Investments, Chapter 5

Answers to Selected Problems

8. During a period of severe inflation, a bond offered a nominal HPR of 80 percent per year. The inflation rate was 70 percent per year.
a. What was the real HPR on the bond over the year?
Answer: Let r denote the nominal return on the bond and let i denote the inflation rate. Then the real HPR is given by

$$
\frac{1+r}{1+i}-1=\frac{1.80}{1.70}-1=5.88 \%
$$

b. Compare this real HPR to the approximation $R=r-i$.

Answer: With the approximation, we get

$$
R=r-i=80 \%-70 \%=10 \%
$$

Clearly, $R=r-i$ is not a good approximation for large values of r and i.

Use Table 1 to answer problems 9 through 11.

	Bear Market	Normal Market	Bull Market
Probability	0.2	0.5	0.3
Stock X	-20%	18%	50%
Stock Y	-15%	20%	10%

Table 1: Table for problems 9 through 11.
9. What is the expected return for stocks X and Y ?

Answer: The expected return for stock X is

$$
E\left[r_{X}\right]=.2 \times(-20 \%)+.5 \times 18 \%+.3 \times 50 \%=20 \%
$$

The expected return for stock Y is

$$
E\left[r_{Y}\right]=.2 \times(-15 \%)+.5 \times 20 \%+.3 \times 10 \%=10 \%
$$

10. What is the standard deviation of returns on stocks X and Y ?

Answer: The standard deviation of returns on stock X is

$$
\begin{aligned}
\sigma_{X} & =\sqrt{.2 \times(-20 \%-20 \%)^{2}+.5 \times(18 \%-20 \%)^{2}+.3 \times(50 \%-20 \%)^{2}} \\
& =24.33 \%
\end{aligned}
$$

The standard deviation of returns on stock Y is

$$
\begin{aligned}
\sigma_{Y} & =\sqrt{.2 \times(-15 \%-10 \%)^{2}+.5 \times(20 \%-10 \%)^{2}+.3 \times(10 \%-10 \%)^{2}} \\
& =13.23 \%
\end{aligned}
$$

11. Assume you invest your $\$ 10,000$ portfolio in $\$ 9,000$ of stock X and $\$ 1,000$ of stock Y.

What is the expected return on your portfolio?
Answer: Let P denote this portfolio, which is 90% invested in stock X and 10% invested in stock Y. The expected return on the portfolio is

$$
E\left[r_{P}\right]=E\left[.9 r_{X}+.1 r_{Y}\right]=.9 E\left[r_{X}\right]+.1 E\left[r_{Y}\right]=.9 \times 20 \%+.1 \times 10 \%=19 \%
$$

12. Given $\$ 100,000$ to invest, what is the expected risk premium in dollars of investing in equities versus risk-free T-bills based on the following information?

$$
\$ 100,000 \text { in equities returns }\left\{\begin{array}{cl}
\$ 50,000 & \text { with probability } .6 \\
-\$ 30,000 & \text { with probability } .4
\end{array}\right.
$$

whereas $\$ 100,000$ invested in T-bills returns $\$ 5,000$.
Answer: The risk premium is

$$
.6 \times 50,000+.4 \times(-30,000)-5,000=\$ 13,000
$$

17. Consider a risky portfolio. The end-of-year cash flow derived from the portfolio will be either $\$ 50,000$ or $\$ 150,000$ with equal probabilities of .5 . The alternative risk-free investment in T-bills pays 5 percent per year.
a. If you require a risk premium of 10 percent, how much will you be willing to pay for the portfolio?

Answer: Let X denote the risky portfolio and let p denote its price. Then its expected return is

$$
E\left[r_{X}\right]=\frac{.5 \times 50,000+.5 \times 150,000-p}{p}=\frac{100,000-p}{p}
$$

If you require a risk premium of 10 percent, then you will invest in X only if $E\left[r_{X}\right]-r_{F} \geq 10 \%$, i.e. only if

$$
\begin{aligned}
\frac{100,000-p}{p}-0.05 \geq 0.10 & \Rightarrow \frac{100,000-p}{p} \geq 0.15 \\
& \Rightarrow 100,000-p \geq 0.15 p \\
& \Rightarrow 100,000 \geq 1.15 p \\
& \Rightarrow p \leq \frac{100,000}{1.15}=\$ 86,956.52
\end{aligned}
$$

b. Suppose that the portfolio can be purchased for the amount you found in (a). What will be the expected rate of return on the portfolio?

Answer: The expected rate of return will be 15%.
c. Now, suppose that you require a risk premium of 15 percent. What is the price that you will be willing to pay?
Answer: In this case, you will purchase the portfolio only if $E\left[r_{X}\right]-r_{F} \geq 15 \%$, i.e. only if

$$
\begin{aligned}
\frac{100,000-p}{p}-0.05 \geq 0.15 & \Rightarrow \frac{100,000-p}{p} \geq 0.2 \\
& \Rightarrow 100,000-p \geq 0.2 p \\
& \Rightarrow 100,000 \geq 1.2 p \\
& \Rightarrow p \leq \frac{100,000}{1.2}=\$ 83,333.33
\end{aligned}
$$

d. Comparing your answers to (a) and (c), what do you conclude about the relationship between the required risk premium on a portfolio and the price at which the portfolio will sell?

Answer: The greater the required risk premium, the lower the price at which the portfolio will sell.
23. John's utility function over investment (I) is given by $U(I)=E\left[r_{I}\right]-\frac{1}{2} A \sigma_{I}^{2}$, where $A=$ 4. Which of the following investments does he prefer? Investment 1 , with an expected return of 12% and a standard deviation of 30%; Investment 2 , with an expected return of 15% and a standard deviation of 50%; Investment 3, with an expected return of 21% and a standard deviation of 16%; Investment 4, with an expected return of 24% and a standard deviation of 21%.

Answer: The utility John derives from each investment is given by

$$
\begin{aligned}
& U(1)=0.12-2 \times(.3)^{2}=-0.06 \\
& U(2)=0.15-2 \times(.5)^{2}=-0.35 \\
& U(3)=0.21-2 \times(.16)^{2}=0.1588 \\
& U(4)=0.24-2 \times(.21)^{2}=0.1518
\end{aligned}
$$

Hence John prefers investment 4.

