
Articulatory-acoustic Feature Recognition: Comparison of 
Machine Learning and HMM methods 

Jan Macek, Supphanat Kanokphara, Anja Geumann 

Department of Computer Science 
University College Dublin 

{jan.macek, supphanat.kanokphara, anja.geumann}@ucd.ie 
 

Abstract 
HMMs are the dominating technique used in speech 
recognition today since they perform well in overall phone 
recognition. In this paper, we show the comparison of HMM 
methods and machine learning techniques, such as neural 
networks, decision trees and ensemble classifiers with 
boosting and bagging in the task of articulatory-acoustic 
feature classification. The experimental results show that 
HMM methods work well for the classification of such 
features as vocalic. However, decision tree and bagging 
outperform HMMs for the fricative classification task since 
the data skewness is much higher than for the feature vocalic 
classification task. This demonstrates that HMMs do not 
perform as well as decision trees and bagging in highly 
skewed data settings.  

1. Introduction 
Articulatory-acoustic Features (AF, also called articulatory 
features or phonological features by other authors) have 
been shown to improve word recognition accuracy under 
variable conditions of speech signal production. In the 
multilingual setting, feature recognizers trained on data from 
different languages were shown to have the capability of 
improving the overall performance by use of an ensemble or 
cross-lingual recognizer [1, 2]. These properties of 
AF recognizers motivate our research; in what follows we 
concentrate on AF extraction in a single language setting. 

AFs are thought to be a good compromise between a 
better description of the acoustic signal (than phonemes) and 
still providing a linguistically interpretable symbolic 
annotation for a further processing system as in [3]. Acoustic 
correlates of features have been described extensively in the 
literature [4, 5]. The first detailed description of distinctive 
features [6] assumed that they had identifiable counterparts.  

While HMMs have been predominantly used as acoustic 
models in current speech recognition systems, they have not 
been used frequently for AF extraction. A number of 
machine learning techniques as multilayer perceptron, 
dynamic Bayesian networks, support vector machines, and 
recurrent neural networks have been suggested for use in AF 
based speech recognition tasks [7, 8, 9, 10]. We focus here 
on a comparison of techniques for AF recognition of manner 
features. 

As mentioned above one of the biggest potential 
advantages of feature-based speech recognition is its cross-
lingual usability. This, however, requires a definition of 
language independent feature sets. 

Based on these concerns [11] a detection of individual 
AFs, e.g. voc+ vs. voc-, nas+ vs. nas- as opposed to a more 
tier-based detection of separate values as {vocalic, stop, 

fricative, nasal, etc.} for a manner feature [7, 8] is favoured. 
In a multilingual framework a wide range of feature 
combinations has to be allowed, e.g. French nasal vowels 
will not be identified correctly if only one manner feature 
can be detected. The detection of individual features will 
often present highly skewed data distributions. 

The material we use here (TIMIT) is phonetically fairly 
balanced; however this might not always be the case. 
Phonetically unbalanced material can be another source of 
data skewness, although of course even phonetically 
balanced material will show an unequal frequency 
distribution between sounds and features. It is this latter type 
of skewness which we consider here. 

In the following we will use two manner features which 
seem to be fairly robustly recognized, vocalic and fricative 
to explore different pattern classification (machine learning 
and HMM) techniques. Fricative is a feature which has a 
considerable higher skewness than vocalic as fricatives will 
in general occur less frequently than vowels. Differences in 
recognition results between the two could then be interpreted 
as being related to skewness of the data. It was suggested 
[12] that certain machine learning techniques might cope 
better with highly skewed class distributions. 

2. Methods and Experimental Setup 

2.1. TIMIT corpus 

The TIMIT corpus [13] of American English consists of 
6300 sentences, 10 sentences spoken by 630 speakers. For 
training we used the whole training set (4620 utterances) and 
for testing the core test set (192 utterances). The manually 
annotated data were labeled with the corresponding features 
similar to [7]. The mapping of features to sound classes is 
described in Table 1 for vocalic and fricative. 

Table 1: Sound-feature correspondence for vocalic 
and fricative 

Feature  Arpabet sounds 
fric+ f v th dh s z sh zh ch jh hh hv 
fric- ae aa aw ay ah ao ax axr ax-h ey eh er iy ih ix oy 

ow uw uh ux p b t d k g dx q m n ng em en eng nx 
l el r w y  

voc+ aa ae ah ao aw ax ax-h ay eh er ey ih ix iy ow oy 
uh uw ux 

voc- p b t d k g dx q m n ng em en eng nx l el r w y axr 
f v th dh s z sh zh ch jh hh hv 

sil  pau h# epi 



2.2. Machine learning techniques 

The machine learning techniques used have been described 
in more detail in [14]. The methods described in the 
following were selected as examples representative of 
different approaches to symbolic machine learning. The 
discrete function estimation based on decision trees 
generates an attribute-based model and performs logical tests 
on these attributes to classify the data.  

In contrast to hidden Markov model based systems, the 
machine learning approaches presented here classify each 
frame independently while HMM-based systems search for a 
contextually optimized sequence of all frames in an 
utterance. 

As a description of the speech signal we used 10ms 
frames that were analysed for attributes used for further 
learning and classification.  

These attributes used for learning and classification 
were: energy of the current frame, energy of the 5 preceding 
frames, entropy of the current frame, entropy of the 5 
preceding frames, energies in four frequency bands of the 
current frame (0-1.5 kHz, 1.5-3 kHz, 3-6 kHz, 6-8 kHz). 

2.2.1. Decision trees with C4.5 as an example of an 
estimator based on discrete functions 

The decision tree represents knowledge gained during the 
learning phase in the form of nodes and leaves. Each node 
bears a test on attribute values that are used for description 
of the data. Leaves of the tree represent the corresponding 
classes for conjunction of logical tests on the way from the 
root of the tree to the leaf. This formalism allows users to 
easily understand the encoded knowledge and to transform it 
to a set of logical rules, if desired. 

Efficient methods for decision tree construction exist, 
e.g. C4.5 [15], CART, OC1. In our experiments, we used the 
C4.5 algorithm with Reduced Error Pruning, a technique 
used for simplification of the generated trees. 

2.2.2. Neural Networks as an example of an estimator 
based on continuous functions 

The neural network approximates the distribution generating 
the training data in the form of a network of simple threshold 
units and weighted connections and sums of outputs of these 
simpler units. The threshold units are typically nonlinear 
functions of the input variable. Neural networks are capable 
of learning complicated nonlinear functions and the setting 
of the topology plays a number of crucial roles in managing 
the trade-off between the speed of learning of the network 
and the achievable accuracy. 

In our experiments we used neural networks with simple 
perceptron elements. 

2.2.3. Ensemble classifiers with Boosting (AdaBoost.M1) 

The main motivation behind Boosting is to combine 
weaker/simpler classifiers in an ensemble in a way that 
improves the performance of the combined classifier. Thus 
the performance of a single ensemble element is improved - 
i.e. boosted. Let hypotheses h1, …, hm form the set of 
hypotheses used in an ensemble, that forms a combined 
hypothesis as presented in Equation 1. The hypotheses hi and 
coefficients αi of the ensemble are learned with the boosting 

procedure, that is a hypothesis is learned iteratively on set of 
weighted examples and its weight is set according to its 
accuracy on the set of examples. According to the accuracy 
of the hypothesis the weights of the instances in the training 
set for the next iteration are determined. 

2.2.4. Bagging with REP pruned decision trees 

Bagging was introduced by Breiman (see [16]). It is a 
technique that uses bootstrap samples for the construction of 
replicate classifiers and a combination technique that 
weights outputs of individual classifiers to yield final 
classification. 

The bootstrapped sample is created by drawing with 
replacement n examples from training set Sn = (xi, yi), 
i=1,...,n. With the same size as the original training data, it 
contains replicates of some examples, while others are not 
presented. Typically, bootstrap sampling is performed 
multiple times (25–50 times). Training on each of the 
training sample is performed by traditional machine learning 
technique and the bagged estimate is obtained by averaging 
the resulting estimator that we describe as 

∑
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where hi is a base classifier trained on bootstrap sample i, αi 
is the averaging constant and f(x) is the resulting ensemble 
classifier. As the base classifiers we used the decision trees 
with REP described in section 2.2.1. 

2.3. The HMM-Based AF Extraction System 

The HMM, by design, is used to map some uncertainty 
signal into a sequence of units. These units can be words, 
syllables, demi-syllables, phones, etc. The articulatory 
feature extraction presented here also uses this type of 
HMMs to map a speech signal into a sequence of features. 

2.3.1. System overview 

The HMM-based articulatory feature extraction system in 
this paper is constructed using HTK [17]. The acoustic 
model training system starts by converting the speech signal 
into a sequence of vector parameters with a fixed 25 ms 
frame and a frame rate of 10 ms. Each parameter is then pre-
emphasized with the filter P(z) = 1-0.9*z^(-1). The 
discontinuities at the frame edges are attenuated by using 
Hamming window. A fast Fourier transform is used to 
convert time domain frames into frequency domain spectra. 
These spectra are averaged into 24 triangular bins arranged 
at equal mel-frequency intervals (where fmel = 
2595 log10 (1+f /700)), where f denotes frequency in Hz. 12 
dimensional mel-frequency cepstral coefficients (MFCCs) 
are then obtained from cosine transformation and lifter. The 
normalized log energy is also added as the 13th front-end 
parameter. The actual acoustic energy in each frame is 
calculated and the maximum selected. All log energies are 
then normalized with respect to maximum and log energies 
below a silence floor (set to -50 dB) clamped to that floor.  

These 13 front-end parameters are expanded to 39 front-
end parameters by appending first and second order 
differences of the static coefficients. The chosen parameters 
chosen have been used extensively and have proven to be 



one of the best choices for HMM-based speech recognition 
systems. 

Each model contains 5 states with no skip state and the 
covariance matrices of all states are diagonal. After the 
context-independent HMMs have been trained, they are 
expanded to context-dependent HMMs by using cross-
feature network, backing-off technique [18]. Maximum 
likelihood estimators are used to train HMM parameters. 
The number of training iterations after each change is 
determined automatically. The model mixtures are expanded 
one by one until the model is saturated. For the recognition 
process, the Viterbi algorithm is used without any pruning 
factor and language model. 

2.4. Experimental Results 

In the experiments we estimated the accuracy of classifiers 
by their performance on isolated frames which is motivated 
by the nature of machine learning methods as opposed to 
time-mediated or string-alignments. 

Table 4 presents the data skewness for both features in 
the training data. We present accuracies of the classifiers in 
Table 5 for the classification of the feature vocalic and for 
the feature fricative. Based on the accuracies in Table 5 for 
fricative, ensemble classifiers with bagging perform best, 
followed by decision trees (C4.5). For vocalic HMMs 
perform best followed by ensemble classifiers with bagging. 

Table 4: Data skewness: Relative distribution for 
fricative and vocalic in training material 

fric+ fric- sil 
16.1% 75.9% 8.1% 
voc+ voc- sil 
37.9% 55.7% 8.1% 

Table 5: The accuracy of classification for features 
fricative and vocalic 

Classifier  fricatives vocalic 
C4.5 (decision tree) 86.4 % 76.4 % 
Neural Network  82.3 % 70.0 % 
Boosting (AdaBoost.M1)  75.6 % 66.5 % 
Bagging (with REPTrees)  88.0 % 77.9 % 
HMM 83.1 % 81.4 % 

To understand the differences between achieved 
accuracies better under highly skewed data conditions, we 
require the following measures. The precision is defined as 
the ratio 

c
c

 class as classified instances of #
 class of instances classifiedcorrectly  of #  (2) 

and the recall is defined as the ratio 

c
c

 classof instances of #
 class of instances classifiedcorrectly  of #  (3) 

Both measures analyse the correct classification for each 
feature class individually. It is important to mention the 
trade-off between precision and recall. The aim is to achieve 
high values for both while each of them act against each 
other. This trade-off is usually described by the F-Measure 
that is defined as the ratio 

recallprecision
recallprecision

+
××2  (4) 

A more in depth look at precision and recall in Tables 6 
and 7 make differences between the different techniques 
much more obvious. The boosting method seems to fail in 
the case of fric+ and sil. Both classes are entirely 
misclassified as fric-. In the case of boosting for vocalic only 
sil in Table 7 is entirely misclassified; in the less skewed 
data voc+ and voc- the boosting does perform better.. We 
conclude that the skewness of the data might effect boosting 
more than the other methods. 

While the decision tree and bagging perform similarly to 
HMM in terms of the precision and recall, and the F-
Measure (see Tables 6 and 7), the overall accuracy favours 
bagging and decision trees. As in the case of poor 
performance of boosting, we believe that the high skewness 
of the data in the case of the feature fricative is the source of 
better performance of bagging and decision trees. The F-
measure values for HMM (see Table 7) make it apparent that 
HMMs tend to produce classifiers with more uniform class 
distributions which results in its poorer performance on the 
highly skewed class of fricatives. 

In the case of feature vocalic classification the 
performance of HMM is clearly best using all presented 
measures. 

Table 6: The F-measure for corresponding classifiers 
for features fricative and vocalic 
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fric- 0.921 0.895 0.930 0.861 0.909 
fric+ 0.649 0.484 0.682 0.000 0.684 
sil 0.708 0.636 0.760 0.000 0.880 
voc- 0.783 0.689 0.798 0.657 0.867 
voc+ 0.747 0.721 0.757 0.731 0.855 
sil 0.708 0.633 0.753 0.000 0.808 

3. Discussion and Conclusions  
We have demonstrated that AF recognition can be performed 
fairly well with HMMs and other machine learning 
techniques such as bagging or decision trees.  

Comparing the results of HMM and best of the presented 
machine learning techniques we could conclude that HMM 
performance is better on less skewed data as for vocalic. The 
machine learning technique of decision trees outperformed 
HMM on more skewed data, i.e. fricatives as can be seen in 
Table 5. 

As we can see, the accuracies of machine learning 
methods in Table 5 for the feature fricative are even better 
than for vocalic. Data skewness does not seem to affect the 
performance to similar extent to the case of fricatives since 
the data for the feature fricative are more skewed than for 
vocalic. 



Table 7: The precision and recall rates for corresponding classes and classifiers for features fricative and vocalic 

 C4.5  
  

Neural Network 
  

Bagging 
with REPTrees 

Boosting 
(AdaBoost.M1) 

HMM 

Feature class Prec.  Recall   Prec.  Recall   Prec.  Recall   Prec.  Recall  Prec.  Recall 
fric-  0.901   0.941   0.850   0.944   0.910   0.951   0.756   1 0.850 0.976 
fric+  0.734   0.581   0.676   0.377   0.771   0.611   0   0 0.906 0.550 
sil  0.710   0.706   0.690   0.590   0.764   0.757   0   0 0.897 0.863 
voc- 0.794   0.773   0.831   0.588   0.805   0.791   0.758   0.579 0.859 0.875 
voc+ 0.729   0.766   0.601   0.901   0.739   0.775   0.597   0.943 0.942 0.783 
sil 0.723   0.693   0.756   0.544   0.797   0.714   0   0 0.762 0.861 

 
We suspected the inherent string alignment of HMMs to 

be less helpful for AF extraction. Further we expected that the 
documented usefulness [12] of machine learning techniques 
in skewed data conditions would be a greater advantage.  

It would be interesting to take the better of both 
approaches and enhance the machine learning with contextual 
information that is one of the distinguishing properties of 
HMMs. Combination of classifiers could further improve the 
performance on the presented task. 

Future work is concerned with a more detailed error 
analysis providing further information which may result 
changing the sound-feature specification. We suspect that the 
feature voc+ could be used for vowels and approximants. The 
feature fric+ might better be identified as frication and then 
include stop bursts. 

Further improvements can also be expected by adaptation 
of the attributes to psychophysical salient characteristics in a 
similar direction to [2, 6].  
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