Vulnerability Database Integration with Intrusion Detection Systems

By

VINCENT LAW
B.S. (Boston University) 1990

THESIS
Submitted in partial satisfaction of the requirements forthe degree of
MASTER OF SCIENCE
In
Computer Science
In the
OFFICE OF GRADUATE STUDIES
of the
UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Dr. Matt Bishop (Chair)

Dr. Karl Levitt

Dr. Felix Wu
Committee in Charge

2003

Table of Contents

Page
LISt Of FIQUIES ...t e e e e e eneaes \Y
LISt Of TADIES. ... e %
ACKNOWIBAGEMENTS ... eeees Vi
ADSITACT. ... enaea Vil
L. INEFOAUCTION ..ttt e et e e e e en e e 1
1.1 MOTIVALIONS ...ttt ereee ettt e ettt e e et e e e e e e e eenneaas 1
1.2 Background and RECENT WOIKS............iiiiiiiiimmmmie et 2.
1.3 ODJECHIVES ...t 8
1.4 TNESIS OrganiZaAtIONuuuuiieeeiieiiiitmmmm et e e e e e e e e e e e e e eeeennanns 9
2. Vulnerability AnalySiS CONCEPLSuuuiiiiiiiiiieti et 10
2.1 DEEECHIONS ...ttt ettt emmmmm ettt e e ettt et e e e et e e e e e e rnn s 10
2.2 Vulnerability ANalySiS OVEIVIEWcciiiiiiiiceeiee et 11
2.3 Vulnerability CategoriZationuuuiiieee et ees 12
2.4 Landwehr Classification SCheme............cooimmmiiiieeeeee e 12
2.5 Aslam Taxonomy SChemMEeuiiiii i 13
2.6 Krsul Classification SCNEMEcoooiiiiiiiaii e 15
3. Applying Vulnerabilities in Intrusion DetectionSccovvveviiiiiiiineeiiinneees 16
3.1 Integrating Intrusion Detection and Vulnerability Analysisccceeivieeiienns 16
3.2 Specification-based Intrusion Detectionsccccvvvveiiieiiiiiiieece e 18.
3.3 Integrating the Vulnerability Database and the Specifiation Languages.......... 20
i BENETIES .. e e e 24
4. Interoperable Vulnerability Schema for IDSesccccooiiiiiiiiiiiiiiiiiiiis 25
4.1 Considerations for the Schema............coooicceeeiiii e 25

4.2 IDS-compatible Vulnerability SChema............ccooioiiiiiiii e 31

4.3 Examples on How to Populate and Use the Vulnerability Dabase 36
4.4 Integration with Specification Language using a Genat Example 39
4.5 Integration with Specification Language using a Practial Example.................. 42
4.6 Consistency and Error Preventionuee oo veeieeiiiii e 44
5. Integrations with Specification-Based IDSeS........cccceuiieeiiiiiiiiiiieieieeeeeeenn, 46
5.1 Integration with Non-distributed Intrusion Detection Systems..............cccceevvnnnn. 46
5.2 Integration with Distributed Intrusion Detection Systems.............cceevveeeeevennnnnnn. 55
5.3 Case study: Building BIOCK APPrOaCh...........oii i 60
6. Conclusions and FUture WOrKS............uoiiiiiiiiii e 62
6.1 SUMIMAIY ..ot e e et e e e e e e et e e e e et e e e e e s e enan e e enna s 62
6.2 Applying Penetration ANAIYSIScooiiriuimimmmeeise et 63
6.3 FULUIE WOTKS ...t e e e 66
RETEIENCES ... ettt e e e e e e 68
AppPeNdixX A. SOUICE LISTINGScovvuviiieeiieetimee e e e eeeiis e e e eeeiis e eeeennen e d D
A.1 Source listing for generic example in SECtION 4.4ooooiiiiiiiiiiiieeeeeee 76
A.2 Source listing for practical example in Section 4.5..........cooiiiiiiiiiiiiieeens 78

List of Figures

Figure 1. Intrusion Prevention — A High-Level Infrastructurecc........... 16

Figure 2. Relation Diagram among the tables in the vulnerabilit database35

Figure 3. A Distributed IDS model integrated with vulnerahlity database...... 59

-iv -

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

Table 6.

Table 7.

List of Tables

Page
Vulnerability _Identification..............coouumiieiiiiiii e 32
Vulnerability _ClassIfiCation...............oouuimmeieeiiiiii e 32
SYSERIM Lt et e 33
Vulnerability TMPaCT........ccooiiiiiiiii e 33
Vulnerability EXPIOIt........oouuii e 33
ENVIFONMENT ... s 34
PatCR . 34

Acknowledgements

There are so many people that | would like to thank.,Hiteank God and my parents
for bringing me to this world. The intelligence and das given by God through my
parents, and their supports and encouragement have beastiG@mspecially whenever |
was dealing with tough times. The guidance from my pardatshelped me realize
human values. They always emphasize the importancenbihuous self-improvement. |
also thank my sister for bringing joy to my life andking me forget the “growing pain”
| was going through, especially when as a baby she “tfuste by letting me hold her

and “leaving” her safety net to me — an elementary dé¢hdo

| am indebted to all the teachers who have taught meghout the years because if not
for them, | would not have been able to be at my cueduacation level. | regret not
being able to repay all of them as some of them aramoihd any more. My classmates
throughout these years have been great too becausaréhgng ones who | shared most
of my daily life with, both in good and bad times. Exkaugh we are having our own

lives now, we still consider our friendships precious.

If not for the guidance from my undergraduate professavsuld not have been able to
go on to my current graduate studies right now. They presémi@e what college
education is supposed to be, both in terms of academic/aateats and of personal
interactions and maturing processes. In addition, thewed me the meanings and
significances of having appropriate attitudes in advanced-séwveying. | also thank the
Solomon family for their volunteer assistance in alaptation to American life during

my undergraduate years. The American social life amitions that they demonstrated

-Vi-

were invaluable to me when | was trying to settle dowa esllege student. Their
hospitality helped ease my transition from a high steaduate in Hong Kong to a

college freshman here in the United States when | begatohege life in Boston.

| am also grateful to all my current and former empisynd colleagues. They helped
me build up my professional experience. Their experiégettéo my understanding on
professionalism and the significance of pursuing furtheraécin order to enhance

and extend the materials | learned from college.

Without the relentless work from my graduate profesaacsadvisors, | would not have
been able to learn more materials which are helpfaiyahesis work. | pay my tribute to
my thesis advisor, Dr. Matt Bishop, for his non-stogdimginess, assistance, patience,
insights, reviews and comments on my thesis progrésa/d also been grateful for other
faculty members in related areas, especially Dr. Kavltt and Dr. Felix Wu, who have
provided me additional supports and inspirations, both ftain respective courses,
which are helpful to my thesis, and from the expenisineir own research areas in
computer security, networking and operating systems. Spbaiats are for Mark
Crosbie and Pierre Pasturel for their extra insighthhem own professional projects and

research works, giving me invaluable ideas during the progresyg tfesis work.

Last but not least, this acknowledgement would not be Etenprithout mentioning Kim
Reinking, Melinda Day, and other administrative staff menmbéne department office
for their tips on the administrative side of my studi&dhout their guidance, | would not
have been able to make the administrative deadlinesgdumyracademic progress. Their

efforts for the graduate students have been amazing.

- Vii -

Vincent Law
June 2003
Computer Science

Abstract

One of the factors affecting the effectiveness of an intsion detection system is how
well it can deal with and protect against potential threatsVulnerability schema
offers a classifying scheme to existing vulnerabilities. T provides IDSes a more
dynamic way to detect attacks, even if the attack has not be&aunched before.
Hence, it is more desirable to integrate vulnerability databse with an IDS so that
IDSes can react to potential threats, such as previously-tound buffer overflow and
exploitation due to incomplete address space cleanup, im#ore real-time manner.
Such integration eliminates the dependence on attack-pattersignature, and the
vulnerability database does not rely on any update or upgrade in thoperating

system.

The integration of vulnerability database with the IDS also involes the use of
specification language. Specification language describes a sfieation of a module
by defining negations to all vulnerabilities that this modué can be exploited by. For
easy implementation, an easy-to-understand schema is desi@ud the schema
should base on a vulnerability taxonomy which classifies vulnabilities in

unambiguous fashion.

This thesis suggests a model that integrates a vulnerabilityathbase with existing

IDSes. In order for this model to work well as a practicakolution for intrusion

- Viii -

detection systems, this thesis also suggests a relationdlesoa for the vulnerability
database. A specification-based intrusion detection systemtégrated with a
vulnerability database allows specifications to be dynamically ugated upon any
discovery of new vulnerability. This brings research on both vimerability analysis

and intrusion detection closer together.

-iX -

Chapter 1 1

Chapter 1 Introduction

1.1 Motivations

Computer security is an ongoing area of research in ceempcience, and it will
continue to be so as long as there is a possibilitg@iriy breaches. The consequences
of someone breaking into a system and stealing, destrayirafering another person’s
identity have been pictured in the movie “The Net” [41]evenSandra Bullock’s
character suddenly became a non-person. A more terrifguragion can happen when
the whole system was held for ransom, as in the ni@weHard 2” [48], when the
intruders broke into the systems for the airport cdegater and “kidnapped” everybody
inside the airport and every incoming flight by forcing éimport authorities to follow
their instructions or else they would give the pilotshose incoming flights instructions
that would lead to fatality. These situations happened inaspbut they could also
happen in real life, as shown by the theft of creaiicumbers which are later used in

fraud and identity thefts [10].

Vulnerability analysis and intrusion detection have li®enseparate but related
branches of computer security research. Advances amation in software

development and software analysis have led vulnerahbiliyysis researchers to study
methods for automating vulnerabilities detection. Vidbdity researchers often

reference and update the vulnerability databases #nagtle constantly using.

Meanwhile, with some modifications, any of these vidbdity databases can also be
integrated for use in an intrusion detection systemusecthe database provides a source

of vulnerability data for the intrusion detection syst&uring a process, the intrusion

Chapter 1 2

detection system could verify that process with itc#gjgations, which were created or
updated based on the resulting vulnerability data for timetegs from the most recent
vulnerability search. The IDS can use this informat@detect attacks in a more real-
time fashion. Hence, it makes potential break-ins mdfiewdt to take advantage of the

vulnerabilities during that process.

This thesis discusses a vulnerability classificatidresne compatible with intrusion
detection systems. It also presents examples to deratenkbw the database, based on
this unambiguous classification scheme, can be usedwsplecification language to
define consistent specifications that the vulneralslivg! violate. The IDS will use

these specifications to detect exploitations of tiveseerabilities.

1.2 Background and Recent Works

The general public did not pay much attention to cyberkstaotil the very first
computer virus was documented during the early 1980s [42]. Repattte dirst
computer worms were released at about the same tiog. dfithe reports regarding a
system under attack were unknown to the general publicamgibf the first high-profile
network attacks in occurred 1988. In that attack, a woresspthroughout the Internet.
One of its propagation methods relied on a program thdtaisgstem callyets Since
getslacks a boundary check [16, 43], the programs calling w@reerable to a buffer
overflow attack. The worm exploited thislnerabilityand other vulnerabilities in
standard services provided by two versions of the UNIX oipgraystems.
Vulnerabilities or security holesareweaknessemtroduced by security-related bugs

during one or more program executions [14]. The worm was apihareleased

Chapter 1 3

accidentally and did not delete or alter files. The oo would have been more

destructive and disastrous had it been designed to do damage.

Past experience has shown that most of the attackspeyne or more of the following

actions:

1. System file modifications

2. Unexpected and undesired user privilege modifications duringrang process
3. Log file modifications

4. A setuidcreation allowing root access to files or processes

5. Password guessing and cracking

6. Symbolic link modifications during program executions

These actions are thilding blocksof attacks that kernel-based intrusion detection
systems can detect because these actions are the oéshe vulnerabilities existing
inside system calls [13, 52]. Unfortunately, most softvekeelopers are not aware of
these vulnerabilities, neglect them, do not understandtheyvcan be exploited, or
assume that these vulnerabilities will not be exptb[60]. One good examplsendmail
version 8.9.3, callstrcpy285 times [50], even though the funct&tncpyis prone to off-
by-one error in buffer management, which is criticalshese the syntax of C language
requires the a string variable assignment to includeuhelmaracter at the end of the
assigned string value [51]. This buffer overflow vulneligballows the attacker to insert
malicious code to obtain privileged access or change abiities, etc. Besides buffer
overflow, the following is a list of high-level sectyrproblems when flaws are found in

most system calls [27, 28].

Chapter 1 4

=

Improper 1/O validation, including the famous buffer dieev problem

N

Improper program and data sharing, such as the raceioondit

3. Improper use of cryptography, like the use of only the 8rsharacters of the
password in many versions of UNIX [31]

4. Weak authentication, allowing attacks such asihe-in-the-middlettack

5. Insecure bootstrapping, leaving undesired privileges for nerigged users after
system initialization

6. Improper configuration of the system, including accessrobsettings and

installation management/operation control

TheInternet Wormattack mentioned above highlights the importance of iiatnus
detection systems that can use vulnerability informabecause the existence of
vulnerabilities enables intruders to break into systenmeeSiulnerabilities can be
classified, we can also define consistent specificatiassd on vulnerability
classifications. With these specifications, thecktaatterns will then be able to be
detected during an intrusion attempt. More details on hangd done will be explained

in later chapters.

There are three major approaches in intrusion detsct@ommaly detection, misuse
detection/signature-based detection, and specificaticzdlmbetection [45]. Most of the
traditional intrusion detection systems are signatusedbain which the audit data is
collected by the operating systems. Detection is basedabching the audit data to
patterns corresponding to currently known attacks. Neess, attacks can be changed

so that the audit data will not match the attack pagteand the IDS will not be able to

Chapter 1 5

detect the modified attack. Katherine Price demonsithi “the audit data supplied by
conventional operating systems lack content usefuhisuse detection” [37]. So

signature-based IDSes will miss some attacks.

Anomaly detection uses a statistical profile to defisngle class of data, regarded as
normal behavior, coupled with a threshold selection gleeeto define anomalies.
Anomaly detection does not miss attack patterns becadsestnot use attack signatures.
However, in practice it has too many false positivestadeful. The difference between
normal behaviors and anomalies can be difficult ton@efl26]. For example, user A
almost never creates a file, but when one day heesedile, this action will be

identified as an anomaly, even though the user is ogeatfile to store his own works.

This “anomaly” is in fact a false alarm.

By contrast, specification-based intrusion detectidraged on conformance to
specifications. It emphasizes detection of intrusiorthe@g occur, instead of depending
on anomaly definition, or the static data comparisoitis the known attack patterns. It
eliminates delay in accessing and filtering the log datso Al rules out any dependence
on the log data as log data could be altered by the intbedere it is logged, or could be
missing or inaccessible due to certain other relatedatnmternal operations [43].
Furthermore, an attacker could inhibit the collectiofudther information. On the other
hand, intrusion patterns can also be modified, asisge mutations shown in computer
viruses. Therefore, an ideal intrusion detection systeadls the ability to detect new

attacks.

Chapter 1 6

In recent years, papers have suggested real-time speaifit@sed intrusion detection
instead of the offline signature-based approach. Realiimesion detection enables
IDSes to identify exploitations and to react as thecatprogresses. Distributed intrusion
detection systems, especially with the interest-bagpeoach proposed by Gopalakrishna
[17], introduce the use of intrusion detection agents angoaoents placed in different
locations to detect attacks at different portions of #tevark [35, 45]. The kernel model
proposed by Crosbie and Kuperman [13] also introduced the asewmiplate as a

reference for unknown attack detections.

In 1994, Calvin Ko, George Fink, and Karl Levitt introducegpacification language to
look for violations of security properties during executid2f§ [The specification
language allows the use of parameters in order to speftdyent allowable scenarios
based on different states. To enforce these spedifitsaim real-time intrusion detections,
using the system kernel is a viable approach. In 2001, Madberand Benjamin
Kuperman suggested an approach in IDSes called the “Buildauk Bpproach”, in
which a minimal but adequate intrusion detection architeasuadded to the kernel.
Thus the kernel examines the system calls and thespomding parameters to detect if
there is any malicious usage [13]. The paper also outlites@alate for determining
whether there is any malicious call made during any moriée template mentioned in
the paper is primitive because it was an initial proptzsah innovative design.
Refinements are needed to provide a more complete schethe template without
sacrificing the overall performance inside the kerneingya schema based on a
vulnerability taxonomy will improve the template beoatise schema represents the

structure of the vulnerability database which, accordithedaxonomy, is classified

Chapter 1 7

unambiguously. A vulnerability taxonomy is scalable wébkpect to the number of
vulnerabilities, as demonstrated in the models proposedtbyTaimur Aslam [2] and
Ivan Krsul [24]. Besides, since in general the databaseependent of the vendor and
version of the operating system, its data can beaeded in any operating system as
long as its client program supports that particular operatstem. This means that a
vulnerability database will not be affected by any chaogdate, or upgrade in the

operating system.

There are several existing sites that store vulnetab#ita, some of them private and
some of them public. Some of these sites simply prowdigerability data storage and
descriptions, while others have additional classificatidormation. They serve various
purposes such as penetration analysis, code analysigudiitig. Among them, the
regularly maintained ones provide a helpful data sourceoimputer security researchers
to obtain up-to-date information about the vulnerabilitiean Krsul lists some in his

thesis [24]:

1. The CVE site is maintained by MITRE [30], and keeps recof@sch
vulnerability, its description, and other referencesrimtation.

2. The Computer Emergency Response Team (CERT) maintdetsibase [12].

3. Security Focus Online stores vulnerability data accordingehdor, product or
technology name, keyword, impact, Bugtraq ID number, a8 @umber. It also
offers discussion forums, other users’ suggestions, antdsd if available, for

the reported vulnerabilities [39].

Chapter 1 8

4. Open Source Vulnerability Database (OSVDB) is an indepérat&hopen source
database created by and for the community. Their g6l ovide accurate,
detailed, current, and unbiased technical information” [33].

5. National Institute of Standards and Technology’s ICATabhase has a searchable
index of information on CVE-compatible vulnerabilities [19].

6. The database in CERIAS from Purdue University uses a mpodpbsed first by
Taimur Aslam and later enhanced by Ivan Krsul [11].

7. The University of California at Davis maintained a vulibdiy database based

on the model defined by Matt Bishop.

1.3 Objectives

One of the goals for this thesis is to propose a‘ir@wision prevention” model merging
both intrusion detection and vulnerability database.oisy mechanism aimed at
prevention is more effective than detecting knowncatdecause prevention blocks all
attacks. So, just as we have to prevent the known vulnéiegbitom being exploited, we
also want to detect any new, exploitable vulnerabilifieshe proposed model, a
vulnerability database keeps current vulnerability inforomabbtained from search
engines or other sources. The schema for the vulneyatalinbase serves as the
guidelines for the specifications inside an intrusion detedystem, allowing the IDS to
query the database. The IDS can then check whether ang wdilnerabilities is being
exploited during the current transaction. Since the i&i&ences the vulnerability
schema, the schema must be suitable to this purpos@f®as thesis proposes a revised
version of the Aslam/Krsul classification model. Thigggests a new direction towards

better intrusion detection.

Chapter 1 9

1.4 Thesis Organization

The organization for the thesis is as follows. Chaptesviews the background of
vulnerability analysis, including a discussion of sometig vulnerability taxonomies.
Chapter 3 explains the concepts in the integrationsvafreerability database into
intrusion detection systems. It also illustrates #iations between a vulnerability
database and the specification language used for intrusiectides. Chapter 4 proposes
modifications to the model from Aslam and Krsul appraggrifor use with an intrusion
detection system. It goes on to illustrate how tineerability database can be efficiently
used together with a specification language for intrud&iection systems. Chapter 5
describes the use of the vulnerability schema on spatigiicbased distributed intrusion
detection systems. Chapter 6 concludes this thesis aamg gfiestions as directions for

possible future research.

Chapter 2 10

Chapter 2 Vulnerability Analysis Concepts

2.1 Detections

A fundamental approach in securitydistection Detection can be either dynamic, where
one tests a program by executing it, or static, whichls@gsemantic and syntactic
analysis of source code. The decision between whétbeatatection should be dynamic,
static, or a mixture involves trades-offs between acyuaad effortsAutomated
detectionis any effective detection method performed with littleno human interaction.
It can be divided into two parts: the automadetkction of intrusionsas done by an
intrusion detection syste(fDS), and the automatektbtection of vulnerabilitiesas done

by a vulnerability search engine.

Bugs are the errors inside computer systems and programsnfiossible to design and
implement error-free software or systems, espechign the software or systems will
be modified in the future. However, various techniquestaold can analyze software
and systems for bugs such as memory leaks [16]. Hence, laays that lead to errors

can be found. These bugs should be reported back to thepkengeso they can fix them.

In typical software engineering practice, testerg@sponsible for reporting bugs and
suggesting functional improvements before any upgrade is mathe developers.
However, security-related bugs do not introduce lack of ionality, which would
directly affect use of the system. Instead, secuetgted bugs introducgeaknesses
during the executions [14], and, as mentioned before, thesknesses are called
vulnerabilitiesor security holesExamples include unauthorized access, unprivileged

consumption of privileged resources or race conditietts,Vulnerabilities are errors in

Chapter 2 11

programming, configurations, and operations [2], as a refeith@r poorly or
incorrectly designed or implemented security impleme@mator conflicts within the
implementations. The determination of whether a bagvisinerability also depends on

the precise security policy of the analyzed system.

2.2 Vulnerability Analysis Overview

A formally verified computer system can be mathemdiascribed by &rmal top-
level specificatiofFTLS. The system is proved to be consistent with the ggquolicy
once we mathematically verify that it satisfies HILS at all times [8]. Unfortunately,
most systems cannot be described mathematically. Dinerediinerability analysis
comes into the picture. In vulnerability analysis, taoselassifications allow the
vulnerability data to be categorized into useful sche®Esuch as signatures for
intrusion detections, or into categories describing envirohicenditions necessary for
an attack. Vulnerability analysis schemes inclBRd80S1] andProtection AnalysigPA)

6, 32].

In Bishop’s scheme [8], assume a given vulnerability{vi, v, ..., vn} has a set of
characteristics denoted @s= {C,1, C\2, ..., Cyn}. FOr any combination of vulnerabilities
to be exploited at the same time, the intersectiaall @if their respective characteristics
set should result in a non-empty set, i.e., theseevahlities should have at least one
common characteristic in order to be exploited astdrae time. For example, for a race
condition, the two possible characteristics are tthatsystem calls reference a file by
name, and between the calls, the binding of the filrens changed. Negating one

characteristic will simultaneously eliminate the exgalbility of all vulnerabilities having

Chapter 2 12

the characteristic [8]. One effective method of démsieg a characteristic is to use a
specification languagewhich allows the definitions of intrusion specificats based on

vulnerability classification. This will be explained ietdil in the next two chapters.

2.3 Vulnerability Categorization

One goal of vulnerability analysis is to identify and siisvulnerabilities before they
are exploited by the attackers. Data about vulneresilinust be organized to be useful
for characterizing faults and designing solutions [3]. Hoawulnerabilities are
classified depends on how the data is to be reference@arlasaddition, having an
organized, systematic classification of vulnerabilitaa avoid data inconsistency and
ambiguity. Therefore, various domain-specific vulnerapdiassifications have been
proposed by Rubey (1975) [38], Potier (1982) [36], Bezier (1983) [B]s¥\(1985) [54],
and Knuth (1989) [20]. The following sections describe tiyexeeral classification

schemes.

2.4 Landwehr Classification Scheme [25]

Landwehr, Bull, McDermott, and Choi from the NavakRBarch Laboratory proposed a
taxonomy based on the observations that most soffa@ues histories were not
documented. They studied about 50 security flaws descrilibd literature. Their
proposed classification had three general categ@iesesisTime of Introductionand
Location Genesigefers to the introduction of each vulnerability, wiestlh is intentional
or not, and if it is intentional, whether it is madias or not. It further classifies the
intentional vulnerabilities into one of the six sudgdes or the unclassified “other” class,

while the unintentional ones are classified based onatggaries adopted in RISOS [1].

Chapter 2 13

Time of IntroductiorandLocationrecord the stage of software development and where
during the program execution the vulnerability is introduéedobvious weakness of

this classification is that if the circumstanceshaf introduction are unknown, it is
usually not clear whether the introduction of the vudbdity is intentional or not, and
whether it is malicious or not. Another difficulty esrrectly identifying the time of
introduction of the vulnerability because different garimay disagree when the
vulnerability is introduced. Similarly, such controveedso affects determining where
the vulnerability is introduced. This is because, basetiisstheme, the factors for
determining a vulnerability include its nature of exploitatibme of introduction, and
where it is introduced. Different definitions of a vuiakility based on nature of

exploitation may involve conflicting times and placesntfoduction.

2.5 Aslam’s Taxonomy Scheme

In his Master’s thesis [2], Taimur Aslam presented artary for the vulnerability
database in the COAST Laboratory at Purdue University dédtiabase had 49
documented UNIX security faults collected from variousuveses, including the
Computer Emergency Response Team (CERT), mailing listislitarature surveys. The
purpose of his proposal was to create a systematic sdbestassify faults and to avoid
ambiguity by placing each fault into one category. Hi®homy excludes classifications
of any non-software-related faults, and focuses onlyodtware implementation and
operation. He defines three categories, nampérational environmentglandcoding
faults. Configuration and permission errors are clastifis operational faults.
Environmental faults are those caused by individual funalipgorrect components

interacting together incorrectly. Any error caused by gwogramming such as buffer

Chapter 2 14

overflow and race condition is a coding fault. Howevslam’s model does not consider
the case where one vulnerability leads to anotheerdift vulnerability. Two examples

illustrate this weakness:

1. A program execution calls two components that are iddally functionally
correct but have interaction errors when called wigdarticular set of parameters.
The decision procedure presented in the taxonomy a&sstiis error as an
environmental fault because of the interaction error éetwhe two components.
However, since the fault is introduced in the sourakaaf the components, this
is also a coding fault. The source codes of the compefeihto handle the error
condition introduced when the components interact gaith other using these
parameters.

2. A packet filtering firewall's vulnerability allows attackeio upload a program.
This program can compromise the host protected by thedfiréy allowing
unauthorized access to the host resources and mayinesioS attack to other
users. This is an example of a coding vulnerability. ddde allows an open
window because the code “opens” the window upon meetengdhditions that
the incoming request in the header is legitimate. Thiddé¢o another coding fault
when additional malicious source code attached to thetthe request was
compiled and executed in the compromised host. If thdteeorogram grants
additional access privileges to the malicious userhtis¢ becomes
environmentally vulnerable because the program, whialmistibnally correct, is

incorrectly interacting with the access list of tlgstem.

Chapter 2 15

2.6 Krsul Classification Scheme

Ivan Krsul extended Aslam’s taxonomy in his PhD the?4d.[In addition to the three
categories that Aslam’s model adopts, Krsul's model adusw category for all
unidentifiable vulnerabilities, maintaining the scalabitifithe taxonomy itself. In
addition, his model includes other important information ikpacts, exploitations, and
references, etc. The additional information is erely useful in vulnerability research
because it allows developers or administrators to mothgvulnerabilities. An

important feature in his taxonomy is the realizatiomgdacts, which defines both the
immediate and ultimate results upon the exploitatiath® vulnerability. Sometimes
when a vulnerability occurs, it will also open the dapahother vulnerability. Consider a
packet filtering firewall that has to rely on the rostey permit data flow based on the
packet information. When the packet is valid, the rowik‘open its window” for the
packet to continue its transmission. However, this “opow” is also a vulnerability
itself because it allows a valid packet to go through. élew, there is no guarantee that
the data buffer inside a valid packet does not have arflow problem. The buffer
overflow vulnerability in a valid packet becomes an imgaused by the “open window”
vulnerability in the firewall. The realization of irapts caused by a vulnerability allows
direct, immediate preventions on residual vulnerabilivébout waiting for the usual
precautions to start only upon when they are detectedmiadkss both the detections and

preventions more effective.

Chapter 3

Chapter 3 Applying Vulnerabilities in Intrusion Detections

Intrusion Vulnerability
Detectiot Analysis
Vulnerability Vulnerability
Databas Taxonom!

Figure 1. Intrusion Prevention — A High-Level Infrastruetur

3.1 Integrating Intrusion Detection and Vulnerability Analysis

Figure 1 shows a picture of an organization in which aenability database responds to

16

gueries from an intrusion detection system. This extdmelsurrent intrusion detection

model to take advantage of the vulnerability data irddtabase. It prevents any new

attack from exploiting any vulnerability that an IDS maot be able to detect based on

only the attack pattern known to the IDS. A vulnerabdigyabase is added to the model

to maintain the vulnerabilities data on the systems bhamgtored. Therefore, as each

vulnerability is discovered, it will be classified acdimg to the adopted taxonomy and

added to the database, so that the vulnerability datecisrgnt as possible. Also, any

previously unknown attack exploiting any of the newly di@red vulnerabilities will be

detected.

Chapter 3 17

Given an attack pattern, a specification-based intnud@&ection system can use a
specification language to describe how the pattern caedeted. Whenever a
vulnerability is discovered, its exploitation methodlwe classified based on the
adopted taxonomy and saved into the vulnerability datadsapart of the vulnerability
data. The exploitation method describes the attackrpaised in order to exploit this
vulnerability. The negation of this attack pattern wigm be defined using specification
language. Therefore, using the vulnerability database H&dpspecification language
define the negation of any attack pattern. Since afidicated processes that can be
exploited by the same vulnerability must follow the sar@gation, specifications can be
defined based on the data queried from the vulnerability degabathis way,
vulnerability classification helps define the specifmatfor each process. The IDS can

then obtain and apply this specification to detect theerability being exploited.

The schema for the vulnerability database presentsicstal and relational data source
that allows storage, queries, maintenance, and expa28phe database stores the
vulnerability data gathered from the results of varicuiserability tests and other
external information such as newly-applied patches pedifications, etc. The IDS can
guery the data to extract vulnerability information abospecific system call/module.
For example, suppose that a system call is known te Wanerabilities v, v, ..., W,

and the database has already stored the data fomileseabilities. The specification of
this system call can then be defined based on thisldaddition, the schema for the
vulnerability database used in this model, which will beaitkt in Chapters 4 and 5,
includes the specification for each classified vulnengbiliherefore, we can also obtain

a list of system calls that can be exploited by @givulnerability so that we can add the

Chapter 3 18

specification of this vulnerability to every system aalthe list. For instance, system
calls m, mp, ..., m, have a specific vulnerability. Querying the list of sysi=lls
exploitable by this vulnerability should return a list Mm4, mp, ..., my}. As the queried
vulnerability data describes how and when this vulnetgbdibeing exploited, it enables
the specification-based intrusion detection system truohate which system calls can be
exploited by this vulnerability. Let Ml M be the list of system calls that have not
included this vulnerability in their specifications yet. Aftee query, we can add the
negation of the attack pattern of this vulnerability ® specifications of all of the system
calls inside M’ because the query returns M and_MVl. Since each vulnerability in the
database is already classified into a unique, unambiguou®ogtaging the

classification based on a taxonomy like Aslam’s asufs also makes its corresponding
specification unambiguous. In essence, the vulnerabilitithe database produce the

guidelines to enforce the security policy of the system.

Another advantage of having a vulnerability database insislenibdel is that the data is
accessible to all components that need to referenissite ofvho should have access to
the database is not part of the module. While this issueportant, it relates to the
database itself and not to the proposed model. Thus, Nveotvexplore this issue any

further.

3.2 Specification-based Intrusion Detections
When an application program is to be executed, certaithgrocess(es) inside the
operating system will be called upon to start the executiag process involved in

beginning this execution becomes an active entity, whdeapplication program by itself

Chapter 3 19

is a passive entity. Something needs to exist in ord@otator the execution of this
application program, especially when it is performed diistributed or concurrent
fashion under a given set of system environments. A pmogrecution is characterized
by a set of attributes and sequences of events, and aomsuaith as an intrusion
detection system, can determine the state of the progxaoution based on these
attributes. For example, tllmemonis a UNIX request-handling procedure that is
invoked whenever an alteration, an addition, or a id&l&tr other event occurs, and its

purpose is to decide what to do with the event(s).

The requirements for confining the state of executioa et of allowed states, given
certain input parameters, are gpecificationf the program. Specifications are security
definitions describing a set of allowed states determingtidogecurity policy.
Specifications can be defined based on the vulnerabilityidahe vulnerability
database. As described in 3.1, vulnerability data servite agiidelines for the security
specifications because these specifications are thdéocoaation of the negations of the
vulnerabilities stored in the vulnerability database. Tispeeifications are expressed by
means of a programming or scripting language, includinggbeification language
defined in Calvin Ko’s thesis [21]. Specification languagpregses the specifications in
such a way that a list of allowed operations or proceissgefined during a program
execution based on the input state, as long as thd stdt@ passed to the program
belongs to the set of allowed states for this programekample, if writing a file
requires that the current state be in “close”, thenfoéllowing specifications describe the

write action:

Chapter 3 20

1. The allowed processes before the write action shoaldde
a. Opening the file for writing and the state of the fileniSopen” state
b. Assigning a file handle to the file before writing to fite
2. The “open” state has to be maintained throughout the action before the file
is closed.
3. Before the next write action can occur, the file ttabe closed and the state of the

file must return to “close” state.

3.3 Integrating the Vulnerability Database and the Specificatioanguages
Unknown attacks can be detected if specification-baseattitat is adopted. The
specifications describe the allowed behavior of securitizal programs. Attacks violate

these behaviors.

Execution event sequencae the sequences of events corresponding to the operati
performed by a distributed process. Traces can be modekmatically. For example,
given a distributed process p ={m, ..., ph} where p is a process, the execution trace
V, is the merge of all \'s, where each Y is the individual process trace. Traces can be
classified intoSystem TracesndProcess TraceR3]. System traces are sequences of
events for the whole distributed system, and procassdrare sequences of events for
process(es) within the system. Thug,i%/a subtrace of the system trace V, apdi¥a

subtrace of Y.

A specification language focusing on program behaviors applbeggm traces and
parallel-environmengrammars (PE-grammars) to specify trace policies.PHe

grammar adopted in specification language defines a foamglibge for program

Chapter 3 21

operations. Like other languages, it has a set of terspiaaet of rules calldd/perrules
and a start expression. It also has environment varigble=ep track of the state of the
system. Instead of using static rules directly to @efilanguage, the PE-grammars
parameterize these rules, as a template for thexdgrgeneration of actual production
rules during the parsing stage by replacing the parametégraetual environment

values. For example, consider the following piece otifipation template:

Codes Line

Environment Variables 1
ENVintE =0; 2
LOCALENV intL=0; 3

Start Expression
SE: <progA> || <progB>

g~

Hyperrules 6
<progA> -> <writeA, E>. 7
<writeA, 0> -> <openA> <closeA>{E=E-1;}. 8
<openA>->open_ A{E=E+1;L=1;} 9
<closeA> -> close_A. 10

<progB> -> <writeB, E>. 11

<writeB, 0> -> <openB> <closeB>{E=E - 1; }. 12

<openB>->open B{E=E+1;L=1;} 13

<closeB> -> close_B. 14
In terms of high-level illustration, this piece of gamspecification tries to prevent two
programs from writing to an opened file at the same.tifthe environment variable E
keeps track of the state of a file. Lines 7 to 10 are tpernyles for program A, where it
can write to a file if E is O, as shown on line 8. wkse, lines 11 to 14 are the same
hyperrules for program B. Therefore, these hyperrule®tpyevent a race condition
vulnerability during the file writing process, which can Bpleited in both program A

and program B. Through the environment variable E, the sp®@h parameterizes the

PE-grammar because the value of E is assigned baskd environment, and the

Chapter 3 22

hyperrules depend on the current value of E, which changesopeoimg or closing a
file. Hence, different write permission will be enfed based on the current value of E.
The concept of using environment variable E is analogous testhef a variable in
programming language [21]. To generalize this specificatidhaathe same hyperrules
will be applied to all programs that write a file, vitsstf make a query to the vulnerability
database to return a list of modules having this raceitbmm vulnerability. Then we
assign the same hyperrules for this race conditiomevability to all the modules in the
queried list so that they will all have the same negaticthe vulnerability. This
integration of vulnerability database with specificatimmguage helps prevent a
vulnerability from exploiting any system call that wasviously found to be exploitable
by this vulnerability. It allows all vulnerabilities di¢ same category, subcategory and
exploitation method to be described by the same definedrioyg® Further explanations

on how this specification can be generalized will beudised in 4.4.

In a second example, assume that query result for alditigy v shows that it can be
exploited in processes,i», -.., ph, and assume that specificatigristhe set of
hyperrules needed to prevent vulnerability v from beingabeul. Then we can use the
specification language to includgis the specifications for all of these processes. Fo
example, consider the following generic specificationcliwill further be illustrated in

4.5:

Codes Line

SPEC <(?, Generic, U, H)>

ENV int CREATTMP = 0; 1
ENV int PID = getpid (); 2

SE: <Generic> || <other> 3

Chapter 3 23

<Generic> -> <init> <mktemp> <rest>. 4
<init> -> <not_mktemp> <init> | Nil. 5

<rest> -> any_op <rest> | Nil. 6
<mktemp> -> open_tmpfile-PID { CREATTMP =1, }. 7
<not_mktemp> -> not_open_tmpfile-PID. 8
<other> -> <vop, CREATTMP> <other> | Nil. 9
<vop, 0> -> not_chgtmp. 10
<vop, 1> -> any_op. 11

END;

In this example, v is the race condition vulnerab#itipwing a privileged file to be
symbolically linked by the intruder before another progciianges the contents of this
file, allowing the intruder to access the informationdeshis file. Therefore,,ss the
above specification. The environment variable CREAT TiMHcates whether the
temporary file, which uses PID as its identificationgusrently being accessed or not. If
the file is not accessed by any process, CREATTMP iKREATTMP will be set to 1
upon access, as shown on line 7. The hyperrule on limst £%ecutes the hyperrule on
line 5, which conducts a test defined on line 8 to check ffildnés currently being
accessed or not. If the file is being accessed by anptbgram, the test on line 8 will

fail and so will line 5. As a result, line 4 will not m®on to the hyperrule defined on line
7, i.e., the program will not be able to access tlee Tihe hyperrules prohibit a file to be
accessed or renamed if another program has already dmessiag it. Any system call
exploitable by vulnerability v will have this generic siheation assigned to it by
replacing the string “Generic” in the specificationwihe actual name of the system call.
Specification for any vulnerability, therefore, alsades unique because there will not
be conflicts any more. This prevents specifications foeing ambiguous or
contradictions within the specification for any vulnaligy because any of these

problems can affect the overall effectiveness of imrugdetection. Further explanations

Chapter 3 24

on how to integrate the vulnerability database andpleeification language will be

discussed in the next chapter.

3.4 Benefits

This model uses a vulnerability database. The databadecegpdated as new
vulnerabilities are found. Hence, the vulnerability dasakia this model allows the
specification-based IDS to use specifications about thet op-to-date vulnerability
information. The IDS can access data from the datatmaanalyze the targeted module or
system call. This model also enables the corresposgiagfications in the IDS to be
updated through the use of specification language wheneverulegrabilities are

discovered.

Chapter 4 25

Chapter 4 Interoperable Vulnerability Schema for IDSes

4.1 Considerations for the Schema

As mentioned in Chapter 3, the data in the vulnerallbtybase helps defining
specifications for the intrusion detection system. \fileerability data can also be used
as reference information for the administrators aeditvelopers. They can examine the
details of the discovered vulnerabilities inside theemntrwversion of the systems being

monitored. The vulnerability database should reflectahewing considerations:

1. The schema has to be unambiguous to ensure that the ¢iziS avoducing
ambiguous alerts. If the classification is ambiguous,lieevability may fall into
one class in one system and another class in argtsiam. Assume that a
vulnerability v is classified to be in the classiW one IDS and in the class \h
another IDS due to ambiguity. When the specificatiorachevulnerability in the
class M needs to be updated in both IDSes, a query is first maskch IDS to
obtain a list of vulnerabilities belonging to the clagsrvthat IDS. Due to the
ambiguity, v is not in the queries list in the IDS tblassifies v as a vulnerability
in the class Y. Therefore, v's specification will not be updated iattlDS. As a
result, both IDSes will have different specifications ¥ after the update. Besides
inconsistent specifications, ambiguity in classificatban also result in
inconsistent alerts. For example, using the same ambigxansple, when v is
being exploited, one IDS will issue a ¥lert because v is in the clasg While in
another IDS a Yalert will not be issued because v is not in thesclgsLet v

have the same “open window” vulnerability in the packetring firewall

Chapter 4 26

mentioned in 2.6. One IDS may classify the vulnerabégya coding-related
vulnerability because of root access due to buffer overtlawged by some
program execution during the “open window” period. On tieiohand, another
IDS may classify the vulnerability as an environmentaherability because of
the existence of the “open window”. Because of ambigu@ssification, when v
is being exploited, one IDS will raise a coding-relatabh@rability alert while the
other IDS will raise an environmental vulnerability alert.

2. The taxonomy should not use any subjective field, sucewasrity rankings or
references, etc., for vulnerability classificati@ubjective information is for
internal reference only by the vulnerability analystd sesearchers for
investigation purposes. If the system administrator neegsoritize attack data,
this should be done externally to the vulnerability infation.

3. The schema should not deviate too much from any unambiguous soctieds
the one proposed by Aslam and Krsul. This means thag¢ wbihe variations will
be made in order to be more suitably used by an intrusiootibetsystem, the
fundamental classification scheme should still be baseltaxonomy using
unambiguous classification. The classification schemetaddy an IDS has to
be unambiguous because the IDS requires consistentispigaifs for modules
having the same vulnerabilities. A classification schemelar to the one used
by Aslam/Krsul is recommended. Since the Aslam/Kraywbhomy avoids
ambiguity in classifications, it meets the needs of.IN&e that thempactsfield
in Krsul's scheme is crucial because it provides infdioneon residual

vulnerabilities. Another important reason for the sch¢o be based on the

Chapter 4 27

Aslam/Krsul taxonomy is that this taxonomy is beidgsted in many current
vulnerability researches. The schema adopted in the hiD3dsbe based on a
taxonomy that is familiar with the vulnerability resd@ers, since they may need
to regularly investigate the vulnerability data and update ttoh raformation
inside the database.

4. For a vulnerability with a given category/subcategdmgré may be more than
one exploitation method. For example, a race conditidmerability may be
exploited by renaming a file after writing but befordinglchownor chmod as
occurs inrdist, or may be exploited by symbolically linking of a privilegie
before the file is “re-created”, such asinmail. This shows that different
exploitation methods for a single vulnerability caneyate different signatures.
The scheme will be similar to tiigetailed Information About Exploitation
session in Krsul's scheme, except that the subjeitéves likeease of exploiand
complexity of exploiare not necessary. Exploitation methods provide another
hierarchy in the classification criteria, in additiancategory and subcategory,
needed to define unambiguous specifications.

5. Specifications are required for every class of catégobgategory/exploitation
combination so that each class uses the same speoifgarhis maintains the
desired consistency for each set of vulnerabilitied,adlows any newly

discovered vulnerability of the same class to adapstime specifications.

Sections 2.5 and 2.6 mentioned that the Aslam and Krkahses enable vulnerability
classification to be unambiguous, which is critical ifirdeg specifications for use in an

intrusion detection system. However, the taxonomy megdy Aslam and extended by

Chapter 4 28

Krsul has some categories that are not useful for intndetection because they are

neither necessary nor updated by the system administr&tr example:

1. The fieldInformation Regarding the Source of the Informapoovides details on
the source of the information regarding the vulnerabiithile the existence of a
vulnerability and its information is relevant, the soundere the information on
a vulnerability can be found is not. An IDS is supposeference the
vulnerability data to find and prevent potential attacksmigor task is simply
detecting and reacting to the detected attack. The soumc®hation for the
vulnerability data helps researchers in ranking and pemgf various
vulnerabilities. However, ranking and prioritizing vulnetaigis are not relevant
inside the suggested model because the task of an intdeteetion system is to
try to prevent any vulnerability from being exploited, nattar what the ranking
and priority are.

2. Similarly, the fieldReferencegrovides additional references regarding the found
vulnerability, such as which websites have further deSaris on the
vulnerability. This is for human use only.

3. The fieldsease_of explo&indcomplexity of exploinside the schema field
Detailed Information About Exploitatioare subjective rankings on how easy the

vulnerability can be exploited.

Generally speaking, an intrusion detection system dedecistack by examining the
current operation or sequence of operations. The IDS neguisvent any vulnerability

arising from these operations from being exploited.

Chapter 4 29

The IDS will use the following information:

1. System information, such as name, version and vendmtbfthe server and the
operating system, together with the current environmetiteo$ystem when the
vulnerability is detected. This information identifies unddsat situation(s) a
vulnerability can be exploited. It helps the systemiaditnators determine the
appropriate patch(es) to be uploaded to the system.

2. ldentification for the vulnerability, including informatidike what category,
subcategory and exploitation method(s) it belongs to. [Feulaerabilities that
belong to the same category and subcategory, the exploitaethod for each of
them may be different. Therefore, we need to clpské vulnerability with one
more hierarchy level such that for each classified valéty, it belongs to a
unique exploitation method under one subcategory of a ceasegory. This
additional hierarchy level is necessary in definingrtbgation of each
vulnerability because the specification for an operasanconglomeration of
unambiguous negations of all vulnerabilities found in tperation. In addition,
Chapter 3 has already illustrated the importance of bitaraus vulnerability
classification in the generation of a unique vulnerabiiggation.

3. Information regarding how the vulnerability is exploit@t;luding which set of
system calls are used, and in what module or progracetiseoccur. The
exploitation method is also critical to specificataefinition because the
vulnerability arises when a sequence of system cafiesawith a certain set of
parameters, so we need to make a specification sucthihaequence can never

occur with this set of parameters. Therefore, theB&ds to allow queries on the

Chapter 4 30

exploitation method so that specifications can be adu#iese system calls to
help prevent the vulnerability from being exploited whais set of parameters is
passed to the system calls.

4. Impact caused by the vulnerability, for example whetheli open the door to
another vulnerability. This enables the IDS to identify eesidual vulnerability
that can be exploited as a result of the exploitatiotme first vulnerability. The
IDS can thus prevent any disastrous chain of attacksexXample, in the “open
window” vulnerability mentioned in section 2.6, conventibsignature-based
IDS may not be able to detect any residual attack if wdtiee residual attacks
forms an attack pattern known to the IDS. Howeverh wie existence of the
Impact_IDfield in the vulnerability database schema to be shatan In this
chapter, the IDS in this model is able to detect any pessiblicious code
execution in addition to the “open window” vulnerability.

5. Patch information, which needs to be updated regularipdgecurity officers.
Security officers not only manage the IDS but also retyulgodate the system
with patches to address reported vulnerabilities. Thehpaformation identifies
how the vulnerability is addressed. It may also provide mdait descriptions on
certain vulnerabilities. These descriptions can servertdeer references on how
to handle these vulnerabilities within the system ia siggested model. The
references mentioned here are different from theaeées mentioned earlier.
Although these references here are not for detectiomitize IDS, they are for
maintenance purposes in the IDS. The additional dessrgphere may be about

the vulnerability identification, the category it begs to, the corresponding

Chapter 4 31

environment, how it is exploited, and the resulting im{@@ct he main purpose
for the patch information inside the database is fonteaance. The
administrators need this information for referencthenfuture so that they know
whether and what they have applied any appropriate patchies IDS. On the
other hand, the references mentioned much earlier anéyraout subjective
information like rankings and priorities.

6. The specification for each vulnerability, which needbdaeferenced by both the
IDS itself and the system administrators and prograsindrstem administrators
and programmers also need to update the specificationsiebessary. The IDS
references these specifications by obtaining every vulrigyabat belongs to a
particular combination of category and subcategory. Thatimn of a
vulnerability's specification is a general specificatimnall processes, in addition

to any particular per-process specifications.

4.2 IDS-compatible Vulnerability Schema

The proposed vulnerability schema adopts the formgéteoAslam/Krsul schema with
some adjustments to make it more applicable to an intrui@tection system. The
vulnerability ID naming is based on the CVE referenceterbenefit of system
administrators or programmers. This reference is usethny existing public
vulnerability databases. The schema for the tables usbd IDS-compatible

vulnerability database is as follows.

Chapter 4 32

Field Name Field Description
Vulnerability ID The CVE-format vulnerability 1D
Category_ID Aslam category (i.e., coding, operation@muironmental)
Subcategory_ID Aslam-format additional subcategory witlgcatagory
Patch_ID ID for the patch, if any
Date_found Date when this vulnerability is first discodere
Date_addressed Date when a patch starts to apply onltiezahility
Description Manually added details about the vulnerability

Table 1. Vulnerability _ldentification

Field Name Field Description
Category_ID Aslam category (i.e., coding, operation@muironmental)
Subcategory_ID Possible additional subcategory withirtegoay
Exploit_ID ID for the exploitation method
System_ID ID for the affected system
Description Manually added details about the subcategory
Specification Specification for each classification

Table 2. Vulnerability_Classification

Chapter 4

Field Name
System_ID
Server_Name
Server_Version
Server_Vendor
OS_Name
OS_Version
OS_Vendor

Field Name
Vulnerability _ID
Impact_ID

Description

Field Name
Vulnerability _ID
Exploit_ID
Module_Name
Module_Version
System_Call

Description

33

Field Description

ID for this system
Name of the server

Version of the server

Vendor for the server

Name of the OS

Version of the OS
Vendor for the OS

Table 3. System

Field Description
The CVE-format vulnerability 1D
The CVE-format ID for the subsequent vulnerghiif any

Manually added details about the impact andfmseguence:

Table 4. Vulnerability_Impact

Field Description
The CVE-format vulnerability 1D
ID for the exploitation method
Name of the module or program
Version of the module or program
System call in which the vulnerabilityxpleited

Manually added details about the nature oéxpéoit

Table 5. Vulnerability Exploit

Chapter 4

Field Name
Vulnerability ID
Name
Value

Description

Field Name
Vulnerability ID
Patch_ID

Description

34

Field Description
The CVE-format vulnerability 1D
Environment name
Environment value when vulnerability is exploited

Manually added details about the environment

Table 6. Environment

Field Description
The CVE-format vulnerability ID thahé patch is for
ID for the patch

Manually added details about the environment

Table 7. Patch

Chapter 4

Vulnerability 1D

Vulnerability_ldentification

Vulnerability 1D

Category_ID

Subcategory_ID

Patch_ID

Date_found

Date_addressed

Description

Patch_ID

Description

Vulnerability_Classification

Category_ID

Subcategory_ID
Exploit_ID
System_ID

Description

L

Specification

System_ID
Server_Name
Server_Version
Server_Vendor
OS_Name
OS_Version
OS_Vendor

35

Vulnerability_Impact

Vulnerability 1D

Impact_ID

Description

Vulnerability_Exploit
Vulnerability 1D

Exploit_ID

Module_Name

Module_Version

System_Call

Description

Environment

Vulnerability 1D
Name
Value

Description

Figure 2. Relation Diagram among the tables in the vuin@yaedatabase

Figure 2 illustrates how the tables in the proposed saheflate to each other. Some of

the fields in the tables, such as the date_addressedhfitle vulnerability _identification

table and the entire Patch table and System table, ntaype updated manually by

system administrators. Even though the IDS does nedttii use them, those fields

provide more user-friendly information about when and beawulnerabilities are

addressed within the system, so that any future detectibbeanmore effective. In

Chapter 4 36

addition, some tables and fields of other tables neéd toitialized to make the
vulnerability database and IDS useful over the entiteond right after the deployment
of the vulnerability database. For example, the wBgktentable has to be initialized
with system data so that the servers can report dgaadiag what system is exploited

upon any newly discovered vulnerability.

4.3 Examples on How to Populate and Use the Vulnerability Databas

Consider the buffer overflow vulnerability, with “AlleOverride” not set to “None”, in
the system call mod_compat_directive of the module mothsde an Apache module
(CVE number CVE-2002-0653) [12, 30], resulting in denial of seragaanst an Apache
HTTP server (CVE number CAN-2003-0132). The following sampltes show the
basics on how to populate and use the vulnerability deg¢ab&t 4 be the System_ID for
the system describing Apache 1.3 webserver and Red Hat Lemsion 8.2, and let 5 be

the Exploit_ID.

First of all, the database needs to have the systenpolatgated, in order to understand
the information on the existing systems available enrdal world. For example, to insert
the data for Red Hat Linux version 8.2 on Apache 1.3 websahe SQL source code

will be like the following:

INSERT INTO System
(System_ID, Server_Name, Server_Version,
OS_Name, OS_Version, OS_Vendor)
VALUES (“4”, “Apache”, “1.3", “Linux”, “8.2", “Red Hat");

Chapter 4 37

In addition, the vulnerability database needs to incaldeassifications of
vulnerabilities. For the vulnerability used in this exagnil can be done in the SQL

codes shown below:

INSERT INTO Vulnerability _Classification

(Category_ID, Subcategory_ID, System_ID, Descriptio n)
VALUES

(“3”, “ab”, “4”, “Buffer overflow vulnerability”);

Before the IDS can be used, the programmer or syslemnatrator needs to provide the
already-available generic specification to each diaason of vulnerability. The form of

this information is:

INSERT INTO Vulnerability Classification (Specifica tion)
VALUES (“Some Specification”)
WHERE Category_ID =*“3" AND

Subcategory_ID =*"a5” AND

Exploit_ID =“57;

Suppose this vulnerability was exploited by using an unprivilegedhame. The data for
the newly found vulnerability will be added into the Vuhiaility |dentification,
Vulnerability _Classification, Vulnerability _Impact, Vulradsility Exploit, and
Environment tables, so that the IDS can prohibit the unpget user from actually

exploiting this vulnerability in the future.

SELECT DISTINCT Sys_ID = System_ID
FROM System
WHERE Server_Name = “Apache” AND
Server_Version = “1.3" AND
Server_Vendor = “Apache Software Foundation” AND
OS_Name = “Linux” AND
OS_Version = “8.2” AND
OS_Vendor = “Red Hat”;
INSERT INTO Vulnerability _Identification
(Vulnerability 1D, Category_ID, Subcategory_ID,
Date_found)
VALUES (“CVE-2002-0653", “3", “a5", NOW ());
INSERT INTO Vulernability Category
(Category_ID, Subcategory_ID, Exploit_ID, System_| D)

Chapter 4 38

VALUES (37, “ab”, “5", “4”);

INSERT INTO Vulnerability Impact
(Vulnerability_ID, Impact_ID)

VALUES (“CVE-2002-0653", “CAN-2003-0132");

INSERT INTO Vulnerab|I|ty_Epr0|t
(Vulnerability_ID, Exploit_ID, Module_Name,
Module_Version, System_Call)

VALUES
(“*CVE-2002-0653", 5, “mod_ssl”, “2.4.9",
“ssl_compat_directive”);

INSERT INTO Environment (Vulnerability_ID, Name, Va lue)
VALUES (“CVE-2002-0653", “user_name”, “*");
INSERT INTO Environment (Vulnerab|I|ty_ID Name, Va lue)

VALUES (“CVE-2002-0653", “account_type”, “user”);

In another example, consider querying all system dadiiscan result in denial of service
attacks against an Apache HTTP server. Based on th@psesituation, one of the

library calls returned from the query should be ssl_canggective.

SELECT DISTINCT ve.System_Call
FROM Vulnerability Exploit ve,
Vulnerability Impact vim,
Environment e,
Vulnerability _Identification vid
WHERE vim.Impact_ID = “CAN-2003-0132" AND
vim.Vulnerability 1D = ve.Vulnerability_ID AND
vim.Vulnerability_ID = e.Vulnerability_ID AND
e.Name = “account_type” AND
e.Value = “user” AND
vim.Vulnerability_ID = vid.Vulnerability_ID;

When the administrator applies a patch for this valbidity by installing an upgraded
version of the modulmod_ssl like version 2.8.10, as a fix for the vulnerabilitye th

following updates the vulnerability database:

INSERT INTO Patches

VALUES
(“*CVE-2002-0653", Some_Patch_ID, “mod_ssl 2.8.10 ha S
been installed and this version has reported no
vulnerability”);

The next two sections will show more practical exasmpleapplying vulnerability data

to IDSes.

Chapter 4 39

4.4 Integration with Specification Language using a General Examel

Consider a race condition vulnerability for writing téila [9]. An attacker can exploit
this vulnerability by first running program A to create dnitaary file. Then he can run
program B to create a symbolic link of that arbitraly fo a privileged file like the
passwdfile. As a result, he will be able to alter the passi(s) for all account(s) that he
wants to get access to [9], before destroying the symloli and returning the
operations to program A. A simple, generic exampléénspecification language paper
by Ko, Ruschitzka, and Levitt [23] demonstrated how to useptbefecation language to
handle this vulnerability. In that example, programai avrite a file if the environment
variable E is 0, and it will change that environmentalala to a non-zero value upon
opening the file. The value of the environment variableaieshnnon-zero until that file is
closed by program A. Meanwhile, program B follows the shyperrules as program A.
So, in this case, program B cannot write to the fil& ifas already opened it. The
specification language describes this in such a way asverpir& and B from writing to
the same file. One of them can only write to thevileen the other has closed its handle

for that file. The specification is as follows [22, 23]

Codes Line

Environment Variables
ENV int E =0;
LOCAL ENVintL =0;

wh k-

Start Expression
SE: <progA> || <progB>

gab

Hyperrules 6
<progA> -> <writeA, E>. 7
<writeA, 0> -> <openA> <closeA>{E=E-1;}. 8
<openA>->open_ A{E=E+1;L=1;} 9
<closeA> -> close_A. 10

<progB> -> <writeB, E>. 11
<writeB, 0> -> <OpenB> <closeB> { E=E-1; } 12
<openB>->open B{E=E+1;L=1;}. 13

Chapter 4 40

<closeB> -> close_B. 14

In the specification, lines 7 to 10 are for programfArbgram A successfully opens a
file for write access, the global environment variabliEbe incremented from O to 1.
Since there is no rule for <writeA, 1> (E is 1 in @A, E>), program A is not allowed
to write to that file if this file has already been pnpe by another program (E = 1).
Similarly, program B has the same requirements asrsiolines 11 to 14. This
specification handles in a way such that when therenrient variable E is set to 1 upon
the creation of the arbitrary file by program A, prograwiB not be able to link and

write to that file as long as it stays open.

It is undoubtedly desirable to use a specification langt@gace possible vulnerability
exploitations within the operation sequences. Howetierprogrammer will sometimes
have a hard time coding each vulnerability specificati@mually if each process inside
the program has a lot of vulnerabilities to be addresspeceally when any particular
process occurs in several places inside the progranproeammer will also have to
spend time to write additional programs if many modules gharsame hyperrules. In
this case, the programmer has to create a utility progyraganerate a specification for
each of these programs by automating the modificatibtt'ecsame hyperrules with a
different module name. However, the programmer needbtain a manually generated
list of modules sharing the same hyperrules before inengéke the utility program work,
and without an organized data storage, it is always posk#ti¢he list is incorrect or
incomplete. Besides, the more modifications thatdezla to change in the list, the more

probable that he will make mistakes. An alternative aacerefficient way is to integrate

Chapter 4 41

specifications with a vulnerability database. In thishuod, we populate various
vulnerabilities in the database, and when the IDS neeaddress a particular
vulnerability, it can obtain the specification constiigg all the functions or system calls

related to that vulnerability.

As explained above, the following lines for the hyperruées fee duplicated as follows:

<progGeneric> -> <writeGeneric, E>.
<writeGeneric, 0> ->
<openGeneric> <closeGeneric>{E=E -1, }.

<openGeneric> ->open_Generic{E=E+1;L=1;}

<closeGeneric> -> close_Generic.
The same specifications will then be applied to thoseéuies or system calls sharing the
same race condition vulnerability. For example, drn@ race condition vulnerabilities
in Samba smbmrfCVE-1999-0812) allows local users to mount file systenashitrary
locations. This is one of the practical example®éraice condition vulnerability that
allows a file to be symbolically linked to a systere filfter its creation. We can use Perl

to write a script to automate the replication of thmesagample specification for each

module resulted from the query. The entire Perl scsiphown in Appendix A.1.

To look for all modules that can be exploited by thigherability, a query is made to the
vulnerability database to retrieve all modules thatb=mexploited by the vulnerability
having the CVE ID of “CVE-1999-0812". Since the vulnerabilityssification is
unambiguous before a vulnerability is stored into the @aband since only one
vulnerability is being looked at in this example, all meduh the queried list must
belong to the same vulnerability classification becalisef these modules can be

exploited by the same vulnerability. With only one degeneric hyperrules for each

Chapter 4 42

vulnerability class, a specification of the same hyges should be assigned to all
modules exploitable by this vulnerability. The generic warsif the hyperrules should
already be defined in and queried from 8pecificatiorfield of the

Vulnerability _Classificatiortable in the vulnerability database. In the specificatall of
these modules exploited by the same vulnerability shoilgippended to the list
appearing in the Start Expression section. Besidesatne piece of generic hyperrules
should be appended to the current specification aftercieglavery existence of the
string “Generic” in the generic specification with tmedule name. To specify the
hyperrules for program A, every existence of the string&sie” in theHyperrules
portion of the generic specification will be replacedHtsy string “A”, before A’s
hyperrules are added to the specification. Similarly, eggistence of the string
“Generic” in theStart Expressiomortion of the specification will also be replacedtiy
string “A”. As a result, after the hyperrules for progrArare appended to the
specification but before those for program B are appentdedpecification will look like

this:

Environment Variables
ENV int E =0;
LOCAL ENVintL = 0;

Start Expression
SE: <progA>

Hyperrules

<progA> -> <writeA, E>.

<writeA, 0> -> <openA> <closeA>{E=E-1;}.
<openA>->open_ A{E=E+1;L=1;}
<closeA> -> close_A.

After the hyperrules for program B are also appendedsgéeification will finally be the

same as the one shown at the beginning of this section

Chapter 4 43

4.5 Integration with Specification Language using a Practical Exaple

This section presents a more practical example omtégration of vulnerability
database and specification language. This example foeuges UNIX moduldinmail.

In Calvin Ko’s PhD thesis, he demonstrated the use aifggaion language on four
UNIX modules that have well-documented vulnerabiligash asinmail. We use the
binmail module as an example. This UNIX backend mail delivery negdvhich is
responsible for appending a mail message directly tagées’ mailbox files, creates a
temporary file with an internally specified file nant®wever, if an attacker knows the
temporary file name, then he can create a symbokglbinting a locally created file to a
system file that he wants to modify, such asgasswdfile [22]. The following is the

original specification fobinmail presented in his thesis.

SPEC <(?, binmail, U, H)>

ENV int CREATTMP = 0;

ENV int PID = getpid ();

SE: <binmail> || <other>

<binmail> -> <init> <mktemp> <rest>.

<init> -> <not_mktemp> <init> | Nil.

<rest> -> any_op <rest> | Nil.

<mktemp> -> open_tmpfile-PID { CREATTMP =1, }.
<not_mktemp> -> not_open_tmpfile-PID.
<other> -> <vop, CREATTMP> <other> | Nil.
<vop, 0> -> not_chgtmp.

<vop, 1> -> any_op.

END;

As an extension, instead of explicitly namisigmail, the same hyperrules can be
assigned to any module that calfgen_rwtc In the vulnerability category, subcategory,
exploitation method and the system ID thetmail belongs to, th&pecificatiorfield in

theVulnerability _Classificatiortable should have the generic version of the above

Chapter 4 44

specification. This is obtained by replacing every occegaf the string “binmail” with

the string “Generic”. Hence, the generic specificastwmed inside the database is:

SPEC <(?, Generic, U, H)>

ENV int CREATTMP = 0;
ENV int PID = getpid ();

SE: <Generic> || <other>

<Generic> -> <init> <mktemp> <rest>.

<init> -> <not_mktemp> <init> | Nil.

<rest> -> any_op <rest> | Nil.

<mktemp> -> open_tmpfile-PID { CREATTMP =1, }.
<not_mktemp> -> not_open_tmpfile-PID.

<other> -> <vop, CREATTMP> <other> | Nil.

<vop, 0> -> not_chgtmp.

<vop, 1> -> any_op.

END;

To obtain a list of modules which calben_rwt¢ a query is made to get all values in the
Exploit_ID field of the vulnerability database that has the valuge System_Calfield

set to “open_rwtc”. The query result would include the e@atitheExploit_ID field used
for binmail. This follows by assigning the specification to everyaie in the query
result by replacing the “Generic” string in the genspecification with the module
name. The Perl codes in Appendix A.2 outline all thesesstThis specification allows
the IDS to detect any symbolic link attempt to a systeenifthenever any program that
callshinmail is being processed, and helps prevent any unprivileged wcésato any

system file.

4.6 Consistency and Error Prevention
As shown in the above two examples, augmenting theevaibility database with a set of
specifications provides a mechanism for consistent spatdns for all vulnerabilities in

the same classification. It also eliminates recodmsgseame specification for different

Chapter 4 45

vulnerabilities. Since the specifications describe afeegations of vulnerabilities, the

IDS can detect any attack based on the patterns shawa @xploitations.

Chapter 5 46

Chapter 5 Integrations with Specification-Based IDSes

5.1 Integration with Non-distributed Intrusion Detection Sysems

As shown in Chapter 4, a vulnerability database cantiegrated with a specification-
based intrusion detection system. Sections 3.3, 4.4 ando¥iflgnt some examples of
how to populate and update the vulnerability database gispadafic vulnerability. To
review, the integration consists of two stagesial data populationanddata update
During theinitial data populationstage, relevant information on all known vulneralesti
has to be inserted accurately into the database sthéhabalysts can provide precise
specifications for use by the intrusion detection systdier that comes thdata update
stage. This stage spans the entire lifetime of thasmn detection system because new
vulnerability information will be added to the vulneralyilitatabase as it becomes
known. This information can be either a previously unkneulnerability, a new
vulnerability introduced by reconfiguration, or a new exjploon of an existing
vulnerability. A newly discovered vulnerability belongito an existing vulnerability
classification can use the hyperrules from that diaation. So the hyperrules of this
classification will be retrieved from the vulneralyildatabase. In the other case, a new
classification will be created by negating the relevaetsications of the exploit. The
new classification and its corresponding specificatwdhthen be added to the
vulnerability database. The specification will alsaulsed in the creation or update of the
specification for the current module. If the curremtkgcuting module does not have a
specification yet, the programmer will be responsiblepfoviding the specification that
should at least include these hyperrules for this vabikty. If there is already a

specification for this module but the new hyperrulesnatefeatured in the specification

Chapter 5 47

yet, then the programmer will be responsible for agldie new hyperrules to the

specification.

Both the initial data population stage and the data updage sipply the same procedures
to add the data to the database. While the initial data gagpuktage adds all currently
known information, the data update stage always adds previaighpwn information,

as this stage inserts the information that has just 8seovered. Using the same Apache
server vulnerability example in Chapter 4, the necgstaps to add data, together with
their corresponding source codes written in Perl-embe8@gd are described as

follows:

1. Add identification information of the vulnerability if is a new vulnerability.

my $sth = $dbh->prepare (

SELECT Vul_ID = ?;
SELECT Desc = ?;

SELECT DISTINCT Total_Vuls = COUNT (*)
FROM Vulnerability ldentification
WHERE Vulnerability_ID = Vul_ID;

CASE Total_Vuls <1 THEN
INSERT INTO Vulnerability _Identification
(Vulnerability_ID, Date_found,
Description)
VALUES (Vul_ID, NOW (), Desc);
END

);
$sth->execute (“CVE-2002-0653",
“Buffer overflow caused by AllowOverride set to Non e

in mod_ssl inside an Apache 1.3 server running Red
Hat Linux 8.2");

2. Derive the category and subcategory of the vulneralbiéised on the
Aslam/Krsul scheme, and create the classificatigndibes not exist yet. Then

add this initial classification data to the database.

Chapter 5 48

my $sth = $dbh->prepare (

SELECT Vul_ID =?;
SELECT Cat_ID = ?;
SELECT Subcat_ID = ?;
SELECT Desc = ?;

SELECT DISTINCT Total_classes = COUNT (*)

FROM Vulnerability ldentification

WHERE Vulnerability_ID = Vul_ID AND
Category_ID = Cat_ID AND
Subcategory_ID = Subcat_ID;

CASE Total_classes <1 THEN
INSERT INTO Vulnerability _Identification
(Category_ID, Subcategory_ID)
VALUES (Cat_ID, Subcat_ID)
WHERE Vulnerability_ID = Vul_ID;
END

SELECT DISTINCT Total_classes = COUNT (*)

FROM Vulnerability_Classification

WHERE Vulnerability_ID = Vul_ID AND
Category_ID = Cat_ID AND
Subcategory_ID = Subcat_ID;

CASE Total_classes <1 THEN
INSERT INTO Vulnerability _Classification
(Vulnerability_ID, Category_ID,
Subcategory_ID, Description)
VALUES (Vul_ID, Cat_ID, Subcat_ID, Desc);

ELSE
INSERT INTO Vulnerability _Classification
(Description)
VALUES (Desc)
WHERE Vulnerability_ID = Vul_ID AND
Category_ID = Cat_ID AND
Subcategory_ID = Subcat_ID;

END

);
$sth->execute (“CVE-2002-0653", “3”, “ab”,
“Buffer overflow”);

3. Determine how the vulnerability is exploited. Obtaiformation about the
system call, under each version of each module bewgueed when the
exploitation occurs. The exploit information, whichluges the name and version
of the module and a system call sequence, will then bpa®u against the
existing sets of exploit information in the VulneralyiliExploit table of the

database. As shown in the Vulnerability Exploit taflakle 5) in Chapter 4,

Chapter 5 49

each set of exploit information in the table includesriame and version of the
module, the system call sequence involved in the expitmtaand is represented
by a unique exploitation ID. If this set of exploitationformation does not exist
in the table, a new, unique ID will be assigned to repitetbe set, and the new
exploitation 1D will be added to the database. This exsattie classification of

this vulnerability to include the exploitation ID.

my $sth = $dbh->prepare (

SELECT Vul_ID = ?;
SELECT Cat_ID = ?;
SELECT Subcat_ID =?;
SELECT Mod_name = ?;
SELECT Mod_version = ?;
SELECT Sys_call = ?;
SELECT Desc = ?;

SELECT DISTINCT Exp_ID = Exploit_ID

FROM Vulnerability Exploit

WHERE Vulnerability_ID = Vul_ID AND
System_Call = Sys_call;

SELECT Total_IDs_returned = COUNT (Exp_ID);

CASE Total_IDs_returned > 0 THEN

INSERT INTO Vulnerability Classification
(Exploit_ID)

VALUES (Exp_ID)

WHERE Vulnerability_ID = Vul_ID AND
Category_ID = Cat_ID AND
Subcategory_ID = Subcat_ID;

ELSE
SELECT DISTINCT Max_Exp_ID = MAX (Exploit_ID)
FROM Vulnerability Exploit;

INSERT INTO Vulnerability_Classification
(Exploit_ID)

VALUES (Max_Exp_ID + 1)

WHERE Vulnerability_ID = Vul_ID AND
Category_ID = Cat_ID AND
Subcategory_ID = Subcat_ID AND
LENGTH (Exploit_ID) = 0;

INSERT INTO Vulnerability Exploit
VALUES
(Vul_ID, Max_Exp_ID + 1, Mod_name,
Mod_version, Sys_call, Desc);
END

);

$sth->execute (“CVE-2002-0653", “3”, “ab”, “mod_ssl
“2.4.9", “ssl_compat_directive”,
“AllowOverride not set to None™);

Chapter 5 50

4.

Identify the system information under which the vulnergbihay be exploited.
The system information should include the name, versidnvandor name of the
server that the exploited station belongs to, ang¢énesponding information of
the operating system used by the server. If this sgtsdém information has not
been represented by an existing system ID yet, it méanshis set of system
information does not exist in the database. Thereforew, unique ID has to be
generated to represent this set of system informatiansystem ID will then be
included in the classification of this vulnerability. Assvn in Table 3, each
combination of server name, version, vendor, and OS n&rn&on, vendor
constitutes a unique system ID. Therefore, for exantpéeset of system
information {*Apache”, “1.3", “Apache Software FoundatipfiLinux”, “8.2",
“Red Hat"} should have a different system ID from tle¢ §Apache”, “1.3",
“Apache Software Foundation”, “Linux”, “8.1", “Red Hat"} due the difference

in the versions of their respective Linux operating esyst

my $sth = $dbh->prepare (

SELECT Vul_ID = ?;
SELECT Cat_ID =7;
SELECT Subcat_ID =?;
SELECT Serv_name = ?;
SELECT Serv_version = ?;
SELECT Serv_vendor = ?;
SELECT Oper_name = ?;
SELECT Oper_version = ?;
SELECT Oper_vendor = ?;

SELECT DISTINCT Sys_ID = System_ID

FROM System

WHERE Server_Name = Serv_name AND
Server_Version = Serv_version AND
Server_Vendor = Serv_vendor AND
OS_Name = Oper_name AND
OS_Version = Oper_version AND
OS_Vendor = Oper_vendor;

SELECT Total_System_IDs = COUNT (Sys_ID);
CASE Total_System_IDs >0 THEN

Chapter 5 51

INSERT INTO Vulnerability _Classification
(System_ID)
VALUES (Sys_ID)
WHERE Vulnerability_ID = Vul_ID AND
Category_ID = Cat_ID AND
Subcategory_ID = Subcat_ID;
ELSE
SELECT DISTINCT Max_Sys_ID = MAX (System_ID)
FROM System;

INSERT INTO Vulnerability _Classification
(System_ID)

VALUES (Max_Sys_ID + 1)

WHERE Vulnerability_ID = Vul_ID AND
Category_ID = Cat_ID AND
Subcategory_ID = Subcat_ID;

INSERT INTO System

VALUES

(Max_Sys_ID + 1, Serv_name,
Serv_version, Serv_vendor, Oper_name,
Oper_version, Oper_vendor);
END

);

$sth->execute (“CVE-2002-0653", “3", “a5”, “Apache” , “1.37,
“Apache Software Foundation”, “Linux”, “8.2”,
“Red Hat");

5. Determine the environment(s) in which the vulnerabilityated as v, is
exploited, and, if so, what settings and values arevedo The environmental
information includes some variable name(s) represettimgnvironment(s) and
their corresponding value(s) when v is exploited. &@mple, the information
may include the input parameter (environment variable)etNIX system call
getenvand its corresponding output (environment value forvhgable), or some
Windows registry keys and their corresponding valuesstAf existing
environment variables can be made by executing a shell anthor a batch
program. In UNIX case, shell commapdntenvlists all current environment
variables and their respective values. Each set of emagatal information {E,
en} Is recognized by v’'s vulnerability ID in order to indicdlet g is the setting

of E, during v's exploitation. On the other hand, v can hauéiple sets of

Chapter 5 52

environmental information. For instance {l&;} and {E, &} can be two

different sets of environmental information recognized Isywilnerability ID
because when v is exploited,raust be an explicit value of environment variable
E; and @ must be an explicit value of environment variableFor each {E, &}

that has not yet been recognized by v, it will be addédet@ntry for v to indicate

that this setting plays a part in the exploitation.

my $sth = $dbh->prepare (
SELECT Vul_ID = ?;
SELECT Env_name = ?;
SELECT Env_val = ?;
SELECT Env_desc = ?;
SELECT DISTINCT Total_envs = COUNT (*)
FROM Environment
WHERE Vulnerability_ID = Vul_ID AND
Name = Env_name AND
Value = Env_val;
CASE Total_envs <1 THEN
INSERT INTO Environment

VALUES (Vul_ID, Env_name, Env_val, Env_desc);
END

);
$sth->execute (“CVE-2002-0653", “user_name”, “*”,
“Unauthorized user”);

6. Look for possible impacts caused by the vulnerabilityeitany residual
vulnerability will also be exploited. If, for exampl&rsul’s taxonomy is being
used in a vulnerability search, the data found in the valnkty search will
contain information not only about the vulnerabilitseilf, but also the possible
impacts if any attack successfully exploits the vulb#ity, as Krsul's taxonomy
includes information about how to derive the impacts aflaerability using
decision trees [24]. For other taxonomies that do nesider impacts caused by a

vulnerability, the Requires/Provides model proposed by Tetmpland Levitt can

Chapter 5 53

be a viable option to determine the possible impacts afrerability [47]. This
model helps relate a vulnerability to its residual vulndités if it is exploited by
an attack. It describes an attack as a model, in tercegpabilitiesandconcepts
based on the required components, their capabilitieading to components
needed for other attack(s), and the method in compdsasg tsecondary
components into another form of attack. By its definitian attack is a
composition of abstract attacknceptseach of which requires certain
capabilitiesto occur for a particular instance of the concep&teittailed or to

introduce another concept.

For example, consider the “open window” vulnerabilityaipacket filtering
firewall mentioned in section 2.6. A vulnerability sdatsing Krsul's taxonomy
should be able to include buffer overflow as one ofibssible impacts (CVE
number CAN-2003-0132 as seen in section 4.3) because it @lowsauthorized
program to be attached to the end of a valid data pacletjrdi the program to
be executed in the router after the packet gets pasptrewindow. As a result,
the router can be compromised if the unauthorized progretution changes
access permission filters in favor of the attacked, this enables the attacker to
launch a denial of service attack. Therefore, a beierflow vulnerability is one
of the possible impacts for the “open window” vulneraypiland for the buffer
overflow vulnerability, unauthorized program execution beempossible

impact.

Chapter 5 54

Likewise, based on the Requires/Provides model, theepbiaé “open window”
requires the router window to be open for valid data geahke provides the data
packets a limited time of authorized actions. On the dthed, the concept of
buffer overflow requires the data packets to look valdl pmovides an attacker an
opportunity by running the authorized execution(s) as an undegtaiser from
the extra data packet(s) appended beyond the valid size wvélid data buffer
during the authorized state inside the “open window”. Conselguéme relation
between “open window” vulnerability and unauthorized exeostlmecomes
apparent because the “open window” vulnerability introdunespact — the
buffer overflow vulnerability, which can lead to anotiapact — unauthorized

program executions.

Similar to the system information and the exploitati@irmation, if there is no
existing ID for the impact information, a new, unique ictp® will be generated
and added to the database together with some relevaniptieasgorovided by the

system administrator or programmer.

my $sth = $dbh->prepare (

SELECT Vul_ID = ?;
SELECT Imp_ID =?;
SELECT Desc = ?;

SELECT DISTINCT Total_impacts = COUNT (*)

FROM Vulnerability Impact

WHERE Vulnerability_ID = Vul_ID AND
Impact_ID = Imp_ID;

CASE Total_impacts <1 THEN
INSERT INTO Vulnerability _Impact
VALUES (Vul_ID, Imp_ID, Desc);
END

);
$sth->execute (“CVE-2002-0653", “CAN-2003-0132",
“DOS on Apache server as a result of open window");

Chapter 5 55

7. The programmer or system administrator for the IDSukshgenerate or update
the specification based on the vulnerability informatrothe database. The
specification has to include generic hyperrules forntge vulnerability
classification, and must be added to the database assdatos ready, so that the

intrusion detection system can detect attempts to éxpisivulnerability.

my $sth = $dbh->prepare (

SELECT Vul_ID = 7;
SELECT Cat_ID=?;
SELECT Subcat_ID =?;
SELECT Exp_ID = ?;
SELECT Sys ID=7?;
SELECT Spec = 7?;

INSERT INTO Vulnerability _Classification
(Specification)

VALUES (Spec)

WHERE Vulnerability_ID = Vul_ID AND
Category_ID = Cat_ID AND
Subcategory_ID = Subcat_ID AND
Exploit_ID = Exp_ID AND
System_ID = Sys_|ID;

INSERT INTO Vulnerability _Identification
(Date_addressed)

VALUES (NOW ())

WHERE Vulnerability_ID = Vul_ID AND
Category_ID = Cat_ID AND
Subcategory_ID = Subcat_ID;

);

$sth->execute (“CVE-2002-0653", “3", “ab”, “5”, “4” ,
“Environment Variables
ENVint E =0;
LOCAL ENVintL =0;

Start Expression
SE: <progGeneric>

Hyperrules
<progGeneric> -> <writeGeneric, E>.
<writeGeneric, 0> ->

<openGeneric> <closeGeneric> { E =
<openGeneric> -> open_Generic{ E=E + 1,
<closeGeneric> -> close_Generic.”);

E-1;}
L=1;

5.2 Integration with Distributed Intrusion Detection Systens

Chapter 5 56

An intrusion detection system can be either centr@dlaedistributed. Most of the
traditional IDSes are centralized, so data is processkdralyzed inside a single host
housing the intrusion detection director. In recentsjeaith the increased use of
distributed operating systems and the emergence of thiel Wide Web, distributed
intrusion detection systems are becoming available. tAldised intrusion detection
system is defined as a system where data monitoring ca@rfmemed at a number of
locations, while data analysis can be conducted atingke docation or various locations

throughout the network [4, 34, 35, 40, 45, 46].

A well-known framework, calle€ommon Intrusion Detection FramewdRIDF), uses
an event-and-response approach to define a list of comizotiat can make up each
agent or sensor of an intrusion detection system. Tdwaponents are thevent
generatorgE-boxe¥, event analyzerA-boxe¥, event databasg®-boxe$, and

response unitfR-boxey, respectively [35].

Distributed intrusion detection systems ugelligent agent®r external sensorslhe
approach emphasizes multiple-location data analysiddition to multiple-location data
collection. They communicate actively with each otleemwith a distributed analysis
unit, using communication events and alerts. The dakectoh components and data
analysis components are analogous to the E-boxes dades in the CIDF definition,
respectively. Each agent is designed to report eventpartiaular kind of interests, and
the agents dynamically monitor in response to eventicaiions or alerts. Analyses are
mostly performed hierarchically. They observe the belhawbthe data packets by one

of two ways before allowing the data packets to invokeliargry functions. One way is

Chapter 5 57

to capture the packets and compare with the system,statethe other way is to

intercept the packets and analyze them [44, 45].

The intelligent agents approach is found in many populareveorks of distributed
intrusion detection systems like DIDS, GrIDS, EMERALdnd AAFID. DIDS [40] uses
only one level of hierarchy, the centralized directoaralyze data, despite distributed
data monitoring. GrIDS [46] uses activity graphs to build aah@ry of departments and
hosts based on an organization model. The graphs rephestsiand network activities.
EMERALD [34] employs monitors at the levels of hosksmains, and enterprises to
form an analysis hierarchy, and uses a subscription-basehenication scheme both
within and between monitors. The subscription scheme ketw®nitors is hierarchical.
AAFID [4, 45] employs autonomous agents at the lowe#l for data collection and
analysis, and monitors at higher hierarchical levetoturol the agents and overlook the

activities in the global sense of view.

A vulnerability database is a data source that all aggmd monitors can share. The
information in the database indicates the versi@h@8 involved in the vulnerability and
specification, so that all agents and monitors carrehate if certain information is
relevant or not for their own purposes. As the datalsa®S-independent, data sharing
among the agents is possible regardless of the syséémath agent or monitor runs on.
Since the agents are the only components conducting riiiesia, any new updates to
the vulnerability database will require notifying the agesa that every other intelligent
agent can update itself and send information back to tinenability database.

Alternatively, the agents can regularly perform polliadook for and pick up updated

Chapter 5 58

information. However, this would require all agentsaatauously retrieve status
information from the database, and since most ofithe the database remains
unchanged, the majority of pollings become pointlessjngalesource overhead a

concern in this approach.

The importance of communications among the agents esginat any integration of a
vulnerability database with an intrusion detection systeust not affect inter-agent
communications efficiency. Many relational databaseesystuse B-tree data structure to
store information. With cardinality n, i.e., total kegsO (2'), most dynamic-set
operations in a B-tree have performance of O (Ihg2 (n). Hence, a typical database
retrieve operation SELECT depends on the cardinalityia@d(n), which is very

efficient. The overall cost for a query is the sungoéry cost and communication cost. If
M is the cost of sending the request or response véralbcost is 2M + O (n) or 2M +
nD, where D is the number of database accesses ardatieed® (9 keys. In a wide area
network environment, as M >> D, the communication o#te dominant factor, which
means that the query cost will not affect the ovgailformance very much. On the other
hand, in a local area network environment, the valuds afd D are much closer to each
other. As a result, the query cost will play as an irtgo role as the communication
cost. In a usual LAN environment, the size of the da&lsalso relatively smaller
because less data is shared among fewer users in tharkétan in the WAN
environment. The smaller database in LAN environment esghat the cardinality in

the SELECT operation will be in limited size, meaningt tithe query cost will also be

limited. Therefore, a database with vulnerability taxmy as its schema can be

Chapter 5 59

integrated with the intrusion detection system so asctease security functionalities

without sacrificing efficiency.

Agent #1 Agent #2 Agent #3

[]

Workstation

[]

Workstation

Vulnerability
Databas

Figure 3. A Distributed IDS model integrated with vulner&pitiatabase

Figure 3 shows a specification-based distributed intrusitectien model which has
three agents performing intrusion detection and is intednaith a vulnerability
database. Since a distributed IDS can perform intrudaoection in more than one
location, the same specifications have to be presefittiredocations that participate in
the detections. Therefore, each of these locatiosischanaintain the same specification
for each involved vulnerability. This means that wheneva@yegification is updated in
one location, the updates have to be reflected indmexability database. This allows
the database to send automated alerts to the agehts sloet agents can pick up the
updates from the database and apply the updates onto thesesifieations for their

respective locations. For example, if a programmer updates specifications at agent

Chapter 5 60

#1, he also has to update the same specifications in thmdatso that the database can
alert both agent #2 and agent #3 regarding the updates. For agewk #gent #3, if

these new updates are needed in their own detectionipeatitos, they can immediately
pick up the updates and make necessary modifications @ahe specifications on their

respective agents.

5.3 Case study: Building Block Approach

Crosbie and Kuperman, citing the shortcomings in thelamature matching
approach in most conventional intrusion detection syst@roposed an IDS model
which monitors the system in real-time fashion by logkior thebuilding blocksof
misuse actions. These building blocks of misuse ast@we listed in section 1.2. In this
approach, a detection tool, based on a detection tentiptatg all the building blocks of
misuse actions, resides in the kernel together wild#tection itself as well as a
specialized kernel data source. The detection tool in timekeferences this template to
look for possible attack patterns [13]. In order to avoid nsadrifice in kernel
efficiency, both the template and the data source twalie minimal and effective. As a
result, any future growth in either the template ordda source will have to be very

limited. Scalability, therefore, becomes a concern.

Since the detection template in the building block mbdslits own classification of
misuse actions, we can view it as a schema basegmmitive taxonomy. The only
difference between this building block model and the génavdel described in Chapter
3 is that the schema in the building block model needsggibicitly reside inside the

kernel. As a schema in general merely describes thainegimn and classification of the

Chapter 5 61

data inside a database, the size of a kernel-based @&ch@ot big enough to deteriorate
the kernel efficiency. Hence, a vulnerability schemalzaused to replace the detection
template in the building block model as it is much moteitdel and well-structured. On
the other hand, the building block data source inside tmekeill be replaced with the
vulnerability database outside the kernel, so that ttestaurce can be scalable. The
delay caused by kernel latency as a result of each guerpimal because experiments
have shown that, on a Linux system with the 2.4.17dteeach disk access averages 79
ms [53], so database queries on that system have anadeeapist. Thus, the kernel will
not have much additional burden to hinder its performdnceg data query even if the
database is located outside the kernel. This suggestsithdhe vulnerability database
residing outside the kernel, the kernel efficiency will be affected much, as long as all
other kernel tasks performed inside the building block modesii be performed in

the same manner as they are originally defined. Asudt r&srnel efficiency becomes a
non-issue. In addition, this modified building block mock still enjoy the same
advantages of vulnerability database integration withnarge intrusion detection system

described in previous chapters.

Chapter 6 62

Chapter 6 Conclusions and Future Works

6.1 Summary
An intrusion detection system integrated with a vulbiitg database has the following

advantages:

1. Specification updates upon a discovery of new vulnetgbili

2. Unambiguous specifications for all vulnerabilities underdduee classification so
that there will be no inconsistency in handling anycktthat exploits the same
vulnerability

3. Computation overhead reduction by saving the efforts of doatptl and
possibly erratic manual programming statements upon anyrhuptate on
specifications

4. No additional scalability concern as long as the whote/oik system is scalable

because the vulnerability database itself is alreadglsea

One purpose of vulnerability analysis is to look for unknawimerabilities based on the
knowledge of known vulnerabilities combined with differpossible methods of
exploitations before the unknown vulnerabilities becexgoitable to actual attacks. On
the other hand, specification-based intrusion detectipply/ the knowledge of known
vulnerabilities onto dynamic detections of actual attaakisout requiring attack
signatures. Therefore, with the vulnerability databasihe bridge between vulnerability
analysis and intrusion detection, an intrusion preventiodel will be able to both look

for new vulnerabilities and detect intrusions at the stime.

Chapter 6 63

6.2 Applying Penetration Analysis

There are two aspects for the security characteristiasystem, thexpected security
functionalityand thepossible implied security behavicaffecting the environment.
Expected security functionalitgflects how secure the module is when it execute$e whi
implied security behavialemonstrates the security state when the module runs
simultaneously with other modules. A module being seatnen it runs by itself by no
means guarantees that it is also secure when it run#anmaously with other modules.

Race conditions demonstrate this.

Formal verification begins with thereconditions which hold states before a system
begins, and analyzes thestconditionsthe states resulting from some execution(s) of
the system [7]. To verify security requirements, fumaai testing is mostly a
straightforward solution. To verify security impliaatis and security interactions of
separately designed packages is more difficult due to noonplcations [29], when
each module needs to check the states against eachobfigheeomponents running at
the same time in order to verify that the required sicigrstill maintained. These

verifications are usually handled pgnetration analysis

Penetration analysjsa technique that has security analysts try to vidkeesecurity
policy, tests not only procedural and operational, but alsenblogical controls [7]. A
common model for performing penetration analysis iSlagv Hypothesis Methodology
(FHM) [27, 49, 55, 56, 57]. Also, Gupta and Gligor presentediypmtheses regarding
penetration testing. THaypothesis of Penetration Patterasserts system flaws are

caused by penetration patterns arising from errors inraysbadition checks or

Chapter 6 64

integrated flow conditions. Thdypothesis of Penetration-Resistant Systagserts a
system is resistant to penetration as long as it adliera specific design property set

[18].

To construct a foundation for a penetration-resistamipeder system, penetration
analysis selects different vulnerability detectiortimeologies and taxonomies based on
a set of formalized design properties that characteggistance to penetration. It uses
both flow-based models and a state-analysis approagio$sible flaws. It helps define a
system state as a set of integrated flow paths treddng the system up to a certain point
during the execution. It is a simulation by an appoitigeel teamor red teamwith goals

to exploit known and new vulnerabilities by attempting realk the security such as
gaining unauthorized access, causing denial-of-service, and mgpagstem
accountability, etc. The penetration pretends that systdls are being made at certain

points of the penetration analysis.

Before a run of penetration analysis, each systeitydwis a set of penetration-resistance
policies associated with some permissions to be altei@ded, and invoked within an
atomic sequence during a penetration test. While thesedefene access control and
accountability in a high-level sense, penetration anatysisbe viewed as the low-level
analysis of how these rules are complied and coggmbrhtring the penetration test.
Besides, both rules and penetration analysis must bestnis preserving and trusted,
meaning that they have to be carefully reviewed befaéest, and during the test they

must always be enforced and verified during any possible chainge.

Chapter 6 65

During the penetration te®yimitive Flow Generato(PFG) converts the source codes
into execution flow paths conducted inaomic sequencd hese execution flow paths
can consist oihformation flowsfunction calls conditions or a combination of them
[18]. Any improper state at some certain location aldvegseries of integrated execution
flow paths for a particular system call results fftaav. This flaw can lead to illegal or
unintended gain of access to the system and its resdarce@mprivileged user takes

advantage of it.

Penetration analysis can also work wallt injection Fault injection is a simulation that
looks for, and predicts, a modified function, $gywhich is different from the targeted
original normal functionf, of the program. Henc&, can result in different program
states at least for some inputs. Using such algorithrAslagstive Vulnerability Analysis
(AVA) [16] for fault injection, primitive flow generatoroniverts both andf’ into two
different sets of execution flows so that state differe will be identified at any point that

normal state is diverted into another undesired state.

Given a defined standard environment, not only can penetat@lygsis provide a list of
found vulnerabilities and how they can be exploited, [aat @an enable the testers to rate
the potential damage from an exploitation based on su@i fators as ease of
exploitation, likelihood that the flaw exists, and pokes#gffects of the exploitation of the
flaws [15]. All of these are helpful for security resga designs and improvements. In
addition, the rankings enable an analyst to comparesxabilities among different

products with similar security functionalities. Anotheaportance of the vulnerability

Chapter 6 66

information obtained through penetration analysis isitheelps a specification-based

intrusion detection system to learn how to detect teesarity violations in the future.

The papers by Gupta and Gligor also presented the autoro&penetration analysis in
the theoretical points of view, but so far there hafoeen much work on putting these
ideas into practical or experimental achievements. A&/shn the automated penetration
analysis paper by Gupta and Gligor [18], certain aspegsradtration analysis can be
automated. However, a completely automated penetratidysanaill enable automatic
updates in the vulnerability database, allowing the entitgevability analysis to be

automated.

6.3 Future Works

The proposed model is ideal for dynamic detections d¢f kodbwn and unknown attacks.
The integration of vulnerability database is even ni@srable with the never-ending
discovery of new vulnerabilities as a result of grongognplexities of new systems and
new software applications. Yet there are still sontare works required. One major area
that requires a lot of effort is the complete autoomatf penetration analysis. It will be
an important addition if the whole vulnerability analys#s be automated inside this
model so that the vulnerability data can also be updatednatically. This feature adds
another significance in the design, implementatiod, \grification for an intrusion
detection system. Applying automated penetration analygisa vulnerability database
allowsadaptations as the vulnerability data inside the database is updatechatically

after each penetration test.

Chapter 6 67

Since the vulnerability database used in this proposed maodehaludes information on
not only the vulnerabilities but also fixes, regular usdnhe database will include the
system administrators. As a result, network maemer becomes one of the purposes of
the vulnerability database, and system administrated to provide additional
information to the database regularly for this purposerdfore, several entities will
reference the vulnerability database inside the suggesteel.nliowould also be nice if
the specifications can be updated automatically uporgelsain the vulnerability
database. To accomplish this, a nice correlation mosgukguired among the newly
discovered vulnerabilities, the updated vulnerability datal the corresponding
specifications. The correlation module needs to easdyedficientlyalert the kick-off of
any specifications update using specification language wheti@reris any addition or

modification of vulnerability data.

Future research on how to best correlate a discoveradrabllity to a category without
any interface can lead to full automation of penetragioalysis and vulnerability data
update, while future research on how to best correlatexability data changes to
corresponding specification modifications without hunrd@arvention can lead to full
automation of specification updates. The combined automatlbrtherefore, lead to full

automation of this integrated model.

References 68

References

[1] Robert P. Abbott, J. S. Chin, J. E. Donnelley,MKonigsford, S. Tobuko, D. A.
Webb;Security Analysis and Enhancements of Computer Operating Syasms
NBSIR 76-1041Institute for Computer Sciences and Technology, NatBoeeau of

Standards; April; 1976

[2] Taimur Aslam;A Taxonomy of Security Faults in the UNIX Operating System

Master ThesisPurdue University; August; COAST TR 95-09; 1995

[3] Taimur Aslam, Ivan Krsul, Eugene H. Spaffotése of A Taxonomy of Security
Faults; Proceedings of 19th NIST-NCSC National Information Systems Security

ConferencgSeptember; COAST TR 96-05; 1996

[4] Jai Sundar Balasubramaniyan, Jose Omar Garcia4fg@naDavid Isacoff, Eugene
H. Spafford, and Diego Zambowin Architecture for Intrusion Detection using
Autonomous Agents Proceedings of 14th Annual Computer Security Applications

ConferencglEEE Computer Society; December, 13-24; 1998

[5] Boris Bezier;Software Testing TechniquesElectrical Engineering/Computer

Science and Engineering Seri®an Nostrand Reinhold; 1983

[6] Richard Bisbey Il, Dennis HollingswortRyrotection Analysis Project Final
Report; Technical Report ISI/RR-78-13, DTIC AD A05686iversity of Southern

California Information Science Institute; May; 1978

[7] Matt Bishop;Computer Security: Art and Science Addison-Wesley; 2002

References 69

[8] Matt Bishop;Vulnerability Analysis ; Proceedings of the Second International

Symposium on Recent Advances in Intrusion Dete@igptember, 125-136; 1999

[9] Matt Bishop, Michael DilgerChecking for Race Conditions in File Accesses

Computing System¥olume 9, Number 2; Spring, 131-152; 1996

[10] Mark Bruno;A New Breed Of Criminals, Bank Technology New3anuary; 2003

[11] Center for Education and Research in Informatiorufessce and Security

(CERIAS); CERIAS Vulnerability Database; Purdue University

[12] Computer Emergency Response Team (CERERT/CC Vulnerability Notes

[13] Mark Crosbie and Benjamin KupermaxBuilding Block Approach to Intrusion

Detection, Proceedings of the Recent Advances in Intrusion Dete@otober; 2001

[14] Dan DaCosta, Christopher Dahn, Spiros MancoridissWa Prevelakis;
Characterizing the "Vulnerability Likelihood" of Software Com ponents

Department of Mathematics & Computer Scieraeexel University; 2003

[15] Deborah D. Downs, Ranwa Hadd&gnetration Testing — The Gold Standard
for Security Rating and Ranking; Proceedings of 1st Workshop on Information-

Security-System Rating and Rankiitay; 2001

[16] Anup K. Ghosh, Tom O’Connor, Gary McGrasn Automated Approach for
Identifying Potential Vulnerabilities in Software; Proceedings of the IEEE Symposium

on Security and Priva¢gWMay, 104-114; 1998

References 70

[17] Rajeev Gopalakrishn& Framework for Distributed Intrusion Detection using

Interest-Driven Cooperative Agents CERIAS Tech Repor2001-44; 2001

[18] Sarbari Gupta , Virgil D. GligorAutomated Penetration Analysis System and

Method, Part 1 and Part 2 U.S. Patent # 5, 485, 409992

[19] ICAT MetabaseA CVE Based Vulnerability Database National Institute of

Standards and Technology

[20] Donald E. KnuthThe Errors of TEX; Software Practice and Experiendéolume

19 Number 7; 607-685; 1989

[21] Calvin Ko, George Fink, and Karl Levi#utomated Detection of Vulnerabilities
in Privileged Programs by Execution Monitoring, Proceedings of 10th Annual

Computer Security Applications ConferenCelando, FL; Dec, 134-144; 1994

[22] Calvin Ko;Execution Monitoring of Security-Critical Programs in A
Distributed System: A Specification-based ApproachPhD Dissertation University of

California, Davis; August; 1996

[23] Calvin Ko, Manfred Ruschitzka, and Karl Levigxecution Monitoring of
Security-Critical Programs in Distributed Systems: A Speification-based
Approach; Proceedings of the 1997 IEEE Symposium on Security and Pr@akjand,

CA; May, 175-187; 1997

[24] Ivan V. Krsul;Software Vulnerability Analysis; PhD ThesisPurdue University;

May; COAST TR 98-09; 1998

References 71

[25] Carl E. Landwehr, Alan R. Bull, John P. McDermdtijliam S. Choi;A
Taxonomy of Computer Program Security Flaws, with examplesACM Computer

SurveysVolume 26 Number 3; September, 211-254; 1994

[26] Yihua Liao, Rao VemuritJsing Text Categorization Techniques for Intrusion

Detection 11th USENIX Security SymposiuAugust; 2002

[27] Richard R. LindeDperating System PenetrationProceedings of National

Computer Conferen¢&/olume 44; May, 361-368; 1975

[28] Stefan Lindskog, Erland Jonss@ifferent Aspects of Security Problems in
Network Operating Systems Proceedings of the Third Annual International Systems

Security Engineering Association Conference (2002 ISSEA Conferbtarej; 2002

[29] Lingfeng Ma, Salvador Mandujano, Guangfeng Song, Pad&sahier;Sharing
Vulnerability Information using a Taxonomically-correct, Web-based Cooperative
Database Center for Education and Research in Information Asse and Security,

Purdue University; May; Technical Report 2001-03; 2001

[30] MITRE; Common Vulnerabilities and Exposures

[31] Robert Morris, Ken ThompsoRassword Security: A Case History

Communications of the ACNMolume 22 Number 11; November, 594-597; 1979

[32] Peter G. NeumaniGomputer System Security Evaluation 1978 National
Computer Conference Proceedings (AFIPS Conference Proceedingsid&) 1087-

1095; 1978

References 72

[33] Open Source Vulnerability Databas#sVDB

[34] Philip A. Porras and Peter G. NeumaBMERALD: Event Monitoring Enabling
Responses to Anomalous Live Disturbance$997 National Information Systems

Security Conferengéctober; 1997

[35] Philip A. Porras, Dan Schnackenberg, Stuart StaniforaxQWiaureen Stillman, and
Felix Wu; The Common Intrusion Detection Framework architecture

Interoperability ExperimeniSeptember; 1999

[36] D. Patier, J. L. Albin, R. Ferrol, A. Bilodeakxperiments with Computer
Software Complexity and Reliability; Proceedings of the 6th International Conference

on Software EngineerindgEEE Press; 94-103; 1982

[37] Katherine E. Priceost-based Misuse Detection and Conventional Operating
Systems' Audit Data Collection Master ThesisPurdue University; December; COAST

TR 97-15; 1997

[38] Raymond J. Rubey, Joseph A. Dana, Peter W. B@béantitative Aspects of
Software Validation; Proceedings of the International Conference on Reliable Software

April, 246-251; 1975

[39] SecurityFocusSecurityFocus Vulnerabilities Archive

[40] Steven R. Snapp, James Brentano, Gihan V. Dili3S (Distributed Intrusion
Detection System) -- Motivation, Architecture, and An Eay Prototype; Proceedings

of the 14th National Computer Security Conferef@etober; 1975

References 73

[41] Sony PicturesThe Net 1995

[42] Eugene H. SpaffordZomputer Viruses as Atrtificial Life; Journal of Artificial

Life; Volume 1 Number 3; 249-265; COAST TR 94-02; 1994

[43] Eugene H. Spafford;he Internet Worm Program: An Analysis; ACM Computer

Communications Reviewolume 19 Number 1; January, 17-57; 1989

[44] Eugene H. Spafford and Diego Zambddéta Collection Mechanisms for

Intrusion Detection Systems CERIAS Technical Repp2000-08; June; 2000

[45] Eugene H. Spafford and Diego Zambdntrusion Detection using Autonomous

Agents Computer Networks/olume 34 Number 4; October, 547-570; 2001

[46] Stuart Staniford-Chen, Steven Cheung, Rick Crawfdiidhael Dilger, Jeremy
Frank, James Hoagland, Karl Levitt, Christopher Weentayl Yip and Dan Zerkle;
GrIDS -- A Graph-Based Intrusion Detection System for Lage Networks,
Proceedings of the 19th National Information Systems Security ConfeSaptember;

1996

[47] Steven J. Templeton, Karl Levi; Requires/Provides Model for Computer

Attacks; Proceedings of the New Security Paradigms Workshop; Z¥jfiember; 2000

[48] 20th Century FoxDie Hard 2; 1990

[49] United States Department of Defense Computer Sedtvaijuation Center;

Trusted Computer System Evaluation Criterig; DoD 5200.28-STP1985

References 74

[50] John Viega, J. T. Bloch, Tadayoshi Kohno, Gary MeGidS4: A Static
Vulnerability Scanner for C and C++ Code Proceedings of 16th Annual Computer

Security Applications Conferend@ecember; 257-269; 2000

[51] David Wagner, Jeffrey S. Foster, Eric A. Brewelexander AikenA First Step
towards Automated Detection of Buffer Overrun Vulnerabilities Proceedings of the

Year 2000 Network and Distributed System Security Symposium (NBES)2000

[52] Christina Warrender, Stephanie Forrest, Barak Pedidr; Detecting Intrusions
Using System Calls: Alternative Data ModelsProceedings of 1999 IEEE Symposium

on Security and PrivacyEEE Computer Society; 133-145; 1999

[53] Andrew WebberRealfeel Test of the Preemptible Kernel PatghLinux Journal;

October; 2002

[54] David M. Weiss and Victor R. BasiEvaluating Software Development by
Analysis of Changes: Some Data from the Software Engineering Labatory; IEEE

Transactions on Software Engineeringlume 11 Number 2; February, 157-168; 1985

[55] Clark WeissmanPenetration Testing Information Security: An Integrated

Collection of Essays/olume 6 Essay 11; IEEE Computer Society Press; 269-296; 1995

[56] Clark WeissmanSecurity Penetration Testing Guideling Handbook for the
Computer Security Certification of Trusted Systediapter 10; Technical Memorandum

5540:082A; Naval Research Laboratory; January; 1995

References

[57] Clark WeissmanSystem Security Analysis/Certification Methodology and

Results SP-3728; System Development Corporation; October; 1973

75

Appendix A

Appendix A Source Listings

A.1 Source listing for generic example in section 4.4

#!/bin/perl —w
use Mysql;
$new_file = 0;

Open the specification file if it exists,
otherwise create one.
unless (open (PEG, "+<./peg"))

open (PEG, ">./peg");
$new_file = 1;

}

Generic specifications.
my $generic_spec = join (",
" <progGeneric> -> <writeGeneric, E>.\n",
<writeGeneric, 0> -> ",
"<openGeneric> <closeGeneric> { E = E — 1; }.\n",
" <openGeneric> -> open_Generic ",
"TE=E+1;L=1;}\n"
" <closeGeneric> -> close_Generic.\n");
my $new_spec = "Hyperrules\n;

Environment variable declarations and module list S.
my $vars_decl =join ("™," Environment Variabl es\n",
" ENVint E =0;\n",
" LOCALENVINtL=0\n");
my $module_list=" Start Expression\n SE: "

Assume using the database "test" inside this se rver.
my $dbh = Mysqgl->connect;
$dbh = selectdb ("test");

Query all system calls that have this vulnerabili ty.
my $sth = $dbh->prepare (

SELECT DISTINCT ve.System_Call

FROM Vulnerability Exploit ve,
Vulnerability Classification vc,
Vulnerability _Identification vi

WHERE ve.Vulnerability_ID = ? AND
ve.Module_Name = ? AND
ve.Exploit_ID = vc.Exploit_ID AND
ve.Vulnerability_ID = vi.Vulnerability_ID AND
vc.Category_ID = vi.Category_ID AND
vc.Subcategory_|ID = vi.Subcategory_ID;

);
$sth->execute ("CVE-1999-0812", "submnt");

Handle each system call in the specification la nguage.

76

Appendix A

my $sys_call =";
my $join_string = "";

77

while ($sys_call = $sth->fetchrow ())

{

}

$i=0;

Create the specifications string for this module.
my @s = split ("Generic", $generic_spec);
my $current_spec = join ($sys_call, @s);

Check if @sys_call has already been handled.
CHECKLINE: while (!$new _file)
{
last CHECKLINE if eof PEG;
$line = <PEG>;
$i++;
last CHECKLINE
if index ($line, $current_spec, 0)
>=0;

}

If @module_name does not have these specificat ions,
then add these specifications.
if($i<=0)
{
Append another module name into the
start expression string.
if (length ($module_list) < 20)
$join_string = "";
else
$join_string =" || *;
my $current_module = join (", "<",
$sys_call, ">");
$module_list = join ($join_string,
$module_list, $current_module);

Append another generic hyperrules.
$new_spec = join ("\n", $new_spec,
$current_spec);

Write everything as specifications.
print PEG $vars_decl;

print PEG "\n";

print PEG $module_list;

print PEG "\n";

print PEG $new_spec;

$sth->finish ();
$sth2->finish ();

close PEG;

Appendix A

A.2 Source listing for practical example in section 4.5

#!/bin/perl —w
use Mysql;
$new_file = 0;

Open the specification file if it exists,
otherwise create one.
unless (open (PEG, "+<./peg"))

open (PEG, ">./peg");
$new_file = 1;

}

Assume using the database "test" inside this se rver.
my $dbh = Mysqgl->connect;
$dbh = selectdb ("test");

Query the exploit ID that have this vulnerability
my $sth = $dbh->prepare (

SELECT DISTINCT Exploit_ID
FROM Vulnerability Exploit
WHERE System_Call = ?;

);
$sth->execute ("open_rwtc");
my ($exploit_ID) = $sth->fetchrow ();

Query all the modules and the specification codes
for this exploit ID.
my $sth2 = $dbh->prepare (

SELECT DISTINCT ve.Module_Name, vc.Specification
FROM Vulnerability Exploit ve,
Vulnerability ldentification vi,
Vulnerability Classification vc
WHERE ve.Vulnerability_ID = vi.Vulnerability_ID AN
ve.Exploit_ID = ? AND
ve.Exploit_ID = vc.Exploit_ID AND
vi.Category_ID = vc.Category_ID AND
vi.Subcategory_ID = vc.Subcategory_ID;

);
$sth2->execute ($exploit_ID);
my @data = ();

Handle each module in the specification languag e.

my $module_name ="";
my $spec ="";
while (@data = $sth2->fetchrow ())

{
$module_name = $datal0];
$spec = $data[1];

Appendix A

Replace the generic specification codes
with a customized one by replacing every
existence of the string "Generic" with

the name of the module.

my @s = split ("Generic", $spec);
$new_spec = join ($module_name, @s);

CHECKLINE: while (!'$new_file)

{
last CHECKLINE if eof PEG;
$line = <PEG>;
$i++;
last CHECKLINE
if index ($line, $new_spec, 0) >=0;
}

If 3module_name does not have these specificat
then add these specifications.
if ($i<=0)
{

Write everything into the specification file

after customizations.
print PEG $new_spec;

}

$sth->finish ();
$sth2->finish ();

close PEG;

ions,

79

