (Eλ , Fλ), ξµ ∈ Eµ and ξλ ∈ Eλ such that

σλµ(ξλ) = ξµ , ηµ ∈ Fµ and ηλ ∈ Fλ such that χλµ(ηλ) = ηµ . Then

〈
ηµ , (πλµ)∗ (T )(ξµ)

〉
=
〈
χλµ(ηλ), χλµ(Tξλ)

〉
= πλµ(〈ηλ, Tξλ〉)

= πλµ(〈T ∗ηλ, ξλ〉) =
〈
(π̃λµ)∗ (T

∗)(ηµ), ξµ
〉
,

where (π̃λµ)∗ is the canonical map from BAλ (Fλ, Eλ) to BAµ (Fµ , Eµ). This

shows that (πλµ)∗ (T ) ∈ LAµ (Eµ, Fµ) and moreover, (πλµ)∗ (T )
∗ = (π̃λµ)∗ (T

∗).

The restriction of (πλµ)∗ on LAλ (Eλ , Fλ) is also denoted by (πλµ)∗ . There-

fore {LAλ (Eλ, Fλ); (πλµ)∗}λ≥µ,λ,µ∈Λ is an inverse system of Banach spaces and
{LAλ (Eλ); (πλµ)∗}λ≥µ,λ,µ∈Λ is an inverse system of C∗-algebras.
Let A = lim

←
λ

Aλ , E = lim
←
λ

Eλand F = lim
←
λ

Fλ.

Proposition 2.2.7 Let A,E and F be as above. Then:

1. The Hausdorff complete locally convex spaces LA(E,F ) and lim
←
λ

LAλ (Eλ, Fλ)

are isomorphic.
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2. The locally C∗-algebras LA(E) and lim
←
λ

LAλ (Eλ) are isomorphic.

Proof. 1. Let λ ∈ Λ, T ∈ LA(E,F ), ξλ ∈ Eλ and ξ ∈ E such that σλ(ξ) =

ξλ, ηλ ∈ Fλ and η ∈ F such that χλ(η) = ηλ . Then

〈ηλ, (πλ)∗ (T )(ξλ)〉 = 〈χλ(η), χλ(Tξ)〉 = πλ(〈η, Tξ〉)
= πλ(〈T ∗η, ξ〉) = 〈(π̃λ)∗ (T ∗)(ηλ), ξλ〉 ,

where (π̃λ)∗ is the canonical map from BA(E,F ) to BAλ (Eλ, Fλ). This shows

that (πλ)∗ (T ) ∈ LAλ (Eλ , Fλ) and (πλ)∗ (T )
∗ = (π̃λ)∗ (T

∗).The restriction of

(πλ)∗ on LA(E,F ) is also denoted by (πλ)∗ . Thus, if Ψ is the isomorphism

from BA(E,F ) onto lim
←
λ

BAλ (Eλ, Fλ) defined by Ψ(T ) = ((πλ)∗ (T ))λ (Theorem

2.1.6), then Ψ( LA(E,F )) ⊆ lim
←
λ

LAλ (Eλ, Fλ). To show that LA(E,F ) is iso-

morphic with lim
←
λ

LAλ (Eλ, Fλ) it remains to show that the restriction of Ψ on

LA(E,F ) is a surjective map from LA(E,F ) to lim
←
λ

LAλ (Eλ , Fλ).

Let (Tλ)λ ∈ lim
←
λ

LAλ (Eλ , Fλ). Then there is T ∈ BA(E,F ) such that Ψ(T ) =

(Tλ)λ . Moreover, Tξ = (Tλ(σλ(ξ)))λ for all ξ ∈ E. Let S ∈ BA(F,E) defined by

Sη = (T ∗λ(σλ(η)))λ, ξ = (ξλ)λ ∈ E and η = (ηλ)λ ∈ F. Then

〈η, Tξ〉 = 〈(ηλ)λ , (Tλ(ξλ))λ〉 = (〈ηλ, Tλ(ξλ)〉)λ
= (〈T ∗λ(ηλ), (ξλ)〉)λ = 〈(T ∗λ(ηλ))λ, (ξλ)λ〉 = 〈Sη, ξ〉 .

Therefore, T ∈ LA(E,F ) and the assertion 1. is proved.

2. By the first part of the proposition, the map Ψ from LA(E) to lim
←
λ

LAλ (Eλ)

defined by Ψ(T ) = ((πλ)∗ (T ))λ is an isomorphism of locally convex spaces.

Moreover, from the proof of Proposition 2.1.8, Ψ is also morphism of algebras.

Let T ∈ LA(E), ξ = (ξλ)λ , η = (ηλ)λ ∈ E. Then

〈η,Ψ(T )ξ〉 = 〈(ηλ)λ , ((πλ)∗ (T )ξλ)λ〉 = (〈ηλ, (πλ)∗ (T )ξλ〉)λ
= (〈(πλ)∗ (T )∗ηλ , ξλ〉)λ = (〈(πλ)∗ (T ∗)ηλ, ξλ〉)λ
= 〈((πλ)∗ (T ∗)ηλ)λ , (ξλ)λ〉 = 〈Ψ(T ∗)η, ξ〉 .
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This shows that Ψ(T )∗ = Ψ(T ∗) and so Ψ is an isomorphism of locally C∗

-algebras.

Corollary 2.2.8 Let A be a locally C∗-algebra and let E and F be two Hilbert

A-modules. Then :

1. The Hausdorff complete locally convex spaces LA(E,F ) and lim
←
p

LAp(Ep, Fp)

are isomorphic.

2. The locally C∗-algebras LA(E) and lim
←
p

LAp(Ep) are isomorphic.

Corollary 2.2.9 Let A be a locally C∗-algebra, let E be Hilbert C∗-module

and let n be a positive integer. Then the locally C∗-algebras LA(
n⊕
i=1

E) and

Mn(LA(E)) are isomorphic.

Proof. By Lemma 1.3.12 and Corollary 2.2.8, the locally C∗-algebras LA(
n⊕
i=1

E)

and lim
←
p

LAp(
n⊕
i=1

Ep) are isomorphic as well asMn(LA(E)) and lim
←
p

Mn(LAp(Ep)).

From this fact, taking into account that the C∗-algebras LAp(
n⊕
i=1

Ep) and Mn(LAp

(Ep)) are isomorphic, we conclude that the locally C∗-algebras LA(
n⊕
i=1

E) and

Mn(LA(E)) are isomorphic

References for Section 2.2: [12], [14], 24], [29], [36], [39], [40], [45].

2.3 Compact operators

In this Section we introduce the notion of ”compact operators” on Hilbert mod-

ules on locally C∗-algebras, and we prove that the set KA(E) of all compact

operators on is a closed two -sided ∗ -ideal of LA(E) can be identified with

lim
←
p

KAp(Ep), where KAp(Ep) is the set of all compact operators on Ep for each

p ∈ S(A), up to an isomorphism of locally C∗-algebras. It is well -known that

the left multiplier algebra of the C∗-algebra of compact operators on a Hilbert
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C∗-module E is isomorphic with the Banach algebra of all bounded operators

on E and the multiplier algebra of the C∗-algebra of compact operators on E is

isomorphic with the C∗-algebra of all adjointable operators on E. We show that

these properties of the compact operators on a Hilbert C∗-modules are still hold

in the context of Hilbert modules over locally C∗-algebras.

Let A be a locally C∗-algebra, let E,F and G be Hilbert A -modules. For

ξ ∈ E and η ∈ F define θη,ξ from E to F by

θη,ξ (ζ) = η 〈ξ, ζ〉 .

We have

〈
η1, θη,ξ (ζ) ,

〉
= 〈η1, η 〈ξ, ζ〉〉 = 〈η1, η〉 〈ξ, ζ〉
= 〈ξ 〈η, η1〉 , ζ〉 =

〈
θξ,η (η1) , ζ

〉

for all ζ ∈ E and for all η1 ∈ F. Therefore θη,ξ ∈ LA(E,F ) and moreover,

θ∗η,ξ = θξ,η.We say that θη,ξ is an ”one-rank” module homomorphism from E to

F. The vector subspace of LA(E,F ) generated by {θη,ξ; ξ ∈ E, η ∈ F} is denoted
by ΘA (E,F ) . When F = E, for simplifying we write ΘA (E) . We say that an

element in ΘA (E,F ) is a finite-rank operator from E to F.

Remark 2.3.1 It is easy to check that:

1. θζ,η2θη1,ξ = θζ〈η2,η1〉,ξ = θζ,ξ〈η1,η2〉 for all ξ ∈ E, η1, η2 ∈ F and ζ ∈ G;

2. T θη,ξ = θTη,ξ for all ξ ∈ E, η ∈ F and T ∈ BA(F,G);

3. θη,ξS = θη,S∗ξ for all ξ ∈ E, η ∈ F and S ∈ LA(G,E).

Remark 2.3.2 1. LA(F,G)ΘA (E,F ) ⊆ ΘA (E,G) ;

2. ΘA (E,F )LA(G,E) ⊆ ΘA (G,E) ;

3. ΘA (E) is a two-sided * -ideal of LA(E).
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The closed subspace of LA(E,F ) generated by ΘA (E,F ) is denoted by

KA(E,F ). We write KA(E) for KA(E,E). An element in KA(E,F ) is said ”-

compact operator” from E to F.

Remark 2.3.3 1. LA(F,G)KA (E,F ) ⊆ KA (E,G) ;

2. KA (E,F )LA(G,E) ⊆ KA (G,E) ;

3. KA (E) is a two-sided * -ideal of LA(E)

Let {Eλ;σλµ;Aλ ;πλµ}λ≥µ,λ,µ∈Λ and {Fλ ;χλµ;Aλ ;πλµ}λ≥µ,λ,µ∈Λ be two in-
verse systems of Hilbert C∗-modules such that the canonical maps σλ from lim

←
λ

Eλ

to Eλ , χλ from lim
←
λ

Fλ to Fλ and πλ from lim
←
λ

Aλ to Aλ , λ ∈ Λ are all surjective.

We seen (pp. 44) that {LAλ (Eλ , Fλ); (πλµ)∗}λ≥µ,λ,µ∈Λ is an inverse system of
Banach spaces.

Let λ, µ ∈ Λ with λ ≥ µ, ξ ∈ Eλ, η ∈ Fλ , ζ ∈ Eµ and ζ1 ∈ Eλ such that

σλµ(ζ1) = ζ. Then

(πλµ)∗ (θη,ξ) (ζ) = χλµ (θη,ξ (ζ1)) = χλµ (η 〈ξ, ζ1〉)
= χλµ (η) 〈σλµ(ξ), σλµ(ζ1)〉 = θχλµ(η),σλµ(ξ)(ζ).

From this relation we conclude that (πλµ)∗
(
KAλ (Eλ, Fλ)

)
⊆ KAµ (Eµ , Fµ).More-

over, since χλµ and σλµ are surjective, the closure of (πλµ)∗
(
KAλ (Eλ , Fλ)

)
in

LAλ (Eλ , Fλ) coincides withKAµ (Eµ , Fµ).The restriction of (πλµ)∗ onKAλ (Eλ, Fλ)

is also denoted by (πλµ)∗ . Therefore {KAλ (Eλ, Fλ); (πλµ)∗}λ≥µ,λ,µ∈Λ is an in-
verse system of Banach spaces and {KAλ (Eλ); (πλµ)∗}λ≥µ,λ,µ∈Λ is an inverse
system of C∗-algebras with the connecting maps (πλµ)∗ , λ ≥ µ, λ, µ ∈ Λ all

surjective.

Let A = lim
←
λ

Aλ , E = lim
←
λ

Eλ and F = lim
←
λ

Fλ.

Proposition 2.3.4 Let A, E and F be as above. Then:

1. The Hausdorff complete locally convex spacesKA(E,F ) and lim
←
λ

KAλ (Eλ, Fλ)

are isomorphic.
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2. The locally C∗-algebras KA(E) and lim
←
λ

KAλ (Eλ) are isomorphic.

Proof. 1. Let λ ∈ Λ, ξ ∈ E, η ∈ F, ζλ ∈ Eλ and ζ ∈ E such that σλ(ζ) = ζλ.

Then

(πλ)∗ (θη,ξ)(ζλ) = χλ((θη,ξ)(ζ)) = χλ(η 〈ξ, ζ〉) = χλ(η)πλ(〈ξ, ζ〉)
= χλ(η) 〈σλ(ξ), σλ(ζ)〉 = θχλ(η),σλ (ξ)(ζλ).

Therefore (πλ)∗ (KA(E,F )) ⊆ KAλ (Eλ, Fλ). Moreover, since σλ and χλ are sur-

jective, the closure of (πλ)∗ (KA(E,F )) in LAλ (Eλ , Fλ) coincides withKAλ (Eλ , Fλ).

The restriction of (πλ)∗ on KA(E,F ) is also denoted by (πλ)∗ . Thus, if Ψ

is the isomorphism from LA(E,F ) onto lim
←
λ

LAλ (Eλ , Fλ) defined by Ψ(T ) =

((πλ)∗ (T ))λ (Proposition 2.2.7 (1)), then Ψ(KA(E,F )) is a closed subspace of

lim
←
λ

KAλ (Eλ, Fλ). Thus to show thatKA(E,F ) is isomorphic with lim
←
λ

KAλ (Eλ, Fλ)

it remains to show that the restriction of Ψ onKA(E,F ) is a surjective map from

KA(E,F ) to lim
←
λ

KAλ (Eλ, Fλ).

By Lemma III 3.2, [33],

Ψ(KA(E,F )) = Ψ(KA(E,F )) = lim
←
λ

π̃λ (Ψ (KA(E,F )))

= lim
←
λ

(πλ)∗ (KA(E,F )) = lim
←
λ

KAλ (Eλ , Fλ),

where π̃λ , λ ∈ Λ are the canonical maps from lim
←
λ

KAλ (Eλ, Fλ) to KAλ (Eλ , Fλ).

2. By the first part of the proposition, the restriction of the isomorphism

Ψ from LA(E) to lim
←
λ

LAλ (Eλ) on KA(E) is an isomorphism of locally convex

spaces from KA(E) to lim
←
λ

KAλ (Eλ), and since Ψ is also morphism of ∗ -algebras,

the assertion is proved.

Corollary 2.3.5 Let A be a locally C∗-algebra and let E and F be two Hilbert

A-modules. Then :
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1. The Hausdorff complete locally convex spacesKA(E,F ) and lim
←
p

KAp(Ep, Fp)

are isomorphic.

2. The locally C∗-algebras KA(E) and lim
←
p

KAp(Ep) are isomorphic.

Corollary 2.3.6 Let A be a locally C∗-algebra. Then KA(A) is isomorphic with

A.

Proof. Let p ∈ S(A). We know that the map ϕp from KAp(Ap) to Ap defined

by ϕp(θa,b) = ab∗ is an isomorphism of C∗-algebras (see, for example, [26, 34]).

Let p, q ∈ S(A) with p ≥ q. Since

(
πpq ◦ ϕp

)
(θa,b) = πpq(ab

∗)

and

(
ϕq ◦ (πpq)∗

)
(θa,b) = ϕq

(
θπpq(a),πpq(b)

)
= πpq(a)πpq(b)

∗ = πpq(ab
∗)

for all a, b ∈ Ap, πpq◦ϕp = ϕq◦(πpq)∗ . Therefore (ϕp)p is an inverse system of C∗-
isomorphisms. Let ϕ = lim

←
p

ϕp. Then ϕ is an isomorphism of locally C
∗-algebras

from lim
←
p

KAp(Ep) to lim
←
p

Ap. Therefore KA(A) is isomorphic with A.

Let A be a locally C∗ -algebra and let E be a Hilbert A -module. For ξ ∈ E
, consider the map Tξ from E to A defined by Tξ (η) = 〈ξ, η〉 . It is easy to check
that Tξ is a module morphism from E to A and p̃(Tξ ) = pE(ξ) for all p ∈ S(A).
Exactly as in the case of Hilbert C∗-modules, we show that any element in

KA(E,A) is of the form Tξ , ξ ∈ E. This is a version of the Riesz-Fréchet theorem
for Hilbert modules over locally C∗-algebras.

Corollary 2.3.7 Let A be a locally C∗ -algebra and let E be a Hilbert A -module.

Then any element in KA(E,A) is of the form Tξ , ξ ∈ E.

Proof. For p ∈ S(A), the map ψp from Ep toKAp(Ep, Ap) defined by ψp (ξ) = Tξ

is an isometric isomorphism of Banach spaces.
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Let p, q ∈ S(A) with p ≥ q. Since

(
ψq ◦ σpq

)
(ζ) = Tσpq(ζ)

and
(
(πpq)∗ ◦ ψp

)
(ζ) = (πpq)∗ (Tζ) = Tσpq(ζ)

for all ξ ∈ Ap, ψq ◦ σpq = (πpq)∗ ◦ ψp. Therefore (ψp)p is an inverse system

of isometric isomorphisms of Banach spaces. Let ψ = lim
←
p

ψp. Then ψ is an

isomorphism of locally convex spaces from lim
←
p

Ep to lim
←
p

KAp(Ep, Ap). Therefore

E is isomorphic with KA(E,A). Moreover, ψ(ξ) =
(
ψp (σp (ξ))

)
p
=
(
Tσp(ξ)

)
p
=

Tξ for all ξ ∈ E.

Remark 2.3.8 Let A be a unital locally C∗ -algebra and let E be a Hilbert A

-module. If T ∈ LA(E,A), then T = TT ∗(1), where 1 is the unity of A and so

T ∈ KA(E,A). Therefore KA(E,A) = LA(E,A).

Proposition 2.3.9 Let A be a locally C∗ -algebra and let E be a Hilbert A

-module. Then:

1. LM(KA(E)) is isomorphic to BA(E) as locally convex algebras.

2. M(KA(E)) is isomorphic to LA(E) as locally C∗ -algebras.

Proof. Since {KAp(Ep); (πpq)∗}p≥q,p,q∈S(A) is an inverse system of C∗ -algebras
and the canonical maps (πp)∗ , p ∈ S(A) are all dense range, by Corollary 1.1.20,
LM(KA(E)) is isomorphic with lim

←
p

LM(KAp(Ep)) andM(KA(E)) is isomorphic

with lim
←
p

M(KAp(Ep)).

On the other hand, by Corollary 2.1.9, BA(E) is isomorphic with lim
←
p

BAp(Ep),

and by Corollary 2.2.8 (2), LA(E) is isomorphic with lim
←
p

LAp(Ep). Thus to

prove the proposition it is sufficient to prove that the locally convex algebras
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lim
←
p

BAp(Ep) and lim
←
p

LM(KAp(Ep)) are isomorphic likewise the locally C∗ -

algebras M(KA(E)) and lim
←
p

M(KAp(Ep)).

1. For each p ∈ S(A), the map ϕp from BAp(Ep) to LM(KAp(Ep)) defined

by

ϕp(T )(S) = TS

is an isometric isomorphism of Banach algebras (see, for example, [ 31], Theorem

1.5).

Let p, q ∈ S(A) with p ≥ q, T ∈ BAp(Ep), S ∈ KAq(Eq) and S̃ ∈ KAp(Ep)

such that (π̃pq)∗ (S̃) = S. Then

((
(π̃pq)∗ ◦ ϕp

)
(T )
)
(S) =

(
(π̃pq)∗

(
ϕp(T )

))
(π̃pq)∗ (S̃)

= (π̃pq)∗ (T S̃)

and
((
ϕq ◦ (π̃pq)∗

)
(T )
)
(S) = (π̃pq)∗ (T ) (π̃pq)∗ (S̃) = (π̃pq)∗ (TS̃).

Therefore
(
ϕp
)
p
is an inverse system of isometric isomorphisms of Banach

algebras. Let ϕ = lim
←
p

ϕp. Then ϕ is an isomorphism of locallym -convex algebras

from lim
←
p

BAp(Ep) onto lim
←
p

LM(KAp(Ep)).

2. For each p ∈ S(A), the map ψp from LAp(Ep) to M(KAp(Ep)) defined by

ϕp(T )(S) = (TS, ST )

is isomorphism of C∗ -algebras (see, for example, [26], Theorem 1).

It is not hard to check that
(
ψp
)
p
is an inverse system of isomorphisms of C∗

-algebras. Let ψ = lim
←
p

ψp. Then ψ is an isomorphism of locally C∗ -algebras

from lim
←
p

BAp(Ep) onto lim
←
p

LM(KAp(Ep)).

Corollary 2.3.10 If A is a locally C∗-algebra, then M(A) is isomorphic to

LA(A).

References for Section 2.3: [12], [24], [26], [31], [38].
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2.4 Strongly bounded operators

In this Section we introduce the notion of strongly bounded module morphism be-

tween Hilbert modules and we study the connection between the set b(BA(E,F ))

of all strongly bounded module morphisms from E to F ( respectively the set

b(LA(E,F )) of all strongly adjointable module morphisms from E to F, respec-

tively the set b(KA(E,F )) of all strongly compact module morphisms from E to

F ) and the Banach space Bb(A)(b(E), b(F )) of all bounded module morphisms

from b(E) to b(F ) (respectively, the Banach space Lb(A)(b(E), b(F )) of all ad-

jointable module morphisms from b(E) to b(F ), respectively the Banach space

Kb(A)(b(E), b(F )) of all compact module morphisms from b(E) to b(F ) ).

Let A be a locally C∗-algebra and let E and F be Hilbert A -modules.

Definition 2.4.1 A bounded operator T from E to F is strongly bounded if

sup{p̃(T ); p ∈ S(A)} <∞.

The set of all strongly bounded operators from E to F is denoted by b(BA(E,F ))

and we write b(BA(E)) for b(BA(E,E)).

It is not difficult to check that b(BA(E,F )) is a vector subspace of BA(E,F )

and the map T → ‖T‖∞ , where

‖T‖∞ = sup{p̃(T ); p ∈ S(A)}

defines a norm on b(BA(E,F )). Also it is not difficult to check that b(BA(E)) is

a subalgebra of BA(E) and ‖·‖∞ is a submultiplicative norm on b(BA(E)).

The connection between b(BA(E,F )) and Bb(A)(b(E), b(F )), the set of all

bounded operators from b(E) to b(F ), is given by the following theorem.

Theorem 2.4.2 Let A be a locally C∗-algebra and let E and F be Hilbert A

-modules. Then:

1. The vector space b(BA(E,F )) equipped with the norm ‖·‖∞ is a Banach

space which is isometrically isomorphic to Bb(A)(b(E), b(F )).
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2. The set b(LA(E,F )) of all strongly bounded adjointable operators from E

to F is a closed subspace of b(BA(E,F )). Moreover, b(LA(E,F )) is iso-

metrically isomorphic with Lb(A)(b(E), b(F )).

3. The set b(KA(E,F )) of all strongly bounded compact operators from E to

F is a closed subspace of b(BA(E,F )).

Proof. Let {Tn}n be a fundamental sequence in b(BA(E,F )). Since

p̃(Tn − Tm) ≤ sup{q̃(Tn − Tm); q ∈ S(A)} = ‖Tn − Tm‖∞

for all positive integers m and n and for all p ∈ S(A), {Tn}n is a fundamental
sequence in BA(E,F ) and so it converges to an element T ∈ BA(E,F ). From

|‖Tn‖∞ − ‖Tm‖∞| ≤ ‖Tn − Tm‖∞

for all positive integers n and m we conclude that {‖Tn‖∞}n is a fundamental
sequence of positive numbers and so it is bounded. LetM > 0 such that ‖Tn‖∞ ≤
M for all positive integer n. Then

p̃(T ) = lim
n
p̃(Tn) ≤ lim

n
‖Tn‖∞ ≤M

for all p ∈ S(A). This shows that T ∈ b(BA(E,F )).

To show that {Tn}n converges to T with respect to the norm ‖·‖∞ , let ε > 0.

Since {Tn}n is a fundamental sequence in b(BA(E,F )), there is a positive integer

n0 such that

‖Tn − Tm‖∞ ≤ ε

for all positive integers n and m with n ≥ n0 and m ≥ n0. Then

p̃(T − Tn) = lim
m
p̃(Tm − Tn)

≤ lim
m
‖Tn − Tm‖∞ ≤ ε

for all positive integer n with n ≥ n0. This means that {Tn}n converges to T with
respect to the norm ‖·‖∞ . Hence b(BA(E,F )) is a Banach space with respect to

the norm ‖·‖∞ .
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Let T ∈ b(BA(E,F )). From

pF (Tξ) ≤ p̃(T )pE(ξ) ≤ ‖T‖∞ ‖ξ‖∞

for all p ∈ S(A) and for all ξ ∈ b(E), we conclude that the restriction T |b(E) of
T on b(E) is an element in Bb(A)(b(E), b(F )) and moreover,

∥∥T |b(E)
∥∥ ≤ ‖T‖∞ ,

where ‖·‖ is the norm on Bb(A)(b(E), b(F )).

On the other hand, using the fact that T is continuous and b(E) is dense in

E, from

pF (Tξ)
2 = p(〈Tξ, Tξ〉) = p(

〈
T |b(E)ξ, T |b(E)ξ

〉
)

(cf. [36], 2.8)

≤ p(
∥∥T |b(E)

∥∥2 〈ξ, ξ〉) =
∥∥T |b(E)

∥∥2 pE(ξ)2

for all p ∈ S(A) and for all ξ ∈ b(E) we deduce that p̃(T ) ≤
∥∥T |b(E)

∥∥ for all
p ∈ S(A) and so ‖T‖∞ ≤

∥∥T |b(E)
∥∥ . Therefore ‖T‖∞ =

∥∥T |b(E)
∥∥ .

Consider the mapΨ from b(BA(E,F )) toBb(A)(b(E), b(F )) defined byΨ(T ) =

T |b(E). Clearly Ψ is well-defined and moreover, it is a linear isometry from

b(BA(E,F )) to Bb(A)(b(E), b(F )). To prove that b(BA(E,F )) is isometrically

isomorphic with Bb(A)(b(E), b(F )), it remains to prove that Ψ is surjective. Let

S ∈ Bb(A)(b(E), b(F )). Since

pF (Sξ)
2 = p (〈Sξ, Sξ〉) ≤ ‖S‖2 pE(ξ)2

for all ξ ∈ b(E) and for all p ∈ S(A), and since b(E) is dense in E, S extends

by continuity to a linear map S̃ from E to F. From Lemma 2.1.3 (1), taking

into account that b(A) is dense in A, we conclude that S̃ is A -linear. Moreover,

p̃(S) ≤ ‖S‖ for all p ∈ S(A). Therefore S̃ ∈ b(BA(E,F )) and Ψ(S̃) = S.

2. Let {Tn}n be a sequence in b(LA(E,F )) which converges with respect to

the topology induced by the norm ‖·‖∞ to an element T in b(BA(E,F )). Then

it is convergent with respect to the topology induced by the family of seminorms

{p̃}p∈S(A). From these facts and taking into account that LA(E,F ) is a closed
subspace of BA(E,F ), we conclude that T ∈ b(LA(E,F )). Therefore b(LA(E,F ))
is a closed subspace of b(BA(E,F )).
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To show that b(LA(E,F )) is isometrically isomorphic with Lb(A)(b(E), b(F )),

it is enough to show that Ψ(b(LA(E,F ))) = Lb(A)(b(E), b(F )), where Ψ is the

isomorphism from b(BA(E,F )) onto Bb(A)(b(E), b(F )) constructed above.

Let T ∈ b(LA(E,F )). Then T
∗ ∈ b(LA(F,E)) and

(
T |b(E)

)∗
= T ∗|b(E). Con-

sequently, Ψ(b(LA(E,F ))) ⊆ Lb(A)(b(E), b(F )).

Let S ∈ Lb(A)(b(E), b(F )). Then there is S̃ in b(BA(E,F )) and S0 in b(BA(F,E))

such that S̃|b(E) = S and S0|b(F ) = S∗. Let ξ ∈ E and {ξn}n in b(E) such that

ξ = lim
n
ξn and let η ∈ F and {ηn}n in b(F ) such that η = lim

n
ηn. Then

〈
η, S̃ξ

〉
= lim

m

(
lim
n
〈ηm, Sξn〉

)
= lim

m

(
lim
n
〈S∗ηm, ξn〉

)

= lim
m

(
lim
n
〈Sηm, ξn〉

)
= 〈S0η, ξ〉 .

From this relation, we conclude that S̃ ∈ b(LA(E,F )) and so Lb(A)(b(E), b(F )) ⊆
Ψ(b(LA(E,F ))) .

3. Let {Tn}n be a sequence in b(KA(E,F )) which converges with respect to

the topology induced by the norm ‖·‖∞ to an element T in b(LA(E,F )). Then it
is convergent with respect to the topology induced by the family of seminorms

{p̃}p∈S(A), and since KA(E,F ) is a closed subspace of LA(E,F ), T is an element

in KA(E,F ). Therefore T is an element in KA(E,F ) ∩ b(LA(E,F )) and the

assertion 3. is proved.

Remark 2.4.3 From the proof of Theorem 2.4.2, the map Ψ from b(BA(E,F ))

to Bb(A)(b(E), b(F )) defined by Ψ(T ) = T |b(E) is an isomorphism of Banach

spaces. It is clear that Ψ−1(Kb(A)(b(E), b(F ))) ⊆ b(KA(E,F )). Therefore Kb(A)

(b(E), b(F )) is isometrically isomorphic with a closed subspace of b(KA(E,F )).

In general, b(KA(E,F )) is not isomorphic with Kb(A)(b(E), b(F )) (see Example

2.4.11).

Remark 2.4.4 SinceKA(E,F ) is the closure of the vector subspace ΘA(E,F ) in

LA(E,F ) and Kb(A)(b(E), b(F )) is the closure of the vector subspace Θb(A)(b(E),

b(F )) in Lb(A)(b(E), b(F )) and since the Hilbert b(A)- modules b(E) and b(F )
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are dense in E respectiv F, it is not difficult to check that Kb(A)(b(E), b(F )) is

dense in KA(E,F ).

Remark 2.4.5 If E,F and G are Hilbert A -modules, then

1. b(KA(E,F ))b(LA(G,E)) ⊆ b(KA(G,F ));

2. b(LA(F,G))b(KA(E,F )) ⊆ b(KA(E,G)).

Corollary 2.4.6 Let E be a Hilbert A-module. Then:

1. b(BA(E)) equipped with the norm ‖·‖∞ is a Banach algebra which is iso-

metrically isomorphic with Bb(A)(b(E)).

2. b(LA(E)) equipped with the norm ‖·‖∞ is a C∗-algebra which is isomorphic

with Lb(A)(b(E)).

Proof. 1. By Theorem 2.4.2 (1), b(BA(E)) equipped with the norm ‖·‖∞ is

a Banach space, and since the norm ‖·‖∞ is submultiplicative, b(BA(E)) is a

Banach algebra. From the proof of Theorem 2.4.2 (1), the map Ψ from b(BA(E))

to Bb(A)(b(E)) defined by Ψ(T ) = T |b(E) is an isomorphism of Banach spaces,
and since (ST ) |b(E) = S|b(E)T |b(E) for all S, T ∈ b(BA(E)), Ψ is an isomorphism

of Banach algebras.

2. Since {p̃}p∈S(A) is a family of C∗-seminorms on LA(E), ‖·‖∞ is a C∗-

seminorm on b(LA(E)) and by Theorem 2.4.2 (2), b(LA(E)) equipped with the

norm ‖·‖∞ is a C∗-algebra. It is not difficult to check that
(
T |b(E)

)∗
= T ∗|b(E)

and so the map Ψ from b(LA(E)) to Lb(A)(b(E)) defined by Ψ(T ) = T |b(E) is an
isomorphism of C∗-algebras.

Remark 2.4.7 If E is a Hilbert A-module, then b(LA(E)) coincides with the

set of bounded elements in the locally C∗-algebra LA(E).

Corollary 2.4.8 If A is a strongly spectrally bounded locally C∗-algebra and E

is a Hilbert A -module, then LA(E) is a strongly spectrally bounded locally C∗-

algebra.
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Proof. Indeed, if A is strongly spectrally bounded, then b(E) = E as set. Let

T ∈ LA(E). Then T is a map from b(E) to b(E) and there is a map T ∗ from

b(E) to b(E) such that

〈η, Tξ〉 = 〈T ∗η, ξ〉

for all ξ, η ∈ b(E). This implies that T ∈ Lb(A)(b(E)). From this fact and Corol-

lary 2.4.6 (2) we conclude that b(LA(E)) = LA(E) as set. Therefore, LA(E) is a

strongly spectrally bounded locally C∗-algebra.

Remark 2.4.9 Let E be a Hilbert A -module. From Theorem 2.4.2 (3), Remark

2.4.5 and Corollary 2.4.6(2) we conclude that b (KA(E)) is a closed two-side ∗
-ideal of b (LA(E)) .

Remark 2.4.10 By Remarks 2.4.3 and 2.4.9, Kb(A)(b(E)) is isomorphic to a

closed two-side ∗ - ideal of b (KA(E)). In general Kb(A)(b(E)) is not isomorphic

with b (KA(E)) .

Example 2.4.11 ([38], Example 4.9) Let A = C(Z+), which is just
∞∏
n=1

C, and

let E =
∞∏
n=1

Cn. We make E into a Hilbert A -module via (ξn)n (an)n = (ξnan)n

and 〈(ξn)n , (ηn)n〉 = (〈ξn, ηn〉n)n , where 〈·, ·〉n denotes the usual C-inner product
on Cn.

For each positive integer n consider the map pn : A → [0,∞) defined by

pn((an)n) = sup{|ak|; 1 ≤ k ≤ n}. Clearly, pn is a continuous C∗-seminorm on

A and the topology on A is determined by the family of C∗-seminorms {pn}n. It
is not difficult to check that Apn can be identified with the product of the first n

factors of A, and Epn can be identified with the product of the first n factors of E,

for each n. Therefore KApn (Epn) = LApn (Epn) for each positive integer n. From

this fact and Corollaries 2.2.8 and 2.3.5, we conclude that LA(E) = KA(E).

Suppose that b(KA(E)) is isomorphic with Kb(A)(b(E)). Then, since KA(E)

= LA(E), from Corollary 2.4.6 we deduce that Lb(A)(b(E)) is isomorphic with

Kb(A)(b(E)). This implies that the Hilbert b(A) -module b(E) is finitely generated.
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On the other hand, it is not difficult to check that b(A) = {(an)n ∈ A;sup{|an| ;
n = 1, 2, ...} < ∞} and b(E) = {(ξn)n ; sup{|〈ξn, ξn〉| ;n = 1, 2, ...} < ∞} and
so b(E) is not finitely generated as b(A)-modules, a contradiction. Therefore,

b(KA(E)) is not isomorphic with Kb(A)(b(E))

Example 2.4.12 Let A be a locally C∗-algebra and E =
n⊕

k=1

A for some positive

integer n. We seen that b(E) =
n⊕

k=1

b(A) and Ep is isomorphic with
n⊕

k=1

Ap for

all p ∈ S(A). Since KAp(Ep) is isomorphic to Mn(C)
⊗
Ap, where Mn(C) is the

set of all n× n matrices over C, for all p ∈ S(A), from Corollary 2.3.5 and [2],

we conclude that KA(E) can be identified with Mn(C)
⊗
A and so b(KA(E)) is

isomorphic with b(Mn(C)
⊗
A).

On the other hand Kb(A)(b(E)) can be identified withMn(C)
⊗
b(A) and since

b(Mn(C)
⊗
A) is isomorphic with Mn(C)

⊗
b(A), we conclude that b(KA(E)) is

isomorphic with Kb(A)(b(E)).

References for Section 2.4: [18], [24], [45].

2.5 Unitary operators on Hilbert modules

In this Section we characterize the unitary operators on Hilbert modules over

locally C∗-algebras, and show that a map Φ : E → F is an isomorphisms of

Hilbert modules if and only if Φ is a unitary operator from E to F. Also we

how that the Hilbert A -modules E and F are isomorphic if and only if the

Hilbert C∗-modules b(E) and b(F ) are isomorphic. Frank [10] showed that the

two Hilbert C∗-modules structures on a Banach module E over a C∗-algebra A

are isomorphic if and only if so are the corresponding C∗-algebras of adjointable

operators as well as the corresponding C∗-algebras of compact operators. In this

Section we extend the result of Frank in the context of Hilbert modules over

locally C∗-algebras.

Let A be a locally C∗-algebra and let E and F be two Hilbert A -modules.
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Definition 2.5.1 An adjointable operator U from E to F is said to be unitary

if U∗U =idE and UU
∗ =idF .

Remark 2.5.2 Let U ∈ LA(E,F ). Then U is unitary if and only if (πp)∗ (U) is

a unitary operator from Ep to Fp for all p ∈ S(A).

Proposition 2.5.3 Let U be a linear map from E to F. Then the following

statements are equivalent:

1. U is a unitary operator from E to F ;

2. 〈Uξ,Uξ〉 = 〈ξ, ξ〉 for all ξ ∈ E and U is surjective;

3. pF (Uξ) = pE(ξ) for all ξ ∈ E and for all p ∈ S(A) and U is a surjective

module homomorphism from E to F.

Proof. 1. ⇒ 2. Suppose that U is unitary. Then clearly U is surjective. Using

Remark 2.5.2 and Theorem 3.5 in [29], we obtain

πp (〈Uξ, Uξ〉 − 〈ξ, ξ〉) =
〈
(πp)∗ (U)σp (ξ) , (πp)∗ (U)σp (ξ)

〉
− 〈σp (ξ) , σp (ξ)〉

= 0

for all p ∈ S(A) and for all ξ ∈ E. This implies that 〈Uξ, Uξ〉 = 〈ξ, ξ〉 for all
ξ ∈ E.

2.⇒ 3. Let p ∈ S(A) and ξ ∈ E. Then

pF (Uξ)
2 = p (〈Uξ, Uξ〉) = p (〈ξ, ξ〉) = pE(ξ)

2.

By polarization 〈Uξ1, Uξ2〉 = 〈ξ1, ξ2〉 for all ξ1,ξ2 ∈ E. Let ξ ∈ E and a ∈ A.

Then

〈U (ξa)− (Uξ) a,U (ξa)− (Uξ) a〉 = 0

and so U (ξa) = (Uξ)a. Hence U is a surjective module homomorphism.

3.⇒ 1. Let ξ ∈ E and p ∈ S(A). Then, since

‖πp (a∗)πp (〈Uξ, Uξ〉)πp (a)‖p = p (〈U (ξa) , U (ξa)〉)
= pF (U (ξa))2 = pE(ξa)

2

= p (〈ξa, ξa〉) = ‖πp (a∗)πp (〈ξ, ξ〉)πp (a)‖p ,
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for all a ∈ A, by Lemma 3.4 in [29], πp (〈Uξ,Uξ〉) = πp (〈ξ, ξ〉) . Therefore
〈Uξ,Uξ〉 = 〈ξ, ξ〉 for all ξ ∈ E and by polarization 〈Uξ1, Uξ2〉 = 〈ξ1, ξ2〉 for all
ξ1, ξ2 ∈ E.
Clearly, U is a bijective module momorphism from E to F . Let U−1 be the

inverse of U . Then U−1 is a module homomorphism from F to E and

〈Uξ, η〉 =
〈
Uξ, U

(
U−1η

)〉
=
〈
ξ, U−1η

〉

for all ξ ∈ E and for all η ∈ F . Therefore U is unitary.

Corollary 2.5.4 Two Hilbert A -modules E and F are isomorphic if and only

if there is a unitary operator from E to F .

Corollary 2.5.5 If the Hilbert A -modules E and F are isomorphic, then the

Hilbert Ap -modules Ep and Fp are isomorphic for all p ∈ S(A).

Proposition 2.5.6 Let E and F be Hilbert A -modules and let U ∈ LA(E,F ).

Then U is a unitary operator from E to F if and only if U ∈ b(LA(E,F )) and

U |b(E) is a unitary operator from b(E) to b(F ). Moreover, there is a bijective

correspondence between the set UA(E,F ) of all unitary operators from E to F

and the set Ub(A)(b(E), b(F )) of all unitary operators from b(E) to b(F ).

Proof. If U is a unitary operator from E to F , then p̃(U) = 1 for all p ∈ S(A).
Therefore U ∈ b(LA(E,F )) and since idb(E) = (U∗U) |b(E) = U∗|b(F )U |b(E) and
idb(F ) = (UU∗) |b(F ) = U |b(E)U∗|b(F ), U |b(E) is a unitary operator from b(E)

to b(F ). It is easy to check that the restriction of the isomorphism Ψ from

b(LA(E,F )) onto Lb(A)(b(E), b(F )) defined by Ψ(T ) = T |b(E) to UA(E,F ) is a
bijective correspondence between the sets UA(E,F ) and Ub(A)(b(E), b(F )) (see

Theorem 2.4.2).

Corollary 2.5.7 Two Hilbert A-modules E and F are isomorphic if and only if

the Hilbert b(A)-modules b(E) and b(F ) are isomorphic.
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Let E be a complex vector space which is also right A-module, compatible

with the structure of complex algebra and equipped with two an A -valued inner-

products 〈·, ·〉1 and 〈·, ·〉2 which induce either a structure of Hilbert A-module
on E. We denote by E1 the Hilbert A-module (E, 〈·, ·〉1) and by E2 the Hilbert
A-module (E, 〈·, ·〉2) .
The following proposition is a generalization of a result of Frank [10] in the

context of Hilbert modules over locally C∗-algebras.

Proposition 2.5.8 Let E be as above. Then the following statements are equiv-

alent:

1. E1 and E2 are isomorphic as Hilbert A -modules.

2. The locally C∗-algebras KA(E1) and KA(E2) are isomorphic.

3. The locally C∗-algebras LA(E1) and LA(E2) are isomorphic.

4. The C∗-algebras Lb(A)(b(E1)) and Lb(A)(b(E2)) are isomorphic.

5. The C∗-algebras Kb(A)(b(E1)) and Kb(A)(b(E2)) are isomorphic.

6. The Hilbert b(A) -modules b(E1) and b(E2) are isometrically isomorphic as

Banach b(A) -modules.

7. b(E1) and b(E2) are isomorphic as Hilbert b(A) -modules.

Proof. 1. ⇒ 2. Since E1 and E2 are unitarily equivalent, there is a unitary

operator U in LA(E1, E2). It is not hard to check that the map Φ from KA(E1)

to KA(E2) defined by Φ(T ) = UTU∗ is an isomorphism of locally C∗-algebras.

2. ⇒ 3. Let Φ be an isomorphism of locally C∗-algebras from KA(E1) onto

KA(E2). By [13, Lemmas 2.4, 2.7 and Corollary //], there is a unique iso-

morphism of locally C∗-algebras Φ : M(KA(E1)) → M(KA(E2)) such that

Φ|KA(E1) = Φ.

On the other hand, the locally C∗-algebras M(KA(E1)) and LA(E1) are

isomorphic as well as M(KA(E2)) and LA(E2) ( Proposition 2.3.9). Therefore

the locally C∗-algebras LA(E1) and LA(E2) are isomorphic.
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3. ⇒ 4. If the locally C∗-algebras LA(E1) and LA(E2) are isomorphic, then

the C∗-algebras b(LA(E1)) and b(LA(E2)) are isomorphic [38, Corollary 2.6].

But b(LA(Ei)) is isomorphic with Lb(A)(b(Ei)), i ∈ {1, 2} (Corollary 2.4.6 ).
Therefore the C∗-algebras Lb(A)(b(E1)) and Lb(A)(b(E2)) are isomorphic.

The implications 4. ⇒ 5. ⇒ 6. were proved in [9], the equivalence 6. ⇔ 7.

was proved in [29] and the implication 7.⇒ 1. was showed in Corollary 2.5.7.

References for Section 2.5: [10], [23], [29], [40].
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Chapter 3

Complemented submodules in

Hilbert modules

3.1 Projections on Hilbert modules

In this Section we characterize the projections and the partial isometries on

Hilbert modules over locally C∗-algebras.

Let E be a Hilbert module over a locally C∗-algebra A. An adjointable

module momorphism P from E to E is said to be a projection in LA(E) if it is

self-adjoint ( that is, P ∗ = P ) and PP = P.

Remark 3.1.1 Let P ∈ LA(E). Then P is a projection in LA(E) if and only if

(πp)∗ (P ) is a projection in LAp(Ep) for all p ∈ S(A).

Proposition 3.1.2 Let P ∈ LA(E). Then P is a projection in LA(E) if and

only if P ∈ b(LA(E)) and P |b(E) is a projection in Lb(A)(b(E)). Moreover, there

is a bijective correspondence between the set PA(E) of all projections in LA(E)

and the set Pb(A)(b(E)) of all projections in Lb(A)(b(E)).

Proof. If P is a projection in LA(E), then p̃(P ) = 1 for all p ∈ S(A) and so

P ∈ b(LA(E)). It is not hard to check that P |b(E) is a projection in Lb(A)(b(E))

and the map P → P |b(E) from PA(E) to Pb(A)(b(E)) is bijective.
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An element V in LA(E,F ) is said to be a partial isometry if V
∗V is a pro-

jection in LA(E).

Remark 3.1.3 Let V ∈ LA(E,F ). Then V is a partial isometry in LA(E,F ) if

and only if (πp)∗ (V ) is a partial isometry in LAp(Ep, Fp) for all p ∈ S(A).

Proposition 3.1.4 Let V ∈ LA(E,F ). Then the following statements are equiv-
alent:

1. V is a partial isometry in LA(E,F );

2. V V ∗ is a projection in LA(F );

3. V V ∗V = V ;

4. V ∗V V ∗ = V ∗.

Proof. It is a simple verification.

Proposition 3.1.5 Let V ∈ LA(E,F ). Then V is a partial isometry in LA(E,F )

if and only if V ∈ b (LA(E,F )) and V |b(E) is a partial isometry in Lb(A)(b(E), b(F )).

Moreover, there is a bijective correspondence between the set IA(E,F ) of a all
partial isometries in LA(E,F ) and the set Ib(A)(b(E), b(F )) of a all partial isome-

tries in Lb(A)(b(E), b(F )).

Proof. If V is a partial isometry from E to F , then p̃(V ) ≤ 1 for all p ∈
S(A). Therefore V ∈ b(LA(E,F )), and since (V |b(E))∗V |b(E) = V ∗|b(F )V |b(E) =
(V ∗V )|b(E), V |b(E) is a partial isometry in Lb(A)(b(E), b(F )). It is not hard to

check that the map V → V |b(E) from IA(E,F ) to Ib(A)(b(E), b(F )) is bijective.

References for Section 3.1: [16], [29], [40].

3.2 Orthogonally complemented submodules

It is well known that the closed submodules of Hilbert C∗-modules do not have

in general orthogonal complements. Therefore, the closed submodules of Hilbert
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modules over locally C∗-algebras are not in general complemented. Mishchenko

showed that certain submodules of Hilbert C∗-modules are complemented ( see,

for example, [29], Theorem 3.2). In this Section we show that these results still

hold for submodules of a Hilbert module over a locally C∗-algebra.

Let A be a locally C∗-algebra and let E and F be two Hilbert A-modules.

We say that a closed submodule E0 of E is complemented if E = E0 ⊕ E⊥0 ,

where E⊥0 = {ξ ∈ E; 〈ξ, η〉 = 0 for every η ∈ E0}.

Proposition 3.2.1 Let E be a Hilbert A -module and let E0 be a closed sub-

module of E. Then E0 is complemented if and only if there is a projection P0 in

LA(E) such that E0 is the range of P0.

Proof. If E0 is a complemented submodule of E, then any ξ ∈ E can be

uniquely written as sum of two elements ξ1 and ξ2, with ξ1 in E0 and ξ2 in

E⊥0 . It is easy to check that the map P0 from E to E defined by P0 (ξ) = ξ1 is

a projection in LA(E) whose the range is E0. Conversely, if P0 is a projection

in LA(E), then the range ranP0 of P0 is a complemented submodule of E and

ran(P0)
⊥ =ran(idE − P0).

Remark 3.2.2 Let E0 be a closed submodule of E. Then E0 is complemented

if and only if b(E0) is complemented.

Lemma 3.2.3 Let T ∈ LA(E,F ). Then T ∗F, T ∗TE, |T |E, where |T | = (T ∗T )
1
2 ,

and |T | 12 E have the same closure.

Proof. We have

T ∗F = lim
←
p

σEp (T
∗F ) ( using Proposition 9 and Corollary at p. 52 in [4])

= lim
←
p

(πp)∗ (T
∗)σFp (F ) = lim

←
p

(πp)∗ (T
∗)Fp

= lim
←
p

(πp)∗ (T )
∗ (πp)∗ (T )Ep ( using Proposition 3.7 in [29])

= lim
←
p

(πp)∗ (T
∗T )σEp (E)
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= lim
←
p

σEp (T
∗TE)

= T ∗TE ( using Proposition 9 and Corollary at p. 52 in [4]),

where X denotes the closure of a space X with respect to the topology induced

by the inner product.

In the same manner, using the fact that (πp)∗ (T
∗T )Ep, (πp)∗ (|T |)Ep and

(πp)∗ (|T |)
1
2 Ep have the same closure for all p ∈ S(A), we deduce that T ∗TE,

|T |E and |T | 12 E have the same closure.

Theorem 3.2.4 Let T ∈ LA(E,F ). If T has closed range then:

1. kerT is a complemented submodule of E;

2. ranT, the range of T, is a complemented submodule of F.

Proof. 1. Since pE(|T |ξ) = pF (Tξ) for all ξ ∈ E and for all p ∈ S(A), and since
T has closed range, |T | has closed range. From

|T | 12 E = |T |E = |T |E ⊆ |T | 12 E

we conclude that |T | 12 has closed range, and moreover, |T |E = |T | 12 E. Clearly,
|T | 12 E ⊆

(
ker |T | 12

)⊥
.

Let ξ ∈ E. Since |T |E = |T | 12 E, there is η ∈ E such that |T | η = |T | 12 ξ.
Then ξ−|T | 12 η ∈ ker(|T | 12 ) and ξ =

(
ξ − |T | 12 η

)
+ |T | 12 η. This shows that E =

ker |T | 12 ⊕ |T | 12 E. From this relation, and taking into account that ker(|T | 12 ) =
ker(T ) and |T | 12 E = |T |E, we conclude that E = kerT ⊕ |T |E.

2. First we will show that T ∗T has closed range. For this we show that

|T |E = T ∗TE. Clearly, T ∗TE ⊆ |T |E. Let ξ ∈ |T |E. Then ξ = |T |η and since
η = η1 + η2 with η1 ∈ kerT and η2 ∈ |T |E, ξ = |T |η2 ∈ T ∗TE. Therefore,

|T |E = T ∗TE = (kerT )⊥. By Lemma 4.2.1, T ∗F = T ∗TE = T ∗TE ⊆ T ∗F.

This implies that T ∗ has closed range, and according to the assertion 1. of this

theorem, kerT ∗ is complemented and (kerT ∗)⊥ = |T ∗|F. But, from Lemma 3.2.3
and taking into account that T has closed range we conclude that |T ∗|F = TE.

Hence the range of T is complemented.
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Remark 3.2.5 Let T be an element in LA(E,F ) with closed range. By the proof

of Theorem 3.2.4 and Lemma 3.2.3 , we deduce that T ∗ has closed range, and

moreover, E = kerT ⊕ T ∗F and F = kerT ∗ ⊕ TE.

Corollary 3.2.6 A closed submodule E0 of a Hilbert A -module E is comple-

mented if and only if it is the range of an adjointable operator on E.

Proposition 3.2.7 Let E and F be two Hilbert modules over A and let V ∈
LA(E,F ). Then V is a partial isometry if and only if V has closed range and

V |(kerV )⊥ is a unitary operator from (kerV )⊥ to V E.

Proof. Suppose that V is a partial isometry. Then V V ∗ is a projection in

LA(F ) and so V V
∗F is a closed submodule of F. From this fact and Lemma

3.2.3 we conclude that V has closed range and then E = kerV ⊕ V ∗F and

F = kerV ∗ ⊕ V E (Remark 3.2.5).

Since (kerV )⊥ = V ∗F = V ∗V E and since V ∗V is a projection in LA(E), we

have:

(a) 〈V (ξ0) , V (ξ0)〉 = 〈ξ0, V ∗V ξ0〉 = 〈ξ0, ξ0〉 for all ξ0 ∈ (kerV )⊥ ; and

(b) V
(
(kerV )⊥

)
= V V ∗F = V E.

From these relations and Proposition 2.5.3 we conclude that V |(kerV )⊥ is a
unitary operator from (kerV )⊥ to V E.

Conversely, suppose that V has closed range and V |(kerV )⊥ is a unitary opera-
tor from (kerV )⊥ to V E. Then, V ∗|V E is a unitary operator from V E to (kerV )⊥

. From this fact and taking into account that (kerV )⊥ = V ∗F (Remark 3.2.5),

we have

〈(V V ∗V − V ) (ξ) , (V V ∗V − V ) (ξ)〉 = 〈V (ξ) , V (ξ)〉 − 〈V ∗V (ξ) , V ∗V (ξ)〉
= 〈V (ξ) , V (ξ)〉 − 〈V (ξ) , V (ξ)〉
= 0
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for all ξ ∈ E. This implies that V V ∗V − V and so V is a partial isometry.

References for Section 3.2: [16], [29], [40].

3.3 Polar decomposition of a adjointable operator

We know that the adjointable operators between Hilbert C∗-modules do not

generally have a polar decomposition. But, if both T and T ∗ have the closures of

the ranges complemented, then T has a polar decomposition. In this Section we

show that this result is valid for adjointable operators between Hilbert modules

over locally C∗-algebras.

Let A be a locally C∗-algebra and let E and F be two Hilbert A-modules.

Definition 3.3.1 An adjointable operator T from E to F has a polar decompo-

sition if there is a partial isometry V from E to F such that T = V |T | , and
kerV = kerT, ranV = TE, kerV ∗ = kerT ∗ and ranV ∗ = |T |E.

Proposition 3.3.2 An adjointable operator T from E to F has a polar decom-

position if and only if (πp)∗ (T ) has a polar decomposition for each p ∈ S(A).

Moreover, if T = V |T | , then (πp)∗ (T ) = (πp)∗ (V )
∣∣(πp)∗ (T )

∣∣ for all p ∈ S(A).

Proof. First we suppose that T has a polar decomposition T = V |T | . Let
p ∈ S(A). Since V is a partial isometry, (πp)∗ (V ) is a partial isometry. Moreover,

ran
(
(πp)∗ (V )

)
= σFp (V E) = σFp (V E) = σFp (TE)

= σFp (TE) = (πp)∗ (T )Ep

and

ran
(
(πp)∗ (V

∗)
)
= σEp (V

∗F ) = σEp (V
∗F ) = σEp (T

∗F )

= σEp (T
∗F ) = (πp)∗ (T

∗)Fp.

By functional calculus, (πp)∗ (|T |) =
∣∣(πp)∗ (T )

∣∣ . Therefore (πp)∗ (T ) has a polar
decomposition, and (πp)∗ (T ) = (πp)∗ (V )

∣∣(πp)∗ (T )
∣∣ .
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Conversely, suppose that (πp)∗ (T ) has a polar decomposition, (πp)∗ (T ) =

Vp
∣∣(πp)∗ (T )

∣∣ for each p ∈ S(A).
Let p, q ∈ S(A) with p ≥ q, and let ζ ∈ Eq. Then, since the canonical map

σEpq : Ep → Eq is surjective and since Ep = kerVp ⊕
∣∣(πp)∗ (T )

∣∣Ep, there is

ξ0 ∈ kerVp and there is a net {ξi}i∈I such that

ζ = σEpq (ξ0) + lim
i
σEpq
(∣∣(πp)∗ (T )

∣∣ (ξi)
)
.

Thus we have:

(πpq)∗ (Vp) (ζ) = σFpq

(
Vp

(
ξ0 + lim

i

∣∣(πp)∗ (T )
∣∣ (ξi)

))

= σFpq

(
lim
i

∣∣Vp (πp)∗ (T )
∣∣ (ξi)

)
= lim

i
σFpq
(
(πp)∗ (T ) (ξi)

)

= lim
i
(πq)∗ (T )

(
σEpq(ξi)

)

and

Vq (ζ) = Vq

(
σEpq (ξ0) + lim

i
σEpq
(∣∣(πp)∗ (T )

∣∣ (ξi)
))

= Vq
(
σEpq (ξ0)

)
+ lim

i
Vq
(∣∣(πq)∗ (T )

∣∣ (σEpq(ξi)
))

= Vq
(
σEpq (ξ0)

)
+ lim

i
(πq)∗ (T )

(
σEpq(ξi)

)
.

From these relations and taking into account that σpq(kerVp) = σpq(ker (πp)∗ (T )) ⊆
ker (πq)∗ (T ) = kerVq we conclude that (πpq)∗ (Vp) = Vq. Hence there is V ∈
LA(E,F ) such that (πp)∗ (V ) = Vp for all p ∈ S(A). Moreover, V is a partial

isometry, T = V |T |,

ranV = lim
←
p

σFp (V E) = lim
←
p

VpEp = lim
←
p

(πp)∗ (T )Ep

= lim
←
p

σFp (TE) = TE

and

ranV ∗ = lim
←
p

σEp (V
∗F ) = lim

←
p

V ∗p Fp = lim
←
p

(πp)∗ (T
∗)Fp

= lim
←
p

σEp (T
∗F ) = T ∗F.
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Hence T has a polar decomposition.

Proposition 3.3.3 An adjointable operator T from E to F has a polar decom-

position if and only if TE is complemented in F and T ∗F is complemented in

E.

Proof. Suppose that T has a polar decomposition, T = V |T |. Then E =

kerV ⊕ V ∗F and F = kerV ∗ ⊕ V E, whence, since V ∗F = T ∗F and V E = TE,

we conclude that TE is complemented in F and T ∗F is complemented in E.

Conversely, if TE and T ∗F are complemented, since (|T |E)⊥ = kerT and

(TE)⊥ = kerT ∗, we have

E = kerT ⊕ |T |E and F = kerT ∗ ⊕ TE.

Define U from |T |E to TE by U |T |ξ = Tξ. Since pF (Tξ) = pE(|T |ξ) for all ξ ∈ E
and for all p ∈ S(A), U extends by linearity and continuity to a surjective A -

linear map, denoted also by U, from |T |E to TE.Moreover, by Proposition 2.5.3,
U is unitary. Consider the map V from E to F defined by V (ξ1 ⊕ ξ2) = Uξ2.

By Proposition 3.2.7, V is a partial isometry in LA(E,F ) with ranV = TE and

ranV ∗ = |T |E = T ∗F. It is not difficult to verify that T = V |T |.

Corollary 3.3.4 Let T ∈ LA(E,F ) such that T has closed range. Then T has

a polar decomposition.

Proof. By Theorem 3.2.4 and Remark 3.2.5, TE and T ∗F are complemented.

Then by Proposition 3.3.3, T has a polar decomposition.

Corollary 3.3.5 Two Hilbert A -modules E and F are isomorphic as Hilbert A

-modules if and only if there is an adjointable operator T from E to F such that

both T and T ∗ have dense range.

Proof. If E and F are isomorphic as Hilbert A -modules, then there is a unitary

operator U from E to F .
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Conversely, if there is an adjointable operator from E to F such that T and

T ∗ have dense range, then by Proposition 3.3.3, T = V |T |, where V is a partial
isometry from E to F such that ranV = TE = F and ranV ∗ = T ∗F = E.

Therefore V is a unitary operator from E to F.

References for Section 3.2: [16], [29].
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Chapter 4

Tensor products of Hilbert

modules

4.1 Exterior tensor product

In this Section we define the notion of exterior tensor product of Hilbert modules

over locally C∗-algebras and we show that the exterior tensor product of the

Hilbert A -module E and the Hilbert B -module F can be identified, up to an

isomorphism of Hilbert modules, with the Hilbert A⊗B -module lim
←
(p,q)

Ep ⊗ Fq.

Let A and B be two locally C∗-algebras, let E be a Hilbert A-module and

let F be a Hilbert B-module. The algebraic tensor product E⊗alg F of E and F
becomes a right A⊗alg B -module in the obvious way (ξ ⊗ η) (a⊗ b) = ξa⊗ ηb,

ξ ∈ E, η ∈ F, a ∈ A and b ∈ B.
It is not difficult to check that the map 〈·, ·〉 from (E ⊗alg F )× (E ⊗alg F ) to

A⊗alg B defined by
〈

n∑

i=1

ξi ⊗ ηi,
m∑

j=1

ξ
′

j ⊗ η
′

j

〉
=

n∑

i=1

m∑

j=1

〈
ξi, ξ

′

j

〉
⊗
〈
ηi, η

′

j

〉

is C- and A⊗alg B -linear in its second variable and
〈
ζ, ζ

′
〉∗

=
〈
ζ
′

, ζ
〉
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for all ζ, ζ
′ ∈ E ⊗alg F.

Let ζ =
n∑
i=1

ξi⊗ ηi ∈ E⊗alg F. If E0 is the Hilbert submodule of E generated
by {ξi; i = 1, 2, ..., n} and F0 is the Hilbert submodule of F generated by {ηi; i =
1, 2, ..., n}, then E0⊗alg F0 is a submodule of E⊗alg F and by Theorem 5.2.7, E0
can be identified with a Hilbert submodule of HA and F0 can be identified with

a Hilbert submodule of HB. Thus we can suppose that for each i ∈ {1, 2, ..., n},
ξi = (aim)m and ηi = (bim)m . Then

〈ζ, ζ〉 =
n∑

i,j=1

〈
(aim)m , (ajm)m

〉
⊗
〈
(bim)m , (bjm)m

〉

=
n∑

i,j=1

(
∑

m

a∗imajm

)
⊗
(
∑

m

b∗imbjm

)

=
∑

m




n∑

i,j=1

a∗imajm ⊗ b∗imbjm




=
∑

m

(
n∑

i=1

aim ⊗ bim

)∗( n∑

i=1

aim ⊗ bim

)
≥ 0.

Moreover, if 〈ζ, ζ〉 = 0, then
n∑
i=1

aim ⊗ bim = 0 for all positive integer m and so

ζ = 0. Thus, we showed that E⊗algF is a pre-Hilbert module over the pre-locally
C∗-algebra A⊗alg B. Then by Remark 1.2.10, the completion E⊗F of E⊗alg F
with respect to the topology induced by the inner-product is a Hilbert A ⊗ B

-module.

Definition 4.1.1 The Hilbert A ⊗ B -module E ⊗ F is said to be the exterior

tensor product of E and F.

For p ∈ S(A) and q ∈ S(B) we denote by Ep⊗Fq the exterior tensor product
of the Hilbert C∗-modules Ep and Fq.

Let p1, p2 ∈ S(A) with p1 ≥ p2 and q1, q2 ∈ S(B) with q1 ≥ q2. Then the

linear map σEp1p2 ⊗ σFq1q2 from Ep1 ⊗alg Fq1to Ep2 ⊗alg Fq2 defined by (σEp1p2 ⊗
σFq1q2)(ξ ⊗ η) = σEp1p2(ξ) ⊗ σFq1q2(η) may be extended by continuity to a linear

map σEp1p2 ⊗ σFq1q2 from Ep1 ⊗ Fq1 into Ep2 ⊗ Fq2 , since
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〈
(σEp1p2 ⊗ σFq1q2)(ξ ⊗ η), (σEp1p2 ⊗ σFq1q2)(ξ ⊗ η)

〉
=

=
〈
σEp1p2(ξ), σ

E
p1p2(ξ)

〉
⊗
〈
σFq1q2(η), σ

F
q1q2(η)

〉

= πp1p2 (〈ξ, ξ〉)⊗ πq1q2 (〈η, η〉)

= (πp1p2 ⊗ πq1q2) (〈ξ ⊗ η, ξ ⊗ η〉)

for all ξ ∈ Ep1 and for all η ∈ Fq1 . It is not difficult to check that {Ep ⊗
Fq;σ

E
p1p2 ⊗ σFq1q2; Ap ⊗ Bq; πp1p2 ⊗ πq1q2, p1, p2 ∈ S(A), p1 ≥ p2, q1, q2 ∈

S(B), q1 ≥ q2} is an inverse system of Hilbert C∗-modules. We will show that
the Hilbert A⊗B -modules E ⊗ F and lim

←
(p,q)

(Ep ⊗ Fq) are isomorphic.

Proposition 4.1.2 Let A, B, E and F be as above. Then the Hilbert A ⊗ B

-modules E ⊗ F and lim
←
(p,q)

(Ep ⊗ Fq) are isomorphic.

Proof. First we will show that for each p ∈ S(A) and q ∈ S(B) the Hilbert

Ap ⊗ Bq -modules (E ⊗ F )(p,q) and Ep ⊗ Fq are isomorphic. Let p ∈ S(A) and

q ∈ S(B). Since

t(p,q) (〈ξ ⊗ η, ξ ⊗ η〉) = ‖πp (〈ξ, ξ〉)⊗ πq (〈η, η〉)‖Ap⊗Bq
=
∥∥〈σEp (ξ), σEp (ξ)

〉
⊗
〈
σFq (η), σ

F
q (η)
〉∥∥

Ap⊗Bq

=
∥∥〈σEp (ξ)⊗ σFq (η), σ

E
p (ξ)⊗ σFq (η)

〉∥∥
Ap⊗Bq

for all ξ ∈ E and η ∈ F, we can define a linear map U(p,q) : (E ⊗alg F ) /NE⊗F
(p,q) →

Ep ⊗alg Fq by
U(p,q)

(
ξ ⊗ η +NE⊗F

(p,q)

)
= σEp (ξ)⊗ σFq (η).

Evidently U(p,q) is a surjective Ap ⊗alg Bq -linear map and

∥∥∥∥∥U(p,q)

(
n∑

i=1

ξi ⊗ ηi +NE⊗F
(p,q)

)∥∥∥∥∥
Ep⊗Fq

=

∥∥∥∥∥

n∑

i=1

ξi ⊗ ηi +NE⊗F
(p,q)

∥∥∥∥∥
(E⊗F )(p,q)

for all
n∑
i=1

ξi⊗ηi ∈ E⊗algF. From these facts, taking into account that Ap⊗algBq

is dense in Ap⊗Bq; (E ⊗alg F ) /NE⊗F
(p,q) is dense in (E ⊗ F )(p,q) and Ep⊗alg Fq is
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dense in Ep ⊗ Fq, we conclude that U(p,q) may be extended by continuity to an

isometric, surjective Ap ⊗ Bq-linear map U(p,q) from (E ⊗ F )(p,q) onto Ep ⊗ Fq.

According to Theorem 3.5 in [29], U(p,q) is an isomorphism of Hilbert C
∗-modules

from (E ⊗ F )(p,q) onto Ep ⊗ Fq.

Let p1, p2 ∈ S(A) with p1 ≥ p2 and q1, q2 ∈ S(B) with q1 ≥ q2. Then

((
σEp1p2 ⊗ σFq1q2

)
◦ U(p1,q1)

) (
ξ ⊗ η +NE⊗F

(p1,q1)

)
=
(
σEp1p2 ⊗ σFq1q2

) (
σEp1(ξ)⊗ σFq1(η)

)

= σEp2(ξ)⊗ σFq2(η) = U(p2,q2)

(
ξ ⊗ η +NE⊗F

(p2,q2)

)

=
(
U(p2,q2) ◦ σE⊗F(p1,q1)(p2,q2)

)(
ξ ⊗ η +NE⊗F

(p1,q1)

)

for all ξ ∈ E and for all η ∈ F, and so
(
U(p,q)

)
(p,q)∈S(A)×S(B)

is an inverse

system of isomorphisms of Hilbert C∗-modules. Let U = lim
←
(p,q)

U(p,q). Then U

is an isomorphism of Hilbert modules from lim
←
(p,q)

(E ⊗ F )(p,q) to lim
←
(p,q)

(Ep ⊗ Fq) .

Therefore the Hilbert A⊗B -modules E ⊗ F and lim
←
(p,q)

(Ep ⊗ Fq) are isomorphic.

Remark 4.1.3 If H is a Hilbert space and E is a Hilbert A -module, then the

exterior tensor product H ⊗E of H and E is a Hilbert C⊗A -module. But the

locally C∗-algebras C⊗A and A are isomorphic and then H ⊗E can be regarded

as a Hilbert A -module.

Corollary 4.1.4 Let E be a Hilbert A -module and let H be a separable infi-

nite dimensional Hilbert space. Then the Hilbert A-modules HE and H ⊗E are

isomorphic.

Proof. Let {εn; i = 1, 2, ...} be an orthonormal basis of H and let p ∈ S(A).

Then the linear map Up fromHEp from H⊗Ep defined by Up ((ξn)n) =
∑
n
εn⊗ξn

is an isomorphism of Hilbert Ap -modules. It is not difficult to check that (Up)p

is an inverse system of isomorphisms of Hilbert C∗-modules. From this fact,

Proposition 4.1.2 and Corollary 2.5.4, we conclude that the Hilbert A -modules

HE and H ⊗E are isomorphic.
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Remark 4.1.5 Let E be a Hilbert A -module and let F be a Hilbert B -module.

Since the C∗-algebras b(A⊗ B) and b(A) ⊗ b(B) are not isomorphic in general

[38], we conclude that the Hilbert C∗-modules b(E⊗F ) and b(E)⊗ b(F ) are not
isomorphic in general.

References for Section 4.1: [20], [29].

4.2 Interior tensor product

In this Section we define the interior tensor product of two Hilbert modules and

we show that the inner tensor product of two Hilbert modules can be identified,

up to an isomorphism of Hilbert modules, with an inverse limit of Hilbert C∗-

modules which are interior tensor products of Hilbert C∗-modules. Also we

study the relation between the bounded part of the interior tensor product of

two Hilbert modules E and F and the interior tensor product of the Hilbert C∗

-modules b(E) and b(F ).

Let A and B be two locally C∗-algebras, let E be a Hilbert A-module, let

F be a Hilbert B-module and let Φ be a continuous ∗ -morphism from A to

LB(F ). The Hilbert B -module F becomes a left A-module with the action

of A on F defined by (a, η) → Φ(a)η, a ∈ A, η ∈ F. The algebraic tensor

product E⊗AF of E and F over A, which is the quotient of the algebraic tensor

product E ⊗alg F by the vector subspace NΦ generated by elements of the form
ξa⊗ η− ξ⊗Φ(a)η, a ∈ A, ξ ∈ E, η ∈ F , is a right B-module in the obvious way
(ξ ⊗ η +NΦ, b)→ ξ ⊗ ηb+NΦ, b ∈ B, ξ ∈ E, η ∈ F . It is not difficult to check

that the map 〈·, ·〉0Φ from (E ⊗alg F )× (E ⊗alg F ) to B defined by
〈

n∑

i=1

ξi ⊗ ηi,
m∑

j=1

ξ
′

j ⊗ η
′

j

〉0

Φ

=
n∑

i=1

m∑

j=1

〈
ηi,Φ

(〈
ξi, ξ

′

j

〉)
η
′

j

〉

is C and B -linear in its second variable. Moreover,

(〈
ζ, ζ ′
〉0
Φ

)∗
=
〈
ζ ′, ζ
〉0
Φ
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for all ζ, ζ ′ ∈ E ⊗alg F.
For a positive integer n we denote by Φ(n) the continuous ∗ -morphism

from Mn(A) to Mn(LB(F ))) defined by Φ(n)
(
[aij]

n
i,j=1

)
= [Φ(aij)]

n
i,j=1 . Since

Mn(LB(F )) can be identified with LB(F
n) (Corollary 2.2.9), Φ(n)

(
[aij]

n
i,j=1

)

acts on Fn by

Φ(n)
(
[aij ]

n
i,j=1

)
((ηi)

n
i=1) =

(
n∑
j=1

Φ(aij) ηj

)n

i=1

.

Let ξ1, ..., ξn ∈ E and η1, ..., ηn ∈ F.We denote by η the element in F n whose

the components are η1, ..., ηn and by X the matrix in Mn(A) with (i, j)-entry
〈
ξi, ξj

〉
. Then

〈
n∑

i=1

ξi ⊗ ηi,
n∑

i=1

ξi ⊗ ηi

〉
=

n∑

i,j=1

〈
ηi,Φ

(〈
ξi, ξj

〉)
ηj
〉
=
〈
η,Φ(n)(X)η

〉
≥ 0

since X is a positive element in Mn(A).

Lemma 4.2.1 Let A,B,E,F and Φ be as above. Then

NΦ = {ζ ∈ E ⊗alg F ; 〈ζ, ζ〉0Φ = 0}.

Proof. Let ξ ∈ E, η ∈ F and a ∈ A. Then

〈ξa⊗ η − ξ ⊗Φ(a) η, ξa⊗ η − ξ ⊗Φ(a) η〉0Φ =

〈η,Φ(〈ξa, ξa〉) η〉 − 〈η,Φ(〈ξa, ξ〉)Φ (a) η〉 − 〈Φ(a) η,Φ(〈ξ, ξa〉) η〉+
〈Φ(a) η,Φ(〈ξ, ξ〉)Φ (a) η〉 = 0.

So NΦ ⊆ {ζ ∈ E⊗alg F ; 〈ζ, ζ〉0Φ = 0}. Let ζ =
n∑
i=1

ξi⊗ηi ∈ E⊗alg F such that

〈ζ, ζ〉0Φ = 0. Then, since

〈ζ, ζ〉0Φ =
〈
η,Φ(n)(X)η

〉
,

where η is the element in Fn with the components η1, ..., ηn and X is the matrix

in Mn(A) with (i, j)-entry
〈
ξi, ξj

〉
, Φ(n)(X

1
2 )η = 0 and so Φ(n)(X

1
4 )η = 0.
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If ξ is the element in En with the components ξ1, ..., ξn, then in the Hilbert

Mn(A) -module LA(E
n), 〈ξ, ξ〉 = X and according to Corollary 1.3.11, there is

an element ξ̃ in En with the components ξ̃1, ..., ξ̃n such that ξ = ξ̃X
1
4 . Suppose

that X
1
4 = [cij ]

n
i,j=1 . Then, for each j ∈ {1, ..., n},

ξj =
n∑

i=1

ξ̃icij

and for each i ∈ {1, ..., n}
n∑

j=1

Φ(cij) ηj.

Therefore ζ =
n∑

i,j=1

(
ξ̃icij ⊗ ηj − ξ̃i ⊗Φ(cij) ηj

)
and the lemma is proved.

In the particular case when F = B, the above lemma was proved in [38],

pp.181.

According to Lemma 4.2.1, we can define a B -valued inner-product 〈·, ·〉Φ
on E ⊗A F by 〈

ζ +NΦ, ζ
′ +NΦ

〉
Φ
=
〈
ζ, ζ ′
〉0
Φ
.

Moreover, E ⊗A F equipped with this B -valued inner-product is a pre-Hilbert

B -module. An element ξ ⊗ η +NΦ in E ⊗A F is denoted by ξ ⊗Φ η.

Definition 4.2.2 The completion of the pre-Hilbert space E ⊗A F with respect

to the topology induced by the inner-product defined above, denoted by E ⊗Φ F,
is said to be the interior tensor product of E and F using Φ.

For each q ∈ S(B), the map Φq : A→ LBq(Fq) defined by Φq = (πq)∗ ◦ Φ is
a continuous ∗ -morphism.
Let q1, q2 ∈ S(B) with q1 ≥ q2. Since

〈
ξ ⊗ σFq1q2(η), ξ ⊗ σFq1q2(η)

〉0
Φq2

=
〈
σFq1q2(η),Φq2 (〈ξ, ξ〉)σFq1q2(η)

〉

=
〈
σFq1q2(η), (πq2)∗ (Φ (〈ξ, ξ〉))σFq1q2(η)

〉

=
〈
σFq1q2(η), σ

F
q1q2((πq1)∗ (Φ (〈ξ, ξ〉)) η)

〉

= πq1q2 (〈η,Φq1 (〈ξ, ξ〉) η〉)
= πq1q2

(
〈ξ ⊗ η, ξ ⊗ η〉0Φq1

)
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for all ξ ∈ E and η ∈ Fq1 , there is a unique linear map χq1q2 : E⊗alg Fq1/NΦq1 →
E ⊗alg Fq2/NΦq2 such that by

χq1q2
(
ξ ⊗ η +NΦq1

)
= ξ ⊗ σFq1q2(η) +NΦq2

for all ξ ∈ E and η ∈ Fq1 . Moreover, χq1q2 is continuous and it extends uniquely
to a linear map, denoted also by χq1q2 , from E ⊗Φq1 Fq1 to E ⊗Φq2 Fq2 such that

χq1q2
(
ξ ⊗Φq1 η

)
= ξ ⊗Φq2 σ

F
q1q2(η)

for all ξ ∈ E and η ∈ Fq1 .

Proposition 4.2.3 Let A, B, E, F and Φ be as above. Then

{
E ⊗Φq Fq; Bq;χq1q2;πq1q2, q1 ≥ q2, q1, q2 ∈ S(B)

}

is an inverse system of Hilbert C∗-modules, and the Hilbert B-modules E ⊗Φ F
and lim

←
q

(
E ⊗Φq Fq

)
are isomorphic.

Proof. To show that
{
E ⊗Φq Fq; Bq; ψq1q2 , q1 ≥ q2, q1, q2 ∈ S(B)

}
is an in-

verse system of Hilbert C∗-modules, let q1, q2, q3 ∈ S(A) such that q1 ≥ q2 ≥ q3,

ξ, ξ′ ∈ E, η, η′ ∈ Fq1 and b ∈ Bq1. Then:

(a) χq1q2
((
ξ ⊗Φq1 η

)
b
)
= χq1q2

(
ξ ⊗Φq1 ηb

)
= ξ ⊗Φq2 σFq1q2(ηb)

= ξ ⊗Φq2 σFq1q2(η)πq1q2(b) = χq1q2
(
ξ ⊗Φq1 η

)
πq1q2(b);

(b)
〈
χq1q2

(
ξ ⊗Φq1 η

)
, χq1q2

(
ξ′ ⊗Φq1 η′

)〉
Φq2

=
〈
σFq1q2(η),Φq2

(〈
ξ, ξ′
〉)
σFq1q2(η

′)
〉

=
〈
σFq1q2(η), σ

F
q1q2

(
Φq1

(〈
ξ, ξ′
〉)
η′
)〉

= πq1q2
(〈
η,Φq1

(〈
ξ, ξ′
〉)
η′
〉)

= πq1q2

(〈
ξ ⊗Φq1 η, ξ

′ ⊗Φq1 η′
〉
Φq1

)
;

(c)
(
χq2q3 ◦ χq1q2

) (
ξ ⊗Φq1 η

)
= χq2q3

(
ξ ⊗Φq2 σFq1q2(η)

)
= ξ ⊗Φq3 σFq1q3(η)

= χq1q3
(
ξ ⊗Φq1 η

)
;

(d) χq1q1
(
ξ ⊗Φq1 η

)
= ξ ⊗Φq1 σFq1q1 (η) = ξ ⊗Φq1 η.
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From these facts we conclude that {E ⊗Φq Fq; Bq; ψq1q2 , q1 ≥ q2, q1, q2

∈ S(B)} is an inverse system of Hilbert C∗-modules.
Let q ∈ S(B). Since

〈
ξ ⊗ σFq (η), ξ ⊗ σFq (η)

〉0
Φq

=
〈
σFq (η),Φq (〈ξ, ξ〉)σFq (η)

〉

=
〈
σFq (η), σ

F
q (Φ (〈ξ, ξ〉) η)

〉

= πq (〈η,Φ(〈ξ, ξ〉) η〉) = πq

(
〈ξ ⊗ η, ξ ⊗ η〉0Φ

)

for all ξ ∈ E and for all η ∈ F, there is a unique linear map U0q from E ⊗A F

to E ⊗A Fq such that U
0
q (ξ ⊗Φ η) = ξ ⊗Φq σFq (η) for all ξ ∈ E and for all

η ∈ F. Moreover, since U0q (E ⊗A F ) = E ⊗A Fq and
∥∥ξ ⊗Φq σFq (η)

∥∥
E⊗AFq

≤
qE⊗AF (ξ ⊗Φ η) for all ξ ∈ E and for all η ∈ F, U0q extends to a surjective linear
map U0q from E⊗ΦF to E⊗Φq Fq. Then there is a surjective linear map Uq from
(E ⊗Φ F )q to E ⊗Φq Fq such that Uq ◦ σE⊗ΦFq = U0q . It is not difficult to check

that Uq is Bq -linear and since

〈
Uq
(
σE⊗ΦFq (ξ ⊗Φ η)

)
, Uq
(
σE⊗ΦFq (ξ ⊗Φ η)

)〉
Φq

= πq (〈ξ ⊗Φ η, ξ ⊗Φ η〉Φ)
=
〈
σE⊗ΦFq (ξ ⊗Φ η), σE⊗ΦFq (ξ ⊗Φ η)

〉

for all ξ ∈ E and η ∈ F. From these and Theorem 3.5 in [29], we conclude that

Uq is an isomorphism of Hilbert C
∗ -modules from (E ⊗Φ F )q onto E ⊗Φq Fq.

Let q1, q2 ∈ S(B) with q1 ≥ q2, ξ ∈ E and η ∈ F. Then
(
χq1q2 ◦ Uq1

) (
σE⊗ΦFq1 (ξ ⊗Φ η)

)
= χq1q2

(
ξ ⊗Φq1 σ

F
q1(η)

)
= ξ ⊗Φq2 σ

F
q2(η)

= Uq2
(
σE⊗ΦFq2 (ξ ⊗Φ η)

)

=
(
Uq2 ◦ σE⊗ΦFq1q2

) (
σE⊗ΦFq1 (ξ ⊗Φ η)

)
.

Therefore (Uq)q∈S(B) is an inverse system of isomorphism of Hilbert C
∗ -modules.

Let U = lim
←
q

Uq. Then U is an isomorphism of Hilbert B -modules from E ⊗Φ F

onto lim
←
q

(
E ⊗Φq Fq

)
.

Proposition 4.2.4 Let A and B be locally C∗-algebras, let E be a Hilbert A-

module, let F be a Hilbert B-module and let Φ : A → LB(F ) be a continuous
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∗-morphism such that Φ(A)F is dense in F. Then the Hilbert B-modules HA⊗ΦF
and H ⊗F, where H is a separable infinite dimensional Hilbert space (as well as

A⊗Φ F and F ) are unitarily equivalent.

Proof. Let H be a separable infinite dimensional Hilbert space and let {εn;n =

1, 2, ...} be an orthonormal bases of H. By Corollary 4.1.4, the Hilbert A-modules
HA and H ⊗A are isomorphic.

The proof is partition in two steps.

Step1. We suppose that B is a C∗-algebra.

The continuity of Φ implies that there is a continuous ∗ -morphism Ψp from

Ap to LB(F ) such that Ψp ◦ πp = Φ. Since πp is surjective, Ψp(Ap)F is dense

in F . Then, the Hilbert C∗-modules HAp ⊗Ψp F and H ⊗ F are isomorphic as

well as the Hilbert C∗ -modules Ap ⊗Ψp F and F (see, for instance, [29] pp.

41-42). Moreover, an isomorphism from HAp ⊗Ψp F onto H ⊗ F is given by

(εn ⊗ a) ⊗Ψp η → εn ⊗ Ψp(a)η and an isomorphism from Ap ⊗Ψp F onto F is
given by a⊗Ψp η → Ψp(a)η.

On the other hand, we know that the Hilbert C∗-modules HA ⊗Φ F and

HAp⊗ΨpF are isomorphic as well as the Hilbert C∗-modules A⊗ΦF and Ap⊗ΨpF
(see the proof of the Proposition 4.2.3). Moreover, the isomorphism U between

HA ⊗Φ F and H ⊗ F is defined by U ((εn ⊗ a)⊗Φ η) = εn ⊗ Φ(a)η and the

isomorphism V between A⊗ΦF and F is defined by V (a⊗Φη) = Φ(a)η. Therefore

the proposition is proved in this case.

Step 2. Now we suppose that B is an arbitrary locally C∗-algebra.

For each q ∈ S(B), Φq(A)Fq is dense in Fq, where Φq is a continuous ∗-
morphism from A into LBq(Fq) defined by Φq = (πq)∗ ◦ Φ, since Φq(A)Fq =

(πq)∗ (Φ(A)) Fq = σFq (Φ (A)F ) and Φ(A)F is dense in F. Then, according to

the first step of the proof, the Hilbert C∗-modules HA ⊗Φq Fq and H ⊗ Fq are

isomorphic as well as the Hilbert C∗-modules A ⊗Φq Fq and Fq, and moreover,
the linear map Uq from HA ⊗Φq Fq to H ⊗ Fq defined by

Uq
(
(εn ⊗ a)⊗Φq η

)
= εn ⊗Φq(a)η
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is an isomorphism of Hilbert C∗ -modules as well as the linear map Vq from

A⊗Φq Fq to Fq defined by

Vq(a⊗Φq η) = Φq(a)η.

Let q1, q2 ∈ S(B) with q1 ≥ q2. Then

(
σH⊗Fq1q2 ◦ Uq1

) (
(εn ⊗ a)⊗Φq1 σ

F
q1(η)

)
= σH⊗Fq1q2

(
εn ⊗Φq1(a)σ

F
q1(η)

)

= εn ⊗ σFq1q2
(
Φq1(a)σ

F
q1(η)

)

= εn ⊗Φq2(a)σ
F
q2(η)

= Uq2
(
(εn ⊗ a)⊗Φq2 σ

F
q2(η)

)

=
(
Uq2 ◦ σHA⊗ΦF

q1q2

) (
(εn ⊗ a)⊗Φq1 σFq1(η)

)

and

(
σFq1q2 ◦ Vq1

) (
a⊗Φq1 σ

F
q1(η)

)
= σFq1q2

(
Φq1(a)σ

F
q1(η)

)
= Φq2(a)σ

F
q2(η)

= Vq2
(
a⊗Φq2 σ

F
q2(η)

)

=
(
Vq2 ◦ σA⊗ΦFq1q2

) (
a⊗Φq1 σFq1(η)

)

for all a ∈ A, for all η ∈ F and for all positive integer n. Therefore (Uq)q is an

inverse system of isomorphisms of Hilbert C∗ -modules as well as (Vq)q . Then

the Hilbert B -modules lim
←
q

(
HA ⊗Φq Fq

)
and lim

←
q

(H ⊗ Fq) are isomorphic as

well as the Hilbert B -modules lim
←
q

(
A⊗Φq Fq

)
and lim

←
q

Fq. From these facts and

Propositions 4.2.3 and 1.3.10, we conclude that the Hilbert B -modules HA⊗ΦF
and HE are isomorphic as well as the Hilbert B -modules A⊗Φ F and F.

Remark 4.2.5 Putting F = B in Proposition 4.2.4 and using Corollary 4.1.4,

we deduce that the Hilbert B-modules HA ⊗Φ B and HB are isomorphic as well

as the Hilbert B -modules A⊗Φ B and B.

Remark 4.2.6 If Φ is a continuous ∗ -morphism from A to LB(F ), then Φ(b(A)) ⊆
b(LB(F )), and since the C

∗-algebras b(LB(F )) and Lb(B)(b(F )) are isomorphic,
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we can regard the restriction Φ|b(A) of Φ on b(A) as a ∗ -morphism from b(A) to

Lb(B)(b(F )). In general, the Hilbert b(B) -modules b (E ⊗Φ F ) and b(E)⊗Φ|b(A)
b(F ), where E is a Hilbert A -module, are not isomorphic.

Example 4.2.7 Let A = Ccc([0, 1]), B = C (Z+) and let Φ be a unital contin-

uous ∗ -morphism from A to B. Then Φ(A)B = B and by Remark 4.2.5, the

Hilbert B -modules HA ⊗Φ B and HB are isomorphic. From this and Corollary

2.5.7, we conclude that the Hilbert b(B) -modules b (HA ⊗Φ B) and b(HB) are

isomorphic.

Suppose that the Hilbert b(B) -modules b (HA ⊗Φ B) and b(HA)⊗Φ|b(A) b(B)

are isomorphic. But, by Example 1.3.6, the Hilbert b(A)-modules b(HA) and

Hb(A) coincides and by Remark 4.2.5, the Hilbert b(B) -modules Hb(A)⊗Φ|b(A)b(B)

and Hb(B) are isomorphic. Therefore the Hilbert b(B) -modules b (HA ⊗Φ B) and

Hb(B) are isomorphic.

From these facts, we conclude that the Hilbert b(B) -modules Hb(B) and b(HB)

are isomorphic, a contradiction (Example 1.3.5). Therefore the Hilbert b(B) -

modules b (HA ⊗Φ B) and b(HA)⊗Φ|b(A) b(B) are not isomorphic.

Example 4.2.8 Let A and B be two locally C∗-algebras with A unital, let F

be a Hilbert B -module and let Φ be a unital continuous ∗ -morphism from A

to LB(F ). Then, clearly Φ(A)F is dense in F and Φ|b(A)(b(A))b(F ) is dense in
b(F ). By Remark 4.2.5, the Hilbert B -modules A⊗ΦF and F are isomorphic as

well as the Hilbert b(B) -modules b(A) ⊗Φ|b(A) b(F ) and b(F ). Since the Hilbert
B -modules A⊗Φ F and F are isomorphic, by Corollary 2.5.7, the Hilbert b(B)

-modules b (A⊗Φ F ) and b(F ) are isomorphic. Therefore, the Hilbert b(B) -

modules b (A⊗Φ F ) and b(A)⊗Φ|b(A) b(F ) are isomorphic.

References for Section 4.2: [20], [29],[38].

4.3 Operators on tensor products of Hilbert modules

In this Section, by analogy with the case of Hilbert C∗-modules, we study the

relation between the locally C∗-algebras LA(E) ⊗ LB(F ) and LA(E) ⊗ LB(F )
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respectively KA(E) ⊗ KB(F ) and KA⊗B(E ⊗ F ). Also we study the relation

between the locally C∗-algebras LA(E) and LB (E ⊗Φ F ) , respectively KA(E)

to KB (E ⊗Φ F ).

Proposition 4.3.1 Let A and B be locally C∗-algebras, let E be a Hilbert A-

module and let F be a Hilbert B-module. Then the locally C∗-algebras LA⊗B(E⊗
F ) and lim

←
(p,q)

LAp⊗Bq(Ep⊗Fq) as well as KA⊗B(E⊗F ) and lim
←
(p,q)

KAp⊗Bq(Ep⊗Fq)

are isomorphic.

Proof. By Corollaries 2.2.8 and 2.3.5, the locally C∗-algebras LA⊗B(E ⊗ F )

and lim
←
(p,q)

LAp⊗Bq((E ⊗ F )(p,q)) are isomorphic as well as the locally C
∗-algebras

KA⊗B(E ⊗ F ) and lim
←
(p,q)

KAp⊗Bq((E ⊗ F )(p,q)). From these facts, Propositions

4.1.2, 2.2.7 and 2.3.4, we conclude that the locally C∗ -algebras LA⊗B(E ⊗ F )

and lim
←
(p,q)

LAp⊗Bq(Ep ⊗ Fq) as well as KA⊗B(E ⊗ F ) and lim
←
(p,q)

KAp⊗Bq(Ep ⊗ Fq)

are isomorphic.

Proposition 4.3.2 Let A and B be locally C∗-algebras, let E be a Hilbert A-

module and let F be a Hilbert B-module. Then there is a continuous ∗ -morphism
j from LA(E)⊗ LB(F ) into LA⊗B(E ⊗ F ) such that

j(T ⊗ S)(ξ ⊗ η) = Tξ ⊗ Sη, T ∈ LA(E), S ∈ LB(F ), ξ ∈ E, η ∈ F.

Moreover, j is injective and j(KA(E)⊗ KB(F )) = KA⊗B(E ⊗ F ).

Proof. Let p ∈ S(A) and q ∈ S(B). Then, since Ap and Bq are C
∗-algebras,

Ep is a Hilbert Ap-module and Fq is a Hilbert Bq-module, there is an injective

morphism of C∗-algebras j(p,q) from LAp(Ep)⊗LBq(Fq) to LAp⊗Bq(Ep⊗Fq) such
that

j(p,q)(Tp ⊗ Sq)(ξp ⊗ ηq) = Tpξp ⊗ Sqηq

for all Tp ∈ LAp(Ep), Sq ∈ LBq(Fq), ξp ∈ Ep, ηq ∈ Fq and

j(p,q)
(
KAp(Ep)⊗KBq(Fq)

)
= KAp⊗Bq(Ep ⊗ Fq)
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( see, for instance, [29] pp. 35-37).

Since

((
j(p2,q2) ◦ ((πp1p2)∗ ⊗ (πq1q2)∗)

)
(Tp1 ⊗ Sq1)

)
(σEp2(ξ)⊗ σFq2(η))

= (πp1p2)∗ (Tp1)
(
σEp2(ξ)

)
⊗ (πq1q2)∗ (Sq1)

(
σFq2(η)

)

= σEp1p2
(
Tp1
(
σEp1(ξ)

))
⊗ σFq1q2

(
Sq1
(
σFq1(η)

))

and

(((
π(p1,q1)(p2,q2)

)
∗
◦ j(p1,q1)

)
(Tp1 ⊗ Sq1)

)
(σEp2(ξ)⊗ σFq2(η))

= σE⊗F
(p1,q1)(p2,q2)

(
j(p1,q1) ((Tp1 ⊗ Sq1)) (σ

E
p1(ξ)⊗ σFq1(η))

)

= σE⊗F
(p1,q1)(p2,q2)

(
Tp1σ

E
p1(ξ)⊗ Sq1σ

F
q1(η)

)

= σEp1p2
(
Tp1
(
σEp1(ξ)

))
⊗ σFq1q2

(
Sq1
(
σFq1(η)

))

for all Tp1 ∈ LAp1 (Ep1), for all Sq1 ∈ LBq1 (Fq1), for all ξ ∈ E, for all

η ∈ F and for all p1, p2 ∈ S(A) with p1 ≥ p2 and q1, q2 ∈ S(B) with q1 ≥ q2,(
j(p,q)

)
(p,q)∈S(A)×S(B)

is an inverse system of injective morphisms of C∗ -algebras.

Moreover,
(
j(p,q)|KAP

(Ep)⊗KBq (Fq)

)
(p,q)∈S(A)×S(B)

is an inverse system of isomor-

phisms of C∗-algebras. Let j = lim
←
(p,q)

j(p,q). Then j is an injective continuous ∗

-morphism from lim
←
(p,q)

LAp(Ep) ⊗ LBq(Fq) to lim
←
(p,q)

LAp⊗Bp(Ep ⊗ Fq), and since the

locally C∗ -algebras lim
←
(p,q)

LAp(Ep)⊗ LBq(Fq) and LA(E)⊗ LB(F ) can be identi-

fied up to an isomorphism (Corollary 4.11, [8]) as well as the locally C∗-algebras

lim
←
(p,q)

LAp⊗Bp(Ep ⊗ Fq) and LA⊗B(E ⊗ F ) (Proposition 4.3.1), j can be regarded

as an injective continuous ∗ -morphism from LA(E)⊗ LB(F ) to LA⊗B(E ⊗ F )

such that

j(T ⊗ S)(ξ ⊗ η) = Tξ ⊗ Sη, T ∈ LA(E), S ∈ LB(F ), ξ ∈ E, η ∈ F.

Moreover, since j| lim
←
(p,q)

KAp⊗Bq (Ep⊗Fq)
= lim

←
(p,q)

j(p,q)|KAP
(Ep)⊗KBq (Fq)

, and since the

locally C∗ -algebras lim
←
(p,q)

KAp(Ep)⊗LBq(Fq) andKA(E)⊗LB(F ) can be identified
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up to an isomorphism (Corollary 4.11, [8]) as well as the locally C∗-algebras

lim
←
(p,q)

KAp⊗Bp(Ep⊗Fq) and KA⊗B(E⊗F ) (Proposition 4.3.1), we have j(KA(E)⊗

KB(F )) = KA⊗B(E ⊗ F ).

Proposition 4.3.3 Let E be a Hilbert module over the locally C∗-algebra A, let

F be a Hilbert module over the locally C∗ -algebra B, and let Φ be a morphism of

locally C∗ -algebras from A to LB(F ). Then the locally C
∗-algebras LB (E ⊗Φ F )

and lim
←
q

LBq
(
E ⊗Φq Fq

)
as well as KB (E ⊗Φ F ) and lim

←
q

KBq

(
E ⊗Φq Fq

)
are

isomorphic.

Proof. By Corollaries 2.2.8 and 2.3.5, the locally C∗-algebras LA(E⊗Φ F ) and
lim
←
q

LBq(
(
E ⊗φ F

)
q
) are isomorphic as well as the locally C∗-algebras KA(E ⊗Φ

F ) and lim
←
q

KBq((E ⊗Φ F )p). From these facts, Propositions 4.2.2, 2.2.7 and

2.3.4, we conclude that the locally C∗ -algebras LA(E⊗Φ F ) and lim
←
q

LBq(E⊗Φq
Fq) as well as KB(E ⊗Φ F ) and lim

←
q

KBq(E ⊗Φq Fq) are isomorphic.

Proposition 4.3.4 Let A and B be locally C∗-algebras, let E be a Hilbert A-

module, let F be a Hilbert B-module and let Φ : A → LB(F ) be a continuous

∗-morphism.

1. Then there is a continuous ∗-morphism Φ∗ : LA(E) → LB (E ⊗Φ F ) such

that

Φ∗(T )(ξ ⊗Φ η) = T (ξ)⊗Φ η, ξ ∈ E, η ∈ F, T ∈ LA(E).

Moreover, if Φ is injective, then Φ∗ is injective.

2. If Φ(A) ⊆ KB(F ), then Φ∗ (KA(E)) ⊆ KB (E ⊗Φ F ) . Moreover, if Φ(A)
is dense in KA(F ), then Φ∗ (KA(E))is dense in KB (E ⊗Φ F ) .

Proof. We partition the proof in two steps.

Step 1. We suppose that B is a C∗ -algebra.
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1. The continuity of Φ implies that there is a continuous ∗ -morphism Ψp

from Ap to LB(F ) such that Ψp ◦ πp = Φ. Then, from the theory of Hilbert C∗

-modules (see, for instance, [29]), there is a morphism of C∗-algebras (Ψp)∗from

LAp (Ep) to LB(Ep⊗Ψp F ) such that (Ψp)∗ (T )
(
σEp (ξ)⊗Ψp η

)
= T
(
σEp (ξ)

)
⊗Ψp η

for all ξ ∈ E, η ∈ F and T ∈ LAp (Ep) . We will show that the Hilbert C
∗

-modules E⊗ΦF and Ep⊗Ψp F are isomorphic. For this, we define a linear map
U from E⊗Φ F to Ep⊗Ψp F by U (ξ ⊗Φ η) = σEp (ξ)⊗Ψp η. Clearly, U is B -linear
and U (E ⊗Φ F ) = Ep ⊗Ψp F . Since

〈
σEp (ξ)⊗Ψp η, σEp (ξ)⊗Ψp η

〉
Ψp

=
〈
η,Ψp

(〈
σEp (ξ), σ

E
p (ξ)
〉
η
)〉

= 〈η, (Ψp ◦ πp) (〈ξ, ξ〉 η)〉
= 〈η,Φ(〈ξ, ξ〉) η〉 = 〈ξ ⊗Φ η, ξ ⊗Φ η〉Φ

for all ξ ∈ E and for all η ∈ F, U extends to an isometric, surjective linear B

-map U from E⊗Φ F onto Ep⊗Ψp F, and by Theorem 3.5 in [29], the Hilbert B
-modules E ⊗Φ F and Ep ⊗Ψp F are isomorphic.
We consider the map Φ∗ from LA(E) to LB (E ⊗Φ F ) defined by Φ∗(T ) =

U∗ (Ψp)∗
(
(πp)∗ (T )

)
U . Clearly, Φ∗ is a morphism of locally C

∗-algebras. More-

over,

Φ∗(T ) (ξ ⊗Φ η) = U∗ (Ψp)∗
(
(πp)∗ (T )

) (
σEp (ξ)⊗Ψp η

)

= U∗
(
(πp)∗ (T )σ

E
p (ξ)⊗Ψp η

)

= U∗
(
σEp (Tξ)⊗Ψp η

)
= Tξ ⊗Φ η

for all ξ ∈ E, for all η ∈ F and for all T ∈ LA(E).

Suppose that Φ is injective. Let T ∈ LA(E) such that Φ∗(T ) = 0. Then

Tξ ⊗Φ η = 0 for all ξ ∈ E and for all η ∈ F and so

0 =
〈
Tξ ⊗Φ η, Tξ ⊗Φ η

′
〉
Φ
=
〈
η,Φ(〈Tξ, Tξ〉) η′

〉

for all ξ ∈ E and for all η, η′ ∈ F. This implies that Φ(〈Tξ, Tξ〉) = 0 for all for

all ξ ∈ E, and since Φ is injective, T is the null operator.
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2. If Φ(A) ⊆ KB(F ), thenΨp (Ap) ⊆ KB(F ) and according to Proposition 4.7

of [29], (Ψp)∗
(
KAp (Ep)

)
⊆ KB(Ep ⊗Ψp F ). Since (πp)∗ (KA (E)) = KAp (Ep),

we have

Φ∗ (KA(E)) = U∗ (Ψp)∗
(
(πp)∗ (KA(E))

)
U

⊆ U∗KB(Ep ⊗Ψp F )U = KB(E ⊗Φ F ).

If Φ(A) is dense in KA(F ), then Ψp (Ap) = KB(F ) and according to Propo-

sition 4.7 of [29], (Ψp)∗
(
KAp (Ep)

)
= KB(Ep ⊗Ψp F ). Then

Φ∗ (KA(E)) = U∗ (Ψp)∗
(
(πp)∗ (KA(E))

)
U

= U∗KB(Ep ⊗Ψp F )U = KB(E ⊗Φ F ).

Step 2. Now we suppose that B is an arbitrary locally C∗ -algebra.

1. For each q ∈ S(B), the map Φq from A to LBq(Fq) defined by Φq =

(πq)∗ ◦ Φ is a continuous ∗ -morphism, and by the first step of the proof, there
is a continuous ∗ -morphism (Φq)∗ from LA (E) to LBq(E ⊗Φq Fq) such that

(Φq)∗ (T )
(
ξ ⊗Φq σFq (η)

)
) = T (ξ)⊗Φq σFq (η)

for all ξ ∈ E for all η ∈ F and for all T ∈ LA(E).

Let Ψq be the map from LA(E) to LBq((E ⊗Φ F )q) defined by Ψq(T ) =

U∗q (Φq)∗ (T )Uq,where Uq is the isomorphism of HilbertBq -modules from (E ⊗Φ F )q
onto E ⊗Φq Fq defined in the proof of Proposition 4.2.3, and let q1, q2 ∈ S(B)

with q1 ≥ q2. Since

((
(πq1q2)∗ ◦Ψq1

)
(T )
) (
σE⊗ΦFq1 (ξ ⊗Φ η)

)
= σE⊗ΦFq1q2

(
Ψq1 (T )

(
σE⊗ΦFq1 (ξ ⊗Φ η)

))

= σE⊗ΦFq1q2

(
σE⊗ΦFq1 (Tξ ⊗Φ η)

)

= σE⊗ΦFq2 (Tξ ⊗Φ η)
= Ψ2(T )

(
σE⊗ΦFq1 (Tξ ⊗Φ η)

)

for all T ∈ LA(E) and for all ξ ∈ E and η ∈ F, (πq1q2)∗ ◦Ψq1 = Ψq2 . Therefore

there is a continuous ∗ -morphism Φ∗ from LA(E) to LBq(E ⊗Φq Fq) such that
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(πq)∗ ◦ Φ∗ = Ψq for all q ∈ S(B). Moreover, Φ∗(T )(ξ ⊗Φ η) = Tξ ⊗Φ η, for all
ξ ∈ E for all η ∈ F and for all T ∈ LA(E), since

σE⊗ΦFq (Φ∗(T )(ξ ⊗Φ η)) = (πq)∗
(
Φ∗(T )σ

E⊗ΦF
q (ξ ⊗Φ η)

)

= Ψq (T )
(
σE⊗ΦFq (ξ ⊗Φ η)

)

= σE⊗ΦFq (Tξ ⊗Φ η) .

It is easy to check that if Φ is injective, then Φ∗ is injective.

2. If Φ(A) ⊆ KB(F ), then Φq(A) ⊆ KBq(Fq) for each q ∈ S(B), and ac-

cording to the first part of the proof, (Φq)∗ (KA(E)) ⊆ KBq(E ⊗Φq Fq) and
so Ψq (KA(E) ⊆ KBq((E ⊗Φ F )q). From these, since (πq)∗ ◦ Φ∗ = Ψq for each

q ∈ S(B), we conclude that Φ∗ (KA(E)) ⊆ KB (E ⊗Φ F ) .
If Φ(A) is dense inKA(F ), then for each q ∈ S(B), Φq(A) is dense inKBq(Fq)

and according to the first half of this proof, (Φq)∗ (KA(E)) is dense inKBq(E⊗Φq
Fq) and so Ψq (KA(E) is dense in KBq((E ⊗Φ F )q). Thus we have

Φ∗ (KA(E)) = lim
←
q

Ψq (KA(E))

= lim
←
q

KBq((E ⊗Φ F )q) = KB (E ⊗Φ F ) .

In the case when B is a C∗-algebra and F = B, the above proposition was

proved in [38], pp.184-185.

Corollary 4.3.5 Let A and B be locally C∗-algebras, let E be a Hilbert A-

module, let F be a Hilbert B-module and let Φ : A → LB(F ) be a continuous

∗-morphism such that Φ(A) = KB(F ). If for each q ∈ S(B) there is pq ∈ S(A)

such that q̃(Φ(a)) = pq(a) for all a ∈ A and if {pq; q ∈ S(B)} is a cofinal subset
of S(A), then Φ∗(KA(E)) = KB(E ⊗Φ F ).

Proof. According to Proposition 4.3.4, Φ∗(KA(E)) is dense in KB(E ⊗Φ F ).

To show that Φ∗(KA(E)) is closed, let q ∈ S(A) and pq ∈ S(A) such that

q̃(Φ(a)) = pq(a) for all a ∈ A. Then there is a continuous ∗ -morphism Φpq :
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Apq → LBq(Fq) such that Φpq ◦ πpq = (πq)∗ ◦Φ. Moreover, Φpq

(
Apq

)
= KBq(Fq)

and then according to Proposition 4.7 of [29],
∥∥(Φpq

)
∗
(T )
∥∥ = ‖T‖ for all T in

K(Epq). If Upq is the isomorphism of Hilbert Bq -module from E It is easy to

verify that
(
Φpq

)
∗
◦
(
πpq
)
∗
= (πq)∗ ◦ (Φ)∗ . Then for each T ∈ KA(E) we have

q̃ ((Φ)∗ (T )) =
∥∥(πq)∗ ((Φ)∗ (T ))

∥∥ =
∥∥(Φpq

)
∗

((
πpq
)
∗
(T )
)∥∥

=
∥∥(πpq

)
∗
(T )
∥∥ = p̃q(T ).

From this, since {pq; q ∈ S(B)} is a cofinal subset of S(A), it follows that Φ∗(
KA(E)) is closed.

References for Section 4.3: [20], [29], [38].
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Chapter 5

Stabilisation

5.1 Full Hilbert modules

In this Section we characterize the full Hilbert modules over locally C∗-algebras

and we show that, in general, a full Hilbert module E does not induce a structure

of full Hilbert C∗- module on b(E).

Let A be a locally C∗-algebra.

Definition 5.1.1 A Hilbert A -module E is full if the closed two-sided ∗ -ideal
〈E,E〉 coincides with A.

Remark 5.1.2 Since A has an approximate unit, the Hilbert A -module A is

full.

Proposition 5.1.3 Let A be a locally C∗-algebra and let E be a Hilbert A-

module. Then E is full if and only if Ep is full for all p ∈ S(A).

Proof. First we suppose that E is full. Let p ∈ S(A). Since σEp (E) = Ep, and

since
〈
σEp (ξ), σ

E
p (η)
〉
= πp (〈ξ, η〉) for all ξ, η ∈ E, the closed vector subspace

〈Ep, Ep〉 of Ap coincides with πp (〈E,E〉) . But 〈E,E〉 = A and πp(A) = Ap.

Therefore Ep is full.
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Conversely, if Ep is full for all p ∈ S(A), then we have

〈E,E〉 = lim
←
p

πp (〈E,E〉)

(cf.[33], Lemma III.3.2 )

= lim
←
p

〈Ep, Ep〉 = lim
←
p

Ap = A

Therefore E is full.

Corollary 5.1.4 For any locally C∗-algebras A, the Hilbert A-module HA is full.

Let E and F be Hilbert A -modules. It is not difficult to check thatKA(E,F )

is a pre-Hilbert KA(E) -module with the action of KA(E) on KA(E,F ) defined

by (T, S) → TS, T ∈ KA(E,F ) and S ∈ KA(E) and the inner-product defined

by 〈T, S〉 = T ∗S, T, S ∈ KA(E,F ). Since the topology on KA(E,F ) induced

by the inner-product is the same as the topology on KA(E,F ) induced by the

family of seminorms {p̃}p∈S(A), KA(E,F ) is a Hilbert KA(E) -module. A simple

calculus shows that {KAp(Ep, Fp); (πpq)∗ ;KAp(Ep), p ≥ q, p, q ∈ S(A)} is an
inverse system of Hilbert C∗-modules.

Let p ∈ S(A). Define a linear map Up from (KA(E,F ))p to KAp(Ep, Fp) by

Up(T +NKA(E,F )
p ) = (πp)∗ (T )

T ∈ KA(E,F ). It is not difficult to check that Up is a unitary element in

LBp((KA(E, F ))p,KAp(Ep, Fp)), where Bp = KAp(Ep). Also it is not difficult

to check that

(πp1p2)∗ ◦ Up1 = Up2 ◦ σKA(E,F )
p1p2

for all p1, p2 ∈ S(A) with p1 ≥ p2. Therefore (Up)p is an inverse system of isomor-

phisms of Hilbert C∗-modules. Let U = lim
←
p

Up. Then U is an isomorphism of

Hilbert modules from lim
←
p

(KA(E,F ))p onto lim←
p

KAp(Ep, Fp)), and so the Hilbert

KA(E) -modules KA(E,F ) and lim
←
p

KAp(Ep, Fp) are isomorphic.
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Remark 5.1.5 By Corollary 3.2.8, the locally C∗-algebras LKA(E)(KA(E,F ))

and lim
←
p

LBp(KAp(Ep, Fp)) as well asKKA(E)(KA(E,F )) and lim
←
p

KBp(KAp(Ep, Fp))

(Corollary 3.3.5) are isomorphic.

Remark 5.1.6 Let E and F be two Hilbert A -modules such that F is full. Since

F is full, E 〈F,F 〉 is dense in E (Corollary 1.2.13) and so KA(E) is generated

by the elements in the form θξ〈η,µ〉,ζ , ξ, ζ ∈ E, η, µ ∈ F . From this fact and

taking into account that θξ〈η,µ〉,ζ = θξ,µθη,ζ for all ξ, ζ ∈ E and for all η, µ ∈ F ,

we conclude that 〈KA(E,F ),KA(E,F )〉 coincides with KA(E). Therefore, if F

is full, then the Hilbert KA(E) -module KA(E,F ) is full.

Remark 5.1.7 If E is a Hilbert A -module such that b(E) is a full Hilbert b(A)

-module, then, taking into account that b(A) is dense in A and b(E) is dense in

E, we deduce that E is full. In general, the converse implication is not valid.

Example 5.1.8 Let A = C (Z+) and E =
∏
n
Cn. Then E is a Hilbert A-module

(see, Example 3.4.10). It is not difficult to check that the Hilbert modules E and

b(E) are full.

Example 5.1.9 Let A and E as above and let F = KA(E,A). Then F is a full

Hilbert KA(E) -module. We will show that b(F ) is not full.

Suppose that b(F ) is full. Then the C∗-subalgebra of b(KA(E)) generated by

b(KA(E,A)
∗)b(KA(E,A)) coincides with b(KA(E)). On the other hand, since A

is unital, KA(E,A) = LA(E,A) and Lb(A)(b(E), b(A)) = Kb(A)(b(E), b(A)), and

then by Theorem 3.4.2, the C∗-algebras b(KA(E,A)) and Kb(A)(b(E), b(A)) are

isomorphic. Therefore the C∗ -subalgebra of b(KA(E)) generated by b(KA(E,A)
∗)

b(KA(E,A)) is isomorphic with Kb(A)(b(E)). From these facts, we conclude that

the C∗-algebras b(KA(E)) and Kb(A)(b(E)) are isomorphic, a contradiction (see

Example 3.4.10). Therefore b(F ) is not full.

Remark 5.1.10 Let E be a full Hilbert A -module and let F be a full Hilbert

B -module. Then E ⊗ F is full, since the closed ideal of A ⊗ B generated by

〈E ⊗ F,E ⊗ F 〉 coincides with the ideal of A⊗B generated by 〈E,E〉⊗alg 〈F, F 〉 .
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Remark 5.1.11 Let E be a full Hilbert A -module, let F be a full Hilbert B

-module and let Φ : A→ LB(F ) be a morphism of locally C∗ -algebras such that

Φ(A)F is dense in F . Then E⊗ΦF is full, since the closed ideal of B generated by
〈E ⊗Φ F,E ⊗Φ F 〉 coincides with the ideal of B generated by 〈F,Φ(〈E,E〉)F 〉 .

References for Section 5.1: [21], [29].

5.2 Countably generated Hilbert modules

In this Section we show that the Kasparov stabilisation theorem for countably

Hilbert C∗-modules is valid in the context of Hilbert modules over locally C∗-

algebras and we prove a criterion for a Hilbert module over a Fréchet locally

C∗-algebra be countably generated. Also, we show that if E is a full countably

Hilbert module over a separable Fréchet locally C∗-algebra, then the Hilbert

A-modules HA and HE are unitarily equivalent.

Let A be a locally C∗-algebra.

Definition 5.2.1 A Hilbert A -module E is countably generated if there is a

countable subset G of E such that the Hilbert -submodule of E generated by G is

exactly E.

Lemma 5.2.2 Let E be a countably generated Hilbert A -module. Then there is

a countable subset G0 of b(E) such that G0 is a generating set for E.

Proof. Let {ξn;n = 1, 2, ...} be a generating set for E. By Theorem 1.3.2 (2),
for each positive integer n there is a sequence {ξnm}m of elements in b(E) which

converges to ξn. LetG0 = {ξnm;n,m = 1, 2, ...}. Clearly, G0 is a countable subset
of b(E) and {ξn;n = 1, 2, ...} is a subset of the Hilbert A -module generated by
G0. Therefore G0 is a generating set for E.

Remark 5.2.3 If G is a generating set for the Hilbert A -module E, then σp(G)

is a generating set for Ep for each p ∈ S(A). Therefore if E is a countably gen-

erated Hilbert A -module, then the Hilbert Ap-module Ep is countably generated

for each p ∈ S(A).
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Example 5.2.4 If A has a countable approximate unit {un}n, then the Hilbert
A-module A is countably generated.

Indeed, let h =
∑
n
2−nun. Then πp(h) is a strictly positive element in Ap for

each p ∈ S(A), since {πp(un)}n is a countable approximate unit for Ap (see,

[37], Proposition 3.10.5), and by Lemma III 3.2, [33],

hA = lim
←
p

πp(hA) = lim
←
p

πp(h)Ap = lim
←
p

Ap = A.

Therefore {h} is a generating set for A.

Example 5.2.5 If A has a countable approximate unit {un}n, then the Hilbert
A-module HA is countably generated.

Example 5.2.6 If E is a countably generated Hilbert A -module, then the Hilbert

A-module HE is countably generated.

If A is a C∗-algebra, Kasparov [26] shoved that HA is big enough to absorb

any countably generated Hilbert A -module. This result is known as Kasparov’s

stabilization theorem, and it is also true in the context of Hilbert modules over

locally C∗-algebras.

Theorem 5.2.7 Let E be a countably generated Hilbert A -module. Then the

Hilbert A -modules E ⊕HA and HA are isomorphic.

Proof. First we suppose that A is unital. Then {en;n = 1, 2, ...}, where en is an
element in HA whose all the components are zero except at the n

th component

which is 1, is a generating set for HA.

Let {ξn;n = 1, 2, ...} be a generating set for E with each element repeated
infinitely often. By Lemma 5.2.2, we can suppose that for each positive integer

n, ξn is an element in b(E) and ‖ξn‖∞ ≤ 1. Clearly, {ξn ⊕ en;n = 1, 2, ...} is a
generating set for E ⊕HA.

Let p ∈ S(A). Then {σEp (ξn) ⊕ σHA
p (en);n = 1, 2, ...} is a generating set

for Ep ⊕ HAp and according to the proof of Kasparov’s stabilization theorem
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for countably generated Hilbert C∗-modules ( see, for example, [35]), the linear

operator Tp from HAp to Ep ⊕HAp defined by

Tp =
∑

n

2−nθ
σEp (ξn)⊕2

−nσ
HA
p (en),σ

HA
p (en)

and its adjoint have dense range. It is not difficult to check that (Tp)p is a

coherent sequence in LAp(HAp , Ep ⊕HAp). Let T ∈ LA(HA, E ⊕HA) such that

(πp)∗ (T ) = Tp for each p ∈ S(A). Then:

THA = lim
←
p

(σEp ⊕ σHA
p )(THA) = lim

←
p

(πp)∗ (T )
(
σHA
p (HA)

)

= lim
←
p

Tp(HAp) = lim
←
p

Ep ⊕HAp = E ⊕HA

and

T ∗ (E ⊕HA) = lim
←
p

σHA
p (T ∗ (E ⊕HA))

= lim
←
p

(πp)∗ (T
∗)
((
σEp ⊕ σHA

p

)
(E ⊕HA)

)

= lim
←
p

T ∗p (Ep ⊕HAp) = lim
←
p

HAp = HA.

Therefore T and T ∗ have dense range and by Corollary 3.3.5, the Hilbert A

-modules HA and E ⊕HA are isomorphic.

If A is not unital, let A+ be the unitization of A. Since E can be regarded as

Hilbert A+ -module, according to the first part of the proof, there is a unitary

operator U+ fromHA+ onto E⊕HA+ . Clearly , the restriction U of U
+ onHA+A

is a unitary operator from HA+A onto (E ⊕HA+)A. It is not difficult to check

that the linear maps: (an)na→ (ana)n from HA+A to HA and (ξ ⊕ (an)n)a→
(ξ ⊕ (ana)n) from (E ⊕HA+)A to E ⊕ HA are unitary operators. From these

facts we conclude that the Hilbert A -modules HA and E⊕HA are isomorphic.

For countably generated Hilbert modules over Fréchet locally C∗-algebras,

this theorem was proved in [38], Theorem 5.12.

Remark 5.2.8 If E is a Hilbert A-module such that the Hilbert b(A)-module

b(E) is countably generated, then E is countably generated.
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Corollary 5.2.9 If A is a locally C∗-algebra such that b(HA) = Hb(A), and E

is a countably generated Hilbert A-module, then the Hilbert b(A)-module b(E) is

countably generated.

Proof. By Theorem 5.2.7, the Hilbert A-modules E ⊕HA and HA are isomor-

phic. From this, using Corollary 2.5.7 and Remark 1.3.7, we conclude that the

Hilbert b(A)-module b(E)⊕Hb(A) and Hb(A) are isomorphic, and since Hb(A) is

countably generated, b(E) is countably generated.

It is known that a Hilbert C∗-module is countably generated if and only if

the C∗-algebra KA(E) has a countable approximate unit (see, for example, [29],

Proposition 6.7). This result can be extended in the context of Hilbert modules

over Fréchet locally C∗-algebras.

Proposition 5.2.10 Let A be a locally C∗-algebra and let E be a Hilbert A

-module. Then:

1. If E is countably generated, then KA(E) has a countable approximate unit.

2. If A is a Fréchet locally C∗-algebra and if KA(E) has a countable approxi-

mate unit, then E is countably generated.

Proof. 1. Suppose that A is unital. Then, for each p ∈ S(A), HAp is countably

generated and by [29], Proposition 6.7, KAp(HAp) has a countable approximate

unit. Moreover, {Up
n}n, where Up

n =

(∑
m

2−nθ
σ
HA
p (em),σ

HA
p (em)

) 1
n

is an approxi-

mate unit for KAp(HAp). It is not difficult to check that, for each positive integer

n, (Up
n)p is a coherent sequence in KAp(HAp). For each positive integer n, let

Un = (Up
n)p. Then {Un}n is an approximate unit in KA(HA). Since E is count-

ably generated, by Theorem 5.2.7, there is an element P in LA(HA, E) such that

PP ∗ =idE. Then {PUnP ∗}n is an approximate unit for KA(E).

2. Let {Vn}n be a countable approximate unit of KA(E) and let T =
∑
n
2−n

Vn. For each p ∈ S(A), {(πp)∗(Vn)}n is a countable approximate unit forKAp(Ep)

and (πp)∗(T ) is an element inKAp(Ep) with dense range ( see, for instance, [12]).

Then
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TE = lim
←
p

σEp (TE) = lim
←
p

(πp)∗(T )(Ep)

= lim
←
p

Ep = E.

Therefore T has dense range. Let {pn}n be a cofinal subset of S(A). Since T
∈ KA(E), for each positive integer n, there are ξn1 , ..., ξ

n
mn

ηn1 , ..., η
n
mn
in E such

that

p̃n

(
T −

mn∑

k=1

θξnk ,ηnk

)
<

1

2n
.

We show that {ξnk ; 1 ≤ k ≤ mn, n = 1, 2, ...} is a system of generators for E.
Let ξ ∈ E, ε > 0 and let n0 be a positive integer. Since T has dense range,

there is η ∈ E such that pn0(ξ − Tη) < ε
2 . Let n = max{n0, [pn0 (η)ε ] + 1}, where

[t] means the integer part of the positive number t. Then pn0 ≤ pn and

pn0

(
ξ −

mn∑

k=1

ξnk 〈ηnk , η〉
)
≤ pn0 (ξ − Tη) + pn0

(
Tη −

mn∑

k=1

θξnk ,ηnk (η)

)

<
ε

2
+ pn0 (η) p̃n0

(
T −

mn∑

k=1

θξnk ,ηnk

)

<
ε

2
+ pn0 (η) p̃n

(
T −

mn∑

k=1

θξnk ,ηnk

)
< ε.

This shows that {ξnk ; 1 ≤ k ≤ mn, n = 1, 2, ...} is a system of generators for E
and therefore E is countably generated.

Corollary 5.2.11 Let A be a Fréchet locally C∗-algebra and let E be a Hilbert

A -module. Then E is countably generated if and only if KA(E) has a countable

approximate unit.

The following theorem extends Theorem 1.9, [35] in the context of Hilbert

modules over locally C∗-algebras.

Theorem 5.2.12 Let A be a Fréchet locally C∗-algebra with countable approxi-

mate unity and let E be a full Hilbert A -module.
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1. There is a Hilbert A -module F such that the Hilbert A -modules HE and

A⊕ F are isomorphic.

2. If E is countably generated, then the Hilbert A -modules HE and HA are

isomorphic.

To prove this theorem we will use the same arguments as in the proof of The-

orem 1.9, [35]. Thus, first we extend Lemma 1.7, [35] which plays an important

role in the proof of Theorem 1.9.

Lemma 5.2.13 Let A be a Fréchet locally C∗-algebra with countable approxi-

mate unit and let E be a Hilbert A -module. If E is full, then there is a sequence

{ξn}n in E such that p

(
n∑

k=1

〈ξk, ξk〉a− a

)
→ 0 for all p ∈ S(A) and for all

a ∈ A.

Proof. First we show that A has a countable approximate unit contained in the

C∗-subalgebra 〈b(E), b(E)〉 of b(A).
Let {en}n be a countable approximate unit for A and let {ui}i∈I be an ap-

proximate unit for 〈b(E), b(E)〉 .
We show that {ui}i∈I is an approximate unit for A. Let a ∈ A, p ∈ S(A) and

ε > 0. Since E is full, there are ξ1, ..., ξn, η1, ..., ηn ∈ E such that

p(a−
n∑

k=1

〈ξk, ηk〉) < ε/8,

and since b(E) is dense in E, there is ξ̃1, ..., ξ̃n ∈ E such that

p̃(ξk − ξ̃k) < ε/8(
n∑

k=1

p̃(ξk) + 1)

for all positive integer k with 1 ≤ k ≤ n, and there are η̃1, ..., η̃n ∈ E such that

p̃(ηk − η̃k) < ε/8(
n∑

k=1

p̃(ξ̃k) + 1)

for all positive integer k with 1 ≤ k ≤ n. Then

p(a−
n∑

k=1

〈
ξ̃k, η̃k

〉
) ≤ p(a−

n∑
k=1

〈ξk, ηk〉) + p(
n∑

k=1

〈
ξk − ξ̃k, ηk

〉
)
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+p(
n∑

k=1

〈
ξ̃k, η̃k − ηk

〉
)

< ε/8 +
n∑

k=1

p̃(ξk − ξ̃k)p̃(ηk) +
n∑

k=1

p̃(ηk − η̃k)p̃(ξ̃k)

< 3ε/8.

On the other hand, since {ui}i∈I is an approximate unit for 〈b(E), b(E)〉 , there
is i0 ∈ I such that

∥∥∥∥
n∑

k=1

〈
ξ̃k, η̃k

〉
ui −

n∑
k=1

〈
ξ̃k, η̃k

〉∥∥∥∥
∞

< ε/4

for all i ∈ I with i ≥ i0. From these relations we obtain

p(aui − a) ≤ p((a−
n∑

k=1

〈
ξ̃k, η̃k

〉
)ui) + p(

n∑
k=1

〈
ξ̃k, η̃k

〉
ui −

n∑
k=1

〈
ξ̃k, η̃k

〉
)

+p(a−
n∑

k=1

〈
ξ̃k, η̃k

〉
)

< 3ε/8 + ε/4 + 3ε/8 = ε

for all i ∈ I with i ≥ i0 and so {ui}i∈I is an approximate unit for A.
We choose a countable subnet {vn}n of {ui}i∈I such that with {pn}n a cofinal

subset of S(A), we have pn(vnek − ek)+ pn(ekvn − ek) <
1
n for all 1 ≤ k ≤ n.

Let a ∈ A, pm ∈ S(A) and ε > 0. Then there is a positive integer k0 such

that

pm(aek0 − a) + pm(ek0a− a) <
ε

3

and there is a positive integer n0, n0 = max {k0,m, [3(pm(a)+1)ε ]}, where [t] is the
integer part of the real number t, such that

pm(avn − a) + pm(vna− a) ≤ pm (vn) (pm(aek0 − a) + pm(ek0a− a)) +

+pm (a) (pm(vnek0 − ek0) + pm(ek0vn − ek0)) +

+(pm(aek0 − a) + pm(ek0a− a))

≤ 2 (pm(aek0 − a) + pm(ek0a− a)) +

+pm (a) (pn(vnek0 − ek0) + pn(ek0vn − ek0))

< 2
ε

3
+ pm (a)

1

n
≤ ε
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for all positive integer n, n ≥ n0. This shows that {vn}n is an approximate unit
for A.

Let h =
∑
n
2−nvn. Since {πp(vn)}n is an approximate unit for Ap, πp(h) is a

strictly positive element in Ap for each p ∈ S(A) and so πp(h)Ap is dense in Ap

for each p ∈ S(A). Then

hA = lim
←
p

πp(hA) = lim
←
p

πp(h)Ap = lim
←
p

Ap = A.

Therefore hA is dense in A.

On the other hand, since h is an element in 〈b(E), b(E)〉 and b(E) is a full

Hilbert 〈b(E), b(E)〉 -module, according to the proof of Lemma 1.7 in [35],
there is a sequence {ξn}n in b(E) such that

∥∥∥∥
n∑

k=1

〈ξk, ξk〉h− h

∥∥∥∥
∞

→ 0 and
∥∥∥∥

n∑
k=1

〈ξk, ξk〉
∥∥∥∥
∞

≤ 1 for all positive integers n. Then

p(
n∑

k=1

〈ξk, ξk〉ha− ha)→ 0

for all a ∈ A and for all p ∈ S(A).
Let a ∈ A, p ∈ S(A) and ε > 0. Since hA is dense inA, there is b ∈ A such that

p(a−hb) < ε/3. Let n0 be a positive integer such that p(
n∑

k=1

〈ξk, ξk〉hb−hb) < ε/3

for all positive integer n with n ≥ n0. Then

p(
n∑

k=1

〈ξk, ξk〉 a− a) ≤ p(
n∑

k=1

〈ξk, ξk〉 (a− hb)) + p(
n∑

k=1

〈ξk, ξk〉hb− hb) + p(a− hb)

< ε/3 + ε/3 + ε/3 = ε

for all positive integer n with n ≥ n0.

The proof of Theorem 5.2.12.

1. Let {ξn}n be a sequence in E such that p
(

n∑
k=1

〈ξk, ξk〉a− a

)
→ 0 for

all p ∈ S(A) and for all a ∈ A. Thus we can define a map T from A to HE by

T (a) = (ξna)n .
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Let (ηn)n ∈ HE and p ∈ S(A). Then

p

(
m∑
k=n

〈ξk, ηk〉
)2

≤ p

(
m∑
k=n

〈ξk, ξk〉
)
p

(
m∑
k=n

〈ηk, ηk〉
)

(cf. Cauchy -Schwartz Inequality)

≤
∥∥∥∥

m∑
k=1

〈ξk, ξk〉
∥∥∥∥
∞

p

(
m∑
k=n

〈ηk, ηk〉
)

≤ p

(
m∑
k=n

〈ηk, ηk〉
)

for all positive integers n and m with m > n. This shows that
∑
n
〈ξn, ηn〉

converges in A and so we can define a map S from HE to A by S ((ηn)n) =
∑
n
〈ξn, ηn〉 . From

〈T (a), (ηn)n〉 = a∗
∑
n
〈ξn, ηn〉 = 〈a, S ((ηn)n)〉

for all a ∈ A and for all (ηn)n ∈ HE, we deduce that T ∈ LA(A,HE) and T
∗ = S.

Since 〈T (a), T (a)〉 = 〈a, a〉 for all a ∈ A, T has closed range and moreover, the

Hilbert A -modules A and ran(T ) are isomorphic. Then by Remark 3.2.5, HE

is isomorphic with ker(T ∗) ⊕ A. Therefore there is a Hilbert A -module F =

ker(T ∗) such that the Hilbert A -modules HE and F ⊕A are isomorphic.

2. If E is countably generated, since A is also countably generated and since

the Hilbert A-modules HE and F ⊕A are isomorphic, F is countably generated

and so HF is countably generated. Then, by Theorem 5.2.7, the Hilbert A-

modules HF ⊕HA and HA are isomorphic.

On the other hand, since the Hilbert A -modules HE and F ⊕A are isomor-

phic, the Hilbert A -modules HE and HF ⊕HA are isomorphic. Therefore the

Hilbert A -modules HE and HA are isomorphic.

We don’t know if Theorem 5.2.12 is valid in the general case. If A is an

arbitrary locally C∗-algebra we have the following result:

Proposition 5.2.14 Let A be a unital locally C∗-algebra such that b(HA) =

Hb(A), and let E be a countably generated Hilbert A -module such that b(E) is

full. Then the Hilbert A -modules HE and HA are isomorphic.
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Proof. By Corollary 5.2.9, the Hilbert b(A) -module b(E) is countably gener-

ated, and then by Theorem 1.9, [35], the Hilbert b(A) -modules Hb(E) and Hb(A)

are isomorphic. From this and Lemma 1.3.8, we conclude that the Hilbert A

-modules HE and HA are isomorphic.

References for Section 5.2: [14], [16], [19], [23], [26], [29], [35], [38].

5.3 Strong Morita equivalence

In this Section we extend the concept of strong Morita equivalence in the context

of locally C∗-algebras and we show that a well-known result of Brown, Green and

Rieffel [5] which states that two C∗-algebras are stably isomorphic if and only if

they are strongly Morita equivalent is valid for Fréchet locally C∗-algebras.

Definition 5.3.1 Two locally C∗-algebras A and B are strongly Morita equiva-

lent, written A ∼M B, if there is a full Hilbert A-module E such that the locally

C∗-algebras KA(E) and B are isomorphic.

Proposition 5.3.2 Strong Morita equivalence is an equivalence relation in the

set of all locally C∗-algebras.

To prove this proposition, the following lemma will be necessary.

Lemma 5.3.3 Let A be a locally C∗-algebra and let E and F be Hilbert A -

modules. If E is full, then the locally C∗-algebras LA(F ) and LB(G) respectively

KA(F ) and KB(G) are isomorphic, where G = KA(E,F ) and B = KA(E).

Proof. Let p ∈ S(A). By Proposition 5.1.3, Ep is full and then the C
∗-algebras

LAp(Fp) and LBp(Gp) are isomorphic as well as KAp(Fp) and KBp(Gp), where

Bp = KAp(Ep) and Gp = KAp(Ep, Fp) (see, for example, [29], Proposition 7.1 ).

Moreover, the isomorphism is given by αp : LAp(Fp) → LBp(Gp), αp(Tp)(Sp) =

TpSp, Tp ∈ LAp(Fp), Sp ∈ Gp respectively αp|KAp (Fp)
.

Let p, q ∈ S(A) with p ≥ q. Then
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(
(πpq)∗ ◦ αp

)
(Tp)
(
σGq (S)

)
= σGpq

(
αp (Tp)

(
σGp (S)

))

= σGpq
(
Tp ◦ σGp (S)

)
= (πpq)∗ (Tp) ◦

(
σGq (S)

)

=
(
αq ◦ (πpq)∗

)
(Tp)
(
σGq (S)

)

for all Tp ∈ LAp(Fp) and for all S ∈ G. This implies that (αp)p is an inverse system
of isomorphisms of C∗-algebras as well as

(
αp|KAp(Fp)

)
p
and so the locally C∗

-algebras lim
←
p

LAp(Fp) and lim
←
p

LBp(Gp) are isomorphic as well as lim
←
p

KAp(Fp)

and lim
←
p

KBp(Gp). From these facts, Corollaries 2.2.8 and 2.3.5, we conclude that

the locally C∗-algebras LA(F ) and LB(G) are isomorphic as well as KA(F ) and

KB(G), and the lemma is proved.

The proof of Proposition 5.3.2.

Proof. Since A is a full Hilbert A -module and the locally C∗-algebras A and

KA(A) are isomorphic, we have A ∼M A. So the relation is reflexive.

If A ∼M B, then there is a full Hilbert A -module E such that the locally C∗-

algebras B and KA(E) are isomorphic. By Lemma 5.3.3, the locally C∗-algebras

A and KB(G) are isomorphic, where G is the Hilbert KA(E) -module KA(E,A),

and since G is full (Remark 5.1.6), B ∼M A. Therefore the relation is symmetric.

To show that the relation is transitive, we suppose that A,B,C are locally

C∗-algebras such that B is isomorphic to KA(E) for some full Hilbert A -module

E and C is isomorphic to KB(F ) for some full Hilbert B -module F. By Remark

1.2.11, F can be regarded as a Hilbert KA(E) -module and so the C∗-algebras

C and Kk(A)(F ) are isomorphic.

Let i be the natural embedding of KA(E) into LA(E) and let F ⊗i E be the

interior tensor product of F and E using i. By Proposition 4.2.3, the Hilbert

Ap-modules (F ⊗i E)p and F ⊗(πp)∗◦i Ep are isomorphic for each p ∈ S(A). On

the other hand, from the proof of Proposition 4.3.4 (1) (Step1), the Hilbert

Ap-modules F ⊗(πp)∗◦i Ep and Fp ⊗ip Ep, where ip is the natural embedding of

KAp(Ep) into LAp(Ep) are isomorphic for each p ∈ S(A). Therefore, for each
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p ∈ S(A), the Hilbert Ap -modules(F ⊗i E)p and Fp ⊗ip Ep are isomorphic and

since Fp ⊗ip Ep is full [29], according to Proposition 5.1.3, F ⊗i E is full.

Let p ∈ S(A). Then the map (ip)∗ fromKKAp (Ep)
(Fp) toKAp

(
Fp ⊗ip Ep

)
de-

fined by (ip)∗ (Tp)
(
ηp ⊗ip ξp

)
= Tp

(
ηp
)
⊗ip ξp is an isomorphism of C

∗-algebras

(see [29], Proposition 4.7). It is not difficult to check that
(
(ip)∗
)
p
is an in-

verse system of isomorphisms of C∗-algebras and so the locally C∗-algebras

lim
←
p

KKAp (Ep)
(Fp) and lim

←
p

KAp

(
Fp ⊗ip Ep

)
are isomorphic. But the locally C∗-

algebras lim
←
p

KKAp (Ep)
(Fp) and KKA(E)(F ) (Corollary 2.3.5) are isomorphic as

well as lim
←
p

KAp

(
Fp ⊗ip Ep

)
and KA (F ⊗i E) (Proposition 4.3.3 ). From these

facts, we conclude that the locally C∗-algebras C and KA (F ⊗i E) are isomor-

phic, and since F ⊗i E is full, A ∼M C. Thus we showed that the relation is

transitive.

Proposition 5.3.4 Let A1, A2, B1and B2 be locally C∗-algebras. If A1 ∼M

B1and A2 ∼M B2, then A1 ⊗A2 ∼M B1 ⊗B2.

Proof. Since A1 ∼M B1 and A2 ∼M B2, there is a full Hilbert A1-module

E1 such that the locally C∗-algebras KA1(E1) and B1 are isomorphic and there

is a full Hilbert A2-module E2 such that the locally C
∗-algebras KA2(E2) and

B2 are isomorphic. Then by Proposition 3.4 in [13], the locally C∗-algebras

B1 ⊗B2 and KA1(E1)⊗KA2(E2) are isomorphic. But according to Proposition

4.3.2, the locally C∗-algebras KA1(E1) ⊗ KA2(E2) and KA1⊗A2(E1 ⊗ E2) are

isomorphic, where E1 ⊗E2 is the exterior tensor product of Hilbert modules E1

and E2. From these facts and taking into account that E1 ⊗E2 is full ( Remark

5.1.10) we conclude that A1 ⊗A2 ∼M B1 ⊗B2.

Corollary 5.3.5 Let A be a locally C∗-algebra. Then the locally C∗-algebras A

and K⊗A are strongly Morita equivalent.

Proof. From A ∼M A, K ∼M C and Proposition 5.3.4, we conclude that

K⊗A ∼M C⊗A and since the locally C∗-algebras A and C⊗A are isomorphic
the corollary is proved.
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Definition 5.3.6 We will say that two locally C∗-algebras are stably isomorphic

if the locally C∗-algebras K⊗A and K⊗B are isomorphic.

Proposition 5.3.7 Let A and B be locally C∗-algebras. If A and B are stably

isomorphic, then A and B are strongly Morita equivalent.

Proof. By Corollaries 4.1.4 and 2.3.6 and Proposition 4.3.2, KB(HB) is isomor-

phic with K⊗B, and since A and B are stably isomorphic, KB(HB) is isomorphic

with K ⊗A. From these facts and taking into account that HB is a full Hilbert

B-module, we conclude that K⊗A ∼M B. But, by Corollary 5.3.5 K⊗A ∼M A.

Therefore A ∼M B.

The following theorem is a generalization of a well-known theorem of Brown,

Green and Rieffel ( [5], Theorem 1.2) for Fréchet locally C∗-algebras.

Theorem 5.3.8 Let A and B be Fréchet locally C∗-algebras with countable ap-

proximate units. Then A is strongly Morita equivalent to B if and only if A and

B are stably isomorphic.

Proof. If A and B are stably isomorphic, then by Proposition 5.3.7, A and B

are strongly Morita equivalent.

To show the converse implication, let E be a full Hilbert A -module such

that KA(E) is isomorphic with B. Since A has a countably approximate unit,

E is countably generated (Corollary 5.2.11) and then by Theorem 5.2.12, the

Hilbert A -modulesHE and HA are isomorphic. Therefore the locally C
∗-algebra

KA(HE) is isomorphic with the locally C
∗-algebra KA(HA) which is KA(HA) is

isomorphic with K⊗A.

On the other hand, K⊗B is isomorphic with K⊗KA(E) which is isomorphic

with KA(HE) (Proposition 4.3.2). From these facts we conclude that the locally

C∗-algebras K ⊗A and K ⊗B are isomorphic and so the locally C∗-algebras A

and B are stably isomorphic.

References for Section 5.3: [5], [21], [29],[42], [43].
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Chapter 6

Representations of locally

C∗-algebras on Hilbert

modules

6.1 Representations of locally C∗-algebras

In this Section we introduce the notion of representation of a locally C∗-algebra

on a Hilbert module and we characterize the non-degenerate representations of

locally C∗-algebras on Hilbert modules. Also we show that given a locally C∗-

algebra B, then any separable locally C∗-algebra A admits a non-degenerate

representation on the Hilbert module HB.

Let A and B be two locally C∗-algebras.

Definition 6.1.1 A representation of A on a Hilbert B -module E is a contin-

uous ∗-morphism Φ from A into LB(E). We say that the representation Φ is

non-degenerate if Φ(A)E is dense in E.

Definition 6.1.2 Two representations Φ1 and Φ2 of A on the Hilbert B -modules

E1 respectively E2 are said to be unitarily equivalent if there is a unitary operator

U in LB(E1, E2) such that UΦ1(a) = Φ2(a)U for all a in A.
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Remark 6.1.3 If A is a Fréchet locally C∗-algebra, then any ∗ -morphism from

A to LB(E) is a representation of A on E.

Proposition 6.1.4 Let A be a locally C∗-algebra, let Φ be a representation of

A on a Hilbert B -module E. Then the following statements are equivalent:

1. Φ is non-degenerate;

2. there is a unique unital continuous ∗-morphism Φ from M(A) into LB(E)

such that:

(a) Φ|A = Φ,

(b) Φ|C is strictly continuous whenever C is a bounded selfadjoint subset

of M(A);

3. for some approximate unit {ei}i∈I of A, {Φ(ei)}i∈I converges strictly to
1LB(E), the identity map on E.

Proof. 1. ⇒ 2. Let c ∈ M(A). We consider the map Φ(c) from Φ(A)E into E

defined by

Φ(c)




n∑

j=1

Φ(aj)ξj


 =

n∑

j=1

Φ(caj)ξj .

Let {ui}i∈I be an approximate unit forA,
n∑
j=1

Φ(aj)ξj ∈ Φ(A)E and q ∈ S(B).

Then

q


Φ(c)




n∑

j=1

Φ(aj)ξj




 = lim

i
q




n∑

j=1

Φ(cuiaj)ξj




≤ lim
i
q̃ (Φ(cei)) q




n∑

j=1

φ(aj)ξj




≤ pq(c)q




n∑

j=1

φ(aj)ξj
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for some pq ∈ S(A). Hence Φ(c) can be extended on E by continuity. It is easy

to check that Φ(c) is an element in LB(E) and Φ(c)∗ = Φ(c∗) . Also it is not

difficult to that the map Φ is a unital continuous ∗ -morphism from M(A) to

LB(E). Evidently, Φ|A = Φ.

Let C be a bounded selfadjoint subset of M(A). To show that Φ|C is strictly
continuous, let {ci}i∈I be a net in C which converges strictly to an element c in C,
ξ ∈ E, q ∈ S(B) and ε > 0. Since Φ is a morphism of locally C∗ -algebras, there

is pq ∈ S(A) such that q̃
(
Φ(b)

)
≤ pq(b) for all b ∈ M(A), and since Φ(A)E is

dense in E, there is
n∑
j=1

Φ(aj)ξj ∈ Φ(A)E such that

q


ξ −

n∑

j=1

Φ(aj)ξj


 <

ε

3Mpq

,

where Mpq = sup{pq(c); c ∈ C}. Let M = sup{q(ξj); j = 1, 2, ..., n}. Since the
net {ci}i∈I converges strictly to c, there is i0 ∈ I such that

pq (ciaj − caj) + pq (c
∗
i aj − c∗aj) <

ε

3nM

for all j ∈ {1, 2, ..., n} and for all i ∈ I with i ≥ i0. Then

q
(
Φ(ci) ξ −Φ(c) ξ

)
+ q
(
Φ(c∗i )ξ −Φ(c∗) ξ

)

≤ q

(
Φ(ci − c)

(
ξ −

n∑
j=1

Φ(aj)ξj

))

+q

(
Φ(c∗i − c∗)

(
ξ −

n∑
j=1

Φ(aj)ξj

))

+q

(
Φ(ci − c)

n∑
j=1

Φ(aj)ξj

)
+q

(
Φ(c∗i − c∗)

n∑
j=1

Φ(aj)ξj

)

≤ (pq (ci − c) + pq (c∗i − c∗)) q

(
ξ −

n∑
j=1

Φ(aj)ξj

)

+
n∑
j=1

(pq (ciaj − caj) + pq (c
∗
i aj − c∗aj)) q

(
ξj
)

< 2Mpq
ε

3Mpq
+ nM ε

3nM = ε
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for all i ∈ I with i ≥ i0. Therefore the net {Φ(ci)}i∈I converges strictly to
Φ(c).

To show that Φ is unique, let Φ̃ be another unital continuous ∗-morphism from
M(A) to LB(E) which verifies the conditions (a) and (b) and c ∈M(A). Then

Φ̃(c)




n∑

j=1

Φ(aj)ξj


 =

n∑

j=1

Φ̃(c)Φ(aj)ξj

=
n∑

j=1

Φ(caj)ξj = Φ(c)




n∑

j=1

φ(aj)ξj




for all
n∑
j=1

Φ(aj)ξj ∈ Φ(A)E. From this, since Φ(A)E is dense in E, we conclude

that Φ(c) = Φ̃(c) and so Φ = Φ̃.

2.⇒ 3. Let {ei}i∈I be an approximate unit for A. Then C = {ei}i∈I∪{1M(A)}
is a bounded selfadjoint subset of M(A) and since {ei}i∈I converges strictly to
1M(A), and Φ|C is strictly continuous, {Φ(ei)}i∈I converges strictly to Φ(1M(A)) =

1LB(E).

3. ⇒ 1. Let {ei}i∈I be an approximate unit of A such that {Φ(ei)}i∈I con-
verges strictly to 1LB(E) and let ξ ∈ E. Then the net {Φ(ei)ξ}i∈I converges to
ξ. This shows that Φ(A)E is dense in E.

Remark 6.1.5 If Φ is a non-degenerate representation of A on a Hilbert B

-module E, then for any approximate unit {ei}i∈I for A, the net {Φ(ei)}i∈I con-
verges strictly to 1LB(E).

We know that given a C∗-algebra B, then any separable C∗-algebra admits

a faithful non-degenerate representation on the Hilbert B -module HB (see, for

example, [29], Lemma 6.4). Two natural questions arise: (1) Given two locally

C∗-algebras A and B, is there a representation of A on the Hilbert B -module

HB? (2) If there is a such representation, is it faithful? The following proposition

gives an answer to these questions.

Proposition 6.1.6 Let A and B be two locally C∗-algebras with A separable.
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1. There is a non-degenerate representation of A on HB.

2. If A is a strong spectrally bounded Fréchet locally C∗-algebra, then there is

a faithful, non-degenerate representation of A on HB.

Proof. Since A is separable, the C∗-algebras Ap, p ∈ S(A) are all separable.
1. Let p ∈ S(A). Since Ap is separable, by Corollary 3.7.5 in [37], there

is a faithful, non-degenerate representation ϕp of Ap on an infinite separable

Hilbert space H. Then ϕ = ϕp ◦ πp is a non-degenerate representation of A
on H. According to Corollary 4.1.4, the Hilbert B -modules HB and H ⊗B are

isomorphic. Thus to prove the proposition, we will construct a representation

of A on H ⊗ B . Consider the linear map iL(H) from L (H) to L (H)⊗ LB (B)

defined by

iL(H) (T ) = T ⊗ idB.

It is not difficult to check that iL(H) is a morphism of locally C
∗-algebras. Let

Φ = j◦iL(H) ◦ϕ, where j is the the morphism of locally C∗-algebras constructed
in Proposition 4.3.2. Then Φ is a representation of A on H⊗B. Moreover, since

Φ(A) (H ⊗alg B) = j((ϕ (A)⊗ idB)) (H ⊗alg B) = ϕ (A)H ⊗alg B,

Φ is non-degenerate.

2. We will construct a faithful, non -degenerate representation of A on a

separable Hilbert space H (see, for example, [7]). Let {pn;n = 1, 2, ...} be a
cofinal subset of S(A). Then, for each positive integer n, there is a faithful

non-degenerate representation ϕn of Apn on an infinite separable Hilbert space

Hn (see, for example, [36]). Let H =
⊕
n
Hn. Then H is an infinite separable

Hilbert space. For each a ∈ A, define a linear map ϕ (a) from H to H by

ϕ(a)

(⊕
n
ξn

)
=
⊕
n
ϕn(πn (a))ξn.

From
〈
ϕ(a)

(⊕
n
ξn

)
, ϕ(a)

(⊕
n
ξn

)〉
=
∑
n
〈ϕn(πn (a))ξn, ϕn(πn (a))ξn〉

≤ ∑
n
‖πn (a)‖pn 〈ξn, ξn〉
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≤ sup{pn(a);n = 1, 2, ...}
〈⊕

n
ξn,
⊕
n
ξn

〉

for all
⊕
n
ξn ∈ H, we conclude that ϕ(a) ∈ L(H). In this way we have defined a

map ϕ from A to L(H). It is not hard to check that ϕ is a representation of A

on H. Let a ∈ A such that ϕ(a) = 0. Then ϕn(πn (a)) = 0 for all positive integer

n. From this fact and taking into account that ϕn is injective for each positive

integer n, we conclude that πn (a) = 0 for all positive integer n and so a = 0.

Therefore ϕ is a faithful representation of A on H . Moreover, since

ϕ(A)H =
⊕
n
ϕn(Apn)Hn

and since ϕn(Apn)Hn is dense inHn for all positive integer n, ϕ is non-degenerate.

Let Φ = j◦iL(H) ◦ ϕ. Clearly, Φ is a non-degenerate representation of A on
H ⊗B. Let a ∈ A such that Φ(a) = 0. Then

0 = 〈Φ(a)(h⊗ b),Φ(a)(h⊗ b)〉 = 〈ϕ(a)h⊗ b, ϕ(a)h⊗ b〉
= 〈ϕ(a)h,ϕ(a)h〉 b∗b

for all h ∈ H and for all b ∈ B. This implies that 〈ϕ(a)h,ϕ(a)h〉 = 0 and

so ϕ(a)h = 0 for all h ∈ H. From this fact and taking into account that ϕ

is injective, we conclude that a = 0. Therefore Φ is a faithful, non-degenerate

representation of A on H ⊗B.

References for Section 6.1: [13], [17], [19],[26], [29].

6.2 Completely positive linear maps

In this section we present some properties of the positive linear maps between

locally C∗-algebras.

Let A and B be two locally C∗-algebras. We say that a linear map ρ from

A into B is completely positive if for all positive integers n, the linear maps

ρ(n) : Mn(A)→Mn(B) defined by ρ(n)([aij]
n
i,j=1) = [ρ(aij)]

n
i,j=1 are positive.
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Proposition 6.2.1 Let ρ : A → B be a continuous linear map between locally

C∗-algebras. Then the following statements are equivalent:

1. ρ is completely positive and for some approximate unit {ei}i∈I for A,

{ρ(ei)}i∈I is a bounded net in b(B);

2. ρ(b(A)) ⊆ b(B) and ρ|b(A) : b(A)→ b(B) is completely positive.

Proof. 1. ⇒ 2. Let {ei}i∈I be an approximate unit of A such that {ρ(ei)}i∈I
is a bounded net in b(B). Then there is M > 0 such that ‖ρ(ei)‖∞ ≤M for all

i ∈ I.
To show that ρ(b(A)) ⊆ b(B) it is sufficient to prove that ρ(P (b(A))) ⊆

P (b(B)), since an arbitrary element of b(A) may be written as a linear combina-

tion of positive elements in b(A).

Let i0 ∈ I and a ∈ P (b(A)). Since ei0aei0 ≤ ‖a‖∞ ei0 ,

q(ρ(ei0aei0)) ≤ ‖a‖∞ q(ρ(ei0)) ≤M ‖a‖∞

for every q ∈ S(B). Therefore {ρ(eiaei)}i∈I is a bounded net in b(B) and since

ρ is continuous and p(eiaei − a) → 0 for every p ∈ S(A), ρ(a) ∈ b(B). Clearly,

ρ|b(A) : b(A)→ b(B) is completely positive.

2. ⇒ 1. Let {ei}i∈I be an approximate unit of b(A). Then {ei}i∈I is an
approximate unit of A and {ρ(ei)}i∈I is a bounded net in b(B) since ‖ρ(ei)‖∞ ≤
∥∥ρ|b(A)

∥∥ for all i ∈ I.
Let n be a positive integer. Since Mn(b(A)) = b(Mn(A)), ([2], Lemma 2.1),

we have

ρ(n)(b(Mn(A))) = ρ(n)(Mn(b(A))) ⊆Mn(b(B)) = b(Mn(B)).

From this relation and taking into account that P (b(Mn(A))) is dense in P (Mn(A))

and ρ(n) is continuous, we conclude that ρ(n) is positive. Hence ρ is completely

positive.
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Remark 6.2.2 Let ρ : A → B be a continuous completely positive linear map

between locally C∗-algebras. If A is unital and ρ(1A) ∈ b(B) or if b(B) = B

as sets, then ρ is completely positive if and only if by restriction, it defines a

completely positive linear map between C∗-algebras b(A) and b(B).

Remark 6.2.3 In the particular case when ρ : A → B is a unital continuous

linear map between locally C∗-algebras we obtain the Corollary 2.3 in [2].

Corollary 6.2.4 Let ρ : A→ B be a continuous completely positive linear map

between locally C∗-algebras such that for some approximate unit {ei}i∈I of A,
{ρ(ei)}i∈I is a bounded net in b(B). Then there is M > 0 such that

ρ(n)(
(
[ajk]

n
j,k=1

)∗
)ρ(n)([ajk]

n
j,k=1) ≤Mρ(n)(

(
[ajk]

n
j,k=1

)∗
[ajk]

n
j,k=1)

for every [ajk]
n
i,j=1 ∈Mn(A), and consequently, [ρ(a

∗
j)ρ(ak)]

n
j,k=1 ≤M [ρ(a∗jak)]

n
j,k=1

for every a1, ..., an ∈ A.

Proof. By Proposition 6.2.1, ρ|b(A) is a completely positive linear map from
b(A) to b(B). Then there is M > 0 such that

ρ(n)(
(
[ajk]

n
j,k=1

)∗
)ρ(n)([ajk]

n
j,k=1) ≤Mρ(n)(

(
[ajk]

n
j,k=1

)∗
[ajk]

n
j,k=1)

for every [ajk]
n
i,j=1 ∈Mn(b(A)), and

[ρ(a∗j)ρ(ak)]
n
j,k=1 ≤M [ρ(a∗jak)]

n
j,k=1

for every a1, ..., an ∈ b(A) (see, for example, [29], Lemmas 5.3 and 5.4), and

since Mn(b(A)) is dense in Mn(A), b(A) is dense in A and ρ is continuous the

corollary is proved. .

Proposition 6.2.5 Let ρ : A → B be a continuous completely positive linear

map between locally C∗-algebras such that for some approximate unit {ei}i∈I of
A, {ρ(ei)}i∈I is a bounded net in b(B). Then there is a continuous completely pos-

itive linear map ρ+ from A+ into B+ such that ρ+|A = ρ, where A+ ( respectively

B+) is the unitization of A ( respectively B ).
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Proof. According to the Proposition 6.2.1, ρ|b(A) : b(A)→ b(B) is a completely

positive linear map between C∗-algebras. Let q ∈ S(B). The continuity of ρ

implies that there is Kq > 0 and pq ∈ S(A) such that q(ρ(a)) ≤ Kqpq(a) for

all a ∈ A. Hence there is a continuous linear map ρq : Apq → Bq such that

ρq ◦ πpq = πq ◦ ρ. Clearly, ρ(n)q ◦ π(n)pq = π
(n)
q ◦ ρ(n) for all positive integers n and

so ρq is a completely positive linear map between C∗-algebras. Since
∥∥ρq
∥∥ ≤

∥∥ρ|b(A)
∥∥ , the map ρ̃q : A+pq → B+q defined by ρ̃q(a, λ) = ρq(a) + λ

∥∥ρ|b(A)
∥∥ is a

completely positive linear map between C∗-algebras. Then the map ρ+q : A+ →
B+q defined by ρ

+
q = ρ̃q ◦ π+pq , where π+pq is the canonical map from A+ into A+pq ,

is a continuous completely positive linear map from A+ into B+q . It is easy to

verify that π+qr ◦ρ+q = ρ+r for all q, r ∈ S(B), q ≥ r, where π+qr, q, r ∈ S(B), q ≥ r

are the connecting maps of the inverse system {B+q }q∈S(B). This implies that
there is a continuous linear map ρ+ from A+ into B+ such that π+q ◦ ρ+ = ρ+q

for all q ∈ S(B), where π+q is the canonical map from B+ into B+q . Evidently ρ
+

is completely positive and ρ+|A = ρ.

References for Section 6.2: [2], [15], [17], [29].

6.3 The KSGNS construction

In this Section we give a construction of type KSGNS( Kasparov, Stinespring,

Gel’fand, Naimark, Segal) for strict continuous completely positive linear maps

between locally C∗-algebras. Also we extend the generalized Stinespring theorem

on dilatation of completely positive linear maps between C∗-algebras [26] in the

context of locally C∗-algebras.

Definition 6.3.1 Let A and B be locally C∗-algebras and let E be a Hilbert B-

module. We say that a continuous completely positive linear map ρ : A→ LB(E)

is strict if for some approximate unit {ei}i∈I of A, {ρ(ei)}i∈I is strictly Cauchy
in LB(E).

Remark 6.3.2 The condition of strictness is automatically satisfied if A is uni-

tal or B = C.
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Proposition 6.3.3 Let A and B be locally C∗-algebras, let E and F be Hilbert

B-modules, let Φ be a non-degenerate representation of A on F and let V be an

element in LB(E,F ). Then the map ρ : A→ LB(E) defined by

ρ(a) = V ∗Φ(a)V, a ∈ A

is a continuous strict completely positive linear map.

Proof. It is easy to check that ρ is a continuous completely positive linear map

from A to LB(F ). Let {ei}i∈I be an approximate unit for A. By Proposition
6.1.4, the net {Φ(ei)}i∈I converges strictly to 1LB(F ), and then the net {ρ(ei)}i∈I
converges strictly to V ∗V. Therefore ρ is strict.

If A andB are two C∗-algebras, then any strict completely positive linear map

ρ from A to LB(E), where E is a Hilbert B -module, induces a non-degenerate

representation Φρ of A on a Hilbert B -module Eρ . Moreover, this representation

is unique up to unitary equivalence and

(a) Eρ = A ⊗ρ E, Φρ(a)
(
c⊗ρ ξ

)
= ac ⊗ρ ξ for all a, c ∈ A and for all

ξ ∈ E;

(b) ρ (a) = V ∗ρ Φρ(a)Vρ for all a ∈ A, where Vρ is an adjointable operator
from E to Eρ defined by Vρξ = lim

i

(
ei ⊗ρ ξ

)
, {ei}i∈I being an ap-

proximate unit for A such that the net {ρ (ei)}i∈I is strictly Cauchy
in LB(E), and

(c) Φρ(A)VρE is dense in Eρ .

The construction of this representation is known that the KSGNS (Kasparov,

Sitinespring, Ge’lfand, Naimark, Segal) construction associated with ρ (see, for

example, [29]).We extend this construction in the context of locally C∗-algebras.

Construction 6.3.4 Let A and B be locally C∗-algebras, let E be a Hilbert B-

module and let ρ be a continuous completely positive linear map from A to LB(E).

The algebraic tensor product A⊗alg E is a right B -module in the obvious way
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(a⊗ ξ) b = a⊗ ξb and the map 〈·, ·〉0ρ from (A⊗alg E)× (A⊗alg E) to B defined

by 〈
n∑

i=1

ai ⊗ ξi,
m∑

j=1

cj ⊗ ηj

〉0

ρ

=
n∑

i=1

m∑

j=1

〈
ξi, ρ (a

∗
i cj) ηj

〉

is C - and A -linear in its second variable, and
(〈
ζ, ζ ′
〉0
ρ

)∗
=
〈
ζ ′, ζ
〉0
ρ

for all ζ, ζ ′ ∈ A⊗alg E. Since ρ is completely positive linear map and the locally
C∗-algebras Mn (LB(E)) and LB(E

n) can be identified, we conclude that

〈ζ, ζ〉0ρ ≥ 0

for all ζ ∈ A⊗algE. Then (A⊗alg E) /Nρ , where Nρ = {ζ ∈ A⊗algE; 〈ζ, ζ〉0ρ = 0},
is a pre-Hilbert B -module with the inner-product defined by

〈
ζ +Nρ , ζ

′ +Nρ

〉
ρ
=
〈
ζ, ζ ′
〉0
ρ
.

The Hilbert B -module obtained by the completion of (A⊗alg E) /Nρ with respect

to the topology induced by the inner -product is denoted by A⊗ρ E.

Let q ∈ S(B). Then ρq = (πq)∗ ◦ ρ is a continuous completely positive linear
map from A to LB(Eq). For each q1, q2 ∈ S(B) with q1 ≥ q2, the linear map χq1q2

from A⊗alg Eq1 to A⊗alg Eq2 , defined by χq1q2 (a⊗ ξ) = a⊗σEq1q2 (ξ) , extends to
a linear map χq1q2 from A ⊗ρq1

Eq1 to A ⊗ρq2
Eq2 such that χq1q2

(
a⊗ρq1

ξ
)
=

a ⊗ρq2
σEq1q2 (ξ) and in the same way as in the proof of Proposition 4.2.3, we

deduce that {A⊗ρqEq;Bq;χq1q2 ;πq1q2 , q, q1, q2 ∈ S(B) with q1 ≥ q2} is an inverse
system of Hilbert C∗ -modules and the Hilbert B -modules A⊗ρ E and lim

←
q

A⊗ρq

Eq are isomorphic. Moreover, the Hilbert Bq -modules
(
A⊗ρ E

)
q
and A ⊗ρq

Eq, q ∈ S(B) are isomorphic and so the locally C∗-algebras LB
(
A⊗ρ E

)
and

lim
←
q

LBq

(
A⊗ρq Eq

)
are isomorphic.

Theorem 6.3.5 Let A and B be two locally C∗-algebras, let E be a Hilbert B-

module and let ρ : A → LB(E) be a continuous strict completely positive linear

map.

119



1. Then there is a Hilbert B-module Eρ , a representation Φρ of A on Eρ and

an element Vρ in LB(E,Eρ) such that:

(a) ρ(a) = V ∗ρ Φρ(a)Vρ for every a ∈ A,
(b) Φρ(A)VρE is dense in Eρ .

2. If F is a Hilbert B-module, Φ is a representation of A on F, W is an

element in LB(E,F ) such that:

(a) ρ(a) =W ∗Φ(a)W for every a ∈ A,
(b) Φ(A)WE is dense in F,

then there is a unitary operator U in LB(Eρ , F ) such that

Φ(a) = UΦρ(a)U
∗

for every a ∈ A and W = UVρ .

The triple (Eρ ,Φρ , Vρ) constructed in the Theorem 6.3.5 will be called the

KSGNS (Kasparov, Stinespring, Gel’fand, Naimark, Segal) construction associ-

ated with the continuous strict completely positive linear map ρ.

Remark 6.3.6 The above construction is a generalization of the ordinary KS-

GNS construction. In particular we obtain the Kasparov’s construction in [26]

as well as the ordinary GNS construction.

On the other hand, we also obtain the Stinespring’s construction for locally

C∗-algebras (Theorem 2.2, [15]).

The proof of Theorem 6.3.5. We partition the proof in two steps.

Step1. We suppose that B is a C∗ -algebra.

1. The continuity of ρ implies that there is p ∈ S(A) and M > 0 such that

‖ρ(a)‖ ≤Mp(a) for all a ∈ A and so there is a linear map ρp from Ap to LB(E)

such that ρp ◦ πp = ρ. Clearly ρp is a strict completely positive linear map be-

tween C∗ -algebras Ap and LB(E). Moreover, ρp is strict, since if {ei}i∈I is an
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approximate unit for A such that the net {ρ (ei)}i∈I is strictly Cauchy in LB(E),

then {πp (ei)}i∈I is an approximate unit for Ap and the net {ρp (πp (ei))}i∈I is
strictly Cauchy in LB(E). Let (Eρp ,Φρp , Vρp) be the ordinary KSGNS construc-

tion associated with ρp (see, Theorem 5.6, [29]). Define a linear map Up from

A⊗alg E to Ap ⊗alg E by Up (a⊗ ξ) = πp(a)⊗ ξ. Since

〈Up (a⊗ ξ) , Up (a⊗ ξ)〉0ρp =
〈
ξ, ρp (πp(a

∗a)) ξ
〉

= 〈ξ, ρ(a∗a)ξ〉 = 〈a⊗ ξ, a⊗ ξ〉0ρ

for all a ∈ A and for all ξ ∈ E, Up ((a⊗ ξ) b) = Up (a⊗ ξ) b for all b ∈ B, for all

a ∈ A and for all ξ ∈ E, and since Up (A⊗alg E) = Ap ⊗alg E, Up extends to an
isometric, surjective, B -linear map Up from A⊗ρ E onto Eρp such that

Up
(
a⊗ρ ξ

)
= πp(a)⊗ρp ξ

for all a ∈ A and for all ξ ∈ E. Therefore U is a unitary element in LB(A ⊗ρ

E,Eρp).

Let Eρ = A ⊗ρ E, Vρ = U∗pVρp and let Φρ be a map from A to LB(Eρ)

defined by Φρ(a) = U∗pΦρp(πp(a))Up. It is not difficult to check that Φρ is a

representation of A on Eρ and Φρ(a)
(
c⊗ρ ξ

)
= ac⊗ρ ξ for all a, c ∈ A and for

all ξ ∈ E. Moreover,

V ∗ρ Φρ(a)Vρ = V ∗ρpUpU
∗
pΦρp(πp(a))UpU

∗
pVρp = V ∗ρpΦρp(πp(a))Vρp

= ρp(πp(a)) = ρ (a)

for all a ∈ A. From
Φρ(A)VρE = U∗pΦρp(Ap)VρpE

and taking into account that Φρp(Ap)VρpE is dense in Eρp , we conclude that

Φρ(A)VρE is dense in Eρ .

2. Since Φ and ρ are continuous, and since S(A) is directed, we can choose

p ∈ S(A) such that ‖Φ(a)‖ ≤ p(a) for all p ∈ S(A) and ‖ρ (a)‖ ≤Mp(a) for some

M > 0 and for all a ∈ A. Then there is a strictly continuous completely positive

121



linear map ρp from Ap to LB(E) such that ρp ◦πp = ρ and there is a continuous

∗-morphism Φp from Ap to LB(F ) such that Φp ◦ πp = Φ. Moreover, ρp (a) =

W ∗Φp(a)W for all a ∈ Ap and Φp(Ap)WE is dense in F, since Φp(Ap)WE =

Φ(A)WE.

If (Eρp ,Φρp , Vρp) is the ordinary KSGNS construction associated with the

strict completely positive linear map ρp, then there is a unitary operator U0 in

LB

(
Eρp , F

)
such that

Φp(a) = U0Φρp(a)U
∗
0

for all a ∈ Ap and W = U0Vρp .

Let U = U0Up, where Up is the unitary operator in LB(Eρ , Eρp) constructed

in the proof of the assertion 1. Then U is a unitary operator in LB(Eρ , F ), and

moreover,

Φ(a) = Φp (πp(a)) = U0Φρp (πp(a))U
∗
0

= U0UpΦρ(a)U
∗
pU

∗
0 = UΦρ(a)U

∗

for all a ∈ A and W = U0Vρp = U0UpVρ = UVρ .

Step 2. Now we suppose that B is an arbitrary locally C∗-algebra.

1. Let q ∈ S(B) and let ρq = (πq)∗ ◦ ρ. Then ρq is a strictly continuous com-
pletely positive linear map from A to LBq(Eq). Let (Eρq ,Φρq , Vρq) be the KSGNS

construction associated with ρq by the step 1 of the proof. By Construction 6.3.4,

{Eρq ;Bq;χq1,q2 ;πq1q2 ; q, q1, q2 ∈ S(B), q1 ≥ q2} is an inverse system of Hilbert C∗

-modules. Let Eρ = lim
←
q

Eρq . For q1, q2 ∈ S(B) with q1 ≥ q2, a, c ∈ A, ξ ∈ Eq2

and η ∈ Eq1 such that σ
E
q1q2 (η) = ξ we have:

(πq1q2)∗

(
Φρq1

(a)
)(

c⊗ρq2
ξ
)

= χq1q2

(
Φρq1

(a)
(
c⊗ρq1

η
))

= χq1q2

(
ac⊗ρq1

η
)
= ac⊗ρq2

ξ

= Φρq2
(a)
(
c⊗ρq2

ξ
)

122



and

(πq1q2)∗

(
Vρq1

)
ξ = χq1q2

(
Vρq1η

)
= lim

i
χq1q2

(
ei ⊗ρq1

η
)

= lim
i

(
ei ⊗ρq2

ξ
)
= Vρq2ξ.

These implies that
(
Φρq (a)

)
q
is a coherent sequence in LBq(Eρq) for all a ∈ A

and
(
Vρq

)
q
is a coherent sequence in LBq(Eq, Eρq). Let Vρ ∈ LB(E,Eρ) such

that (πq)∗
(
Vρ
)

= Vρq and for each a ∈ A, let Φρ(a) ∈ LB(Eρ) such that

(πq)∗
(
Φρ (a)

)
= Φρq (a) . Thus we have defined a map Φρ from A to LB(Eρ). It

is not difficult to check that Φρ is a representation of A on Eρ . Moreover, since

(πq)∗

(
V ∗ρ Φρ(a)Vρ

)
= (πq)∗

(
Vρ
)∗

(πq)∗
(
Φρ (a)

)
(πq)∗

(
Vρ
)

= V ∗ρqΦρq (a)Vρq = ρq(a) = (πq)∗ (ρ (a))

for all q ∈ S(B) and for all a ∈ A, V ∗ρ Φρ(a)Vρ = ρ (a) for all a ∈ A.
From

Φρ(A)VρE = lim
←
q

χq
(
Φρ(A)VρE

)

= lim
←
q

(πq)∗
(
Φρ(A)

)
(πq)∗

(
Vρ
)
σEq (E)

= lim
←
q

Φρp(A)VρqEq = lim
←
q

Eρq = Eρ

we conclude that Φρ(A)VρE is dense in Eρ .

2. Let q ∈ S(B), Φq = (πq)∗ ◦ Φ and let Wq = (πq)∗ (W ) . Then Φq is a

representation of A on Fq;

ρq (a) = (πq)∗ (ρ (a)) = (πq)∗ (W
∗Φ(a)W ) =W ∗

q Φq (a)Wq

for all a ∈ A and Φq (A)WqEq is dense in Fq, since

Φq (A)WqEq = (πq)∗ (Φ (A)W )σEq (E) = σFq (Φ (A)WE)

and Φ(A)WE is dense in F. Thus, by the first step of the proof, there is a

unitary operator Uq in LBq(Eρq , Fq) such that

Φq (a) = UqΦρp(a)U
∗
q
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for all a ∈ A and Wq = UqVρq . Let q1, q2 ∈ S(B) with q1 ≥ q2, a ∈ A and ξ ∈ E.
Then

(πq1q2)∗ (Uq1)
(
Φρq2

(a)Vρq2σ
E
q2(ξ)

)
= (πq1q2)∗ (Uq1)

(
(πq1q2)∗

(
Φρq1

(a)Vρq1

)
σEq2(ξ)

)

= (πq1q2)∗

(
Uq1Φρq1

(a)Vρq1

)
σEq2(ξ)

= (πq1q2)∗ (Φq1 (a)Wq1)σ
E
q2(ξ)

= Φq2 (a)Wq2σ
E
q2(ξ) = Uq2

(
Φρρ2

(a)Vρq2
σEq2(ξ)

)
.

From this relation, since Φρq2
(A)Vρq2σ

E
q2(E) is dense in Eρq2

, we conclude that

(Uq)q is a coherent sequence in LBq(Eρq , Fq). Let U ∈ L
(
Eρ , F

)
such that

(πq)∗ (U) = Uq for all q ∈ S(B). From

(πq)∗ (Φ (a)) = Φq (a) = UqΦρp(a)U
∗
q

= (πq)∗ (U) (πq)∗
(
Φρ(a)

)
(πq)∗ (U

∗)

= (πq)∗
(
UΦρ(a)U

∗
)

for all q ∈ S(B) and for all a ∈ A and

(πq)∗ (W ) = Wq = UqVρq = (πq)∗ (U) (πq)∗
(
Vρ
)

= (πq)∗
(
UVρ
)

for all q ∈ S(B), we conclude that

Φ(a) = UΦρ(a)U
∗

for all a ∈ A and W = UVρ .

If ρ : A→ LB(E) is a continuous completely positive linear map which is not

strict but {ρ(ei)}i∈I is a bounded net in b(LB(E)) for some approximate unit

{ei}i∈I of A, then we can find a representation Φρ of A on a Hilbert B-module Eρ

and an element Vρ in LB(E,Eρ) such that ρ(a) = V ∗ρ Φρ(a)Vρ for every a ∈ A. In
this case the ∗-representation Φρ is not non-degenerate.

Corollary 6.3.7 Let A and B be two locally C∗-algebras, let E be a Hilbert B-

module and let ρ : A → LB(E) be a continuous completely positive linear map
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such that for some approximate unit {ei}i∈I of A, {ρ(ei)}i∈I is a bounded net in
b(LB(E)). Then there is a Hilbert B-module Eρ , a representation Φρ of A on

Eρ , and an element Vρ in LB(E,Eρ) such that

ρ(a) = V ∗ρ Φρ(a)Vρ

for every a ∈ A.

Proof. According to Proposition 6.2.5, there is a continuous completely positive

linear map ρ+ from A+ into LB(E) such that ρ+|A = ρ which is strict by Remark

6.3.2. Then, according to Theorem 6.3.5, there is a Hilbert B-module Eρ , a

representation Φρ+ of A
+ on Eρ , and an element Vρ in LB(E,Eρ) such that

ρ+(a) = V ∗ρ Φρ+(a)Vρ

for every a ∈ A+. Let Φρ = Φρ+ |A. Then Φρ is a representation of A on Eρ and

ρ(a) = V ∗ρ Φρ(a)Vρ for every a ∈ A.

Corollary 6.3.8 Let A and B be two locally C∗-algebras, let E be a Hilbert

B-module and let ρ : A→ LB(E). Then the following statements are equivalent:

1. ρ is a continuous strict completely positive linear map;

2. There is a unique continuous completely positive linear map ρ : M(A) →
LB(E) such that:

(a) ρ|A = ρ;

(b) ρ|C is strictly continuous whenever C is a bounded selfadjoint subset

of M(A).

Proof. 1. ⇒ 2. Let (Eρ ,Φρ , Vρ) be the KSGNS construction associated with

ρ. Since Φρ is non-degenerate, there is a unique continuous ∗-morphism Φρ :

M(A)→ LB(Eρ) such that Φρ |A = Φρ and Φρ |C is strictly continuous whenever
C is a bounded selfadjoint subset of M(A). Evidently the map ρ : M(A) →
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LB(E) defined by ρ(a) = V ∗ρ Φρ(a)Vρ is a continuous completely positive linear

map which satisfies the conditions (a) and (b).

To show the uniqueness of ρ, let ρ̃ : M(A) → LB(E) be another continuous

completely positive linear map which satisfies the conditions (a) and (b). Let

{ei}i∈I be an approximate unit of A and let a be a selfadjoint element in

M(A). Then, since {eiaei}i∈I is a bounded selfadjoint net in A and since it

converges strictly to a, ρ(a) = ρ̃(a). Therefore ρ = ρ̃.

2.⇒ 1. From (a) it follows that ρ is a continuous completely positive linear

map. If {ei}i∈I is an approximate unit for A, then, from (b), since {ei}i∈I ∪
{1M(A)} is a bounded selfadjoint subset of M(A), and since the net {ei}i∈I
converges strictly to 1M(A), the {ρ(ei)}i∈I converges strictly to ρ(1M(A)). This

shows that ρ is a continuous strict completely positive linear map.

Remark 6.3.9 If ρ is a strict, continuous completely positive linear map from

A to LB(E), then for any approximate unit {ei}i∈I for A, the net {ρ(ei)}i∈I is
strictly Cauchy in LB(E).

Definition 6.3.10 Let A and B be two locally C∗-algebras, let E be a Hilbert B-

module. A continuous completely positive linear map ρ from A to LB(E) is non-

degenerate if the net {ρ (ei)}i∈I converges strictly to idE , for some approximate
unit {ei}i∈I for A.

Remark 6.3.11 Any non-degenerate, continuous completely positive linear map

ρ from A to LB(E) is strict.

From Corollary 6.3.8 and Remark 6.3.9 we obtain the following corollary.

Corollary 6.3.12 Let A and B be two locally C∗-algebras, let E be a Hilbert

B-module and let ρ be a continuous completely positive linear map from A to

LB(E). Then the following statements are equivalent:

1. ρ is non-degenerate;
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2. There is a unique unital, continuous completely positive linear map ρ :

M(A)→ LB(E) such that:

(a) ρ|A = ρ;

(b) ρ|C is strictly continuous whenever C is a bounded selfadjoint subset

of M(A).

Remark 6.3.13 If ρ is a non-degenerate, continuous completely positive linear

map from A to LB(E), then for any approximate unit {ei}i∈I for A, the net
{ρ(ei)}i∈I converges strictly to idE.

The following theorem is an analogue of the generalized Stinespring theorem

on dilatations of completely positive maps between C∗-algebras (Theorem 3 in

[26]) in the context of locally C∗-algebras.

Theorem 6.3.14 Let A and B be two locally C∗-algebras such that A is sep-

arable and B has a countable approximate unit and let ρ be a non-degenerate,

continuous completely positive linear map from A to LB(HB). Then there is a

non-degenerate, continuous ∗-morphism Φ from A to the 2 × 2 matrix algebra

M2(LB(HB)) such that ρ(a) = (Φ(a))11, the (1, 1) -entry of the matrix Φ(a), for

all a ∈ A. If moreover, A is metrizable and b(A) = A as set, the morphism Φ is

faithful.

Proof. To proof this theorem, we use the same arguments as in the proof of

the generalized Stinespring theorem on dilatations of completely positive maps

between C∗-algebras ( see, for example, [29] Theorem 6.5).

Let (Eρ ,Φρ , Vρ) be the KSGNS construction associated with ρ. Since ρ is

non-degenerate, V ∗ρ Vρ =idHB
and so Vρ is a partial isometry from HB to Eρ .

Then, by Corollary 3.2.7, the range of Vρ is a complemented submodule of Eρ . On

the other hand, from the construction of Eρ (Construction 6.3.4) and taking into

account that A is separable and HB is countably generated we deduce that Eρ

is countably generated, and so the range of Vρ is a countably generated Hilbert
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B -module. Let F =ranVρ and let P ∈ LB(Eρ , F ) be the projection of Eρ on F .

By Theorem 5.2.7, the Hilbert B -modules F⊥ ⊕ HB and HB are isomorphic.

Let W be a unitary operator from HB onto F
⊥ ⊕ HB. Then PVρ ⊕ W is a

unitary operator from HB ⊕HB onto Eρ ⊕HB . Let Φ1 be the non-degenerate

representation of A on HB constructed in Proposition 6.1.6. Then the map Φ

from A to LB(HB ⊕HB) defined by

Φ(a) =
(
V ∗ρ P

∗ ⊕W ∗
)(

Φρ (a)⊕Φ1 (a)
) (
PVρ ⊕W

)

is a non-degenerate representation of A on HB ⊕HB. Identifying LB(HB ⊕HB)

with M2(LB(HB)), it is not difficult to see that

(Φ(a))11 = V ∗ρ Φρ (a)Vρ = ρ (a)

for all a ∈ A.
If A is metrizable and A = b(A) as set, then by Proposition 6.1.6, the rep-

resentation Φ1 of A on HB is faithful and since Φ is unitarily equivalent with

Φρ ⊕Φ1, Φ is faithful.

As in the case of C∗-algebras, if ρ is degenerate, then the representation Φ is

not non-degenerate.

Proposition 6.3.15 Let A and B be two locally C∗-algebras such that A is

separable and B has a countable approximate unit and let ρ be a continuous

completely positive linear map from A to L(HB) such that {ρ (ei)}i is a bounded
net in b(L(HB)) for some approximate unit {ei}i of A. Then there is a continuous
∗ -morphism Φ from A to M2(L(HB)) such that ρ(a) = (Φ(a))11 for all a ∈ A.

If moreover, A is metrizable and A = b(A) as set, then Φ is faithful.

Proof. By Proposition 6.2.5, ρ extends to a continuous completely positive

linear map ρ+ from A+ to LB(E) such that ρ+(1) =
∥∥ρ|b(A)

∥∥idHB
. Let ρ̃ =

1

‖ρ|b(A)‖ρ
+. Then ρ̃ is a non-degenerate, continuous completely positive linear

map from A1 to LB(HB) and by Theorem 6.3.14 there is a non-degenerate,

continuous ∗-morphism Φ̃ from A1 to the 2 × 2 matrix algebra M2(LB(HB))
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such that ρ̃(a) =
(
Φ̃(a)

)
11
, the (1, 1) -entry of the matrix Φ̃(a), for all a ∈ A1.

If moreover, A is metrizable and b(A) = A as set, the morphism Φ̃ is faithful.

Let Φ = Φ̃|A. Then Φ is a continuous ∗ -morphism Φ from A to M2(L(HB))

such that ρ(a) = (Φ(a))11 for all a ∈ A. If moreover, A is metrizable and

A = b(A) as set, then Φ is faithful.

References for Section 6.3 : [2], [15], [17], [19], [26], [29],[44].
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Chapter 7

Induced representations of

locally C∗-algebras

7.1 Definitions, notation

In this Section we give some facts about representations of locally C∗- algebras

on Hilbert spaces which will be necessary for the study of induced representations

of locally C∗-algebras.

Proposition 7.1.1 Let A be a locally C∗ -algebra and ϕ be a representation of

A on a Hilbert space H. Then there is p ∈ S(A) and a representation ϕp of Ap

on H such that ϕ = ϕp ◦ πp.

Proof. Since ϕ is a continuous ∗- morphism from A to L(H), there is p ∈ S(A)
such that

‖ϕ(a)‖ ≤ p(a)

for all a ∈ A. Then there is a map ϕp : Ap → L(H) such that

ϕp(πp(a)) = ϕ(a)

for all a ∈ A. Clearly ϕp is a representation of Ap on H.

We say that ϕp is a representation of Ap associated to ϕ.
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Remark 7.1.2 If ϕp is a representation of Ap on H, then ϕp ◦πp is a represen-
tation of A on H.

Remark 7.1.3 Any locally C∗ -algebra admits a representation on a Hilbert

space.

Remark 7.1.4 Let ϕ be a representation of A on a Hilbert space H and let ϕp

be the representation of Ap associated to ϕ. Then ϕ is non-degenerate if and only

if ϕp is non-degenerate.

A representation ϕ of A on H is faithful if ϕ (a) = 0 implies that a = 0.

Remark 7.1.5 If ϕ is a faithful representation of A on H and ϕp is a repre-

sentation of Ap associated to ϕ, then ϕp is faithful.

Definition 7.1.6 Let ϕ be a representation of A on the Hilbert space H. We

say that ϕ is irreducible if the only invariant subspaces of H under ϕ (A) are H

itself and {0}.

Remark 7.1.7 Let ϕ be a representation of A on a Hilbert space H and let ϕp

be a representation of Ap associated to ϕ. Then ϕ is irreducible if and only if ϕp

is irreducible.

Definition 7.1.8 Let ϕ and ψ be two representations of A on the Hilbert spaces

Hϕ respectively Hψ . We say that ϕ and ψ are unitarily equivalent if there is a

unitary operator U from Hϕ to Hψ such that Uϕ (a) = ψ (a)U for all a ∈ A.

Proposition 7.1.9 Let ϕ and ψ be two representations of A on the Hilbert

spaces Hϕ respectively Hψ ,which are unitarily equivalent. Then there is p ∈ S(A)
and there are two representations ϕp and ψq of Ap associated to ϕ respectively

ψ such that ϕp is unitarily equivalent to ψq.

Proof. Let U be a unitary operator from Hϕ to Hψ such that Uϕ (a) = ψ (a)U

for all a ∈ A, let ϕr be a representation of Ar associated to ϕ and let ψq be a

representation of Aq associated to ψ.
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Since S(A) is directed, there is p ∈ S(A) such that p ≥ r and p ≥ q. Let

ϕp = ϕr ◦ πpr and ψp = ψq ◦ πpq. Clearly, ϕp and ψp are representations of Ap

on Hϕ respectively Hψ . Moreover, since

ϕ = ϕr ◦ πr = ϕr ◦ πpr ◦ πp

and

ψ = ψq ◦ πq = ψq ◦ πpq ◦ πp

ϕp and ψp are representations of Ap associated with ϕ respectively ψ. From

Uϕp(πp(a)) = Uϕ(a) = ψ (a)U = ψp(πp(a))U

for all a ∈ A, we conclude that ϕp and ψp are unitarily equivalent.
References for Section 7.1: [7].

7.2 Induced representations

In this Section, by analogy with the case of C∗ -algebras, we introduce the notion

of induced representation of a locally C∗-algebra and we present some properties

of the induced representations of locally C∗-algebras.

Let B be a locally C∗-algebra, let E be a Hilbert B -module and let ϕ be

a non-degenerate representation of B on a Hilbert space H. Then the interior

tensor product E⊗ϕH ofE andH using ϕ is a Hilbert space and the map ϕ∗ from

LB(E) to L
(
E ⊗ϕ H

)
defined by ϕ∗ (T )

(
ξ ⊗ϕ h

)
= Tξ ⊗ϕ h is a representation

of LB(E) on E ⊗ϕ H. Moreover, ϕ∗ is non-degenerate.

Let A be a locally C∗-algebra and let Φ be a non-degenerate representation

of A on E. Then ϕ∗ ◦ Φ is a non-degenerate representation of A on E ⊗ϕ H.

Definition 7.2.1 The representation ϕ∗ ◦Φ of A on E⊗ϕ H constructed above

is called the Rieffel-induced representation from B to A via E, and it will be

denoted by E -IndABϕ.
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Remark 7.2.2 If the representation ϕ of B is faithful, then by Proposition 4.3.4,

ϕ∗ is a faithful representation of LB(E) on E ⊗ϕ H. Therefore, if ϕ and Φ are

faithful, then the Rieffel-induced representation E -IndABϕ is faithful.

Proposition 7.2.3 Let ϕ1 and ϕ2 be two non-degenerate representations of B

on H1 respectively H2. If the representations ϕ1 and ϕ2 of B are unitarily

equivalent, then the representations E -IndABϕ1 and E -Ind
A
Bϕ2 of A are unitarily

equivalent.

Proof. Let U be a unitary operator from H1 to H2 such that Uϕ1(b) = ϕ2(b)U

for all b ∈ B. Define a linear map V from E ⊗alg H1 to E ⊗alg H2 by

V (ξ ⊗ h) = ξ ⊗ Uh.

Since

〈V (ξ ⊗ h) , V (ξ ⊗ h)〉0ϕ2 = 〈Uh,ϕ2 (〈ξ, ξ〉)Uh〉 = 〈Uh,Uϕ1 (〈ξ, ξ〉)h〉
= 〈h,ϕ1 (〈ξ, ξ〉)h〉 = 〈V ξ ⊗ h, ξ ⊗ h〉0ϕ1

for all ξ ∈ E and for all h ∈ H1, and since V (E ⊗alg H1) = E ⊗alg H2, V can be
extended to an isometric, surjective, linear map V from E⊗ϕ1H1 onto E⊗ϕ2H2

such that

V
(
ξ ⊗ϕ1 h

)
= ξ ⊗ϕ2 Uh.

Therefore V is a unitary operator from E ⊗ϕ1 H1 onto E ⊗ϕ2 H2, and since

(
V
(
E-IndABϕ1

)
(a)
) (
ξ ⊗ϕ1 h

)
= V

(
Φ(a) ξ ⊗ϕ1 h

)
= Φ(a) ξ ⊗ϕ2 Uh

=
(
E-IndABϕ2

)
(a)
(
ξ ⊗ϕ2 Uh

)

=
((
E-IndABϕ2

)
(a)V

) (
ξ ⊗ϕ1 h

)

for all ξ ∈ E, for all h ∈ H and for all a ∈ A, the representations E -IndABϕ1 and
E -IndABϕ2 of A are unitarily equivalent.

Proposition 7.2.4 Let F be a Hilbert B -module which is isomorphic with E. If

U is a unitary operator in LB(E,F ), then the map Ψ from A to LB(E) defined
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by Ψ(a) = UΦ(a)U∗ is a non-degenerate representation of A on F and the

representations E -IndABϕ and F -IndABϕ of A are unitarily equivalent.

Proof. It is not difficult to check that Ψ is a non-degenerate representation of

A on F . Consider the linear map W from E ⊗alg H onto F ⊗alg H defined by

W (ξ ⊗ h) = Uξ ⊗ h.

Since

〈W (ξ ⊗ h),W (ξ ⊗ h)〉0ϕ = 〈h,ϕ (〈Uξ,Uξ〉)h〉 = 〈h, ϕ (〈ξ, ξ〉)h〉
= 〈ξ ⊗ h, ξ ⊗ h〉0ϕ

for all ξ ∈ E and for all h ∈ H, and since W (E ⊗alg H) = F ⊗alg H, W can be

extended to an isometric, surjective linear map W from E ⊗ϕ H onto F ⊗ϕ H

such that

W (ξ ⊗ϕ h) = Uξ ⊗ϕ h

for all ξ ∈ E and for all h ∈ H. Therefore W is a unitary operator from E ⊗ϕ H

onto F ⊗ϕ H, and since

((
F -IndABϕ

)
(a)
)
W
(
ξ ⊗ϕ h

)
=
(
F -IndABϕ

)
(a)
(
Uξ ⊗ϕ h

)
= Ψ(a)Uξ ⊗ϕ h

= UΦ(a)ξ ⊗ϕ h =W
(
Φ(a) ξ ⊗ϕ h

)

=
(
W
(
E-IndABϕ

)
(a)
) (
ξ ⊗ϕ h

)

for all ξ ∈ E, for all h ∈ H and for all a ∈ A, the representations E -IndABϕ and
F -IndABϕ of A are unitarily equivalent.

Lemma 7.2.5 Let ϕ be a non-degenerate representation of B on the Hilbert

space H. If ϕq is a non-degenerate representation of Bq associated to ϕ, then

there is p ∈ S(A) such that Ap acts non-degenerately on Eq and the representa-

tions E-IndABϕ and
(
Eq-Ind

Ap
Bq
ϕq

)
◦ πp of A are unitarily equivalent.

Proof. Define a linear map U from E ⊗alg H into Eq ⊗alg H by

U (ξ ⊗ h) = σEq (ξ)⊗ h.
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Since

〈U (ξ ⊗ h) , U (ξ ⊗ h)〉0ϕq =
〈
h,ϕq

(〈
σEq (ξ) , σEq (ξ)

〉)
h
〉

=
〈
h,
(
ϕq ◦ πq

)
(〈ξ, ξ〉E)h

〉

= 〈ξ ⊗ h, ξ ⊗ h〉0ϕ

for all ξ ∈ E and h ∈ H, and since U (E ⊗alg H) = Eq⊗algH, U can be extended
to an isometric, surjective, linear map U from E ⊗ϕH onto Eq ⊗ϕq H such that

U
(
ξ ⊗ϕ h

)
= σEq (ξ)⊗ϕq h

for all ξ ∈ E and h ∈ H. Therefore U is a unitary operator from E ⊗ϕ H onto

Eq ⊗ϕq H. Moreover, Uϕ∗(T ) =
(
ϕq
)
∗

(
(πq)∗ (T )

)
U for all T ∈ LB(E), since

(Uϕ∗(T ))
(
ξ ⊗ϕ h

)
= U

(
Tξ ⊗ϕ h

)
= σEq (Tξ)⊗ϕq h

= (πq)∗ (T )σ
E
q (ξ)⊗ϕq h

=
(
ϕq
)
∗

(
(πq)∗ (T )

) (
σEq (ξ)⊗ϕq h

)

=
((
ϕq
)
∗

(
(πq)∗ (T )

)
U
)(

ξ ⊗ϕ h
)

for all ξ ∈ E and h ∈ H.
The continuity of Φ implies that there is p ∈ S(A) such that q̃(Φ(a)) ≤

p(a) for all a ∈ A. Therefore there is a morphism of C∗ -algebras Φp from

Ap to LBq(Eq) such that Φp ◦ πp = (πq)∗ ◦ Φ. Moreover, since Φp(Ap)Eq =

(πq)∗ (Φ(A))σ
E
q (E) = σEq (Φ (A)E) , Φp is a non-degenerate representation of

Ap on Eq. From

U
(
E-IndABϕ

)
(a) = Uϕ∗ (Φ(a)) =

(
ϕq
)
∗

(
(πq)∗ (Φ(a))

)
U

=
(
ϕq
)
∗
(Φp(πp(a)))U

=
((
Eq-Ind

Ap
Bq
ϕq

)
◦ πp
)
(a)U

for all a ∈ A, we conclude that the representations E-IndABϕ and
(
Eq-Ind

Ap
Bq
ϕq

)
◦

πp of A are unitarily equivalent and the lemma is proved
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Proposition 7.2.6 Let ϕ be a non-degenerate representation of B on a Hilbert

space H such that ϕ =
⊕
i∈I

ϕi, where ϕi is a non-degenerate representation of B

on the Hilbert space Hi, for each i ∈ I. Then the representations E-IndABϕ and⊕
i∈I

(
E-IndABϕi

)
of A are unitarily equivalent.

Proof. Let ϕq be a representation of Bq associated to ϕ. Then, for each i ∈ I,

there is a representation ϕiq of Bq on the Hilbert space Hi such that ϕiq◦πq = ϕi.

Moreover, ϕq =
⊕
i∈I

ϕiq. By Lemma 7.2.5, there is p ∈ S(A) such that the

representations E-IndABϕ and
(
Eq-Ind

Ap
Bq
ϕq

)
◦πp of A are unitarily equivalent as

well as the representations E-IndABϕi and
(
Eq-Ind

Ap
Bq
ϕiq

)
◦ πp for all i ∈ I.

On the other hand, the representations Eq-Ind
Ap
Bq
ϕq and

⊕
i∈I

(
Eq-Ind

Ap
Bq
ϕiq

)
of

Ap are unitarily equivalent, Corollary 5.4, [41]. This implies that the representa-

tions
(
Eq-Ind

Ap
Bq
ϕq

)
◦πp and

⊕
i∈I

(
Eq-Ind

Ap
Bq
ϕiq

)
◦πp of A are unitarily equivalent.

From these facts, we conclude that the representations E-IndABϕ and
⊕
i∈I(

E-IndABϕi
)
of A are unitarily equivalent and the proposition is proved.

Let A, B and C be three locally C∗-algebras, let Φ1 be a non-degenerate

representation of A on a Hilbert B -module E and let Φ2 be a non-degenerate

representation ofB on a HilbertC-module F. The inner tensor productE⊗Φ2F of
E and F using Φ2 is isomorphic with the Hilbert C-module lim

←
r∈S(C)

E⊗Φ2rFr, where

Φ2r = (πr)∗◦Φ2, and the locally C∗-algebras LC(E⊗Φ2F ) and lim
←

r∈S(C)

LCr(E⊗Φ2r

Fr) are isomorphic as well asKC(E⊗Φ2F ) and lim
←

r∈S(C)

KCr(E⊗Φ2rFr), Proposition

4.3.3. Moreover, the continuous ∗ -morphism (Φ2)∗ from LB(E) to LC(E⊗Φ2 F )
defined by (Φ2)∗ (T ) (ξ ⊗Φ2 η) = Tξ ⊗Φ2 η is a non-degenerate representation of
LB(E) onE⊗Φ2F. Let Φ = (Φ2)∗◦Φ1. Then Φ is a non-degenerate representation
of A on E ⊗Φ2 F .
Let ϕ be a non-degenerate representation of C on a Hilbert space H. Then ϕ

induces a non-degenerate representation of A via E⊗Φ2 F and a non-degenerate
representation of B via F which induces a non-degenerate representation of A
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via E. As in the case of induced representations of C∗-algebras, we will show

that these representations of A are unitarily equivalent.

Theorem 7.2.7 Let A, B,C,E, F, Φ1 and Φ2 be as above. If ϕ is a non-

degenerate representation of C, then the representations (E ⊗Φ2 F )-IndACϕ and
E-IndAB(F -Ind

B
Cϕ) of A are unitarily equivalent.

Proof. Let ϕr be a non-degenerate representation of Cr associated to ϕ. Then

there is q ∈ S(B) and a non-degenerate representation Ψ2q of Bq on Fr such

that Ψ2q ◦ πq = (πr)∗ ◦ Φ2 and there is p ∈ S(A) and two non-degenerate

representations Ψ1p and Φp of Ap on Eq respectively (E ⊗Φ2 F )r such that Ψ1p ◦
πp = (πq)∗ ◦ Φ1 respectively Φp ◦ πp = (πr)∗ ◦ Φ. According to Lemma 7.2.5,
the representations (E ⊗Φ2 F )-IndACϕ and

(
(E ⊗Φ2 F )r -Ind

Ap
Cr
ϕr

)
◦ πp of A are

unitarily equivalent as well as the representations F -IndBCϕ and
(
Fr-Ind

Bq
Cr
ϕr

)
◦

πq of B. Since the representations F -Ind
B
Cϕ and

(
Fr-Ind

Bq
Cr
ϕr

)
◦ πq of B are

unitarilly equivalent, from Lemma 7.2.5 and Proposition 7.2.3, we conclude that

the representations E-IndAB
(
F -IndBCϕ

)
and
(
Eq-Ind

A
B

(
Fr-Ind

Bq
Cr
ϕr

))
◦ πp of A

are unitarily equivalent.

To prove the theorem it is sufficient to show that the representations (E⊗Φ2
F )r-Ind

Ap
Cr
ϕr and Eq-Ind

A
B

(
Fr-Ind

Bq
Cr
ϕr

)
of Ap are unitarily equivalent. But,

according to Theorem 5.9, [41], the representations Xr-Ind
Ap
Cr
ϕr, where Xr =

Eq⊗Ψ2qFr, and Eq-Ind
A
B

(
Fr-Ind

Bq
Cr
ϕr

)
of Ap are unitarily equivalent. Thus, tak-

ing into account Proposition 7.2.4, it is enough to show that there is a unitary op-

erator U in LCr( (E ⊗Φ2 F )r ,Xr) such that Φp(πp(a)) = U∗
(
(Ψ2q)∗ ◦Ψ1p

)
(πp(a)U

for all a ∈ A. Define a linear map U from E ⊗alg Fr to Eq ⊗alg Fr by

U (ξ ⊗ ηr) = σEq (ξ)⊗ ηr.

Since

U ((ξ ⊗ ηr) cr) = U (ξ ⊗ ηrcr) = σEq (ξ)⊗ ηrcr = U (ξ ⊗ ηr) cr
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and

〈U (ξ ⊗ ηr) , U (ξ ⊗ ηr)〉0Ψ2q =
〈
ηr,Ψ2q

(〈
σEq (ξ) , σEq (ξ)

〉)
ηr
〉

= 〈ηr, (Ψ2q ◦ πq) (〈ξ, ξ〉) ηr〉
= 〈ηr,Φ2r (〈ξ, ξ〉) ηr〉
= 〈ξ ⊗ ηr, ξ ⊗ ηr〉0Φ2r

for all ξ ∈ E, for all ηr ∈ Fr and for all cr ∈ Cr, and since U (E ⊗alg Fr) =

Eq ⊗alg Fr, the linear map U can be extended to an isometric, surjective Cr

-linear map U from E ⊗Φ2r Fr onto E ⊗Ψ2q Fr such that

U (ξ ⊗Φ2r ηr) = σEq (ξ)⊗Ψ2q ηr

for all ξ ∈ E and for all ηr ∈ Fr, which, according to Theorem 3.5 in [29], U is

a unitary operator in LCr(E ⊗Φ2r Fr, E ⊗Ψ2q Fr). Let a ∈ A. Then , since

(UΦp(πp(a)))
(
ξ ⊗Φ2r σFr (η)

)
= (U (πr)∗ ((Φ2)∗ (Φ1 (a))))

(
ξ ⊗Φ2r σFr (η)

)

= U
(
σ
E⊗Φ2F
r ((Φ2)∗ (Φ1 (a)) (ξ ⊗Φ2 η))

)

= U
(
σ
E⊗Φ2F
r (Φ1 (a) ξ ⊗Φ2 η)

)

= U
(
Φ1 (a) ξ ⊗Φ2r σFr (η)

)

= σEq (Φ1(a)ξ)⊗Ψ2q σFr (η)
= (πq)∗ (Φ1(a))

(
σEq (ξ)

)
⊗Ψ2q σFr (η)

= Ψ1p (πp(a))
(
σEq (ξ)

)
⊗Ψ2q σFr (η)

= (Ψ2q)∗ (Ψ1p (πp(a)))
(
σEq (ξ)⊗Ψ2q σFr (η)

)

=
(
(Ψ2q)∗ ◦Ψ1p

)
(πp(a))U

(
ξ ⊗Φ2r σFr (η)

)

for all ξ ∈ E and for all η ∈ F, Φp(πp(a)) = U∗
(
(Ψ2q)∗ ◦Ψ1p

)
(πp(a))U and the

theorem is proved.

References for Section 7.2: [22], [29], [30], [41].
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7.3 The imprimitivity theorem

In this Section we prove an imprimitivity theorem for induced representations of

locally C∗-algebras.

Let A and B be two strong Morita equivalent locally C∗-algebras, and let E

be a Hilbert A -module which gives the strong Morita equivalence between A and

B. Let Ẽ = KA(E,A). Then Ẽ can be regarded as Hilbert B-module and it gives

the strong Morita equivalence between B and A, Proposition 5.3.4. Moreover,

the Hilbert Ap -modules Ẽp and
(
Ẽ
)
p
are isomorphic for each p ∈ S(A).

Lemma 7.3.1 Let A and B be two locally C∗-algebras. If A ∼M B, then for

each p ∈ S(A) there is qp ∈ S(B) such that Ap ∼M Bqp . Moreover, the set

{qp ∈ S(B); p ∈ S(A) and Ap ∼M Bqp} is a cofinal subset of S(B).

Proof. Let E be a Hilbert A -module which gives the strong Morita equivalence

between A and B, and let p ∈ S(A). If Φ is an isomorphism of locally C∗-algebras
from B onto KA(E), then the map p̃ ◦ Φ, denoted by qp, is a continuous C∗-
seminorm on B. Since kerπqp = ker

(
(πp)∗ ◦Φ

)
, there is a unique continuous ∗

-morphism Φqp from Bqp ontoKAp(Ep) such that Φqp ◦πqp = (πp)∗◦Φ. Moreover,
Φqp is an isomorphism of C

∗-algebras, and since Ep is a full Hilbert Ap-module

(Remark 5.1.6), we conclude that Ap ∼M Bpq .

To show that {qp ∈ S(B); p ∈ S(A) and Ap ∼M Bqp} is a cofinal subset of
S(B), let q ∈ S(B). Then, since Φ is an isomorphism of locally C∗-algebras,

there is p0 ∈ S(A) such that

q
(
Φ−1 (Φ (b))

)
≤ p̃0 (Φ (b))

for all b ∈ B. But q
(
Φ−1 (Φ (b))

)
= q(b) and p̃0 (Φ (b)) = qp0(b), and then q ≤ qp0 .

Thus, we shoved that for any q ∈ S(B) there is qp0 ∈ {qp ∈ S(B); p ∈ S(A) and

Ap ∼M Bqp} such that q ≤ qp0 and the lemma is proved.

Remark 7.3.2 If E is a Hilbert A-module which gives the strong Morita equiv-

alence between the locally C∗-algebras A and B, then Ep gives the strong Morita

equivalence between the C∗-algebras Ap and Bqp .
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Theorem 7.3.3 Let A and B be two strong Morita equivalent locally C∗-algebras,

and let ϕ be a non-degenerate representation of A on a Hilbert space H. Then the

representations ϕ and Ẽ-IndAB
(
E-IndBAϕ

)
of A, where E is a Hilbert A -module

which gives the strong Morita equivalence between A and B, are unitarily equiv-

alent.

Proof. Let ϕp be a non-degenerate representation of Ap associated to ϕ. By

Lemma 7.2.1, there is q ∈ S(B) such that Ap ∼M Bq. Moreover, the Hilbert

Ap-module Ep gives the strong Morita equivalence between Ap and Bq (Remark

7.2.2). Then the representations ϕp and Ẽp-Ind
Ap
Bq

(
Eq-Ind

Bq
Ap
ϕ
)
of Ap are unitar-

ily equivalent, Theorem 6.23, [41]. But, according to Theorem 7.2.7, the repre-

sentations Ẽp-Ind
Ap
Bq

(
Eq-Ind

Bq
Ap
ϕ
)
and Ẽp-Ind

Ap
Bq

(
Eq-Ind

Bq
Ap
ϕ
)
of Ap are unitarily

equivalent. Therefore the representations ϕ and
(
Ẽp-Ind

Ap
Bq

(
Eq-Ind

Bq
Ap
ϕ
))
◦ πp

of A are unitarily equivalent.

On the other hand, according to Lemma 7.2.5, the representations E-IndABϕ

and
(
Ep-Ind

Bq
Ap
ϕ
)
◦ πq of B are unitarily equivalent. From this and Proposition

7.2.3 and Lemma 7.2.5, we deduce that the representations Ẽ-IndAB
(
E-IndBAϕ

)

and
(
Ẽq-Ind

Ap
Bq

(
Ep-Ind

Bq
Ap
ϕ
))
◦ πp of A are unitarily equivalent. Therefore the

representations ϕ and Ẽ-IndAB
(
E-IndBAϕ

)
of A are unitarily equivalent.

Theorem 7.3.4 Let A and B be two strong Morita equivalent locally C∗-algebras.

Then there is a bijective correspondence between equivalence classes of non-

degenerate representations of A and B which preserves direct sums and irre-

ducibility.

Proof. Let E be a Hilbert A -module which gives the strong Morita equiva-

lence between A and B. By Theorem 7.3.3 and Proposition 7.2.3, the map ϕ →
E-IndBAϕ from the set of all non-degenerate representations of A to the set of

all non-degenerate representations of B induces a bijective correspondence be-

tween equivalence classes of non-degenerate representations of A respectively B.

Moreover, this correspondence preserves direct sums, Proposition 7.2.6.
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To show this correspondence preserves irreducibility, let ϕ be an irreducible,

non-degenerate representation of A. Suppose that E-IndBAϕ is not irreducible.

Then E-IndBAϕ = ψ1 ⊕ ψ2 and by Proposition 7.2.6 and Theorem 7.3.3, the

representations
(
Ẽ-IndABψ1

)
⊕
(
Ẽ-IndABψ2

)
and ϕ of A are unitarily equiva-

lent, a contradiction. So the bijective correspondence defined above preserves

irreducibility.

References for Section 7.3: [22], [30], [41].
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[18] M. J	�Ţ�, On the bounded part of a Hilbert module over a locally C∗-

algebra, Period. Math. Hungar., 45 (2002), 1-2, 81—85.
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