Instructor: David Scott – prof2dragon@yahoo.com
http://www.geocities.com/SiliconValley/Orchard/2997/
Required text:

C++ Primer by Stephen Prata

Recommended:
Effective STL by Scott Meyers

Excellent to get:
Effective C++ CD: 85 ways to improve your programs and designs

CUJ CDRom, http://www.cuj.com
Reference Books:
STL Programming from the Ground Up by Herbert Schildt

C++ on CDRom by Herbert Schildt

Class notes:

 http://www.edatamirror.com/openloop/education/classes/umn_98/umn_cpp/index.htm
University of Minnesota Rochester Center notes by Richard Sinn

Other references: http://www.togethersoft.com/ -- UML Vendor

 Design by Colors and a Whiteboard

 http://osborne.com/ -- lots of downloadable code examples

 http://www.gdpro.com/ -- UML vendor

 http://www.rationalrose.com/ -- UML vendor http://www.edatamirror.com/openloop/softwareEngineering/objectOriented/index.htm/
http://www.devx.com/gethelp/ and http://docs.linux.cz/
Topics: Object Orient Analysis, Design and Programming, Advanced Memory Management, stream & file I/O, persistence, multiple inheritance, advanced polymorphic programming, templates, STL libraries, C++ style and efficiency.

	Week
	Chapter
	Assignment

	1
	9-10
	* 9/1,6 and 10/1,3 review

	2
	11
	2,3

	3
	12
	1

	4
	13
	3

	5
	14
	Code an exception

	6
	15
	3,4,5

	7
	15
	Project

	8
	16
	

	9
	16
	Final

12 points per assignment for completion; 20 point for final; 20 points for project

* review only, do not submit for credit

Grades are on the 100 point grading scale (60 + 20 + 20).

NOTE: The 4th edition of the C++ Primer book goes through chapters 10 through 17; just add one to the Chapter.

Project Notes: 5 points each

 Use Standard Templates Library

 Create at least one exception

 Show inheritance and/or multiple classes

 Use C++ style guidelines

Lessons:

	Week
	Chapter
	Extra topics

	1
	9 - Objects and Classes
	Object land terminology, types verses objects

www.devx.com tips

	2
	11 – Dynamic Memory
	Intro to design by color,

	3
	12 – Class Inheritance
	

	4
	13 – Reusing Code
	

	5
	14 – Safe Programming
	

	6
	15 – STL and strings
	Web STL references

	7
	15 – STL continued
	File Persistence with STL

	8
	16 - I/O Stream Class
	Object Persistence

	9
	16 – Formatting IO
	Efficiency / Final + review

Week 1 – Objects and Classes

An acronym summarizing David Taylor’s Object Oriented Management book:

Mom is Messages surrounding Objects invoking Methods

Objects communicate with messages. Each message corresponds to a method call within the Object. This basic behavior allows objects to have behavior based on methods. Each object has it own set of data which the methods can access.

“Kissa” is a Class with inheritance with super-class and sub-class forming abstractions.

Classes define the parts of an object. They form a template defining all the methods and data available for that object. A class may have a hierarchy of inheritance. The super-class may be inherited from a sub-class. In this way one can create abstract objects to represent the real world. An abstract vehicle class becomes a super class for both the auto and airplane classes. An auto or airplane IS A vehicle – the IS A relationship.

“Pie” is polymorphism implemented in objects by instantiation and encapsulation.

Polymorphism literally means many forms. Through inheritance we see classes taking many forms. There are many other ways to express many forms with objects. One object may contain another object. Objects also may be composed as needed to form complex systems. Polymorphism means that the same messages perform differently. The instance of a single object is when one uses a class to create a new object. Objects can then populate the application, each with its own context. Each object hides its data from the rest of the world. This manner of data hiding is called encapsulation. It guarantees that only the class owner or programmer makes the changes necessary to change its own methods.

C++ design goal: make objects have the look and feel of types.

Bjarne Stroustrup's homepage: http://www.research.att.com/~bs/
Peter Coad’s view: http://www.togethercommunity.com/coad-letter/Coad-Letter-0010.html
C++ Style guidelines

 Keep open braces on the same line as the opening statements

 Capitalize the first letter of all class names

 Use a lower case letter as the first letter of all variables

 Use all CAPITALS for constants

 Use descriptive names for documentation, self-documenting code

 Use method names, which describe the object behavior (verbs)

 Use class names, which describe the Object (nouns)

 All class data shall remain private (encapsulated)

 Use spaces for readability like before and after most operators

 Name template types conceptually like the STL names

 Document any unclear item you have to think about

 Do not nest the “?” operator

Favorite references in C++ Primer Plus::

429 – Overloading Restrictions

481 – Static Class Member Functions

497 – Fixing the assignment operator

511 – Pointer Access Rules]

584-593 – Summary of Class Definition Rules

743 – Great String example

769 – Iterators

842 – Manipulators

Prefer Const to Defines: file:///D:/EC/EI1_FR.HTM#dingp19
Stopwatch class: http://gethelp.devx.com/techtips/cpp_pro/10min/10min0500.asp
Random shuffle: http://gethelp.devx.com/techtips/cpp_pro/10min/10min1299.asp
Singleton Pattern: http://gethelp.devx.com/techtips/cpp_pro/10min/10min0200.asp
Overloading <<: http://gethelp.devx.com/techtips/cpp_pro/10min/10min0400.asp
Searching for examples: file:///D:\BOOKINDX\INDEX.HTM
Week 2 - Dynamic Memory

Overriding new and delete: http://gethelp.devx.com/techtips/cpp_pro/10min/10min1100.asp
Using AutoPtr class: http://gethelp.devx.com/techtips/cpp_pro/10min/10min1199.asp
Linked lists: http://gethelp.devx.com/techtips/cpp_pro/10min/10min0599.asp
Classes by archetype: http://www.togethersoft.com/jmcu/jmcu.html
 Moment-Intervals, Person-Place-Things, Roles, Descriptions

Don’t ask what kind of Object: http://www.togethercommunity.com/coad-letter/Coad-Letter-0055.html
Searching for examples: file:///D:\BOOKINDX\INDEX.HTM
Like Automatic pointers: Searching for examples: file:///D:/MEC/MI10_FR.HTM#70366
Trouble with Auto Pointer passing by value: file:///D:/MEC/MI28_FR.HTM#80424
Week 3 - Class Inheritance

Using design templates: http://www.togethercommunity.com/coad-letter/
Pick out archetypes from Moment-Intervals, Party-Place-Things, Roles and Descriptions.

 Lucent Technologies Savings Account Bank of America

 Stocks Account Bank Officer

 Bonds Portfolio Deposit Withdrawal

 Shareholder Compliance Officer Credit Advancement

 Split-Stock Dividend Teller Customer

 IBM Shares John Jones Checking Account $450.00

Class relationships: Is-a, Has-a, Use-a, Is-a-kind-of, Is-like-a, Is-implemented-as-a

Inheritance and Class Design by Scott Meyers: file:///D:\EC\EINHERFR.HTM
 Only Is-a: file:///D:/EC/EI35_DIR.HTM#dingp1
 What do I really mean?: file:///D:/EC/EI44_DIR.HTM#dingp1
Flexible verses Dynamic design by Martin Fowler

Week 4 - Reusing Code

Understanding volatile: http://www.cuj.com/experts/1902/alexandr.htm?topic=experts
Golden gloves of testing: http://www.extremeprogramming.org/lessons.html
An example test class: http://cppunit.sourceforge.net/
Layering code: file:///D:/EC/EI40_DIR.HTM#dingp1
Heterogeneous classes: http://gethelp.devx.com/techtips/cpp_pro/10min/10min0900.asp
Week 5 - Safe Programming (Friends and exceptions)

CUJ Resource Links: http://www.cuj.com/link/index1.htm?topic=link
 Tom Cargill on exceptions: file:///D:\MAGAZINE\CA_FRAME.HTM
A template exception solution: http://www.cuj.com/experts/1812/alexandr.htm?topic=experts
Scott Meyers on counting: file:///D:\MAGAZINE\CO_FRAME.HTM
Testing Framework: See cookbook.htm

Week 6 - STL and Strings

STL concepts: http://www.sgi.com/tech/stl/stl_introduction.html
Man pages on STL: http://www.dinkumware.com/htm_stl/index.html
FAQ on STL: http://www.xraylith.wisc.edu/~khan/software/stl/STL.newbie.html
Week 7 – STL continued

For each or Transform?: http://www.cuj.com/experts/1902/langer.htm?=experts
Writing iterators: http://www.cuj.com/experts/1901/austern.htm?topic=experts
Generic Resizable N Dimensional Array, by G. Bavestrelli:

 http://www.cuj.com/articles/2000/0012/0012c/0012c.htm
Threads and STL: http://www.sgi.com/tech/stl/thread_safety.html
Week 8 – I/O Stream Classes

Review iostream library; introduce Persistent Object Broker design

STL object persistence: http://www.cuj.com/link/subject99.htm?topic=link
 http://www.cuj.com/articles/2000/0004/0004f/0004f.htm
A string stream: http://www.cuj.com/experts/1901/reeves.htm?topic=experts
Code review of the Persistent Object Broker by Gary Hsiao

 Download the August 2000 code at: http://www.cuj.com/code/archive.htm?topic=code
Week 9 – Final, Final Review, I/O Formatting and Efficiency

User defined format tags: http://www.cuj.com/experts/1902/austern.htm?topic=experts
 “What would int do?” Scott Meyers

To compile or not? http://www.aceshardware.com/Spades/read.php?article_id=153
Efficiency, the great shootout: http://www.bagley.org/~doug/shootout/
Other interesting links/subjects:

Casting template for performance: http://www.cuj.com/articles/1999/9911/9911c/9911c.htm
Define a function object: http://gethelp.devx.com/techtips/cpp_pro/10min/10min0100.asp
Environment variable access: http://gethelp.devx.com/techtips/cpp_pro/10min/10min0700.asp
Executing a class member function in a thread: http://gethelp.devx.com/techtips/cpp_pro/10min/10min0800.asp
Function Pointers & callbacks: http://gethelp.devx.com/techtips/cpp_pro/10min/10min0300.asp
Java verses C design: http://www.togethercommunity.com/coad-letter/Coad-Letter-0042.html
Martin Fowler - as an Object Oriented Spokesperson

Abusing Use Cases: abuse.pdf file://abuse.pdf
Is there such a thing as Object Oriented Analysis?: file://analysis.pdf
What is a model for?: file://purpose.pdf
Doing program design (refactoring) after the program runs: file://refactoring.pdf
Keeping software soft - flexible verses dynamic design: file://soft.pdf
Testing Methods - the Ugly Duckling: file://duckling.pdf
Observer pattern encapsulated: http://www.cuj.com/articles/1998/9810/9810e/9810e.htm
Placing classes in a namespace: http://gethelp.devx.com/techtips/cpp_pro/10min/10min1099.asp
Pointers to class members: http://gethelp.devx.com/techtips/cpp_pro/10min/10minJuly98.asp
Putting an object at a memory location: http://gethelp.devx.com/techtips/cpp_pro/10min/10min0999.asp
Test framework: http://www.cuj.com/articles/2000/0009/0009d/0009d.htm
Visual C++ console code

Create with a win32 console project and choose the empty option when creating files. Use the “#include <conio.h>” with a “getch();” at the end of the program to keep the file output on the screen for printing.

Visual C++ debug statements

This code seems to work for placing debug comments as needed:

 #define COMMENT SLASH(/)

 #define SLASH(s) /##s

 …

 #ifdef _DEBUG

 #include <iostream>

 #define dout std::cout

 #else

 #define dout COMMENT

 #endif

 dout << “something to say here” << endl;

 // no doubt

Patterns to discuss: Dispatch of functions

Strategy (Concrete, Abstract)

 O sort comparitors

Dispatching functions verses objects

#include <stdio.h>

 void func1() {printf("func1\n");}

 void func2() {printf("func2\n");}

 typedef void (*fp)(void);

 fp funcs[] = {&func1, &func2, 0};

 int main() {

 int i = 0;

 while (funcs[i])

 funcs[i++]();

 return 0;

 }
}

In object land create an interface, implement to the interface, execute off a collection of interfaced object method calls.

