šœšœšœšœšœšœšœšœ

šœšœWinkle’s_Famous_Formulašœšœšœ

šœšœšœšœšœšœšœšœ

Back        Home

Pythagorean Theorem:

 

c2 = b2 + a2

 

Kinematics:

Dx = xf – xi

vavg = Dx/Dt = (xf – xi)/( tf – ti)

aavg = Dv/Dt = (vf – vi)/( tf – ti)

Dx = ½(vf – vi)Dt

vf = vi + aDt

Dx = viDt + ½a(Dt)2

vf2 = vi2 + 2aDx

 

 

Projectile problems: (vx,i always constant)

Dy = -½g(Dt)2

Dx = vx,iDt

Dx = vi(cosq)Dt

Dy = vi(sinq) – ½g(Dt)2

vy,f = vi(sinq) – gDt

vy,f2 = vi2 (sinq)2 – 2gDy

 

Forces:

SF = Sm anet                                           D

Fw = mg                                           D

Fn = mg cosq

Ff, static = -Fw,x(kinetic)                                            D

Ff, static = mstatic mg cosq

Ff, kinetic = mkinetic mg cosq

mstatic = (Max.)Ff, static / Fn = tanq

mkinetic = Fk / Fn

 

Work and Energy:

Wnet = Fnet d (cosq)

KE = ½mv2                                             D

PEg = mgh                                              D

PEelastic = ½kx2                          D

ME = KE + SPE

MEi = MEf                                                       D

½mvi2 + mghi = ½mvf2 + mghf                         D    

Wnet = DKE

(power) P = W/Dt                                                             

(power) P = Fv                                                    D    

 

Momentum and Collisions:

p = mv                                              D

Dp = FDt = mvi – mvf

 

Conservation of Momentum:

m1v1,i + m2v2,i = m1v1,f + m2v2,f                                        D

 

Perfectly Inelastic Collision:

m1v1,i + m2v2,i = (m1 + m2)vf                                                                      D

 

Momentum and Kinetic Energy remain constant in an elastic collision:

½m1v1,i2 + ½m2v2,i2 = ½m1v1,f2 + ½m2v2,f2                               D

 

Rotational Motion and the Law of Gravity:

Dq = Ds/r

wavg = Dq/Dt

αavg = Dw/Dt = (wfwi)/( tf – ti)

vt = rw

at = rα                                              D

ac = vt2 / r                                   D

ac = w2r

Fc = (mvt2)/ r                             D

Fc = mw2r                                  D

Fg = (Gm1m2)/r2                              D

G = 6.673 x 10-11 (Nm2)/kg2                             D

wf = wi + αDt

Dq = wiDt + ½α(Dt)2

wf2 = wi2 – 2αDq

 

Rotational Equilibrium and Dynamics

τ = F d (sinq)

 

Moment of Inertia:

 

Thin hoop about symmetry axis ( rotating around the center point of the circle)

I = mr2

 

Thin hoop about diameter ( rotating around a line axis, which is one of the diameter of the circle)

I = ½mr2

 

Point mass about axis ( a point of mass orbit around another point of mass)

I = mr2

 

Disk or cylinder about symmetry axis ( rotating around the center point of the circle)

I = ½mr2

 

Thin rod about perpendicular axis through center(axis of rotation at the midpoint)

I = (ml2)/(12)

 

Thin rod about perpendicular axis through end (axis of rotation at the endpoint)

I = (ml2)/(3)

 

Solid sphere about diameter

I = (2mr2)/(5)

 

Thin spherical shell about diameter

I = (2mr2)/(3)

 

τnet =Iα                                              D

 

Angular Momentum:

 L= Iw

 

Rotational kinetic energy

KErotational = ½Iw2

 

 

šœšœšœšœšœšœšœšœ

 

 

 

 

1

Hosted by www.Geocities.ws

1