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Summary

The number of available breast cancer cell (BCC) lines is small, and only a very few of them have been extensively
studied. Whether they are representative of the tumours from which they originated remains a matter of debate.
Whether their diversity mirrors the well-known inter-tumoural heterogeneity is another essential question. While
numerous similarities have long been found between cell lines and tumours, recent technical advances, including
the use of micro-arrays and comparative genetic analysis, have brought new data to the discussion. This paper
presents most of the BCC lines that have been described in some detail to date. It evaluates the accuracy of the
few of them widely used (MCF-7, T-47D, BT-474, SK-BR-3, MDA-MB-231, Hs578T) as tumour models. It is
concluded that BCC lines are likely to reflect, to a large extent, the features of cancer cells in vivo. The importance
of oestrogen receptor-alpha (gene ESR1) and Her-2/neu (ERBB2) as classifiers for cell lines and tumours is under-
lined. The recourse to a larger set of cell lines is suggested since the exact origin of some of the widely used lines
remains ambiguous. Investigations on additional specific lines are expected to improve our knowledge of BCC and
of the dialogue that these maintain with their surrounding normal cells in vivo.

Introduction

A considerable part of our knowledge on breast
carcinomas is based on in vivo and in vitro studies
performed with breast cancer cell (BCC) lines. These
provide an unlimited source of homogenous self-
replicating material, free of contaminating stromal
cells, and often easily cultured in simple standard me-
dia. The first line described, BT-20, was established
in 1958 [1]. Since then, and despite sustained work in
this area, the number of permanent lines obtained has
been strikingly low (about 100). Indeed, attempts to
culture BCC from primary tumours have been largely
unsuccessful. For instance, Gazdar et al. [2] ob-
tained cell lines from only 18 of 177 primaries, while
the percentage of success reported by Amadori et al.
was as low as 0.7 (1/136) [3]. This poor efficiency
was often due to technical difficulties associated
with the extraction of viable tumour cells from their

surrounding stroma. Most of the available BCC lines
issued from metastatic tumours, mainly from pleural
effusions. Effusions provided generally large numbers
of dissociated, viable tumour cells with little or no
contamination by fibroblasts and other tumour stroma
cells. However, even with metastatic samples, suc-
cess in long-term propagation has been limited. For
instance, Cailleau et al. [4], Meltzer et al. [5], and
Gazdar et al. [2] fruitfully propagated tumour cells in
only 10, 2, and 25% of cases, respectively.

Many of the currently used BCC lines were estab-
lished in the late 1970s. A very few of them, namely
MCF-7, T-47D, and MDA-MB-231, account for more
than two-thirds of all abstracts reporting studies on
mentioned BCC lines, as concluded from a Medline
(http://www.ncbi.nlm.nih.gov/PubMed/)-based survey.
The transposability to tumours of results obtained with
such limited numbers of cell lines is questionable. To
discuss the problem of representativeness, we have
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Table 1. A series of BCC lines for which a somewhat more detailed description has been given in the literature

Cell line Type of Original Modal chromosome ER PgR Reference

cancer tissue number(s) status status

‘21-series’ [6]

AU565 IDC M (Pl) ? − − [7]

BOT-2 IDC P 63a ? ? [8]

BRC-230 IDC P 60–61a − − [3]

BrCa-MZ-01 MC P 66–70a + + [9]

BrCa-MZ-02 IC M (Pl) 46–50a − − [9]

BSMZ IDC M (Pl) 80a + + [10]

BT-20 IDC P 49b −g − [1, 11]

BT-474 IDC P 55a, 104c, 103d + + [11, 12]

BT-483 IDC P 72a + + [11, 12]

BT-549 PIDC P 74–76d, 74e − − h

CAL-18A C P 71a − − [13]

CAL-18B C P 65a − − [13]

CAL-51 IDC M (Pl) 46c,f − ? [14]

CAMA-1 C M (Pl) 78d, 80f + + [11, 15]

DU4475 IDC M (Sk) 87–90a, 88–93c, 91d, 93e − − [16]

EFM-19 IDC M (Pl) 62d + + [17, 18]

EP IDC M (Pl) 53a + ? [19]

EVSA-T IDCS M (As) 84b, 62c − + [11, 20, 21]

GI-101 IDC R (L) 98–100a − − [22]

GCS IDC M (As) ? + + [23]

HBL-100 See text 63a − − [24, 25]

‘HCC-series’ [2]

HDQ-P1 IDC P 55–59a, 92–107c − − [26]

HH315 C M (O) 113a − − [27]

HH375 C M (LN) 64 and 67a − − [27]

‘HMT-series’ See text [28]

Hs578T CS P 58a, 59e − − [11, 29]

Ia-270 IDC M (Pl) ? + + [30]

IBEP-1 IDC M (Pl) 52a − + [31]

IBEP-2 IDC M (Pl) 74a + − [31]

IBEP-3 IDC M (Pl) 57a − + [31]

IIB-BR-G IDC P 56a − − [32]

JCK IDC M (Pl) ? + + [23]

KPL-1 IDC M (Pl) 77–78a, 77c + − [33]

KPL-3C IDC M (Pl) 64a − − [34]

KPL-4 IDC M (Pl) 53a − − [35]

LCC15-MB C M (F) ? − − [36]

MA11 ILC M (BM) 64a − − [37, 38]

MAST IDC M (As) 60a + + [39]

MaTu IDC M (LN) 66–69b − − [40]

MCF-7 IDC M (Pl) 88a, 86c, 79d, 65f + + [11, 41]

MDA-MB-134 VI IDC M (Pl) 43a, 42d, 44 and 66f + − [4, 11, 42]

MDA-MB-157 MC M (Pl) 65a, 64–66b, 54 and 95d, 62, 116f − − [4, 43]

MDA-MB-175 VII IDC M (Pl) 49a, 48f + − [4, 11, 42]

MDA-MB-231 IDC M (Pl) 64a, 69–70b − − [4, 11, 42]

MDA-MB-330 ILC M (Pl) 64a − − [4, 11]

MDA-MB-361 AC M (Br) 52a, 54–56d, 51f + + [4, 11]
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Table 1. (continued)

Cell line Type of Original Modal chromosome ER PgR Reference

cancer tissue number(s) status status

MDA-MB-415 AC M (Pl) 72a ? ? [4, 11]

MDA-MB-435S IDC M (Pl) 64a, 56e, 57f − − [4]

MDA-MB-436 AC M (Pl) 45 and 80a, 39 and 80d − − [4, 11]

MDA-MB-453 AC M (Pl) 45a, 89c − − [4]

MDA-MB-468 AC M (Pl) 35a − − [4]

MFM-223 IDC M (Pl) 46–47a, 46d − − [44]

MPE-600 C ? 46d ? ? i

MT-1 C P (Tr) 103f − − [45]

MT-3 C P (Tr) 47c, 46f − − [45]

MW IDC M (Pl) 67a − ? [19]

PMC42 C M (Pl) 66a, 57f ? ? [46]

SK-BR-3 IDC M (Pl) 84a, 79d,f − − [11]

‘SUM-series’ See text [47]

T-47D IDC M (Pl) 66a, 63d, 65e, 62f + + [11, 48]

UACC-812 IDC P 58–64a, 63d − − [5]

UACC-893 IDC P 62a, 59d − − [5]

UISO-BCA-1 IDC M (Pl) 54a − − [49]

UISO-BCA-2 IDC M (Pl) 61a − − [49]

VHB-1 IDC P 70–74a + + [50]

ZR-75-1 IDC M (As) 71–72a, 71d, 72f + + [11, 51]

ZR-75-30 IDC M (As) 81a, 79f + − [11, 51]

a Original reference.
b Reference [11].
c Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) data.
d Reference [52].
e American Type Culture Collection (ATCC) data.
f Reference [53].
g ESR1 mRNA present.
h Coutinho W.G. and Lasfargues E.Y., 1978 (unpublished data).
i Developed by Vysis International Inc.
IDC: invasive ductal carcinoma; MC: medullary carcinoma; IC: inflammatory carcinoma; PIDC: papillary invasive ductal
carcinoma; C: carcinoma; IDCS = IDC, mucin-producing, signet-ring type; CS: carcinosarcoma; ILC: invasive lobular
carcinoma; AC: adenocarcinoma.
P: primary; M: metastasis; R: recurrence Pl: pleural effusion; Sk: skin; As: ascites; L: local; O: omenum; LN: lymph node;
F: femur; BM: bone marrow; Br: brain; Tr: transplanted.

here brought together and compared various data ob-
tained, mostly in the last decade, on both tumours and
BCC lines.

Presentation of BCC lines – the question
of representativeness

Multiplicity and variability of BCC lines
Most of the BCC lines that have in the past been the
subject of a somewhat detailed description are listed
in Table 1. Also provided, where available, are data on
the type of primary tumour (ductal, lobular, . . .); the
tissue from which the BCC lines originated (primary

or metastasis); the steroid receptor status and the
modal chromosome number(s) of the cell lines.

Distinctive features of BCC lines. An exhaustive de-
scription of all BCC lines contained in Table 1 is
beyond the scope of the present paper. However, it
is of interest to mention that some aspect regarding
their biology or their origin has distinguished many of
them. For instance, DU4475 cells may grow in sus-
pension in vitro, a feature rarely observed with BCC
[16]. KPL-3C cells may produce tumours associated
with micro-calcifications in nude mice [34]. CAL51
cells exhibit a normal karyotype [14] and appear
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perfectly diploid by molecular cytogenetic analysis
[53]. IBEP lines differ from the widely used MCF-7
and MDA-MB-231 cells by their spectrum of pro-
teolytic activities [54]; they are also characterised by
a relatively rare steroid receptor status (two of them
are estrogen receptor-negative (ER−)/progesterone
receptor-positive (PgR+), the third is ER+/PgR−)
[31]. MFM-223 cells have a large amount of androgen
receptors [44]. The epidermal growth factor receptor
gene (EGFR) is amplified in BT-20 and MDA-MB-
468 lines [55]; it is over-expressed without ampli-
fication in SUM-102, SUM-149, and SUM-229 cells
[56, 57]. The fibroblast growth factor receptor 1 gene
(FGFR1, at 11q13) is amplified in SUM-44 and SUM-
52 cells [58], and highly amplified in MDA-MB-134
cells [59]. The fibroblast growth factor receptor 2
gene (FGFR2, at 10q26) is amplified in SUM-52
[58, 60]. BT-474, SK-BR-3, MDA-MB-361, MDA-
MB-453, ZR-75-30, UACC-812, UACC-893, BSMZ,
HCC1419, HCC1954, SUM-190, and SUM-225 lines
have an amplified ERBB2 (encoding Her-2/neu) at
17q11.2-q12 [2, 10, 58, 61, 62]. Close to this re-
gion, UACC-812 cells have an amplified TOP2A gene,
while one copy of this gene is deleted in the MDA-
MB-361 line; as a consequence, the sensitivity of both
cell lines to topoisomerase II alpha inhibitors is mod-
ified [61]. One of the most intriguing cell lines is
PMC42 [46], which is apparently derived from the
stem cell compartment in the breast. These cells are
heterogeneous, with at least eight different morpholo-
gical types identified by phase contrast and electron
microscopy, expressing both secretory and myoep-
ithelial markers. These cells can express milk-specific
genes through hormone and extra-cellular matrix in-
teractions [63]. Moreover, they can be induced to
undergo epithelial–mesenchymal transition (EMT, see
below) [64]. Both of these attributes are quite unusual
among the cell lines.

AU565 and SK-BR-3 lines were obtained from
the same patient [7], as were CAL18A and CAL18B
[13]. MDA-MB-330 and MA-11 issued from a lobu-
lar carcinoma, a type representing only 5–10% of all
breast carcinomas [4, 11, 37, 38]. Hs578T cells were
derived from a carcinosarcoma, a very rare form of
breast cancer [29], as is medullary carcinoma, from
which BrCa-MZ-01 and MDA-MB-157 originated
[9, 43].

Besides the number of cell lines that have been
obtained from pleural effusions, others have a more
infrequent origin: MDA-MB-361 issued from a brain
metastasis [4, 11], LCC15-MB cells from a femoral

metastasis [36] and HH315 and HH375 from abdom-
inal and supraclavicular lymph node metastases, re-
spectively [27]. MA11 have been obtained from a bone
marrow aspirate [37]. MAST cells have been isolated
from an ascitic fluid [39], as were ZR-75-1 cells [51].
HBL-100 cells were established from an early lacta-
tion sample obtained in an apparently healthy woman.
They exhibited characteristics of transformation from
the very beginning and evolved during in vitro main-
tenance, until becoming tumourigenic in nude mice.
They have been shown to harbour SV40 genetic in-
formation [24, 25]. HBL-100 cells have also been
shown to carry the Y chromosome (ATCC web site),
which raises some doubt as to its origin.

Finally, some BCC lines are characterised by their
tropism to specific metastatic sites. This is the case for
MT-1 cells, which tend to specifically give bone/bone
marrow metastases in mice, while MA-11 preferen-
tially establish in the brain, following injection into
the left-ventricle of the heart [65].

BCC lines series. Some BCC lines are related, as
they have been obtained from the same patient, or
isolated in the same laboratory (and thus often estab-
lished and maintained in the same culture conditions).
Other lines have been derived by serial subculture
from the same initial population. These cell lines
constitute series that are well suited for comparative
studies. ‘HCC’, ‘SUM’, ‘HMT’, and ‘21’ cell lines are
examples of such series.

‘HCC (Hamon Cancer Centre) series’. In an at-
tempt to obtain paired tumour and non-tumour cell
lines from patients with breast cancer, 18 BCC lines
were isolated from 177 primary tumours (and 3 from
12 metastatic lesions) [2]. This series allowed an
extensive comparison of various features (morpho-
logy, ploidy, and marker expression) in paired BCC
lines/original tissue [66]. The high number of ori-
ginal tissue samples also allowed the identification
of criteria leading to the most successful isolation of
BCC lines, thus pointing out that cell line establish-
ment is a biased process (see below).
‘SUM series’. A series of 11 tumour cell lines that
were isolated and grown in media improved for the
culture of normal breast epithelial cells. They were
obtained from primary tumours, pleural effusions,
a chest wall recurrence, or from a highly invasive
cancer specimen grown for two transplant gener-
ations in immuno-deficient mice. Molecular cyto-
genetic analysis of these BCC lines was performed



Comparison of cell lines and tumours 253

[47, 58]. A detailed description of phenotypic/
genotypic features of each SUM line is access-
ible (http://www.cancer.med.umich.edu/breast_cell/
clines/clines.html).
‘HMT series’. The HMT-3522 cell line was de-
rived from a fibrocystic lesion of the breast. Issuing
from breast tissue cultured on type IV collagen,
these cells were first propagated as a near-diploid,
non-tumourigenic sub-line in enriched but serum-
free medium. These cells progressively developed,
by subcultures in various conditions: p53 mutation;
MYC amplification; EGF-independence accompa-
nied by tumourigenicity in nude mice; EGFR, TGF-
alpha, and c-erbB-2 over-expression. They have also
been genetically engineered to study inter-relations
between EGF and 17-beta oestradiol (E2) action (for
a review, see [28]).
‘21-series’. Two primary and two metastatic cell
lines with distinct phenotypes and genotypes estab-
lished from the same patient diagnosed as having
infiltrating and intra-ductal mammary carcinoma [6].

BCC variant lines. A number of variant sub-lines
have been obtained, starting from the most widely
used BCC lines. Some resulted from culture of the
same unstable cell line by different groups and/or in
different culture mediums. For instance, it is well-
known that MCF-7 cell stocks from different labora-
tories may differ in their sensitivity to E2, evaluated
through cell proliferation rate and TFF1 (encoding
pS2) and CCND1 (cyclin D1) gene induction. These
effects have been associated with variations in ER
protein and mRNA levels [67].

Other variants were obtained by selection of cell
sub-populations resistant to a given agent, for instance
anti-estrogen, vitamin D, doxorubicin, thymidylate
synthase inhibitor . . . [68–71]. A good example of
variant use to explore a specific resistance is provided
by the MCF-7 BCC, which have been often considered
as ‘prototypes’ for ER+ cells. Different levels of
MCF-7 resistance to (anti)-estrogens have been found,
illustrated by different variants. So are MCF-7/LCC1
hormone-independent but hormone-responsive, MCF-
7/LCC2 (selected from LCC1) 4-hydroxytamoxifen
(4-OH-TAM, a partial anti-oestrogen)-resistant but ICI
182,780 (a pure anti-oestrogen)-sensitive, and MCF-
7/LCC9 (selected from LCC1) 4-OH-TAM- and ICI
182,780-resistant [72, 73].

Specific in vivo properties have been associated to
a third category of variants. For instance, MDA-MB-
435/LCC6 cells constitute an ascites model derived

from MDA-MB-435S [74]. Distinct sub-populations
of MDA-MB-231 BCC have been obtained on the
basis of their preferential metastatic site (bone or
brain) [75].

BCC lines from breast cancer patients with germ-
line mutations. A particular subset of tumours is
composed of those arising in women with germ-line
mutations. Attempts to isolate corresponding cell lines
appear to have been mostly unsuccessful.

To the best of our knowledge, only one BRCA1
mutant cell line, HCC1937, has been described to
date [76]. It was established from a primary non-
metastatic IDC originating from a 24-year-old patient
with a germ-line mutation. The cell line is homo-
zygous for the BRCA1 5382insC mutation, whereas
the patient’s lymphocyte DNA was heterozygous for
the same mutation, as were at least two other fam-
ily members’ lymphocyte DNA. HCC1937 BCC also
have an acquired mutation of TP53 with wild-allele
loss, and an acquired homozygous deletion of the
PTEN gene. No significant levels of progesterone or
oestrogen binding were observed in either the primary
tumour or the HCC1937 cultured cells. Only very low
levels of Her-2/neu were expressed. HCC1937 cells
have been extensively used to study BRCA1 function,
notably after ionising radiation-induced damage [77–
86]. Considering the number of distinct mutations that
may affect the BRCA1 gene [87], there is clearly a
need for additional cell lines. To be complete about
BRCA1, it must be mentioned that the establishment of
an immortalised breast cell strain containing the het-
erozygous form of a BRCA1 185delAG mutation has
been described. These mutant cells appear to abund-
antly express the 220-kDa full-size BRCA1 protein and
to have growth and stress response characteristics sim-
ilar to those of normal human breast cells, which is
consistent with the hypothesis that loss of heterozy-
gosity must occur to impair putative BRCA1 function
[88].

It seems that there is no available BRCA2 mutant
BCC line at the present time, suggesting that estab-
lishment of such line from BRCA2 tumours could be
especially difficult.

One cell line, HCC1569 [2], was found to have a
mutated FHIT gene (G → T at nucleotide 651, chan-
ging valine to phenylalanine) that proved to be her-
itable, in that the patient’s daughter also carried the
same alteration. The tumour arose in an older patient
(age 70) without a family history of breast cancer
[89]. It is unclear whether the germ-line alteration that
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occurred in this breast tumour (which otherwise ap-
peared to be sporadic) was a causative factor in the
development of her cancer.

Li-Fraumeni syndrome (LFS) is a rare, familial,
dominantly inherited cancer syndrome characterised
by a wide spectrum of neoplasms occurring in chil-
dren and young adults. While LFS has been associated
to germ-line mutations in TP53, no cancer cell line
has been as yet isolated from LFS-associated breast
tumours. However, the spontaneous in vitro immortal-
isation of normal breast epithelial cells obtained from
a patient with LFS (with a mutation at codon 133 of
TP53) has been described [90].

Other germ-line mutations that have been suggest-
ed to be associated with breast cancer susceptibility
may be found in the PTEN, ATM, and NBS1 genes
[91]. To our knowledge, no BCC line has been ob-
tained from carriers of these types of mutations.

The specificity of inflammatory breast cancer. In-
flammatory breast cancer (IBC) is an advanced and
accelerated form of breast cancer usually not detected
by techniques such as mammograms or ultrasounds. It
requires immediate aggressive treatment with chemo-
therapy prior to surgery and is treated differently
than more common types of cancer. While no more
than 5% of all patients with breast cancer have IBC
in Western countries, this percentage may be higher
than 10% in African countries such as Tunisia or
Nigeria [92]. The majority of IBC tumours are ER-
negative (ER−), PgR-negative (PgR−), Her-2/neu-
positive (Her-2/neu+), and EGFR-positive (EGFR+)
[93, 94]. They are also characterised by intense an-
giogenesis and a strong E-cadherin expression [95]. In
view of their ER, PgR, and EGFR status, the presence
of a high E-cadherin level in IBC is intriguing and con-
trasts with observations in most other breast cancers
(see notably the sections Phenotype and invasiveness-
based BCC line classification and Analysis of breast
tumours – markers and grade – comparison with cell
lines in this paper). IBC deserves a specific discus-
sion here, as basic research on this form of cancer
has recently greatly benefited from the introduction of
human cell line and xenograft models.

The SUM-149 (ER−, PgR−, Her-2/neu−, and
EGFR+) and SUM-190 (ER−, PgR−, Her-2/neu+
(ERBB2 amplified), and EGFR+) cell lines are de-
rived from primary IBC tumours. The SUM-149 BCC
have been used to identify genetic determinants of
the IBC phenotype. Among the genes found, ARHC
(coding for the small GTPase RhoC) appears over-

expressed in IBC. RhoC is involved in cytoskeletal
re-organisation; specifically, it is involved in the form-
ation of actin stress fibers and focal adhesion contacts.
Its over-expression modulates induction of angiogenic
factors in BCC. Treatment of cells with a farnesyl
transferase inhibitor may lead to the reversion of RhoC
GTPase-induced inflammatory phenotype. [93, 96–
101]. Contrasting with ARHC, the expression of LIBC
was found to be frequently lost in IBC. LIBC is now
renamed WISP3 (Wnt-1 inducible signalling pathway
protein 3). It was shown that its loss of expression
may contribute to the phenotype of IBC by regulating
tumour cell growth, invasion and angiogenesis [96,
102]. WISP3 is a member of a gene family (‘CCN
family’), also including CTGF (connective tissue
growth factor), CYR61 (cysteine-rich angiogenic in-
ducer 61), and NOV (nephroblastoma over-expressed
gene), which encode cysteine-rich secreted proteins
with roles in cell growth and differentiation.

Although this article is mainly focused on cell
lines, we need to mention the existence of two xeno-
graft models of IBC. The first, MARY-X, grows as
tight multi-cellular spheroids in vitro and as lympho-
vascular emboli in vivo in SCID/nude mice (animal
models for tumourigenicity studies are discussed in
the section Tumourigenicity of BCC lines in animal
models of this paper). It is ER−, PgR−, Her-2/neu−
and EGFR+. The primary tumour of origin of MARY-
X exhibited identical markers, except that about 50%
of its cells showed Her-2/neu amplification. Com-
parative studies of MARY-X with non-inflammatory
xenografts indicated 10–20-fold over-expression of
E-cadherin and MUC1, findings that were reflect-
ed in most cases of human IBC. The formation of
spheroids and the lack of binding of the tumour em-
boli to the surrounding endothelium have been as-
sociated to: (a) an over-expressed E-cadherin/alpha,
beta-catenin axis, determining strong homotypic
cell interactions; (b) a decreased alpha-3 4-fucosyl-
transferase activity, which leads to reduced sialyl-
Lewis X/A (sLe(X/A)) carbohydrate ligand-binding
epitopes on the over-expressed MUC1 and other
surface molecules that bind endothelial E-selectin.
Moreover, the decreased sLe(X/A) fail to confer elec-
trostatic repulsions between tumour cells, which fur-
ther contributes to the compactness of the MARY-X
spheroids by allowing the E-cadherin homodimeric
interactions to go unopposed [103–105].

WIBC-9 is another human xenograft transplant-
able in SCID/nude mice. It is frequently accompanied
by lung metastasis and exhibited erythema of the
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overlying skin, reflecting its human counterpart. In
vitro, WIBC-9 forms tube-like structures and loops,
in concordance with its in vivo feature. Consistent
with IBC, WIBC-9 is ER−, PgR−, and exhibits
ERBB2 gene amplification. Comparative studies of
WIBC-9 and three established non-IBC xenografts,
by reverse transcription-PCR, ELISA, and immuno-
histochemistry, indicated the over-expression of a
series of angiogenesis-related genes in IBC [106].

The problem of representativeness in BCC lines
Permanent BCC lines have been isolated in order to
understand the mechanisms underlying tumour ini-
tiation and evolution. Yet despite the considerable
role that they continue to play in most aspects of
cancer biology, they are still often viewed as non-
representative models of the tumours from which they
are derived.

At first, the metastatic origin of most BCC lines
has raised questions as to their relationship to primary
tumours. More generally, the pure and clonal pop-
ulation composing any single BCC line, regardless
of its primary or metastatic origin, is a priori ex-
pected to poorly reflect the assumed heterogeneity of
breast tumours. This heterogeneity is in line with the
common view that breast cancer involves a sequen-
tial progression through clinical and pathologic stages,
starting with atypical hyperproliferation, progressing
into in situ, then invasive carcinomas and culminating
in metastatic disease. These changes are believed to be
associated with the sequential acquisition of various
genetic and phenotypic changes in a single cell fol-
lowed by clonal selection and expansion, thus leading
to intra-tumoural diversity.

It has also been argued that most culture conditions
relevant to the establishment of BCC lines will elim-
inate some types of tumour cells initially present in
the cancer samples. For instance, BCC unable to grow
well on plastic, or having an absolute requirement for
factors only provided by their specific tumour envi-
ronment, are unlikely to be represented in the panel
of currently available BCC lines. Also, all else being
equal, only the most proliferative cells extracted from
the tumour samples to be cultured in vitro should be
finally selected.

Cancer cells are genetically unstable. An addi-
tional criticism addressed to BCC lines is that, as
compared to cells in vivo, they could undergo specific
genotype/phenotype alterations resulting from long-
term culture in simplified conditions. In addition to
this divergence, lots of the same BCC lines distributed

in different laboratories and/or cultured under vari-
ous conditions could differently evolve and give rise
to distinct sub-populations. This would prevent inter-
laboratory comparisons of data obtained with the same
line.

Finally, that the few widely used BCC lines could
accurately reflect the inter-tumoural heterogeneity has
been debated.

A response to these questions and criticisms will
be given throughout the present paper.

Phenotype and invasiveness-based studies
of BCC lines and tumours

Phenotype and invasiveness-based BCC line
classification
As exemplified by the steroid receptor status, dis-
cordances have been pointed out between tumours
and the panel of available BCC lines. Various ex-
planations have been proposed. One of them, based
on the epithelial–mesenchymal transition hypothesis,
was suggested by initial observations of distinct cell
line phenotypes. Subsequent studies confirmed the
existence of two major ‘portraits’ for BCC lines.

Steroid receptor status and the bias in BCC line
isolation. In the classification and comparison of cell
lines (and breast tumours), no single criterion appears
a priori more pertinent than the ER. As a mediator
of (anti)-estrogen action, it plays a central role in
breast cancer biology and treatment. One of the ma-
jor proteins induced by estrogens is the progesterone
receptor (PgR). ER and PgR amounts have been eval-
uated in tumours and cell lines for more than 30 years
[107]. ER was long believed to be unique; however,
an isoform named ER-beta and encoded by a specific
gene, ESR2, was identified in the late nineties. The
‘older’ ER isoform (renamed ‘alpha’, and encoded
by the ESR1 gene) seems to be functionally the most
important in breast tumours, as no clear picture has
emerged to date about the ER-beta role in this pathol-
ogy [108]. We have shown that the level of ER protein
evaluated in breast tumours by ligand-binding assay,
which measures both ER-alpha and -beta isoforms,
was linearly correlated to the level of mRNA specific
for ESR1, while the ESR2 mRNA was undetectable
in the samples [109]. In the present paper, we will
consider that ER-beta, although not negligible (see
notably [110]), is of secondary importance in breast
tumours and cell lines, and the term ER will refer to
the alpha isoform, unless otherwise indicated.
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Cumulative data from a number of studies have
revealed that steroid receptors are distributed in
breast tumours as follows: 50–60% ER+/PgR+;
10–20% ER+/PgR−; 5–15% ER−/PgR+; 15–25%
ER−/PgR−. In contrast, BCC lines listed in Table 1
(and added with the HCC and SUM series) are char-
acterised by a clearly different distribution: 20% are
ER+/PgR+; 7% ER+/PgR−; 5% ER−/PgR+; 68%
ER−/PgR−. One explanation for these discrepancies
supposes that the phenotype of BCC could change un-
der in vitro culture, notably leading to the loss of ster-
oid receptor expression. However, data presented in
various parts of this paper suggest that this is unlikely.

On the other hand, it appears that steroid receptor-
negative BCC lines are easier to establish in vitro
than the receptor-positive ones. The 18 cell lines of
the HCC series that were obtained from 177 primary
tumours [2] exemplify this. Only a subset of carcino-
mas that had several features indicative of tumours
with poor prognosis, absence of steroid receptors, hy-
perploidy or aneuploidy, Her-2/neu over-expression,
positive immuno-staining detection of p53 protein
expression, could be successfully cultured. Among
the 18 HCC lines, 15 (83%) are ER−. It has been
suggested that the secretion of various extra-cellular
proteins, such as collagens, could provide a selec-
tive advantage to ER−/PgR− cells, by increasing their
adherence to plastic. It also appears that ER−/PgR−
cells may, more frequently than ER+ and/or PgR+
BCC, express both a series of growth factors (i.e.,
EGF, TGF-alpha, amphiregulin, heregulin, FGFs,
IGFs) and their corresponding receptors, thus sustain-
ing growth independently of exogenous growth factor
supply (autocrine loop) [111].

Distinct phenotypes – the ‘epithelial–mesenchymal
transition’ (EMT) hypothesis. To account for the
under-representation of steroid receptor positivity in
BCC lines, another explanation has been advanced.
During the sequential in vivo progression of cancer
from atypical hyperproliferation to metastatic disease,
BCC might undergo phenotype alterations, subtended
or not by genetic changes. These alterations would
notably include the loss, to a variable extent, of
epithelial-like features, and the gain of more aggres-
sive and invasive mesenchymal-like traits. If steroid
receptor-positive cells may occasionally lose their re-
ceptors (along with other epithelial markers) during
tumour progression, at least a fraction of ER+ tu-
mours could evolve to produce ER− metastases. As
many cell lines have originated from metastatic cells,

this could explain the discrepancies between these
lines and the primary tumours. The concept of phe-
notype change in BCC, which is opposed to the idea
that the ‘portrait’ of tumour cells remains essentially
the same during cancer progression, received a more
precise formulation with the ‘epithelial–mesenchymal
transition’ (EMT) hypothesis.

The EMT hypothesis was mainly based on studies
involving a relatively high number (up to 18) of BCC
lines. These were found to distribute along a spec-
trum of differentiation from epithelial to mesenchymal
appearances [112, 113]. Based on their phenotype
and invasiveness (chemo-invasion through the recon-
stituted basement membrane, Matrigel, in a modified
Boyden chamber), the cell lines could, however, be
summarily classified into three groups:

— The first group expressed high amounts of mark-
ers typical of the luminal epithelial phenotype
of breast cells: ER, E-cadherin (gene CDH1),
zonula occludens-1 (TJP1), and desmoplakin I/II
(DSP), the three latter being involved in adher-
ens, tight, and desmosomal junctions, respectively.
These ‘luminal epithelial-like’ cells grew as inter-
connected colonies of polygonal cells on plastic
and as fused colonies in Matrigel. They were
weakly invasive. BCC lines in this group included
BT-483, MCF-7, T-47D, and ZR-75.

— The second group of cell lines, closely related to
the first, was characterised by a ‘weakly luminal
epithelial-like’ phenotype, with the expression, to
a reduced extent, of at least some of the epithelioid
markers found in the first group, and a weak in
vitro invasiveness. Most of these cell lines grew
as non-fused spheres in Matrigel. On plastic, they
accumulated in clusters of loosely attached cells,
reaching full confluency only rarely (personal ob-
servations). In this group were included the BT-
474, CAMA-1, MDA-MB-134, MDA-MB-361,
MDA-MB-453, MDA-MB-468 and SK-BR-3 cell
lines.

— The third group of cell lines was clearly distinct
from the two others. It did not express the epithe-
lioid markers found in the ‘luminal epithelial-like’
and ‘weakly luminal epithelial-like’ groups, but in
contrast exhibited a high level of vimentin (gene
VIM), a marker also found in mesenchymal cells.
Most of these lines had a fibroblastoid phenotype
on plastic and grew as colonies with large stellate
projections in Matrigel. They were highly inva-
sive in vitro. BCC lines in this ‘mesenchymal-like’
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or ‘stromal-like’ group included MDA-MB-435S,
MDA-MB-231, Hs578T, and BT-549.

Based on this classification, and since: (a) a hall-
mark of invasive (and metastatic) tumour cells is the
ability to invade and traverse basement membranes;
(b) strong migratory and invasive abilities are also
characteristic of cells of mesenchymal origin, it was
later postulated that BCC with epithelioid features
might acquire a mesenchymal-like phenotype during
tumour progression. This process would be reminis-
cent of the so-called ‘epithelial–mesenchymal tran-
sition’ that occurs during embryonic development at
precise times and locations [114]. EMT in BCC would
consist of the turning-off of genes encoding epithelial
markers (estrogen receptor-alpha, E-cadherin, tight
junction proteins,. . .) and the increase of markers such
as vimentin, accompanied by morphological changes
and increased invasiveness. In short, cells from the
luminal epithelial-like group could evolve to resemble
cells from the mesenchymal-like group, maybe by ex-
pressing a transitory, weakly luminal, epithelial-like
phenotype.

There are data from in vitro studies that support
the EMT hypothesis. For instance, in some MCF-7
and ZR-75 BCC selected for their resistance to doxo-
rubicin, vimentin expression appeared to be turned on
[115]. Moreover, the MCF-7/Adr cell line, obtained
by exposure of the luminal epithelial-like MCF-7 to
doxorubicin [116], was shown during the course of
years to express a number of features mainly or ex-
clusively found in mesenchymal-like lines such as
MDA-MB-231 or Hs578T. Experimental expression
of vimentin in MCF-7 BCC led to increased motil-
ity and invasiveness, suggesting that it was needed to
allow successful invasion [117]. A sub-population, T-
47Dco, was derived from the luminal epithelial-like T-
47D cells. It had unstable vimentin expression and its
most invasive cells were of fibroblastic/mesenchymal
(VIM-positive) type [113]. Thus, phenotype instabil-
ity or change, resulting in the acquisition of mesen-
chymal features, has been observed in BCC lines, and
seems to confer to these cells increased mobility and
aggressiveness. It has, however, rarely been described
in vitro. Only a few ER+ cell lines have converted to
an ER− phenotype and most efforts to obtain ER−
sub-lines from ER+ MCF-7 and T-47D by selection
or transformation have failed. Even in the cases where
a hormone-independencewas obtained, the ER was re-
tained [72, 118]. EMT and more generally, important
phenotype changes in cultured BCC, are likely to be

more sporadic than systematic. In fact, the possibility
of an EMT, even transient, has been demonstrated in
two different cell systems: PMC42 and MCF10A. A
PMC42 sub-line (PMC42-LA) displays an epithelial
phenotype: the cells congregate into pavement epi-
thelial sheets in which E-cadherin and beta-catenin
are localised at cell–cell borders. They abundantly ex-
press cytokeratins, although 5–10% of the cells also
express vimentin. Stimulation of PMC42-LA cells
with epidermal growth factor (EGF) leads to EMT-
like changes, including up-regulation of vimentin and
down-regulation of E-cadherin. Vimentin expression
is seen in virtually all cells, and this increase is ab-
rogated by treatment of cells with an EGF receptor
antagonist. Although E-cadherin staining at cell–cell
junctions disappeared in response to EGF, beta-catenin
persisted at the cell periphery. Further analysis re-
vealed that N-cadherin was present at the cell–cell
junctions of untreated cells and that expression was
increased after EGF treatment. N- and E-cadherin
are not usually co-expressed in human carcinoma cell
lines but can be co-expressed in embryonic tissues,
and this may signify an epithelial cell population
prone to epithelio-mesenchymal-like responses [64].
MCF10A are not cancer cells, but immortalised nor-
mal breast epithelial cells. It is, however, of interest
to mention that transient expression of vimentin may
be induced in these cells. In an in vitro wound-healing
model, analysis of the trajectories of the cells and their
migratory speeds by time-lapse video microscopy re-
vealed that vimentin mRNA and protein expression
were exclusively induced in cells at the wound’s edge,
which were actively migrating towards the center of
the lesion. Moreover, the vimentin protein disappeared
when the cells became stationary after wound closure
[119].

The data from BCC classification [112, 113] are
in agreement with an EMT hypothesis according to
which the weakly luminal epithelial-like phenotype
could constitute a transitory step in tumour cell pro-
gression from the luminal epithelial-like portrait to
the mesenchymal-like one. However, almost all of the
weakly luminal epithelial-like cell lines in their study
have later been found to exhibit specific gene amp-
lifications underlying the over-expression of specific
protein tyrosine kinases involved in growth factor sig-
nalling. BT-474, MDA-MB-361, MDA-MB-453, and
SK-BR-3 cells over-express Her-2/neu and have an
amplified ERBB2 locus. This is also observed in about
30% of tumours. Her-2/neu over-expression has been
associated to down-regulation of ER and breakdown of
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Table 2. A list of genes differentially expressed in BCC lines (at least four cell lines examined) and tumours

Gene name Gene product name(s) Higher expression in References

Luminal ER+ Low-grade

epithelial-like tumours tumours

and/or ER+
BCC lines

Panel Aa

ARHB Ras homolog gene family, member B Yes [122]

C1orf34 Chromosome 1 open reading frame 34 Yes [123]

(DEME-6)

CBX5 Chromobox homolog 5 (HP1 alpha homolog) Yes [124]

CDH1 Cadherin type 1, epithelial cadherin Yes Yes Yes [112, 113, 125]

(E-cadherin)

CLDN1 Claudin 1 Yes [126]

CLDN7 Claudin 7 Yes Yes [127]

DSP Desmoplakin (DPI, DPII) Yes Yes [112, 113, 128]

ESR1 Estrogen receptor, alpha Yes Yes Yes [129–131]

GATA3 GATA sequence binding protein 3 Yes Yes [132]

GPC3 Glypican 3 Yes [133]

GRB14 Growth factor receptor-bound protein 14 Yes [134]

GREB1 Greb1 protein Yes Yes [135]

IGFBP2 Insulin-like growth factor binding protein 2 Yes [136]

IGFBP5 Insulin-like growth factor binding protein 5 Yes [137]

JUP Junction plakoglobin Yes [113]

KLF4 Kruppel-like factor 4 (GKLF) Yes [138]

KRT18 Keratin 18 Yes [139]

MDM2 Mdm2, p53 binding protein Yes Yes Yes [140, 141]

NME1 Protein expressed in non-metastatic Yes Yes [142, 143]

cells (nm23A)

PDZK1 PDZ domain containing 1 Yes Yes [135]

PGR Progesterone receptor Yes Yes Yes [129, 130, 144, 145]

PRDM2 PR domain containing 2, RIZ (transcript 1) Yes [146]

PRLR Prolactin receptor Yes Yes [147, 148]

PTPN6 Protein tyrosine phosphatase, Yes [149]

non-receptor type 6

RERG Ras-like, estrogen-regulated, Yes Yes [150]

growth-inhibitor

SLC9A3R1 Solute carrier family 9, isoform Yes Yes [151]

3 regulatory factor 1

SPINT1 Serine protease inhibitor, Yes [152]

Kunitz type 1 (HAI-1)

ST14 Suppression of tumorigenicity 14 Yes [152]

(matriptase, epithin)

STC2 Stanniocalcin 2 Yes [153]

SYK Spleen tyrosine kinase Yes [154]

TFAP2C Transcription factor activator protein Yes Yes [123]

2 gamma

TFF1 Trefoil factor 1 (pS2, BCEI) Yes Yes Yes [130, 145]

TFF3 Trefoil factor 3 Yes Yes [155]

TJP1 Tight junction protein 1 (ZO-1) Yes Yes [112, 113, 156]

TPD52 Tumor protein D52 Yes [157]
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Table 2. (continued)

Gene name Gene product name(s) Higher expression in References

Mesenchymal-like ER− High-grade

ER-BCC lines tumours tumours

Panel Bb

AKT3 V-akt murine thymoma viral oncogene homolog 3 Yes Yes [158]

ANGPT1 Angiopoietin-1 Yes [159]

BZRP Benzodiazepine receptor (peripheral) Yes [160]

CDH3 Cadherin 3, placental cadherin (P-cadherin) Yes Yes [161]

CDH11 Cadherin 11, osteoblast cadherin (OB-cadherin) Yes [162]

CDKN2A Cyclin-dependent kinase inhibitor 1A (p21, Cip1) Yes Yes Yes [163]

CSF1 Colony stimulating factor 1 (M-CSF) Yes [164]

DFNA5 Deafness, autosomal dominant 5 (ICERE-1) Yes Yes [165]

EGFR Epidermal growth factor receptor Yes Yes Yes [55, 144, 166, 167]

ERBB2 c-erb-B2, Her-2/neu Yes Yes [168–173]

ETS1 V-ets erythroblastosis virus E26 oncogene homolog 1 Yes [174]

GPX1 Glutathione peroxidase 1 Yes Yes [175, 176]

GSTP1 Glutathione S-transferase pi Yes Yes [177]

HMGIY High-mobility group protein isoforms I and Y Yes [178]

HXB Hexabrachion (tenascin-C) Yes Yes Yes [179]

IGFBP1 Insulin-like growth factor binding protein 1 Yes [136]

IL6 Interleukin-6 Yes [180]

IL8 Interleukin-8 Yes [181]

IL11 Interleukin-11 Yes [180]

LOX Lysyl oxidase Yes [182]

LOXL2 Lysyl oxidase-like 2 Yes [182]

MET Met proto-oncogene (HGF receptor) Yes [183]

MMP14 Matrix metalloproteinase 14 (membrane-inserted) Yes [184, 185]

MSN Moesin Yes Yes [186]

MT1E Metallothionein 1E Yes Yes [187, 188]

NR3C1 Glucocorticoid receptor Yes [144]

NRG1 Neuregulin 1 (heregulin) Yes [55, 189]

PLAU Plasminogen activator, urokinase Yes Yes Yes [164, 190–192]

PTN Pleiotrophin (heparin binding growth factor 8) Yes [193]

RARB Retinoic acid receptor, beta Yes Yes Yes [194]

S100A4 S100 calcium binding protein A4 (metastasin) Yes Yes [195, 196]

SERPINE1 Plasminogen activator inhibitor type 1 (nexin) Yes Yes Yes [145, 190, 192]

SNAI1 Snail homolog 1 Yes Yes [197]

SNAI2 Snail homolog 2 (slug) Yes [198]

STMN1 Stathmin 1 (oncoprotein 18) Yes Yes Yes [199]

TIMP1 Tissue inhibitor of metalloproteinase 1 Yes Yes [200–202]

VIM Vimentin Yes Yes [112, 113, 179]

a Panel A: genes expressed at higher levels in luminal epithelial-like and/or ER+ BCC; in ER+ tumours; in low-grade tumours.
b Panel B: genes expressed at higher levels in mesenchymal-like/ER− BCC; in ER− tumours; in high-grade tumours.

cell–cell junctions [120, 121], and could indeed par-
ticipate in the phenotype attenuation seen in weakly
luminal, epithelial-like cells. For their part, MDA-
MB-468 cells over-express EGFR and have an ampli-
fied EGFR. This is also seen in another weakly luminal

epithelial-like cell line not studied by Sommers et al.,
BT-20 [55], but has been observed in less than 2% of
breast tumours. Finally, MDA-MB-134 cells are char-
acterised by the over-expression of the FGFR1 due to
FGFR1 amplification [59]. This event affects 5–10%
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of tumours. Among the weakly luminal epithelial-like
cell lines reported by Sommers et al., CAMA-1 were
scarcely investigated afterwards, and are the sole lines
for which the EGFR, ERBB2, and FGFR1 amplifica-
tion status is unknown. Considering the importance of
growth factor signalling in cancer cell properties, it is
speculated that abnormally increased tyrosine kinase
activity of Her-2/neu, EGFR, or FGFR1 in BCC could
significantly alter their phenotype and behaviour. In
clear contrast to weakly luminal epithelial-like cells,
none of the luminal epithelial-like or mesenchymal-
like cell lines described by Sommers et al. has been
found to exhibit an ERBB2, EGFR, or FGFR1 am-
plification. As it is unlikely that BCC could progress
by undergoing an amplification of one of these genes,
followed by a return to a normal gene dosage, this may
appear to be an argument against the EMT hypothesis.
However, we cannot exclude the possibility that can-
cer cells might evolve from the luminal epithelial-like
to the mesenchymal-like phenotype by supporting a
transitory increase in tyrosine kinase activity not sub-
tended by gene amplification. On the other hand, an
EMT could not necessarily include a transition by the
weakly luminal, epithelial-like phenotype.

Extended marker analysis. In the course of several
years, the expression of many genes has been eval-
uated in BCC lines. Most of these studies, however,
involved no more than two or three cell lines. When
at least four cell lines were examined, they often
comprised the two luminal epithelial-like MCF-7 and
T-47D, and the two mesenchymal-like MDA-MB-231
and Hs578T lines. Such investigations revealed that
the expression of the majority of studied genes was
clearly associated to either one or the other phenotype,
and positively or negatively correlated to ER expres-
sion. A series of these genes is mentioned in Table 2(A
and B). In all cases where it was also measured, the
protein amount reflected well the mRNA level.

Among other genes, luminal epithelial-like/ER+
cells preferentially expressed the epithelium-tied,
serine protease ST14 (matriptase) and SPINT1 (mat-
riptase inhibitor), PRLR (prolactin receptor), SYK
(spleen tyrosine kinase), IGFBP2 (insulin-like growth
factor-binding protein 2), IGFBP5, KRT18 (keratin
18) and, unsurprisingly, genes up-regulated by acti-
vated ER, such as PGR (progesterone receptor), TFF1
(trefoil factor 1/pS2), TFF3 (trefoil factor 3), TPD52
(tumour protein D52), RERG (Ras-like, estrogen-
regulated, growth inhibitor). Moreover, these cells
had a higher expression of several transcription factor-

encoding genes: GATA3 (GATA binding protein 3,
or GATA-3), KLF4 (Kruppel-like factor 4), TFAP2C
(AP-2, gamma isoform).

Among the genes preferentially expressed in
mesenchymal-like/ER− lines were: SERPINE1 (en-
coding plasminogen activator inhibitor-1), PLAU
(urokinase-type plasminogen activator), and MMP14
(membrane-type metalloproteinase-1), all implied
in proteolysis; ANGPT1 (angiopoietin-1), IL8 (in-
terleukin 8), and MET (hepatocyte growth factor
receptor), all related to angiogenesis; the inflamma-
tion-related genes IL6 (interleukin-6) and IL11
(interleukin-11); genes associated to collagen pro-
cessing, such as LOX (lysyl oxidase) and LOXL2
(LOX-like 2); IGFBP1, HXB (hexabrachion, tenascin-
C). All these genes are also frequently expressed
in various mesenchymal cells such as fibroblasts or
osteoblasts. The mesenchymal-like/ER− BCC lines
were also characterised by higher amounts of sev-
eral transcription factors, such as those encoded by
HMGIY, ETS1, and SNAI2.

Thus, from expression analysis of an increasing
number of genes, it appeared that the two phenotypes
that had been previously summarily described [112,
113], the luminal epithelial- and the mesenchymal-
like, were indeed highly different. This means that
an eventual EMT would imply the turning-off of an
extended set of genes, accompanied or followed by
the gain in expression of another wide gene set. Re-
search has identified a few genes that could play
a key role in regulating numerous other phenotype-
associated genes. They include CEBPB (encoding the
transcription factor ‘CCAAT/enhancer binding pro-
tein (C/EBP)beta’), HMGA1 (architectural transcrip-
tion factors ‘high mobility group protein isoforms I
and Y’ – HMGI(Y)), ID1 (‘inhibitor of DNA bind-
ing 1, dominant negative helix-loop-helix protein’),
MTA3 (‘metastasis associated 3’, a sub-unit of the
Mi-2/NuRD repressor complex), or SNAI1 (‘snail’, a
transcription factor) [203–207]. We cannot exclude the
possibility that the expression of these genes could
occasionally be more or less deeply altered in BCC,
either spontaneously or in response to changes in cell
environment, possibly leading to an at least partial
EMT. This remains, however, to be clearly established.

Analysis of breast tumours – markers
and grade – comparison with cell lines
A number of data have shown that the same ma-
jor phenotypic markers distinguishing BCC lines –
and clearly associated with the ER status – may also
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discriminate between tumours. Moreover, their ex-
pression patterns largely overlap histological grade
classification.

Molecular markers. Part of the genes associated to
either the luminal epithelial-like or the mesenchymal-
like phenotypes in BCC have also been examined in
breast tumours. For all of them, their expression was
found in at least a fraction of carcinomas. These genes
are mentioned in Table 2(A) (genes positively cor-
related to ER in tumours) and B (genes negatively
correlated to ER in tumours). In most cases, the
genes correlated to the luminal epithelial-like/ER+
phenotype in BCC were positively correlated to the
ER expression in tumours, while genes correlated to
the mesenchymal-like/ER− phenotype in BCC were
negatively correlated to the ER in tumours. None of
the genes positively correlated to ER in BCC appeared
negatively correlated to the receptor in tumours. None
of the genes negatively correlated to ER in BCC was
positively correlated to the receptor in tumours. Thus,
discriminative phenotypic traits observed in BCC lines
were also frequently discriminative features in tu-
mours. Regarding ER, it is of interest to note that ESR1
mRNA variants containing precise truncations in vari-
ous exons have been identified in tumours; the same
specific variants were also found in BCC lines [208].

Although infrequent, the co-existence in the same
tumour of markers related to both luminal epithelial-
like/ER+ and mesenchymal-like/ER− phenotypes has
been observed. For instance, ER and EGFR levels are
inversely correlated in BCC and in most tumours, as
shown by numerous studies. Both receptors are, how-
ever, occasionally co-expressed in carcinomas, but
are then, in the vast majority of cases, localised in
distinct tumour cells, or in interspersed groups of
cells (‘mosaic expression’, see for instance [209]).
Whether ER-poor/EGFR-rich cells were derived from
ER-rich/EGFR-poor BCC, for instance through EMT,
in these tumours is unknown. If this was the case, the
observations suggest that these events occur sporadi-
cally among cancer cells and do not seem to be related
to any significant advantage for progression. Rare co-
expressions have also been observed with other pairs
of markers related to distinct BCC phenotypes (not
discussed here).

Grade. One of the most widely accepted classifica-
tion systems for breast carcinomas is grading. The ma-
jority of grading systems, such as those based on the
Scarff, Bloom, and Richardson (SBR) method, com-

bine histological assessment of nuclear pleomorphism,
mitotic activity, and tubule formation [210]. Accord-
ing to such systems, tumours classified as ‘grade
I’ or ‘low-grade’ have well-differentiated attributes,
while ‘grade III’ or ‘high-grade’ tumours have poorly-
differentiated attributes. Grade II tumours fall into an
intermediate category. High-grade DCIS have been
associated with the highest rate of local recurrence
(25–30%), low-grade tumours have very low recur-
rence (0–5%), while intermediate-grade tumours have
a recurrence rate somewhere between (10–15%) in a
median of 12 years follow-up [211]. Moreover, high-
grade tumours recur within a shorter time than the
low-grade ones (for instance the median times are 88,
42, and 23 months in grades I, II and III, respectively,
in [212]).

As grading is not directly based on molecular ex-
pression profiles, it may be asked whether grades are
associated or not to the expression of specific sets of
tumour markers, and more precisely if they are corre-
lated to the distinct tumour cell phenotypes described
above for BCC lines and largely retrieved in tumours.
It has been repeatedly reported that most ER+ tu-
mours are of low-grade. Inversely, high-grade tumours
are mainly ER− (see for instance references [129–
131]). Unsurprisingly, several markers whose expres-
sion is positively correlated to that of ER in BCC lines
(and, frequently, in tumours) have also been associated
to low-grade. They are mentioned in Table 2, panel
A. This is the case for CDH1, DSP, MDM2, NME1,
PGR, TFF1, and TJP1. Inversely, high-grade tumours
are characterised by the expression of markers more
related to the ER− profiles in BCC lines and/or in tu-
mours. They are mentioned in Table 2, panel B, and
include CDKN2A, SERPINE1, PLAU, HXB, EGFR,
CDH3, STMN1, RARB (transcript 2), ERBB2. None
of the genes positively correlated to ER in BCC lines
and/or in tumours was found to be associated with
high-grade/poorly differentiated carcinomas. None of
the genes negatively correlated to ER in BCC lines
and/or in tumours was found to be associated with
low-grade/well-differentiated carcinomas.

High-grade DCIS cells also highly expressed sev-
eral genes encoding extra-cellular matrix proteins and
various growth factors, which likely contributes to the
collagen- and fibroblast-rich stroma surrounding these
lesions.

The case of ERBB2 is of particular interest.
ERBB2-over-expressing (ERBB2+) BCC lines (BT-
474, MDA-MB-361, MDA-MB-453, SK-BR-3)
express markers that make them closer to the
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well-differentiated luminal epithelial-like phenotype
than to the mesenchymal-like one (see above). On
that basis, one would have expected to find most
of the ERBB2+ tumours in the low- or at least the
intermediate-grade categories. However, while a frac-
tion of ERBB2+ are indeed of intermediate-grade,
most of them are of high-grade. For instance, in three
studies involving hundreds of cases, ERBB2 ampli-
fication was found in 0%, 10%, and 33%; 3,9%,
20,4%, and 38,9%; 1%, 18%, and 28% of grades I,
II and III, respectively [170, 171, 173]. Her-2/neu ex-
pression generally reflects ERBB2 amplification. Dis-
crepancies between ERBB2 over-expressing tumours
and cell lines are further discussed in the micro-array
section.

Macroscopic homogeneity of breast tumours –
Stable ‘portrait’ during progression

According to a common view, progression from
primary to metastatic tumour is accompanied by the
sequential acquisition of phenotype changes, thus al-
lowing BCC to invade, disseminate, and colonise
distant sites. Based on in vitro data, it has notably been
proposed that BCC in vivo might undergo a transition
from the luminal epithelial-like to the mesenchymal-
like phenotype. Along the same lines, it has been
repeatedly suggested that tumour progression is char-
acterised by a shift from well differentiated/low-grade
to poorly-differentiated/high-grade category. Never-
theless, most investigations have revealed that pro-
gression is not accompanied by major changes in
marker expression or grade.

Progression to invasiveness and markers/grade. If
changes in phenotype/grade were frequent during
progression from in situ to invasive carcinoma, it
should then be easy to find in a significant part
of invasive tumours both luminal epithelial-like and
mesenchymal-like markers, and both low- and high-
grade compartments. Logically, mesenchymal-like
markers and high-grade areas should be more often
observed in the invasive than in the in situ tumour
compartment. In fact, most studies examining this
point have revealed a striking similarity between both
parts of breast carcinomas [138, 213–218]. For in-
stance, histopathological grading and tumour marker
(p53, Her-2/neu, Ki-67, ER, PgR, bcl-2 and angiogen-
esis) expression were compared in 194 pure DCIS, 127
small invasive lesions, and 305 lesions with both an in-
vasive and in situ component. Grade concordance was

high between in situ and invasive components of the
same tumour. All markers were found to correlate with
grade rather than with invasiveness. No marker was
clearly associated with the progression from in situ
to invasiveness. The expression of tumour markers
was almost identical in the two components of mixed
lesions [213]. The DNA content and the expression
of Her-2/neu were simultaneously examined in non-
invasive and invasive phases of primary breast cancers,
by image analysis. DNA content in the intra-ductal and
invasive components was virtually identical. Expres-
sion of Her-2/neu was similar in both growth phases,
implying identity of the Her-2/neu genotype [214].
In a study of 102 patients, a 67% concordance in
grade was found between in situ and infiltrating com-
ponents [215]. Another study of 64 cases indicated
an 86% grade concordance between both components
[216]. These studies, and others [217, 218], indicated
a strong correlation between the grade of type of DCIS
and the grade of infiltrating carcinoma in which both
components were present.

It is thus striking that patterns of grade or the other
markers did not seem to change during the transition
from in situ to invasive carcinoma. Invasive cancer
seems to occur independently of tumour grade. This
is further supported by comparative genetic hybridisa-
tion data (see below).

Recurrence, metastasis. Metastatic and recurrent
BCC appear late in tumour progression. They are
believed to have accumulated alterations since their
initial transformation event. On the other hand, meta-
static cells may colonise various tissues often highly
different from the breast after having completed all
steps of a complex process including local invasion,
intravasation, resistance to blood pressure, adhesion
to blood vessels and extravasation. This suggests that
they have sequentially acquired specific adaptive prop-
erties. All this supports the hypothesis that metastatic
and recurrent cells could have a phenotype signif-
icantly different from that observed in the primary
tumour. This supposition is of high importance,
since many BCC lines originated from metastatic
cells.

Attempts have been made to compare the expres-
sion of various markers and/or histological grade in
primary tumours and their corresponding metastases
and/or recurrences. It was shown that KRT8 and
KRT19 expression was similar in both primary car-
cinomas and their lymph node (LN) metastases [219].
In an immuno-histochemical (IHC) study of 38 LN
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metastases and their corresponding primaries, a very
good concordance was found for Ki-67 (85%), ER
(96%), PgR (82%), p53 (76%), Her-2/neu (84%)
[220]. In another comparative IHC study involving
102 LN metastases, an 80% concordance was found
for ER [221]. Investigations of a total of 31 LN,
35 lung, 25 skin, 1 liver, and 2 contralateral breast
metastases revealed good concordance with primar-
ies for ER, PgR, p53, and Her-2/neu [222–224]. This
was also the case for ER, PgR, and EGFR evalu-
ated in 26 LN and 2 distant metastases. In the latter
study, expression of ER and EGFR was inverse, re-
garding the individual tumour cells in both primary
tumours and metastases [225]. By ligand-binding as-
say, it has been estimated that no more than 20% of the
ER+ primary tumours will produce ER− metastases.
It has even been established that the expression of
the frequent ER-alpha variant transcripts is conserved
in primary tumours and their matched, concurrent
LN metastases [118]. A good concordance was also
found for grade. For instance, a study of 102 primar-
ies and lymph node metastases revealed that both
had the same grade (I, II, or III) in 79% of cases
[215].

Along the same lines several studies have ex-
amined grade and marker (ER-alpha, ER-beta, PgR,
p53, Her-2/neu, and TFF1/pS2) expression in re-
current breast cancers [110, 215, 223, 226, 227].
Concordance was found in most cases. For instance,
in an analysis of 116 cases of recurrence, only four
patients were found to have developed poorly differ-
entiated DCIS or grade III invasive carcinoma after
well-differentiated DCIS [226]. Regarding ER-alpha
and ER-beta, their expression was even found higher
in recurrence than in the corresponding primaries
[110]. In a study of six cases of recurrence, histo-
logical type was the same as the initial one. There
was concordance on ER, PgR, TFF1/pS2, Her-2/neu,
and p53 between recurrence and primary [227]. In a
study of 49 primaries and recurrences, a 78% grade
(I, II, or III) concordance was found; in 36 patients
who developed both metastasis and recurrence, grade
concordance between them was also 78% [215]. In
an analysis of 84 patients for which axillary metas-
tases and/or local and/or regional recurrence(s) were
found, 78% and 81% concordance were demonstrated
between primaries and their metastases and first recur-
rences, respectively. In the cases where successive (up
to six) recurrences were found, there was still a 74%
concordance between the last recurrence and the initial
tumour sample [212].

Concluding remarks on phenotype studies
A series of phenotypic traits distinguishing between
BCC lines – and clearly associated to the ER status –
also appear to discriminate between tumours, and their
expression status largely overlaps histological grade
classification. On the other hand, breast tumour phe-
notype/grade does not appear to significantly change
during tumour progression from in situ carcinoma to
secondary site colonisation.

As a consequence, BCC lines, even derived from
metastases, are expected to have largely maintained
the phenotype that they had in primaries. This was
notably demonstrated in a study of 18 cell lines of the
HCC series, all obtained from primary carcinomas [2].
These cell lines, which had been cultured for a me-
dian period of 25 months (range, 9–60 months), were
compared to their corresponding archival tumour tis-
sues. Immuno-histochemical analysis revealed a very
good correlation on ER (87%), PgR (73%), Her-2/neu
(93%), and p53 (100%) expression. An excellent
correlation was also found between the morpholo-
gical/differentiation features of the primary tumours
and their corresponding cell lines. Most of the tumours
(15 of 18, 83%) were poorly differentiated, and the
corresponding cell lines grew as monolayers of cells
devoid of obvious organisation or secretory activity.
These cultures consisted of medium and large-sized
cells with high-grade nuclear atypia and the presence
of occasional multinucleated cells. Three (17%) of the
tumours were moderately differentiated and demon-
strated duct-like structures. The corresponding cell
lines also were moderately differentiated and formed
hollow or solid duct-like structures as well as hol-
low spherical fluid-filled morula-like structures lined
by a single layer of epithelioid cells. The nuclei of
the moderately differentiated cell lines demonstrated
considerably less nuclear atypia than cell lines derived
from poorly differentiated tumours [66].

For cell lines other than the HCC, there have been
few data in the literature comparing their phenotype
to that of the tumours from which they originated.
The ER−/PgR− BRC-230 [3], GI-101 [22], HDQ-P1
[26], HH315 & HH375 [27], MDA-MB-231 [42], and
MFM-223 [44] issued, sometimes after metastasis or
recurrence, from tumours described as ‘Grade III’ or
‘poorly-differentiated’. This is in agreement with the
fact that fully negative steroid receptor status has been
associated to the high-grade/poorly-differentiated tu-
mour phenotype. In contrast, the ER+/PgR+ GCS
[23], the ER−/PgR+ IBEP-1, and ER+/PgR− IBEP-
2 [31] were derived from well-differentiated tumours.
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There was no reported case of ER+ and/or PgR+
cell lines obtained from grade III/poorly-differentiated
tumours, or of the ER−/PgR− line derived from a
well-differentiated primary.

While most data reported here highly suggest that
an irreversible EMT is unlikely to affect BCC during
tumour progression, we can not exclude the occur-
rence of a transitory, reversible phenotype drift in
these cells during the metastatic process. In an experi-
mental murine model it was previously shown that the
epithelial glycoprotein-2 (EGP-2, also known as Ep-
CAM gene TACSTD1)-expressing HT29 colon cancer
cells, produced lung metastases. While larger meta-
stases positively stained for EGP-2, this was not found
for smaller metastases. It was concluded that a tran-
sient loss of EGP-2 could occur during the migratory
and early post-migratory period of HT29 cells [228].
Such transient modifications have not yet been clearly
demonstrated in metastasising BCC. Whether these
cells may express some degree of phenotypic plasticity
remains, however, an open issue.

Genetic studies on BCC lines and tumours

Karyotype and cytogenetic studies
on BCC lines and tumours
The apparition and progression of breast cancer is
accompanied by multiple genetic changes. These in-
clude single nucleotide mutations, amplifications or
deletions of single genes, insertions and transloca-
tions, gains and losses of entire, or parts of, chromo-
somes and chromosome arms, and eventually gross
changes in chromosome number (aneuploidisation).
Ploidy shift is believed to be a late genetic event, in
such a way that even cancer cells appearing as diploid
may be genetically altered to a significant extent [229].

The most easily observable genetic alteration,
chromosome number change, has long been evaluated
in tumours, revealing both inter- and intra-tumoural
heterogeneity. In a study of 1 27 000 breast tumours,
about half were found to be diploid or near diploid, the
others exhibiting various types of aneuploidy [230]. In
an analysis of 256 patients, 384 modal chromosome
numbers were detected, ranging between 29 and 211.
Seventy-four percent of these modal numbers were
between 41 and 50, 19% between 51 and 80. Only
3% were lower than 41 and 4% higher than 80 [231].
In contrast, as shown in Table 1, a majority of BCC
lines were found to have a modal chromosome num-
ber between 51 and 80, and only a few between 41
and 50. In several cases, a different modal number

was found in the same cell line by different groups,
reflecting instability. The high number of near-triploid
cell lines might be due to their mostly metastatic ori-
gin, as a significant proportion of tumours – and more
often when they have a high-grade – are believed to
progress to near-triploidy [232]. Alternatively, cells
with higher chromosome numbers could have a selec-
tive advantage in vitro. In their comparison of 18 BCC
lines and their corresponding archival tumour tissues,
Wistuba et al. [66] found that despite a poor correl-
ation in the ploidy indexes (PIs) of the cell lines and
tissues, a high correlation existed for the two ploidy
categories defined (diploid: PI = 0.9–1.1, aneuploid:
PI > 1.1). This may appear surprising, since the cell
lines had been cultured for a relatively long period
(9–60 months, median 25). However, they had been
directly established from primaries, thus at a relatively
early step in the progression.

Although the modal chromosome number is gener-
ally higher in BCC lines than in tumours, the patterns
of whole chromosome gains and losses are very sim-
ilar in both groups. Our cumulative study of breast
tumours series [53, 233–238] emphasised that trisomy
most frequently concerned chromosomes 4, 18, 19,
and X, while monosomy was observed mainly for
chromosomes 7, 19, 20, and X. By analysing a set
of relatively small and partly overlapping BCC lines
series [52, 53, 58, 239, 240], the same variations
were observed, except that loss of chromosome X was
found less frequently in cell lines (data not shown).

Besides whole chromosome number changes,
DNA gains or losses larger than 10 megabases have
been detected in tumours and cell lines by compar-
ative genomic hybridisation (CGH). In general, CGH
analyses supported the view that with regard to ma-
jor DNA alterations, BCC lines are representative of
tumours [52, 58, 231, 234, 236, 239–241]. For in-
stance, Larramendy et al. [240] compared the HCC
series of cell lines [2] and the tumours from which
they originated. Although the cell lines showed more
DNA copy number changes than the primary tumours,
all aberrations, except one found in a tumour, were
always present in the corresponding cell line. That the
HCC cell lines retained the properties of their parental
tumours for lengthy culture periods was confirmed by
another study comparing allelic losses at 18 chromo-
somal regions frequently deleted in breast tumours,
using 51 polymorphic micro-satellite markers [66].

In Table 3, we have compared the frequency of
DNA gains (panel A) or losses (panel B) affecting the
10 most involved chromosome arms in a cumulative
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Table 3. Chromosome arms most frequently altered in breast tumours (CGH analysis), as compared to five series of BCC lines. A: DNA
gains; B: DNA losses. Italics: rank order of frequency for the mentioned alterations in the cumulative set of tumours and in each BCC lines
series

(A)

Gains 1q 8q 17q 20q 16p 11q 12q 7q 6q 3q

Tumours 50% 44% 24% 23% 22% 21% 16% 15% 14% 14%

(n = 493) 1 2 3 4 5 6 7 8 9 10

[52] 87% 87% 73% 80% 47% 73% 53% 60% 13% 20%

(n = 15) 1 1 4 3 8 4 7 6 10 9

[53] 40% 70% 65% 55% 15% 45% 35% 65% 20% 30%

(n = 20) 6 1 2 4 10 5 7 2 9 8

[58] 64% 73% 27% 27% 18% 27% 27% 64% 18% 45%

(n = 11) 2 1 5 5 9 5 5 2 9 4

[239] 72% 72% 34% 55% 13% 32% 24% 47% 24% 39%

(n = 38) 1 1 6 3 10 7 8 4 8 5

[240] 89% 100% 67% 83% 33% 44% 28% 50% 22% 67%

(n = 18) 2 1 4 3 8 7 9 6 10 4

(B)

Losses 16q 8p 13q 1p 11q 17p 22q 6q Xp Xq

Tumours 24% 20% 20% 20% 18% 16% 16% 14% 11% 11%

(n = 493) 1 2 3 4 5 6 7 8 9 10

[52] 13% 53% 40% 40% 60% 13% 0% 47% 40% 47%

(n = 15) 8 2 5 5 1 8 10 3 5 3

[53] 35% 40% 40% 55% 25% 35% 30% 35% 20% 20%

(n = 20) 4 2 2 1 8 4 7 4 9 9

[58] 18% 45% 45% 18% 36% 27% 9% 27% 55% 45%

(n = 11) 8 2 2 8 5 6 10 6 1 2

[239] 29% 55% 29% 39% 39% 24% 26% 26% 39% 42%

(n = 38) 6 1 6 3 3 10 8 8 3 2

[240] 6% 44% 50% 11% 11% 6% 6% 39% 50% 56%

(n = 18) 8 4 2 6 6 8 8 5 2 1

set of breast tumours [53, 234–238, 242] and in five
partly overlapping BCC lines groups [52, 53, 58, 239,
240]. The most spectacular difference was the higher
frequency of losses at Xp and Xq in cell lines, as
compared to tumours. This is rather paradoxical, in
view of the fact that loss of the whole X chromosome
was found to be higher in tumours (see above). We
did not find any data in the literature revealing such
divergence between cell lines and tumours. We sug-
gest that, contrasting with other chromosomes, loss of,
or at, X might not have been systemically examined
in tumours and cell lines. Another possibility is that
extended losses at both Xp and Xq could have been
counted as X losses. With the exception of Xp and Xq,
the most evident discrepancy between tumours and
cell lines was with loss at chromosome 16q (panel B).

While this arm is the most frequently affected by DNA
loss in tumours, this is clearly not the case in BCC
lines. It has been shown that DNA loss at 16q is less
frequent in high-grade ductal carcinoma [236, 243]
and in ER− tumours [234]. The data on BCC lines are
thus in agreement with the fact that ER− negativity is
more prevalent in cell lines than in tumours, and that
the ER− lines, which are generally less epithelioid
than the ER+ ones, are believed to originate essen-
tially from high-grade, poorly-differentiated tumours
[2]. Together, these observations on 16q constitute a
strong argument against the theory supporting a fre-
quent tumour progression from low- to high-grade
and from ER+ to ER− status. Indeed, it appears un-
likely that grade III tumours could arise from grade
I tumours through a process involving regain of 16q.
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Besides similar observations on 16q, Richard et al.
[244] also noted a higher frequency of 7q gains in
ER− carcinomas and of 3q gains in ER− and high-
grade carcinomas, as well as a lower frequency of 16p
gains in ER− tumours and of 22q losses in ER− and
high-grade carcinomas. As shown in Table 3, similar
trends were observed in BCC lines, as compared to
tumours. This is an additional argument supporting
the idea that the panel of available BCC lines is en-
riched in cases originating from ER− and high-grade
carcinomas.

The occurrence of DNA alterations was higher in
BCC lines than in tumours. Alterations reported in
Table 3 were on average about two-fold more frequent,
for gains as well as for losses, in cell lines than in tu-
mours. In a study examining a higher number of chro-
mosome arms, cell lines exhibited on average 2.5 more
changes, as compared to uncultured tumours [239].
This could be partly explained by the fact that many
available BCC lines are ER− and are believed to have
originated from high-grade tumours. Indeed, DNA
changes were found to be 1.7-fold more frequent in
ER− than in ER+ tumours [244], while between 1.5-
and 2.6-fold more genetic alterations were observed in
grade III/high-grade than in grade I/low-grade samples
[233, 235, 236, 244]. For instance, amplification of
ERBB2, TOP2A, MYC, and CCND1-containing re-
gions was more frequently found in high- than in
low-grade tumours. However, major amplifications in
pure in situ carcinoma and in intra-ductal carcinoma
with an invasive component did not differ [245]. That
no specific gross DNA alteration was associated with
invasion was confirmed by analysis of a series of lob-
ular and ductal tumours submitted to CGH following
micro-dissection [246].

In some tumours, defects in mismatch repair en-
zymes lead to errors in the replication of simple
nucleotide repeat (SNR) segments. This condition is
commonly known as micro-satellite instability (MSI)
because of the frequent mutations of micro-satellite
sequences. Although the MSI phenotype is well re-
cognised in some colon, gastric, pancreatic, and en-
dometrial cancers, reports of MSI in breast cancers or
BCC lines have been rare. For instance, in an eval-
uation of SNR in the TGFBR2, IGFIIR, BAX, and
E2F-4 genes, which are frequently mutated in tumours
with MSI, no mutation was found in any of the 30 BCC
and 61 primary tumours examined [247].

DNA alterations affecting specific genes have also
been compared in tumours and cell lines. For instance,
p53 gene (TP53) gene mutation status in exons 5–10

was determined in the HCC series of cell lines and
their corresponding archival tumour tissues. A 75%
concordance was seen [66]. More generally, point
mutations identified in tumours were also often found
in at least one or some cell lines, and inversely, as
reported by several studies. Thus, such mutations do
not appear to prevent the obtention, or to result from
the in vitro culture, of BCC lines.

For some genes, including FHIT and PTEN [89,
248], intragenic homozygous deletions observed in
BCC lines were not found in tumours. The inves-
tigators suggested that their screening methods were
unable to detect this kind of lesion in primary tumours,
which are invariably heterogeneous and contaminated
with normal cells.

Besides a series of gross or localised DNA changes
that are frequent and thus easily observed by common
analysis techniques in both tumours and cell lines,
BCC lines may also exhibit DNA alterations not en-
countered in tumours. Whether this results from in
vitro culture of BCC, or rather reflects the selection,
during the cell line isolation process, of alterations
occurring in tumours but to a low frequency and only
in small sub-populations, is not always easy to estab-
lish. For instance, it has been shown that despite the
presence in both BCC lines and tumours of several re-
current, high level amplifications, such as 1q32, 8p11
(containing FGFR1), 8q23 (MYC), 11q13 (CCND1,
EMS1), 17q12 (ERBB2), 17q23, 17q24 (TOP2A), and
20q13 (ZNF217), other amplifications sites have been
identified in BCC lines, involving, for instance, 1p13,
7q21, 7q31, 9p23, and 11p13 [239]. These latter
changes could arise preferentially during the in vitro
cell culture. Indeed, that cultured BCC may undergo
DNA changes is attested by CGH analyses of dif-
ferent stocks of MCF-7, showing variable sensitivity
to estrogens, or of cells resistant to tamoxifen or to
thymidylate synthase inhibitors. In most cases, the
observed multiple genetic variations were not associ-
ated to common regions of gain or loss. However, the
link between gene expression changes due to specific
DNA alterations and phenotypic changes (for instance
the acquisition of a resistance) was not always evi-
dent, suggesting that most of these alterations could
be non-specific changes providing only occasionally a
decisive advantage to the cells [67, 68, 249].

Obviously, genetic variability is not restricted to
cultured BCC and also characterises tumour cells in
vivo. From analyses of tumours it appears clearly that a
number of gains or losses of chromosomal material oc-
curs at a low frequency at many different sites. This is
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in accordance with the concept of micro-heterogeneity
in breast cancer. Multiple karyotypically related as
well as unrelated clones (i.e., no single chromo-
somal abnormality is shared by them) have been found
in a high proportion of breast carcinomas, suggest-
ing that genetic mechanisms are crucially involved
in the generation of small cell-to-cell and clone-to-
clone variations in tumours [231, 250]. Thus, invasive
breast cancer is a disease with multiple cytogenetic
sub-clones and since no specific DNA alterations has
been associated to invasion (see for instance [246]),
it is concluded that complex patterns of non-specific
changes are acquired during tumour progression. Ac-
cumulation of these minor (low frequency) alterations
could ultimately overcome the mechanisms preventing
cell aggressiveness. It has been found that the number
of genomic aberrations is higher in tumours that give
rise to recurrences [233]. Moreover, analysis of distant
metastases (brain) showed that they were characterised
by an accumulation of various genetic alterations and
increased LOH frequency at all loci examined [251].

Extension of genetic analyses:
micro-array studies
During the last few years, gene expression studies have
gained considerably from the introduction of massive
and simultaneous analysis tools. For instance, DNA
micro-arrays have allowed us to measure the level of
up to thousands of mRNAs in BCC and tumours [150,
252–261]. Data currently available confirm the exis-
tence of a limited number of distinct classes for BCC
lines and breast cancers, based on their pattern of gene
expression.

BCC lines. Cluster analysis of micro-array data (re-
viewed in [257]) showed that MDA-MB-231, BT-549,
and Hs578T BCC lines could be grouped together,
along with a primary breast stromal/fibroblast cell
strain (HMS32) and an immortalised stromal cell line
(UTSW), according to their similarity in patterns of
gene expression. To this group was associated a so-
called ‘stromal/mesenchymal’ gene expression signa-
ture, characterised by the high expression of genes
encoding smooth muscle actin (gene ACTA2), vi-
mentin (VIM), fibrillin (FBN1), biglycan (BGN),
chains of collagen types I, III, V, and VI, lysyl oxidase
(LOX) and LOX-like2 (LOXL2), the angiogenesis-
associated interleukin-8 (IL8) and thrombospondin 1
(THBS1), urokinase receptor (PLAUR), connective tis-
sue growth factor (CTGF), combined with the low
expression of genes typical of epithelial cells. A dif-

ferent group contained the ER+/ERBB2− MCF-7 and
T-47D, and the ER+ or −/ERBB2+ BT-474 and SK-
BR-3 BCC lines, as well as an SV40 immortalised
breast epithelial line (HB2). This group was char-
acterised by the high expression of genes associated
to luminal breast epithelial cells, including those en-
coding ER, keratins 8 (KRT8), 18 (KRT18), and 19
(KRT19), cell junction proteins cadherin-1 (CDH1),
claudin-4 (CLDN4), claudin-7 (CLDN7), desmoplakin
(DSP), and plakoglobin (JUP), selenium-binding pro-
tein 1 (SBP1), tumour-associated calcium signal trans-
ducer protein 1 (TACSTD1) and by the absence or
low-level expression of the mesenchymal/stromal sig-
nature. This group was thus qualified as ‘luminal
epithelial-like’.

By cDNA micro-array studies, gene expression
profiles (GEP) discriminating between weakly and
highly invasive BCC lines were identified [259]. A
common GEP was found for the ER− MDA-MB-
231, BT-549, Hs578T, and MDA-MB-435s BCC,
which were demonstrated to be highly invasive in
vitro, confirming previous data [113]. This GEP was
characterised by the high expression of genes en-
coding vimentin (VIM), chains of collagen I and VI,
c-jun (JUN), glutathione S-transferase pi (GSTP1) and
various proteolysis-associated genes (TIMP, MMP14,
SERPINE1). Another GEP was common to the weakly
invasive ER+ MCF-7, T-47D, ZR-75-1, BT-20 (the
latter does not express the ER, but contain its mRNA;
in contrast, it over-expresses EGFR (see above)
and to the ERBB2-over-expressing BT-474, SK-BR-
3, MDA-MB-361, and MDA-MB-453 BCC lines.
This GEP was characterised by the high expression
of KRT18 and KRT19, GATA3, ARHB, IGFBP5,
JUP, RARA (encoding RARalpha1), and PIG7 (LPS-
induced TNF-alpha factor).

A search for these GEPs in previously non-
investigated BCC lines concluded the high inva-
siveness of SUM1315 and SUM159PT lines, which
are both ER−/PgR−, and the low invasiveness of
SUM44PE and SUM52PE lines. These are respec-
tively ER+/PgR+ and ER−/PgR−, but ERBB2+,
which relates them to luminal epithelial-like cells (see
above). This GEP-based inference was validated by
migratory and invasion studies of these cell lines on
Matrigel, in Boyden chambers.

Thus, micro-array studies on widely-used BCC
lines confirmed not only the previous investigations
of Sommers et al., but also the subsequent marker
analyses which correlated the expression of a series
of genes to either the luminal epithelial-like or the
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mesenchymal-like phenotype (see Table 2). This
confirmation was notably found for ARHB, GATA3,
IGFBP5, JUP, and KRT18, as well as for GSTP1,
MMP14, SERPINE1, and VIM. Micro-array studies
also underlined the link between invasiveness and
phenotype, suggesting that the ability to invade re-
constituted membranes in vitro could require complex
interactions between several molecules rather than the
expression or the extinction of one or a very few genes.
While the discussion of this point is beyond the scope
of the present paper, it is for instance well-known
that the efficient activity of the matrix metallopro-
teinases and the plasminogen activator systems needs
the ordered co-operation of numerous factors.

Tumours. Cluster analysis of micro-array data from
series of breast tumours led to the identification of
a major ‘luminal epithelial-like/ER+’ subtype, com-
prising 60–65% of tumours. It was distinguished by
high expression of a set of genes including the ER-
alpha gene (ESR1) and genes either regulated by estro-
gens (LIV-1, TFF1, TFF3), or previously identified as
co-expressed with ER (GATA3, for instance). Other in-
teresting genes were IGFBP5 and those encoding the
promoter-binding proteins hepatocyte nuclear factor 3
(HNF3) and X-box protein 1 (XBP1) [253, 257, 258].
Three additional subtypes, all characterised by low or
no ESR1 expression, were found: a ‘normal breast-
like’, grouping some tumours with samples of normal
breast tissue; a ‘basal/myoepithelial-like’, comprising
about 15–20% of tumours, and notably expressing
high levels of keratins 5 (KRT5) and 17 (KRT17); an
‘ERBB2+’ group, characterised by the high level of
expression of several genes in the ERBB2 amplicon
at 17q22.24 including ERBB2, GRB7, MLN64. Most
tumours expressing a strong luminal epithelial signa-
ture were of low grade, while the majority of tumours
expressing mainly the other signatures were of high
grade.

Tumours expressing a basal/myoepithelial gene
signature, based on micro-array studies, are expect-
ed to include the fraction of ductal carcinomas that
are not pure myoepithelial cell carcinomas but are
of high-grade and for which a basaloid/myoepithelial
cell differentiation and steroid receptor-negativity has
been demonstrated by immuno-histochemistry (see for
instance [262]). Myoepithelial differentiation, high-
grade and ER-negativity are also characteristic of cer-
tain metaplastic carcinomas (spindle-cell carcinomas
and matrix-producing carcinomas), but also of inva-
sive ductal carcinomas with large central acellular
zone [263].

That ER status reflects major differences in tumour
gene expression patterns and phenotypes was further
illustrated by Gruvberger et al. [256]. They analysed a
series of breast carcinomas by cDNA micro-array. Us-
ing artificial neural networks as well as standard hier-
archical clustering techniques, the number of genes
which discriminated tumours (or BCC) according to
their ER status was high. Moreover, only a small pro-
portion of these discriminator genes were known to be
regulated by estrogens (in MCF-7 cells), suggesting
that mechanisms underlying ESR1 gene expression are
indeed common to many genes. Among the genes pos-
itively correlated to ER were GATA3, IGFBP2, TFF1
and TFF3, among those negatively correlated to ER
were CDH3, HMGIY, LCN2, EGFR. The fact that
ER+ and ER− tumours have highly different gene
expression patterns suggests that EMT is infrequent in
tumour cells, as it is expected to require a considerable
number of genetic events.

In a micro-array analysis of 115 breast tumours,
including 18 samples from carriers of BRCA1 muta-
tions [260], the latter were strongly associated with
a basal-like signature, in agreement with the fact that
BRCA1 tumours generally lack expression of ESR1
and ERBB2 [264, 265]. Of interest, HCC1937, the
only BCC line known to have been established from
a germ-line BRCA1 mutation carrier (IDC, primary
tumour, grade III), is ER− and PgR−, with only very
low levels of Her-2/neu [76].

Comparison of genetic profiles of BCC lines and
tumours. The luminal epithelial/ER+ signature was
most strongly expressed by about 60–65% tumours
and by the luminal epithelial-like cell lines (MCF-7, T-
47D, BT-474, SK-BR-3). The ER+/ERBB2− luminal
epithelial-like MCF-7 and T-47D BCC lines appear
thus as acceptable models for ER+/ERBB2− luminal
epithelial-derived tumours.

In addition to the luminal epithelial/ER+ signa-
ture, the ER+/ERBB2+ BT-474 and ER−/ERBB2+
SK-BR-3 cell lines also expressed the ERBB2+
signature found in ERBB2+ tumours. They seem
thus to be pertinent models for ER+/ERBB2+ and
ER−/ERBB2+ tumours, respectively. There are, how-
ever, some striking differences between ERBB2+ cell
lines and tumours. ERBB2+ cell lines (also includ-
ing MDA-MB-361 and MDA-MB-453), no matter
what their ER status, were closer to the luminal
epithelial-like/ER+/ERBB2− MCF-7 and T-47D than
to the mesenchymal-like/ER−/ERBB2− MDA-MB-
231, Hs578T, and BT-549 cell lines, based on their
gene expression pattern, phenotype and weak
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in vitro invasiveness. In contrast, most ERBB2+
tumours, although expressing an attenuated luminal
epithelial signature, are highly aggressive and as-
sociated with a poorer prognosis, as compared to
most luminal epithelial-like/ER+/ERBB2− tumours.
Moreover, most ERBB2+ tumours are of high grade
(II and III), thus exhibiting a poorly differentiated as-
pect, while a majority of luminal epithelial-like/ER+
tumours are highly differentiated and of low grade. By
applying a statistical treatment of micro-array data ex-
cluding the genes composing the ERBB2+ signature,
Sørlie et al. [258] found that the ERBB2+ tumours
merged with the tumours, mainly ER−, expressing
strong basal/myoepithelial-like and normal-like signa-
tures, not with the luminal epithelial-like/ER+ ones.
Differences observed between cell lines and tumours
could reflect specific interactions between tumour
cells and the normal cells present in their surrounding
stroma. We believe, however, that these observations
deserve the study of additional ERBB2+ cell lines (for
instance the UACC812 and UACC893).

BCC lines exhibiting a stromal/mesenchymal sig-
nature are the most intriguing of all. They do not
appear to clearly express any of the four gene signa-
tures found in tumours. The absence of the luminal
epithelial-like and ERBB2+ signatures in these cell
lines is in agreement with data reported in several
parts of the present paper. On the other hand, these
mesenchymal-like cell lines are not clearly related to
either ‘basal/myoepithelial-like’ or ‘normal-like’ tu-
mours, the specific signatures of which seem to be
rather expressed by the normal, or artificially trans-
formed, mammary epithelial cells cultured in vitro. It
is a fact that these cell lines, for which a luminal epi-
thelial origin is unlikely (they have a low level or no
keratins 8/18/19), do not express a series of markers
specific to basal and/or myoepithelial cells, such as
keratins 5, 14 and 17, maspin/proteinase inhibitor 5
(SERPINB5) and myoepithelium-expressed proteinase
inhibitor (SERPINI2); however, a series of genes com-
posing the basal signature, or having been described
in myoepithelial cells, are expressed at relatively high
amounts in these Hs578T, BT-549, and MDA-MB-
231. They include FGF2, TIMP1, ITGA6 (encoding
alpha 6 integrin) and THBS1.

Among the mesenchymal-like cell lines, Hs578T
have been described as originating from a
carcinosarcoma – a stromal-like tumour. Despite this,
an epithelial nature has been suggested for these cells,
as they express casein and indicators of secretory
activity [29]. The origin of BT-549, as mentioned
by the ATCC on the basis of a communication by

Coutinho and Lasfargues, is ‘papillary, invasive ductal
carcinoma’, a non-frequent type. As suggested by
Ross and Perou [257], MDA-MB-231 might represent
a de-differentiated cell type that has lost expression of
the signature of its tissue of origin. These cells were
obtained from a pleural effusion from a patient who
had developed a ‘poorly-differentiated tumour tending
toward papillary configuration and tubule formation’,
while also having an intra-ductal carcinoma [42].

Several markers identified in MDA-MB-231
and/or Hs578T cell lines and negatively correlated to
the luminal epithelial-like/ER+ phenotype have also
been found in a majority of ER− tumours (Table 2).
In most cases, the expression was observed in tumour
cells themselves, but frequently also, in certain normal
cells contained in the tumour stroma. This suggests
both that the Hs578T and MDA-MB-231 are repres-
entative of tumour cells, composing at least a fraction
of ER− tumours, and that they are related to stromal
cells. In culture, these tumour cells could have lost part
of their normal or basal/myoepithelial gene signature.

To further complicate the discussion on rep-
resentativeness, it must be mentioned that the
ER−/ERBB2− MDA-MB-435S BCC line, isolated as
breast cancer cell line, might be of non-breast origin.
In a clustered analysis of cDNA micro-array data ob-
tained in 60 tumour cell lines, MDA-MB-435S cells
were found to cluster with melanoma cells, rather than
with other breast cancer lines [254]. Melanoma cells
are frequently highly aggressive/metastatic, a feature
that they share with MDA-MB-435S cells [266]. As
shown by a more recent study using PCR and immuno-
histochemistry, MDA-MB-435S cells do not express
pS2 (TFF1), mammaglobin (MGB1), and prolactin-
inducible protein (PIP), which are typical of breast
cancer cells. In contrast, they express several genes
commonly transcribed in melanocytes: RXRG (ret-
inoid X receptor gamma), TYR (tyrosinase), ACP5
(acid phosphatase, type 5), and DCP (dopachrome
tautomerase/tyrosine related protein 2), which are
not found in Hs578T, MCF-7, T-47D, BT-474, and
MDA-MB-453 BCC [267].

Since the accuracy of the widely-used ER−/
ERBB2− BCC lines (Hs578T, BT-549, MDA-
MB-231, MDA-MB-435S) as models for
ER−/ERBB2− tumours remains a matter of debate,
it is suggested that future studies should examine
additional cell lines.

Epigenetic alterations – hypermethylation
Besides genetic changes – point mutation, deletion,
translocation, or amplification – epigenetic alterations
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Table 4. A list of genes for which promoter hypermethylation has been demonstrated in BCC and in tumours

Gene name Gene product name(s) Tumours BCC lines

APC Adenomatosis polyposis coli H H

ARHI Ras homolog gene family, member I H H

ASC (TMS1) Apoptosis-associated speck-like protein containing a CARD H H

BRCA1 Breast cancer 1, early onset H H

CCND2 Cyclin D2 H H

CDH1 Cadherin 1, epithelial cadherin (E-cadherin) H H

CDH13 Cadherin 13, H-cadherin (heart) H H

CDKN2A Cyclin-dependent kinase inhibitor 2A (p16) H H

ESR1 Estrogen receptor 1 H H

FABP3 Fatty acid binding protein 3 (MDGI) H H

FHIT Fragile histidine triad gene H H

GJB2 Gap junction protein, beta 2, 26kD (connexin 26) H H

GPC3 Glypican 3 H H

GSN Gelsolin (amyloidosis, Finnish type) H U

GSTP1 Glutathione S-transferase pi H H

HIC1 Hypermethylated in cancer 1 H H

HOXA5 Homeo box A5 H H

HSHIN1 High in normal-1 H H

IL6 Interleukin-6 H U

KLK10 Kallikrein 10 H H

NME1 Protein expressed in non-metastatic cells 1 (NM23A) H H

PGR Progesterone receptor H H

PLAGL1 Pleiomorphic adenoma gene-like 1 U H

PLAU Plasminogen activator, urokinase H U

PRDM2(1) PR domain-containing protein 2 (RIZ1), transcript 1 H H

PRKCDBP Protein kinase C, delta binding protein (SRBC) H H

PRSS8 Protease, serine, 8 (prostasin) H U

RARB(2) Retinoic acid receptor, beta (transcript 2) H H

RASSF1(A) Ras association (RalGDS/AF-6) domain family 1 (transcript A) H H

SERPINB5 Maspin/Proteinase Inhibitor 5 H U

SFN Stratifin H H

SLC19A1 Solute carrier family 19 (folate transporter), member 1 H U

SNCG (BSCG1) Synuclein, gamma (breast cancer-specific protein 1) H U

SYK Spleen tyrosine kinase H H

TFF1 Trefoil factor 1 (pS2, BCEI) H H

TGFB3 Transforming growth factor, beta 3 U H

TIMP3 Tissue inhibitor of metalloproteinase 3 H H

WT1 Wilms tumor 1 H H

H: Hypermethylated.
U: Status unknown.
For references, see [270].

have also been suggested to play a role in the ini-
tiation and progression of breast carcinomas. These
are heritable modifications of gene expression that
do not involve mutation. The concerned genes are
structurally intact, but their expression is reduced or
absent, which is related to methylation in their pro-
moter region or deacetylation of histones that interact
with their promoter region, or both mechanisms. For

instance, hypermethylation of CpG islands in and
around promoter regions may contribute to the tran-
scriptional inactivation of at least 100 tumour-related
genes in many types of cancer [268] [+ website
www.missouri.edu/ ∼hypernet]. The heritability of
methylation states and the secondary nature of the de-
cision to attract or exclude methylation support the
idea that DNA methylation is adapted for the cellular
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memory [269]. Hypermethylation could participate to
the development and the preservation of a specific cell
phenotype, by definitely silencing (‘bolting’) specific
sets of genes.

Table 4 lists the genes for which CpG island
methylation has been found in breast tumours, BCC
lines, or both. More detailed information on these
genes is provided in the review of Widschwendter and
Jones [270]. As shown in the Table 4, there was no
gene for which CpG island methylation was found in
BCC lines (at least part of them) but not in tumours,
and inversely. Regarding their pattern of gene CpG
island methylation, cell lines and tumours appear thus
very close.

A number of hypermethylated genes are associated
with the distinctive phenotypes observed in BCC lines.
For instance, ESR1, PGR, CDH1, SYK, GPC3, TFF1,
are expressed in many luminal epithelial-like cell
lines, but not in mesenchymal-like lines. In contrast,
CDKN2A, GSTPI, PLAU, are preferentially found in
mesenchymal-like rather than in luminal epithelial-
like cell lines. In most cases, these genes, when
silent, can be re-expressed by treatment of BCC with
the demethylating agent 5-aza-cytidine. That many
genes for which promoter methylation has been shown
are directly or inversely correlated to the ER was
demonstrated by Yan et al. [271]. These authors per-
formed a methylation profile analysis of 7776 CpG
islands, which led to the identification of CpG island
clusters that can significantly distinguish ER−/PgR−
from ER+/PgR+ breast tumours. Thus, epigenetic
events might significantly contribute to stabilise the
phenotype – luminal epithelial-like or mesenchymal-
like – of BCC. Since it appears that the tumour cell
phenotype is unlikely to change often during the pro-
cess of tumour progression, hypermethylation is not
expected to play a key role in this progression. From
this point of view, it is significant that spontaneous
change in CpG methylation pattern of genes has, to
our knowledge, never been observed in BCC lines
in vitro. This does not mean, however, that methyla-
tion/demethylation is not involved in tumourigenesis.
Indeed, some genes expressed in tumours and BCC
lines, including maspin, are silent in normal epithelial
cells and/or normal breast tissue.

Dialogue between tumour cells and their
cellular environment

A full-blown cancer phenotype is characterised by
features such as sustained cell proliferation, disre-

gard of growth and differentiation controlling signals,
evasion of apoptosis, immortalisation, and ability to
invade surrounding tissue and induction of angiogen-
esis. Pre-invasive cells have acquired almost all of
these features, but are not yet invasive. Since no ma-
jor (high-frequency) and gross phenotypic/genotypic
differences are seen between in situ invasive, and
metastatic compartments of tumours, progression to
invasiveness and metastasis could rather result from
the accumulation by in situ carcinoma of various
minor and localised genetic or epigenetic events. This
would eventually dysregulate the molecular balances
governing cell adhesion, migratory ability, proteolytic
and/or angiogenic activity. Such evolution is sug-
gested by the known micro-heterogeneity of tumour
tissues, the higher amount of DNA alterations in BCC
lines (most of which originated from metastases) and
the genetic instability of these lines, as illustrated by
BCC lines variants.

Acquisition of invasiveness could proceed from
additional events. Tumour size might play a role. A
growing in situ tumour is believed to exert a mech-
anical stress on its neighbouring basement membrane.
Moreover, the accumulation of BCC in a confined
space might lead to local concentrations of various
secreted molecules (for instance metalloproteinases)
able to overcome the resistance developed by the sur-
rounding normal cells (for instance through secretion
of metalloproteinases inhibitors). That tumour evol-
ution is highly dependent on interactions (by direct
contact or through paracrine signalling) between BCC
and other cell types present in their vicinity, is now
widely accepted. BCC modulate stromal cells activi-
ties. In turn, the stromal micro-environment in which
BCC develop profoundly influences many steps of
tumour progression. In various experimental tumour
models, the micro-environment affects the efficiency
of tumour formation, the rate of tumour growth, the
extent of invasiveness, and the ability of tumour cells
to metastasise [272]. Among the cell types with which
BCC may interact are normal breast epithelial cells,
blood cells, notably lymphocytes and macrophages,
vascular endothelial cells, and, at metastatic sites,
specialised cells from brain (i.e., astrocytes), lung,
liver, bone (osteoblasts and osteoclasts) and bone mar-
row [273–278]. Detailed studies on the implication
of normal cells in invasion have notably examined
myoepithelial cells and stromal fibroblasts.

It has been suggested that myoepithelial cells
constitute ‘natural tumour suppressors’ [279].
These cells surround the mammary ducts, deposit
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extra-cellular matrix material and express high
amounts of several proteinase inhibitors (TIMP-1,
maspin, myoepithelium-expressed proteinase inhib-
itor, protease nexin-II/amyloid beta precursor pro-
tein/BACE2) and angiogenic inhibitors. In contrast,
their expression of proteinases and angiogenic factors
is low [280]. Myoepithelial cells appear thus at least
partly responsive for limiting invasive behaviour. The
loss of this cell type, seen only in invasive tumours,
should permit subsequent invasion and tumour pro-
gression [281, 282]. The mechanisms by which BCC
may reduce the amount of myoepithelial cells in their
neighbourhood remains largely unknown to date.

BCC also have paracrine interactions with the sur-
rounding stromal fibroblasts. In tumours, the latter are
often phenotypically different from normal fibroblasts.
For example, they may develop smooth muscle differ-
entiation (myofibroblasts) with increased motility into
collagen gel [283]. Myofibroblasts, which comprise a
predominant stromal cell type in breast tumours, are
often seen in close association with the myoepithelium
surrounding carcinoma in situ, and such associated
cells express several extra-cellular matrix-degrading
proteases, including MMP-2, MMP-11, MMP-13,
and MT-MMPs. Under the influence of BCC, stromal
(myo)fibroblasts can increase their production of vari-
ous components of the urokinase (uPA) system, such
as uPA itself, uPA receptor (uPAR), uPARAP [284],
and of MMPs [285]. Since BCC themselves are able
to produce proteolysis-related molecules (uPA, uPAR,
and various MMPs in mesenchymal-like cells, mat-
riptase/ST14 in luminal epithelial-like cells) [152],
this may lead to a considerable local degradation of
matrix and cancer progression [286].

The complexity of the dialogue between BCC and
other cells indicates that BCC lines, even considered
as representative models of transformed cells in vivo,
are clearly insufficient to understand the various as-
pects of tumour biology. However, comparison of
appropriate panels of BCC lines to panels of tumours,
notably by micro-array analysis, could allow us to
distinguish gene expressions due to transformed cells
from those associated to their normal surrounding
cells. Such data should further be confirmed by his-
tological techniques, which remain more than ever
necessary.

Tumourigenicity of BCC lines in animal models

While various animal recipients (including rats, cats
and dogs) have been used to study the tumourigenicity

and metastatic ability of BCC lines [292], nude mice
are the most popular model.

Data on the tumourigenicity of most BCC lines
reviewed in this paper are presented in Table 5. In
general, the cited references are the initial articles de-
scribing the cell lines. When reported, the histology of
the tumours produced in animals was often consistent
with that of the original tumour (not detailed here).

The three ER+ BCC lines most widely used in
mice are MCF-7, T-47D, and ZR-75-1. It has been
shown that they require some degree of estrogenic sup-
plementation for tumourigenesis in nude mice, even
with inocula containing as much as 20 × 106 cells.
Tumours did not appear in the absence of oestrogen.
In general, treatment of animals bearing established
tumours with oestrogen withdrawal resulted in ces-
sation of tumour growth, but not in tumour regres-
sion. Growth resumed upon oestrogen replenishment,
even after prolonged (weeks) deprivation, indicating
that the cells remained viable. The oestrogen-induced
growth of MCF-7, T-47D, and ZR-75-1 tumours was
generally inhibited by an appropriate dose of anti-
oestrogen (tamoxifen, LY156758, ICI 182,780 . . .)
[293–296]. Tumour take was shown to be variable
(amount of oestrogen requested, growth speed) when
using different MCF-7 sub-lines [297].

While ER+ tumours frequently invade locally and
metastasise in patients, tumours obtained from ER+
BCC in nude mice are poorly invasive and rarely, if
ever, are metastatic. More aggressiveness has been
observed with the two ER− BCC lines most used in
mice, MDA-MB-231 and MDA-MB-435. The latter is
the most metastatic, producing lung and lymph meta-
stases in a high proportion of nude and SCID mice,
with a low incidence of metastases in muscle (chest
wall and thigh), heart and brain.

Tumourigenicity of other BCC lines has also
been tested in nude mice. CAMA-1, BT-20, BT-
474, BT-483, HMT-3909, MDA-MB-468, MDA-MB-
134 and MDA-MB-361 were all tumourigenic. In
contrast, Hs578T, SK-BR-3 and MDA-MB-453 ap-
peared essentially unable to easily grow in mice [see
notably references 298–300]. HBL-100 and HMT-
3522, of non-malignant origin, were reported as non-
tumourigenic [298]. In fact, it has been shown that
these cell lines could progressively become tumouri-
genic [25, 28].

It is of interest that the non- or very poorly tu-
mourigenic MDA-MB-453 and SK-BR-3 cell lines
both over-express ERBB2. In a study of 433 human
breast carcinomas hetero-transplanted in nude mice,
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Table 5. Tumourigenicity of BCC lines

Cell line Tumourigenicity References

21MT 90% tumour take in nude mice (107 cells injected s.c.) [6]

21NT Non-tumourigenic in nude mice (107 cells injected s.c.) [6]

21PT 30% tumour take in nude mice (107 cells injected s.c.) [6]

BOT-2 In nude mice (5 × 106 cells injected s.c.) [8]

BRC-230 100% tumour take in nude mice (106–3 × 107 cells) [3]

BrCa-MZ-01 In nude mice (107 cells injected s.c.) [9]

BrCa-MZ-02 In nude mice (107 cells injected s.c.) [9]

BSMZ 67–100% tumour take in nude mice (107 cells injected s.c.). [10]

Latency: 4 weeks.

BT-20 See text

BT-474 See text

BT-483 See text

BT-549 100% tumour take in nude mice (2 × 106 cells injected s.c.). [288]

CAL-18A 17 tumours/20 sites in nude mice (2 × 106 cells injected [13]

s.c.). Latency: 3 weeks

CAL-18B Non-tumourigenic (0 tumours/10 sites) in nude mice [13]

(2 × 106 cells injected s.c.)

CAL-51 4 tumours/6 sites in nude mice (2 × 106 cells injected s.c.). [14]

Latency: 10 days

CAMA-1 See text

DU4475 80–100% tumour take in nude mice (1–10 × 106 cells [16]

injected s.c.). Latency: 10 days

EP In mice immuno-suppressed with anti-thymocyte serum [19]

[ATS, reference 287] (2.5 × 106 cells injected s.c.).

HBL-100 Progressively tumourigenic [25]

HDQ-P1 Non-tumourigenic after 8 weeks in nude mice (up to 107 [26]

cells injected s.c.)

HMT-3522 Progressively tumourigenic [28]

Hs578T Non-tumourigenic (0/20) in mice immuno-suppressed with [29]

ATS [reference 287] (5 × 106 cells injected intra-dermically).

Ia-270 Tumourigenic in nude mice (3 × 106 cells injected s.c.) [30]

IBEP-1 Tumourigenic in 5/5 nude mice (5 × 106 cells injected s.c.). [31]

Latency: 11 weeks

IBEP-2 Tumourigenic in 5/5 nude mice (5 × 106 cells injected s.c.). [31]

Latency: 14 weeks

IBEP-3 Tumourigenic in 4/5 nude mice (5 × 106 cells injected s.c.). [31]

Latency: 16 weeks

IIB-BR-G 100% tumour take in nude mice (107 cells injected in the [32]

m.f.p.)

KPL-1 100% tumour take in nude mice (1–10 × 106 cells injected [33]

in the m.f.p.). Latency: 1–2 weeks.

KPL-3C 100% tumour take at late passages in nude mice (5 × 106 [34]

cells injected in the m.f.p.).

KPL-4 Tumourigenic in 10/10 nude and SCID mice (107 cells [35]

injected in the m.f.p.)

LCC15-MB 100% tumour take in nude mice (5 × 106 cells [36]

injected in the m.f.p.)

MA11 See text

MCF-7 See text

MDA-MB-134 VI Tumourigenic in nude mice (108 cells), see also text [4]
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Table 5. (continued)

Cell line Tumourigenicity References

MDA-MB-157 Tumourigenic in nude mice (108 cells) [4]

MDA-MB-175 VII Tumourigenic in nude mice (108 cells) [4]

MDA-MB-231 See text [4]

MDA-MB-330 Non-tumourigenic in nude mice (108 cells) [4]

MDA-MB-361 Tumourigenic in nude mice (108 cells), see also text [4]

MDA-MB-435S See text [4]

MDA-MB-436 Non-tumourigenic in nude mice (108 cells) [4]

MDA-MB-453 Non-tumourigenic in nude mice (108 cells), see also text [4]

MDA-MB-468 Tumourigenic in nude mice (108 cells), see also text [4]

MT-1 See text

MW Tumourigenic at low passages in mice immuno-suppressed [19]

with ATS [reference 287] (2.5 × 106 cells injected s.c.).

PMC42 Only the original cells yielded a tumour in nude mice. None [289]

of the subsequent inocula (at least 106 cells injected s.c.)

yielded any tumour growth.

SK-BR-3 See text

SUM-149 Tumourigenic in nude mice (1.5 × 106 cells injected in the [97]

m.f.p.)

SUM-159 About 90% tumour take in nude mice (4 × 106 cells injected [290]

s.c. or 106 cells injected in the m.f.p.)

T-47D See text

UISO-BCA-1 100% tumour take in nude mice (1–5 × 106 cells [49]

injected s.c.)

UISO-BCA-2 100% tumour take in nude mice (1–5 × 106 cells [49]

injected s.c.)

VHB-1 Tumourigenic (4/6 sites) in nude mice stimulated by [50]

oestradiol (3 × 106 cells injected s.c.)

ZR-75-1 See text

ZR-75-30 Tumourigenic in nude mice (5–8 × 106 cells) [291]

The nude phenotype is associated to the nu (Unigene Foxn1 = ‘Forkheadbox N1’) mutation. nu/nu mice are essentially
athymic. T-cells are lacking and B-cell maturation is also defective. However, nude mice are not totally immuno-deficient, as
they possess an elevated natural killer (NK) cell activity, while the level of lymphocyte-activated killer (LAK) cells appears
normal.
SCID = severe combined immuno-deficiency. The scid (Unigene IL2RG = ‘interleukin-2 receptor, gamma chain’) mutation
produces mice with significantly smaller lymphoid organs. The differentiation/maturation of lymphocytes is defective, and
both pre-B and b-cells are undetectable. The few remaining T-cells appear non-functional. In contrast, macrophages, NK and
LAK precursor cells are essentially normal.
s.c.: subcutaneously; m.f.p.: mammary fat pad (see text for further explanations).

it was shown that 64% of the growing carcinomas
exhibited ERBB2 amplification, a percentage approx-
imately twice that found in unselected populations of
tumours [301]. This suggests that the establishment
of ERBB2-over-expressing BCC in mice could specifi-
cally benefit from the presence of native extra-cellular
matrix, in agreement with other data of the present
paper indicating that the behaviour of these cells might
be different in vitro and in tumours in vivo.

It has been repeatedly shown that tumour take is
higher when BCC are inoculated with Matrigel or

fibroblasts. Matrigel is a solution of tissue basement
membrane matrix extracted from the Engelbreth–
Holm–Swarm (EHS) mouse tumour. It is rich in extra-
cellular matrix proteins, with laminin, collagen IV,
heparan sulphate proteoglycans, entactin and nido-
gen as major components. Various growth factors are
also present, including TGF-beta, FGF and plasmino-
gen activators. Matrigel polymerises under normal
physiological conditions to produce a reconstituted,
biologically active matrix that is effective for the
attachment and differentiation of cellular material.
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Co-injection with Matrigel or fibroblasts appeared to
be of benefit for various cell lines, including BT-474,
MCF-7, T-47D, MDA-MB-231 . . . [299, 300, 302].
This underlines the importance of interactions
between BCC and their environment (cells and
various basement membrane molecules) in tumour
establishment.

There is now considerable evidence supporting the
importance of the implantation site for BCC. While
many BCC lines will grow subcutaneously (s.c.), and
frequently at other sites, it appears that the most appro-
priate site for their implantation is the mammary fat
pad (m.f.p.) [296, 300, 303]. Orthotopic transplanta-
tion can significantly increase the take rate of tumours
from various cancers, and occasionally facilitate meta-
static spread that will not occur from a s.c. site. Thus,
the specificity of tumour–host and tumour–stromal in-
teractions appears determinant in the progression of
breast cancers.

While tumours may arise from BCC injected s.c.
or at m.f.p., they are rarely metastatic. When cells
disseminate from these sites, they are mainly found
in lungs. To study the ability of BCC to colonise
various organs, additional injection routes have been
used. They include intravenous injection, for instance
in the lateral tail vein (to obtain metastasis to the
lung), injection into the spleen (metastasis to the
liver), direct or intracarotid artery injection (meta-
stasis to the brain) and injection into the left-ventricle
of the heart (metastasis to bone marrow and bone)
[300].

Examples of tumourigenic and metastatic
studies in mice
Animal models have extensively allowed examination
of the contribution of genes to the tumourigenic and/or
metastatic ability of BCC. Only a few examples will be
cited here. For instance, the influence of chromosomes
6, 11 and 17 on the cell phenotype of MDA-MB-
231 and MCF-7 has been studied by transfer of intact
chromosomes to these cell lines. Chromosome 6 in-
duced alterations of in vitro growth properties and sup-
pressed the tumourigenicity of MDA-MB-231 cells.
Spontaneous reduction of the transferred chromosome
allowed mapping of the tumour suppressor gene(s)
to region 6q21–q23 and/or 6q26–q27. Clones MCF-
7/H6 underwent a senescence process. Chromosome
11 had no effect on MDA-MB-231 cells, although it
suppressed tumourigenicity of MCF-7 cells. A MCF-
7/H11 clone lacking the short arm of the transferred
chromosome retained tumourigenicity; however, tu-

mour cell growth was significantly reduced. These
results suggest that each chromosomal arm may con-
tain genes important for the suppression of MCF-7
tumourigenic properties. No viable clone maintaining
an intact chromosome 17 was obtained in either MDA-
MB-231 or MCF-7. Only one MDA-231/H17 clone
contained the long arm of the transferred chromosome
17. Interestingly, this clone lost the ability to induce
tumours in nude mice, indicating that at least one gene
mapping to the long arm of chromosome 17 could
suppress the tumourigenic phenotype [304, 305].

Other studies in mice have used BCC trans-
fected with various genes. For instance, CDH1
and IGFBP5, two genes associated to the luminal
epithelial-like phenotype, were shown to reduce tu-
mourigenic and/or metastatic abilities of MDA-MB-
231 BCC when transfected into these cells [306, 307].
Inversely, CYR61, LOR-1, VEGFC, and VIM, which
are associated mainly to the basal-like phenotype of
breast tumours, were shown to increase the tumouri-
genic and/or metastatic potential of transfected MCF-7
[117, 308–310].

Animal models have also been employed to eval-
uate anti-tumour strategies. For instance, it has been
shown that a combination of murine anti Her-2/neu
monoclonal antibodies (Mabs) was more effective
than the individual Mabs in treating s.c. tumour nod-
ules of BT-474 in SCID mice, confirming in vitro stud-
ies [311]. The protein kinase Akt-3 is highly expressed
in MDA-MB-231 but not in MCF-7 and T-47D BCC
[158, 312]. To test the potential role of this molecule
in hormone-independence, Akt-3-expressing MCF-7
were obtained. These cells were found to produce
tumours in mice in the absence of E2 that were approx-
imately equivalent in size to control cells in mice given
E2. Moreover, the formation of tumours by the Akt-3
cells was greatly suppressed by E2, but stimulated by
the partial anti-oestrogen tamoxifen, while unaffected
by the pure anti-oestrogen ICI 182,780 [313]. Previous
studies using MDA-MB-231 cells stably transfected
with ER had shown that the lung metastases developed
by these cells in nude mice were inhibited three-fold
by estradiol [314]. Akt-3 could play a role in these
growth-inhibiting effects.

Metastasis studies have revealed the preference of
some cell lines or sub-lines for specific colonisation
sites. For instance, in an analysis of two cell lines in-
jected to various sites in nude rats, it has been shown
that MA-11 BCC had a propensity to produce brain
metastases, while MT-1 appeared particularly able to
develop in bone marrow [37, 65].
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The metastatic progression of most breast cancers
involve bone marrow invasion and bone alteration,
which results in a considerable morbidity. As a con-
sequence, numerous studies have aimed to understand
the mechanisms leading to bone colonisation. Such in
vivo investigations in mice generally used BCC injec-
tions into the left-ventricle of the heart. Initial studies
had revealed that the MDA-MB-231 BCC were able to
cause dramatic osteolysis in a few weeks in mice. The
molecular bases of this effect have been extensively
explored. For instance bone-seeking and brain-seeking
clones of MDA-MB-231 BCC have been isolated, by
repeated sequential passages in nude mice and in vitro
of metastatic cells obtained from bone and brain meta-
stases, respectively. In culture, bone-seeking clones
produced greater amounts of the parathyroid hormone-
related peptide (PTHrP, gene PTHLH), well-known
for its osteolytic properties [75]. In another study us-
ing mice, however, interleukin-8 (IL8), but not PTHrP
was correlated to bone metastasis and osteolysis by
MDA-MB-231 [315]. More recently, MDA-MB-231
sub-populations with elevated metastatic activity were
selected, and the genes over-expressed in these sub-
populations were determined by micro-array analysis.
It was shown that most of these genes encode secreted
and cell surface proteins. Two of them, interleukin-11
(IL11) and connective tissue growth factor (CTGF),
encode osteolytic [180] and angiogenic [316] factors
whose expression was further increased by the pro-
metastatic cytokine TGF beta. Data on IL11 are in
agreement with a previous article reporting that bone
metastases were more frequently observed in patients
with IL11-positive than in those with IL11-negative
primary tumours [317]. Other genes over-expressed
in MDA-MB-231 sub-populations with elevated meta-
static activity notably included those coding for the
bone homing ‘chemokine (C-X-C motif) receptor 4’
(CXCR4), the ‘matrix metalloproteinase-1’ (MMP1),
and the ‘disintegrin-like and metalloprotease (repro-
lysin type) with thrombospondin type 1 motif 1’
(ADAMTS1). The potential co-operative importance
of osteopontin (SPP1) was also underlined. Over-
expression of the bone metastasis gene set was su-
perimposed on a gene expression signature already
present in the parental breast cancer population, sug-
gesting that metastasis requires a set of functions
beyond those underlying the emergence of the primary
tumour [318].

Typically, ER+ patients tend to have bone metas-
tases more frequently [319, 320]. Since MDA-MB-
231 BCC are ER−, their accuracy as the best model

for investigating bone metastasis may be discussed,
more especially as ER+ tumours represent more than
two-thirds of all breast carcinomas. ER+ breast tu-
mours have been known to develop osteoblastic or
mixed (osteolytic/osteoblastic) bone metastases [321].
In agreement with this, and contrasting with the purely
osteolytic MDA-MB-231 cells, the ER+ MCF-7, T-
47D, and ZR-75 BCC tend to induce osteoblastic
lesions, while ER+ BT483 cells cause rare mixed
osteoblastic and osteolytic metastases after heart in-
oculation into female nude mice [322, 323]. While
factors responsible for the formation of osteoblastic
metastases are under investigation, recent data suggest
an important role of the BCC-secreted endothelin-1
(ET-1, gene EDN1) [322].

Both the osteolytic (MDA-MB-231) and the os-
teoblastic (MCF-7) models have been used to demon-
strate the protective effect of bisphosphonates on bone
[323]. The osteolytic model has also allowed us to
demonstrate the ability of osteoprotegerin (OPG, gene
TNFRSF11B) to inhibit tumour-induced osteoclasto-
genesis [324].

To close this section on tumourigenicity, it must be
mentioned that green fluorescent protein-expressing
BCC, notably including MDA-MB-435 cells, have
been recently produced. They may allow whole-body
optical imaging of metastasis in mice [325–327].

Conclusion

BCC lines have allowed considerable advances in the
knowledge of most aspects of cancer biology. In the
course of years, tumours themselves have been in-
creasingly studied. From comparison of data obtained
in both cell lines and tumours, the pertinence of the
first as models for the second has been evaluated.
Three questions needed to be answered:

To what extent are individual tumours
genetically and phenotypically heterogeneous?

In other words: is it justified to believe that a single
BCC line might accurately represent any cancer cell
present in the tumour from which it originated, at any
step of its progression?

There is a common belief that breast tumours
are heterogeneous. However, most data of genetic
and phenotypic (grade, markers expression) nature
indicate that the ‘portrait’ of a tumour does not un-
dergo striking alterations during progression. Rather
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unexpectedly, in situ and invasive components of car-
cinomas appear to be very similar, and this similarity
has also been repeatedly retrieved in metastases, re-
gardless of their localisation, and in recurrences. In
fact, at any step in their progression, breast tumours
may be viewed as collections of cell sub-populations
exhibiting the same general pattern of gross recur-
rent genetic alterations and sharing the same major
phenotypic features. Micro-heterogeneity exists, due
to minor (low frequency) changes, generally restric-
ted to the small sub-populations. While ‘dramatic’
phenotype alterations accompanying progression have
been suggested, as illustrated by the EMT hypo-
thesis, we do not believe them to occur frequently in
vivo. Tumour progression, including metastasis, does
not appear to result mainly from clonal expansion of
only one cell sub-population, as has been previously
proposed. It is rather believed to proceed from the
complex co-operation among several sub-populations
generated by a series of partly divergent DNA al-
terations. Dialogue between tumour cells and their
surrounding normal cells also appear to be important.
It results from what precedes the BCC being extracted
from tumour tissue, even from metastasis and may be
considered, at the time of their isolation, as having
kept the main features of any tumour cells in vivo.

Do BCC cultured in vitro maintain
the characteristics they had in tumours?

As freshly isolated BCC may be considered to be
representative of BCC in vivo, their prolonged cul-
ture in artificial conditions in vitro has been thought
to modify their properties. Clearly, variants of BCC
lines may develop either spontaneously or by selection
against various compounds. This variation is facili-
tated by genetic instability. However, although most
of the variants described are genetically different from
the initial population, it is often difficult to associate
their specific properties to specific and recurrent DNA
alterations. Different mechanisms seem to underlie the
acquisition of a given property (for instance, resistance
to anti-estrogens) and whether they are the same in
BCC lines and tumours remains a matter for inves-
tigation and discussion. On the other hand, the in vitro
evolution of BCC lines is infrequently accompanied
by deep genetic/phenotypic changes. For instance, ex-
amples of EMT in vitro are rare, and attempts to obtain
ER− cells from ER+ BCC have been largely unsuc-
cessful. In vitro as in vivo, the main features of BCC
appear to be widely intangible.

Do the panel of widely used BCC lines
accurately reflect the variety of tumour
phenotypes?

Attempts to classify BCC lines and tumours have
identified a few distinct phenotypes and under-
lined the power of ER(-alpha)/ESR1 and Her-2/
neu/ERBB2 as discriminators. From these studies,
the ER+/ERBB2− MCF-7 and T-47D cell lines
may be considered as reasonably acceptable models
for tumour cells in luminal epithelial-like/ER+/
ERBB2− tumours. ERBB2+ BCC lines (BT-474 and
SK-BR-3, but also MDA-MB-361 and MDA-MB-
453) appear to be more closely related to the luminal
epithelial-like/ER+/ERBB2− lines than ERBB2+ tu-
mours are to luminal epithelial-like/ER+/ERBB2−
tumours. This suggests that either the available cell
lines are not the best representatives of tumour cells
in vivo, or that the phenotype of these ERBB2+
cells is significantly altered when they develop in-
teractions with their surrounding tumour stroma. To
resolve this question, it would be of interest to
analyse the ‘portrait’ of additional ERBB2+ cell
lines. While most widely used ER−/ERBB2− BCC
lines (BT-549, Hs578T, MDA-MB-231 and MDA-
MB-435S) have a stromal/mesenchymal-like geno-
type/phenotype, they do not clearly express the
normal-like and basal/myoepithelial-like gene signa-
tures found in most ER−/ERBB2− tumours. There
are pro and con arguments regarding the represen-
tativeness of these cell lines. Here again, recourse
to additional ER−/ERBB2− lines could allow the
discussion to progress.

Despite the existence of a few major tumour
classes, based on phenotype/genotype, each car-
cinoma is unique. The same is true for BCC lines.
Besides the widely used ones, the recourse to less
investigated cell lines is expected to improve our
knowledge of breast cancer biology. For instance,
PMC42 cells are of high interest, as they express both
secretory and myoepithelial markers, suggesting that
they are derived from basal cells able to give rise
to these two distinct lineages. Cell lines originating
from specific metastatic sites (i.e., MDA-MB-361 is-
sued from the brain), or from rare types of breast
cancers (lobular, medullary, inflammatory – such as
the SUM-149 BCC–,. . .) also deserve further investi-
gation. Besides the BRCA1-mutated HCC1937 BCC,
there is a need for additional cell lines originating from
patients with germ-line mutations. Studies relative to
ER activity and induction of target genes (including
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PGR) should examine ER+/PgR− and ER−/PgR+
cell lines. Among the cell lines that have been little
studied, BT-20 and MDA-MB-468 are peculiar in
that they have an amplified EGFR locus, an altera-
tion rarely observed in tumours. FGFR1 amplification,
as seen in MDA-MB-134, is more frequent in car-
cinomas. Whether the over-expression of Her-2/neu,
EGFR, and FGFR1 may alter the BCC phenotype in
a similar way remains largely unknown and merits
additional investigation.
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