Lecture 60
Harder 3 unit

This can be studied by looking at past papers available at www.boardofstudies.nsw.edu.au
and
fourunitmaths.cjb.net

In 2002 Bill Pender did an inservice on it available on the net at members.optusnet.com.au/limkw/SGS_harder3U_2002.zip

However, he said that $\mathrm{pi}^{\wedge} 2 / 6$ is too hard for 4 unit which as you will see on the next page is wrong.

Pi Squared On Six

2002 Ext. 2 hsc Q8a $\Rightarrow \sum_{j=1}^{m} \cot ^{2} \frac{\pi j}{2 m+1}=\frac{m(2 m-1)}{3}$
$\therefore \sum_{j=1}^{m}\left(\operatorname{cosec}^{2} \frac{\pi j}{2 m+1}-1\right)=\left(\sum_{j=1}^{m} \operatorname{cosec}^{2} \frac{\pi j}{2 m+1}\right)-m=\frac{m(2 m-1)}{3}$
$\Rightarrow \sum_{j=1}^{m} \operatorname{cosec}^{2} \frac{\pi j}{2 m+1}=\frac{m(2 m-1)}{3}+m=\frac{2 m(m+1)}{3}$.
For $0<\theta<\frac{\pi}{2}, \sin \theta<\theta<\tan \theta . \therefore \cot \theta<\frac{1}{\theta}<\operatorname{cosec} \theta \therefore \cot ^{2} \theta<\frac{1}{\theta^{2}}<\operatorname{cosec}^{2} \theta$.
$\therefore \frac{m(2 m-1)}{3}=\sum_{j=1}^{m} \cot ^{2} \frac{\pi j}{2 m+1}<\sum_{j=1}^{m} \frac{(2 m+1)^{2}}{(\pi j)^{2}}=\frac{(2 m+1)^{2}}{\pi^{2}} \sum_{j=1}^{m} \frac{1}{j^{2}}<\sum_{j=1}^{m} \operatorname{cosec}^{2} \frac{\pi j}{2 m+1}=\frac{2 m(m+1)}{3}$
$\therefore 1-\frac{4 m(m+1)}{(2 m+1)^{2}}=\frac{1}{(2 m+1)^{2}}<1-\frac{6}{\pi^{2}} \sum_{j=1}^{m} \frac{1}{j^{2}}<1-\frac{2 m(2 m-1)}{(2 m+1)^{2}}=\frac{6 m+1}{(2 m+1)^{2}}<\frac{6 m+3}{(2 m+1)^{2}}=\frac{3}{2 m+1}$
$\therefore 0=\lim _{m \rightarrow \infty} \frac{1}{(2 m+1)^{2}} \leq \lim _{m \rightarrow \infty}\left(1-\frac{6}{\pi^{2}} \sum_{j=1}^{m} \frac{1}{j^{2}}\right)=1-\frac{6}{\pi^{2}} \sum_{j=1}^{\infty} \frac{1}{j^{2}} \leq \lim _{m \rightarrow \infty} \frac{3}{2 m+1}=0$

Hence $\sum_{j=1}^{\infty} \frac{1}{j^{2}}=\frac{\pi^{2}}{6}$.

- Derek Buchanan,

July 16, 2003

