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Computer Science 

Abstract 

One of the factors affecting the effectiveness of an intrusion detection system is how 

well it can deal with and protect against potential threats. Vulnerability schema 

offers a classifying scheme to existing vulnerabilities. This provides IDSes a more 

dynamic way to detect attacks, even if the attack has not been launched before. 

Hence, it is more desirable to integrate vulnerability database with an IDS so that 

IDSes can react to potential threats, such as previously-unfound buffer overflow and 

exploitation due to incomplete address space cleanup, in a more real-time manner. 

Such integration eliminates the dependence on attack-pattern signature, and the 

vulnerability database does not rely on any update or upgrade in the operating 

system. 

 

The integration of vulnerability database with the IDS also involves the use of 

specification language. Specification language describes a specification of a module 

by defining negations to all vulnerabilities that this module can be exploited by. For 

easy implementation, an easy-to-understand schema is desired and the schema 

should base on a vulnerability taxonomy which classifies vulnerabilities in 

unambiguous fashion.  

 

This thesis suggests a model that integrates a vulnerability database with existing 

IDSes. In order for this model to work well as a practical solution for intrusion 
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detection systems, this thesis also suggests a relational schema for the vulnerability 

database. A specification-based intrusion detection system integrated with a 

vulnerability database allows specifications to be dynamically updated upon any 

discovery of new vulnerability. This brings research on both vulnerability analysis 

and intrusion detection closer together.
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Chapter 1 Introduction 

1.1 Motivations 

Computer security is an ongoing area of research in computer science, and it will 

continue to be so as long as there is a possibility of security breaches. The consequences 

of someone breaking into a system and stealing, destroying, or altering another person’s 

identity have been pictured in the movie “The Net” [41], where Sandra Bullock’s 

character suddenly became a non-person. A more terrifying situation can happen when 

the whole system was held for ransom, as in the movie “Die Hard 2” [48], when the 

intruders broke into the systems for the airport control center and “kidnapped” everybody 

inside the airport and every incoming flight by forcing the airport authorities to follow 

their instructions or else they would give the pilots of those incoming flights instructions 

that would lead to fatality. These situations happened in movies, but they could also 

happen in real life, as shown by the theft of credit card numbers which are later used in 

fraud and identity thefts [10]. 

Vulnerability analysis and intrusion detection have been two separate but related 

branches of computer security research. Advances in automation in software 

development and software analysis have led vulnerability analysis researchers to study 

methods for automating vulnerabilities detection. Vulnerability researchers often 

reference and update the vulnerability databases that they are constantly using. 

Meanwhile, with some modifications, any of these vulnerability databases can also be 

integrated for use in an intrusion detection system because the database provides a source 

of vulnerability data for the intrusion detection system. During a process, the intrusion 
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detection system could verify that process with its specifications, which were created or 

updated based on the resulting vulnerability data for that process from the most recent 

vulnerability search. The IDS can use this information to detect attacks in a more real-

time fashion. Hence, it makes potential break-ins more difficult to take advantage of the 

vulnerabilities during that process. 

This thesis discusses a vulnerability classification scheme compatible with intrusion 

detection systems. It also presents examples to demonstrate how the database, based on 

this unambiguous classification scheme, can be used with a specification language to 

define consistent specifications that the vulnerabilities will violate. The IDS will use 

these specifications to detect exploitations of these vulnerabilities. 

1.2 Background and Recent Works 

The general public did not pay much attention to cyber attacks until the very first 

computer virus was documented during the early 1980s [42]. Reports on the first 

computer worms were released at about the same time. Most of the reports regarding a 

system under attack were unknown to the general public until one of the first high-profile 

network attacks in occurred 1988. In that attack, a worm spread throughout the Internet. 

One of its propagation methods relied on a program that used a system call, gets. Since 

gets lacks a boundary check [16, 43], the programs calling it are vulnerable to a buffer 

overflow attack. The worm exploited this vulnerability and other vulnerabilities in 

standard services provided by two versions of the UNIX operating systems. 

Vulnerabilities, or security holes, are weaknesses introduced by security-related bugs 

during one or more program executions [14]. The worm was apparently released 
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accidentally and did not delete or alter files. The outcome would have been more 

destructive and disastrous had it been designed to do damage. 

Past experience has shown that most of the attacks perform one or more of the following 

actions: 

1. System file modifications 

2. Unexpected and undesired user privilege modifications during a running process 

3. Log file modifications 

4. A setuid creation allowing root access to files or processes 

5. Password guessing and cracking 

6. Symbolic link modifications during program executions 

These actions are the building blocks of attacks that kernel-based intrusion detection 

systems can detect because these actions are the results of the vulnerabilities existing 

inside system calls [13, 52]. Unfortunately, most software developers are not aware of 

these vulnerabilities, neglect them, do not understand how they can be exploited, or 

assume that these vulnerabilities will not be exploited [50]. One good example, sendmail 

version 8.9.3, calls strcpy 285 times [50], even though the function strcpy is prone to off-

by-one error in buffer management, which is critical because the syntax of C language 

requires the a string variable assignment to include the null character at the end of the 

assigned string value [51]. This buffer overflow vulnerability allows the attacker to insert 

malicious code to obtain privileged access or change accessibilities, etc. Besides buffer 

overflow, the following is a list of high-level security problems when flaws are found in 

most system calls [27, 28]. 
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1. Improper I/O validation, including the famous buffer overflow problem 

2. Improper program and data sharing, such as the race condition 

3. Improper use of cryptography, like the use of only the first 8 characters of the 

password in many versions of UNIX [31] 

4. Weak authentication, allowing attacks such as the man-in-the-middle attack 

5. Insecure bootstrapping, leaving undesired privileges for non-privileged users after 

system initialization 

6. Improper configuration of the system, including access control settings and 

installation management/operation control 

The Internet Worm attack mentioned above highlights the importance of intrusion 

detection systems that can use vulnerability information because the existence of 

vulnerabilities enables intruders to break into systems. Since vulnerabilities can be 

classified, we can also define consistent specifications based on vulnerability 

classifications. With these specifications, the attack patterns will then be able to be 

detected during an intrusion attempt. More details on how this is done will be explained 

in later chapters. 

There are three major approaches in intrusion detections: anomaly detection, misuse 

detection/signature-based detection, and specification-based detection [45]. Most of the 

traditional intrusion detection systems are signature-based, in which the audit data is 

collected by the operating systems. Detection is based on matching the audit data to 

patterns corresponding to currently known attacks. Nonetheless, attacks can be changed 

so that the audit data will not match the attack patterns, and the IDS will not be able to 
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detect the modified attack. Katherine Price demonstrated that “the audit data supplied by 

conventional operating systems lack content useful for misuse detection” [37]. So 

signature-based IDSes will miss some attacks. 

Anomaly detection uses a statistical profile to define a single class of data, regarded as 

normal behavior, coupled with a threshold selection procedure to define anomalies. 

Anomaly detection does not miss attack patterns because it does not use attack signatures. 

However, in practice it has too many false positives to be useful. The difference between 

normal behaviors and anomalies can be difficult to define [26]. For example, user A 

almost never creates a file, but when one day he creates a file, this action will be 

identified as an anomaly, even though the user is creating a file to store his own works. 

This “anomaly” is in fact a false alarm. 

By contrast, specification-based intrusion detection is based on conformance to 

specifications. It emphasizes detection of intrusions as they occur, instead of depending 

on anomaly definition, or the static data comparisons with the known attack patterns. It 

eliminates delay in accessing and filtering the log data. Also, it rules out any dependence 

on the log data as log data could be altered by the intruder before it is logged, or could be 

missing or inaccessible due to certain other related crucial internal operations [43]. 

Furthermore, an attacker could inhibit the collection of further information. On the other 

hand, intrusion patterns can also be modified, as seen in the mutations shown in computer 

viruses. Therefore, an ideal intrusion detection system needs the ability to detect new 

attacks. 
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In recent years, papers have suggested real-time specification-based intrusion detection 

instead of the offline signature-based approach. Real-time intrusion detection enables 

IDSes to identify exploitations and to react as the attack progresses. Distributed intrusion 

detection systems, especially with the interest-base approach proposed by Gopalakrishna 

[17], introduce the use of intrusion detection agents and components placed in different 

locations to detect attacks at different portions of the network [35, 45]. The kernel model 

proposed by Crosbie and Kuperman [13] also introduced the use of a template as a 

reference for unknown attack detections. 

In 1994, Calvin Ko, George Fink, and Karl Levitt introduced a specification language to 

look for violations of security properties during executions [21]. The specification 

language allows the use of parameters in order to specify different allowable scenarios 

based on different states. To enforce these specifications in real-time intrusion detections, 

using the system kernel is a viable approach. In 2001, Mark Crosbie and Benjamin 

Kuperman suggested an approach in IDSes called the “Building Block Approach”, in 

which a minimal but adequate intrusion detection architecture is added to the kernel. 

Thus the kernel examines the system calls and the corresponding parameters to detect if 

there is any malicious usage [13]. The paper also outlines a template for determining 

whether there is any malicious call made during any moment. The template mentioned in 

the paper is primitive because it was an initial proposal to an innovative design. 

Refinements are needed to provide a more complete scheme for the template without 

sacrificing the overall performance inside the kernel. Using a schema based on a 

vulnerability taxonomy will improve the template because the schema represents the 

structure of the vulnerability database which, according to the taxonomy, is classified 
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unambiguously. A vulnerability taxonomy is scalable with respect to the number of 

vulnerabilities, as demonstrated in the models proposed by both Taimur Aslam [2] and 

Ivan Krsul [24]. Besides, since in general the database is independent of the vendor and 

version of the operating system, its data can be referenced in any operating system as 

long as its client program supports that particular operating system. This means that a 

vulnerability database will not be affected by any change, update, or upgrade in the 

operating system. 

There are several existing sites that store vulnerability data, some of them private and 

some of them public. Some of these sites simply provide vulnerability data storage and 

descriptions, while others have additional classification information. They serve various 

purposes such as penetration analysis, code analysis, and auditing. Among them, the 

regularly maintained ones provide a helpful data source for computer security researchers 

to obtain up-to-date information about the vulnerabilities. Ivan Krsul lists some in his 

thesis [24]: 

1. The CVE site is maintained by MITRE [30], and keeps records of each 

vulnerability, its description, and other references information. 

2. The Computer Emergency Response Team (CERT) maintains a database [12]. 

3. Security Focus Online stores vulnerability data according to vendor, product or 

technology name, keyword, impact, Bugtraq ID number, and CVE number. It also 

offers discussion forums, other users’ suggestions, and solutions if available, for 

the reported vulnerabilities [39]. 
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4. Open Source Vulnerability Database (OSVDB) is an independent and open source 

database created by and for the community. Their goal is “to provide accurate, 

detailed, current, and unbiased technical information” [33]. 

5. National Institute of Standards and Technology’s ICAT metabase has a searchable 

index of information on CVE-compatible vulnerabilities [19]. 

6. The database in CERIAS from Purdue University uses a model proposed first by 

Taimur Aslam and later enhanced by Ivan Krsul [11]. 

7. The University of California at Davis maintained a vulnerability database based 

on the model defined by Matt Bishop. 

1.3 Objectives 

One of the goals for this thesis is to propose a new “intrusion prevention” model merging 

both intrusion detection and vulnerability database. A security mechanism aimed at 

prevention is more effective than detecting known attacks because prevention blocks all 

attacks. So, just as we have to prevent the known vulnerabilities from being exploited, we 

also want to detect any new, exploitable vulnerabilities. In the proposed model, a 

vulnerability database keeps current vulnerability information obtained from search 

engines or other sources. The schema for the vulnerability database serves as the 

guidelines for the specifications inside an intrusion detection system, allowing the IDS to 

query the database. The IDS can then check whether any of the vulnerabilities is being 

exploited during the current transaction. Since the IDS references the vulnerability 

schema, the schema must be suitable to this purpose. Part of this thesis proposes a revised 

version of the Aslam/Krsul classification model. This suggests a new direction towards 

better intrusion detection. 



Chapter 1  

 

9 

1.4 Thesis Organization 

The organization for the thesis is as follows. Chapter 2 reviews the background of 

vulnerability analysis, including a discussion of some existing vulnerability taxonomies. 

Chapter 3 explains the concepts in the integrations of a vulnerability database into 

intrusion detection systems. It also illustrates the relations between a vulnerability 

database and the specification language used for intrusion detections. Chapter 4 proposes 

modifications to the model from Aslam and Krsul appropriate for use with an intrusion 

detection system. It goes on to illustrate how the vulnerability database can be efficiently 

used together with a specification language for intrusion detection systems. Chapter 5 

describes the use of the vulnerability schema on specification-based distributed intrusion 

detection systems. Chapter 6 concludes this thesis and offers questions as directions for 

possible future research.
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Chapter 2 Vulnerability Analysis Concepts 

2.1 Detections 

A fundamental approach in security is detection. Detection can be either dynamic, where 

one tests a program by executing it, or static, which involves semantic and syntactic 

analysis of source code. The decision between whether the detection should be dynamic, 

static, or a mixture involves trades-offs between accuracy and efforts. Automated 

detection is any effective detection method performed with little to no human interaction. 

It can be divided into two parts: the automated detection of intrusions, as done by an 

intrusion detection system (IDS), and the automated detection of vulnerabilities, as done 

by a vulnerability search engine. 

Bugs are the errors inside computer systems and programs. It is impossible to design and 

implement error-free software or systems, especially when the software or systems will 

be modified in the future. However, various techniques and tools can analyze software 

and systems for bugs such as memory leaks [16]. Hence, some bugs that lead to errors 

can be found. These bugs should be reported back to the developers so they can fix them. 

In typical software engineering practice, testers are responsible for reporting bugs and 

suggesting functional improvements before any upgrade is made by the developers. 

However, security-related bugs do not introduce lack of functionality, which would 

directly affect use of the system. Instead, security-related bugs introduce weaknesses 

during the executions [14], and, as mentioned before, these weaknesses are called 

vulnerabilities or security holes. Examples include unauthorized access, unprivileged 

consumption of privileged resources or race conditions, etc. Vulnerabilities are errors in 
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programming, configurations, and operations [2], as a result of either poorly or 

incorrectly designed or implemented security implementations or conflicts within the 

implementations. The determination of whether a bug is a vulnerability also depends on 

the precise security policy of the analyzed system. 

2.2 Vulnerability Analysis Overview 

A formally verified computer system can be mathematically described by a formal top-

level specification (FTLS). The system is proved to be consistent with the security policy 

once we mathematically verify that it satisfies the FTLS at all times [8]. Unfortunately, 

most systems cannot be described mathematically. Therefore, vulnerability analysis 

comes into the picture. In vulnerability analysis, a set of classifications allow the 

vulnerability data to be categorized into useful schemes [8] such as signatures for 

intrusion detections, or into categories describing environment conditions necessary for 

an attack. Vulnerability analysis schemes include RISOS [1] and Protection Analysis (PA) 

[6, 32]. 

In Bishop’s scheme [8], assume a given vulnerability v = {v1, v2, …, vn} has a set of 

characteristics denoted as Cv = {Cv1, Cv2, …, Cvn}. For any combination of vulnerabilities 

to be exploited at the same time, the intersection of all of their respective characteristics 

set should result in a non-empty set, i.e., these vulnerabilities should have at least one 

common characteristic in order to be exploited at the same time. For example, for a race 

condition, the two possible characteristics are that two system calls reference a file by 

name, and between the calls, the binding of the file name is changed. Negating one 

characteristic will simultaneously eliminate the exploitability of all vulnerabilities having 
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the characteristic [8]. One effective method of describing a characteristic is to use a 

specification language, which allows the definitions of intrusion specifications based on 

vulnerability classification. This will be explained in detail in the next two chapters. 

2.3 Vulnerability Categorization 

One goal of vulnerability analysis is to identify and classify vulnerabilities before they 

are exploited by the attackers. Data about vulnerabilities must be organized to be useful 

for characterizing faults and designing solutions [3]. How the vulnerabilities are 

classified depends on how the data is to be referenced or used. In addition, having an 

organized, systematic classification of vulnerabilities can avoid data inconsistency and 

ambiguity. Therefore, various domain-specific vulnerability classifications have been 

proposed by Rubey (1975) [38], Potier (1982) [36], Bezier (1983) [5], Weiss (1985) [54], 

and Knuth (1989) [20]. The following sections describe three general classification 

schemes. 

2.4 Landwehr Classification Scheme [25] 

Landwehr, Bull, McDermott, and Choi from the Naval Research Laboratory proposed a 

taxonomy based on the observations that most software failure histories were not 

documented. They studied about 50 security flaws described in the literature. Their 

proposed classification had three general categories: Genesis, Time of Introduction, and 

Location. Genesis refers to the introduction of each vulnerability, whether it is intentional 

or not, and if it is intentional, whether it is malicious or not. It further classifies the 

intentional vulnerabilities into one of the six subclasses or the unclassified “other” class, 

while the unintentional ones are classified based on the categories adopted in RISOS [1]. 
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Time of Introduction and Location record the stage of software development and where 

during the program execution the vulnerability is introduced. An obvious weakness of 

this classification is that if the circumstances of the introduction are unknown, it is 

usually not clear whether the introduction of the vulnerability is intentional or not, and 

whether it is malicious or not. Another difficulty is correctly identifying the time of 

introduction of the vulnerability because different parties may disagree when the 

vulnerability is introduced. Similarly, such controversy also affects determining where 

the vulnerability is introduced. This is because, based on this scheme, the factors for 

determining a vulnerability include its nature of exploitation, time of introduction, and 

where it is introduced. Different definitions of a vulnerability based on nature of 

exploitation may involve conflicting times and places of introduction. 

2.5 Aslam’s Taxonomy Scheme 

In his Master’s thesis [2], Taimur Aslam presented a taxonomy for the vulnerability 

database in the COAST Laboratory at Purdue University. This database had 49 

documented UNIX security faults collected from various resources, including the 

Computer Emergency Response Team (CERT), mailing lists, and literature surveys. The 

purpose of his proposal was to create a systematic scheme to classify faults and to avoid 

ambiguity by placing each fault into one category. His taxonomy excludes classifications 

of any non-software-related faults, and focuses only on software implementation and 

operation. He defines three categories, namely operational, environmental, and coding 

faults. Configuration and permission errors are classified as operational faults. 

Environmental faults are those caused by individual functionally correct components 

interacting together incorrectly. Any error caused by poor programming such as buffer 
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overflow and race condition is a coding fault. However, Aslam’s model does not consider 

the case where one vulnerability leads to another, different vulnerability. Two examples 

illustrate this weakness: 

1. A program execution calls two components that are individually functionally 

correct but have interaction errors when called with a particular set of parameters. 

The decision procedure presented in the taxonomy classifies this error as an 

environmental fault because of the interaction error between the two components. 

However, since the fault is introduced in the source code of the components, this 

is also a coding fault. The source codes of the components fail to handle the error 

condition introduced when the components interact with each other using these 

parameters. 

2. A packet filtering firewall's vulnerability allows attackers to upload a program. 

This program can compromise the host protected by the firewall by allowing 

unauthorized access to the host resources and may result in a DoS attack to other 

users. This is an example of a coding vulnerability. The code allows an open 

window because the code “opens” the window upon meeting the conditions that 

the incoming request in the header is legitimate. This leads to another coding fault 

when additional malicious source code attached to the end of the request was 

compiled and executed in the compromised host. If the resulted program grants 

additional access privileges to the malicious user, the host becomes 

environmentally vulnerable because the program, which is functionally correct, is 

incorrectly interacting with the access list of the system. 
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2.6 Krsul Classification Scheme 

Ivan Krsul extended Aslam’s taxonomy in his PhD thesis [24]. In addition to the three 

categories that Aslam’s model adopts, Krsul’s model adds a new category for all 

unidentifiable vulnerabilities, maintaining the scalability of the taxonomy itself. In 

addition, his model includes other important information like impacts, exploitations, and 

references, etc. The additional information is extremely useful in vulnerability research 

because it allows developers or administrators to monitor the vulnerabilities. An 

important feature in his taxonomy is the realization of impacts, which defines both the 

immediate and ultimate results upon the exploitation of the vulnerability. Sometimes 

when a vulnerability occurs, it will also open the door to another vulnerability. Consider a 

packet filtering firewall that has to rely on the routers to permit data flow based on the 

packet information. When the packet is valid, the router will “open its window” for the 

packet to continue its transmission. However, this “open window” is also a vulnerability 

itself because it allows a valid packet to go through. However, there is no guarantee that 

the data buffer inside a valid packet does not have an overflow problem. The buffer 

overflow vulnerability in a valid packet becomes an impact caused by the “open window” 

vulnerability in the firewall. The realization of impacts caused by a vulnerability allows 

direct, immediate preventions on residual vulnerabilities without waiting for the usual 

precautions to start only upon when they are detected. This makes both the detections and 

preventions more effective.
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Chapter 3 Applying Vulnerabilities in Intrusion Detections 

 

3.1 Integrating Intrusion Detection and Vulnerability Analysis 

Figure 1 shows a picture of an organization in which a vulnerability database responds to 

queries from an intrusion detection system. This extends the current intrusion detection 

model to take advantage of the vulnerability data in the database. It prevents any new 

attack from exploiting any vulnerability that an IDS may not be able to detect based on 

only the attack pattern known to the IDS. A vulnerability database is added to the model 

to maintain the vulnerabilities data on the systems being monitored. Therefore, as each 

vulnerability is discovered, it will be classified according to the adopted taxonomy and 

added to the database, so that the vulnerability data is as current as possible. Also, any 

previously unknown attack exploiting any of the newly discovered vulnerabilities will be 

detected. 

Intrusion 
Detection 

Vulnerability 
Analysis 

Vulnerability 
Database 

Figure 1. Intrusion Prevention – A High-Level Infrastructure 

Vulnerability 
Taxonomy 
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Given an attack pattern, a specification-based intrusion detection system can use a 

specification language to describe how the pattern can be negated. Whenever a 

vulnerability is discovered, its exploitation method will be classified based on the 

adopted taxonomy and saved into the vulnerability database as part of the vulnerability 

data. The exploitation method describes the attack pattern used in order to exploit this 

vulnerability. The negation of this attack pattern will then be defined using specification 

language. Therefore, using the vulnerability database helps the specification language 

define the negation of any attack pattern. Since all or indicated processes that can be 

exploited by the same vulnerability must follow the same negation, specifications can be 

defined based on the data queried from the vulnerability database. In this way, 

vulnerability classification helps define the specification for each process. The IDS can 

then obtain and apply this specification to detect the vulnerability being exploited. 

The schema for the vulnerability database presents a structural and relational data source 

that allows storage, queries, maintenance, and expansion [29]. The database stores the 

vulnerability data gathered from the results of various vulnerability tests and other 

external information such as newly-applied patches and specifications, etc. The IDS can 

query the data to extract vulnerability information about a specific system call/module. 

For example, suppose that a system call is known to have vulnerabilities v1, v2, …, vn, 

and the database has already stored the data for these vulnerabilities. The specification of 

this system call can then be defined based on this data. In addition, the schema for the 

vulnerability database used in this model, which will be detailed in Chapters 4 and 5, 

includes the specification for each classified vulnerability. Therefore, we can also obtain 

a list of system calls that can be exploited by a given vulnerability so that we can add the 
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specification of this vulnerability to every system call in the list. For instance, system 

calls m1, m2, …, mn have a specific vulnerability. Querying the list of system calls 

exploitable by this vulnerability should return a list M = {m1, m2, …, mn}. As the queried 

vulnerability data describes how and when this vulnerability is being exploited, it enables 

the specification-based intrusion detection system to determine which system calls can be 

exploited by this vulnerability. Let M’ ⊆ M be the list of system calls that have not 

included this vulnerability in their specifications yet. After the query, we can add the 

negation of the attack pattern of this vulnerability to the specifications of all of the system 

calls inside M’ because the query returns M and M’ ⊆ M. Since each vulnerability in the 

database is already classified into a unique, unambiguous category, using the 

classification based on a taxonomy like Aslam’s or Krsul’s also makes its corresponding 

specification unambiguous. In essence, the vulnerabilities in the database produce the 

guidelines to enforce the security policy of the system. 

Another advantage of having a vulnerability database inside this model is that the data is 

accessible to all components that need to reference it. Issue of who should have access to 

the database is not part of the module. While this issue is important, it relates to the 

database itself and not to the proposed model. Thus, we will not explore this issue any 

further. 

3.2 Specification-based Intrusion Detections 

When an application program is to be executed, certain shell process(es) inside the 

operating system will be called upon to start the execution. Any process involved in 

beginning this execution becomes an active entity, while the application program by itself 
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is a passive entity. Something needs to exist in order to monitor the execution of this 

application program, especially when it is performed in a distributed or concurrent 

fashion under a given set of system environments. A program execution is characterized 

by a set of attributes and sequences of events, and a monitor, such as an intrusion 

detection system, can determine the state of the program execution based on these 

attributes. For example, the daemon is a UNIX request-handling procedure that is 

invoked whenever an alteration, an addition, or a deletion or other event occurs, and its 

purpose is to decide what to do with the event(s). 

The requirements for confining the state of execution to a set of allowed states, given 

certain input parameters, are the specifications of the program. Specifications are security 

definitions describing a set of allowed states determined by the security policy. 

Specifications can be defined based on the vulnerability data in the vulnerability 

database. As described in 3.1, vulnerability data serves as the guidelines for the security 

specifications because these specifications are the conglomeration of the negations of the 

vulnerabilities stored in the vulnerability database. These specifications are expressed by 

means of a programming or scripting language, including the specification language 

defined in Calvin Ko’s thesis [21]. Specification language expresses the specifications in 

such a way that a list of allowed operations or processes is defined during a program 

execution based on the input state, as long as the initial state passed to the program 

belongs to the set of allowed states for this program. For example, if writing a file 

requires that the current state be in “close”, then the following specifications describe the 

write action: 
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1. The allowed processes before the write action should include 

a. Opening the file for writing and the state of the file is in “open” state 

b. Assigning a file handle to the file before writing to the file 

2. The “open” state has to be maintained throughout the write action before the file 

is closed. 

3. Before the next write action can occur, the file has to be closed and the state of the 

file must return to “close” state. 

3.3 Integrating the Vulnerability Database and the Specification Languages 

Unknown attacks can be detected if specification-based detection is adopted. The 

specifications describe the allowed behavior of security-critical programs. Attacks violate 

these behaviors. 

Execution event sequences are the sequences of events corresponding to the operations 

performed by a distributed process. Traces can be modeled mathematically. For example, 

given a distributed process p = {p1, p2, …, pn} where pi is a process, the execution trace 

Vp is the merge of all Vpi’s, where each Vpi is the individual process trace. Traces can be 

classified into System Traces and Process Traces [23]. System traces are sequences of 

events for the whole distributed system, and process traces are sequences of events for 

process(es) within the system. Thus, Vp is a subtrace of the system trace V, and Vp1 is a 

subtrace of Vp. 

A specification language focusing on program behaviors applies program traces and 

parallel-environment grammars (PE-grammars) to specify trace policies. The PE-

grammar adopted in specification language defines a formal language for program 
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operations. Like other languages, it has a set of terminals, a set of rules called hyperrules, 

and a start expression. It also has environment variables to keep track of the state of the 

system. Instead of using static rules directly to define a language, the PE-grammars 

parameterize these rules, as a template for the dynamic generation of actual production 

rules during the parsing stage by replacing the parameters with actual environment 

values. For example, consider the following piece of specification template: 

Codes         Line 
-----         ---- 
 
Environment Variables      1 
ENV int E = 0;       2 
LOCAL ENV int L = 0;      3 

 
Start Expression       4 
SE: <progA> || <progB>      5 
 
Hyperrules        6 
<progA> -> <writeA, E>.      7 
<writeA, 0> -> <openA> <closeA> { E = E – 1; }.  8 
<openA> -> open_A { E = E + 1; L = 1; }.   9 
<closeA> -> close_A.      10 

 
<progB> -> <writeB, E>.      11 
<writeB, 0> -> <openB> <closeB> { E = E – 1; }.  12  
<openB> -> open_B { E = E + 1; L = 1; }.   13 
<closeB> -> close_B.      14 

In terms of high-level illustration, this piece of sample specification tries to prevent two 

programs from writing to an opened file at the same time. The environment variable E 

keeps track of the state of a file. Lines 7 to 10 are the hyperrules for program A, where it 

can write to a file if E is 0, as shown on line 8. Likewise, lines 11 to 14 are the same 

hyperrules for program B. Therefore, these hyperrules try to prevent a race condition 

vulnerability during the file writing process, which can be exploited in both program A 

and program B. Through the environment variable E, the specification parameterizes the 

PE-grammar because the value of E is assigned based on the environment, and the 
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hyperrules depend on the current value of E, which changes upon opening or closing a 

file. Hence, different write permission will be enforced based on the current value of E. 

The concept of using environment variable E is analogous to the use of a variable in 

programming language [21]. To generalize this specification so that the same hyperrules 

will be applied to all programs that write a file, we first make a query to the vulnerability 

database to return a list of modules having this race condition vulnerability. Then we 

assign the same hyperrules for this race condition vulnerability to all the modules in the 

queried list so that they will all have the same negation of the vulnerability. This 

integration of vulnerability database with specification language helps prevent a 

vulnerability from exploiting any system call that was previously found to be exploitable 

by this vulnerability. It allows all vulnerabilities of the same category, subcategory and 

exploitation method to be described by the same defined hyperrules. Further explanations 

on how this specification can be generalized will be discussed in 4.4. 

In a second example, assume that query result for vulnerability v shows that it can be 

exploited in processes p1, p2, …, pn, and assume that specification sv is the set of 

hyperrules needed to prevent vulnerability v from being exploited. Then we can use the 

specification language to include sv in the specifications for all of these processes. For 

example, consider the following generic specification which will further be illustrated in 

4.5: 

Codes         Line 
-----         ---- 
 
SPEC <(?, Generic, U, H)> 

 
ENV int CREATTMP = 0;     1 
ENV int PID = getpid ();    2 
 
SE: <Generic> || <other>    3 



Chapter 3  

 

23 

 
<Generic> -> <init> <mktemp> <rest>.  4 
<init> -> <not_mktemp> <init> | Nil.  5 
<rest> -> any_op <rest> | Nil.   6 
<mktemp> -> open_tmpfile-PID { CREATTMP = 1; }. 7 
<not_mktemp> -> not_open_tmpfile-PID.  8 
<other> -> <vop, CREATTMP> <other> | Nil.  9 
<vop, 0> -> not_chgtmp.     10 
<vop, 1> -> any_op.     11 
 

  END; 

In this example, v is the race condition vulnerability allowing a privileged file to be 

symbolically linked by the intruder before another program changes the contents of this 

file, allowing the intruder to access the information inside this file. Therefore, sv is the 

above specification. The environment variable CREATTMP indicates whether the 

temporary file, which uses PID as its identification, is currently being accessed or not. If 

the file is not accessed by any process, CREATTMP is 0. CREATTMP will be set to 1 

upon access, as shown on line 7. The hyperrule on line 4 first executes the hyperrule on 

line 5, which conducts a test defined on line 8 to check if the file is currently being 

accessed or not. If the file is being accessed by another program, the test on line 8 will 

fail and so will line 5. As a result, line 4 will not move on to the hyperrule defined on line 

7, i.e., the program will not be able to access the file. The hyperrules prohibit a file to be 

accessed or renamed if another program has already been accessing it. Any system call 

exploitable by vulnerability v will have this generic specification assigned to it by 

replacing the string “Generic” in the specification with the actual name of the system call. 

Specification for any vulnerability, therefore, also becomes unique because there will not 

be conflicts any more. This prevents specifications from being ambiguous or 

contradictions within the specification for any vulnerability because any of these 

problems can affect the overall effectiveness of intrusion detection. Further explanations 



Chapter 3  

 

24 

on how to integrate the vulnerability database and the specification language will be 

discussed in the next chapter. 

3.4 Benefits 

This model uses a vulnerability database. The database can be updated as new 

vulnerabilities are found. Hence, the vulnerability database in this model allows the 

specification-based IDS to use specifications about the most up-to-date vulnerability 

information. The IDS can access data from the database to analyze the targeted module or 

system call. This model also enables the corresponding specifications in the IDS to be 

updated through the use of specification language whenever new vulnerabilities are 

discovered.
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Chapter 4 Interoperable Vulnerability Schema for IDSes 

4.1 Considerations for the Schema 

As mentioned in Chapter 3, the data in the vulnerability database helps defining 

specifications for the intrusion detection system. The vulnerability data can also be used 

as reference information for the administrators and the developers. They can examine the 

details of the discovered vulnerabilities inside the current version of the systems being 

monitored. The vulnerability database should reflect the following considerations:  

1. The schema has to be unambiguous to ensure that the IDS avoids producing 

ambiguous alerts. If the classification is ambiguous, a vulnerability may fall into 

one class in one system and another class in another system. Assume that a 

vulnerability v is classified to be in the class V1 in one IDS and in the class V2 in 

another IDS due to ambiguity. When the specification of each vulnerability in the 

class V1 needs to be updated in both IDSes, a query is first made in each IDS to 

obtain a list of vulnerabilities belonging to the class V1 in that IDS. Due to the 

ambiguity, v is not in the queries list in the IDS that classifies v as a vulnerability 

in the class V2. Therefore, v’s specification will not be updated in that IDS. As a 

result, both IDSes will have different specifications for v after the update. Besides 

inconsistent specifications, ambiguity in classification can also result in 

inconsistent alerts. For example, using the same ambiguous example, when v is 

being exploited, one IDS will issue a V1 alert because v is in the class V1, while in 

another IDS a V1 alert will not be issued because v is not in the class V1. Let v 

have the same “open window” vulnerability in the packet filtering firewall 
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mentioned in 2.6. One IDS may classify the vulnerability as a coding-related 

vulnerability because of root access due to buffer overflow caused by some 

program execution during the “open window” period. On the other hand, another 

IDS may classify the vulnerability as an environmental vulnerability because of 

the existence of the “open window”. Because of ambiguous classification, when v 

is being exploited, one IDS will raise a coding-related vulnerability alert while the 

other IDS will raise an environmental vulnerability alert. 

2. The taxonomy should not use any subjective field, such as severity rankings or 

references, etc., for vulnerability classification. Subjective information is for 

internal reference only by the vulnerability analysts and researchers for 

investigation purposes. If the system administrator needs to prioritize attack data, 

this should be done externally to the vulnerability information. 

3. The schema should not deviate too much from any unambiguous model such as 

the one proposed by Aslam and Krsul. This means that while some variations will 

be made in order to be more suitably used by an intrusion detection system, the 

fundamental classification scheme should still be based on a taxonomy using 

unambiguous classification. The classification scheme adopted by an IDS has to 

be unambiguous because the IDS requires consistent specifications for modules 

having the same vulnerabilities. A classification scheme similar to the one used 

by Aslam/Krsul is recommended. Since the Aslam/Krsul taxonomy avoids 

ambiguity in classifications, it meets the needs of IDS. Note that the impacts field 

in Krsul’s scheme is crucial because it provides information on residual 

vulnerabilities. Another important reason for the schema to be based on the 
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Aslam/Krsul taxonomy is that this taxonomy is being adopted in many current 

vulnerability researches. The schema adopted in the IDS should be based on a 

taxonomy that is familiar with the vulnerability researchers, since they may need 

to regularly investigate the vulnerability data and update the patch information 

inside the database. 

4. For a vulnerability with a given category/subcategory, there may be more than 

one exploitation method. For example, a race condition vulnerability may be 

exploited by renaming a file after writing but before calling chown or chmod, as 

occurs in rdist, or may be exploited by symbolically linking of a privileged file 

before the file is “re-created”, such as in binmail. This shows that different 

exploitation methods for a single vulnerability can generate different signatures. 

The scheme will be similar to the Detailed Information About Exploitation 

session in Krsul’s scheme, except that the subjective items like ease of exploit and 

complexity of exploit are not necessary. Exploitation methods provide another 

hierarchy in the classification criteria, in addition to category and subcategory, 

needed to define unambiguous specifications. 

5. Specifications are required for every class of category/subcategory/exploitation 

combination so that each class uses the same specifications. This maintains the 

desired consistency for each set of vulnerabilities, and allows any newly 

discovered vulnerability of the same class to adopt the same specifications. 

Sections 2.5 and 2.6 mentioned that the Aslam and Krsul schemes enable vulnerability 

classification to be unambiguous, which is critical in defining specifications for use in an 

intrusion detection system. However, the taxonomy proposed by Aslam and extended by 
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Krsul has some categories that are not useful for intrusion detection because they are 

neither necessary nor updated by the system administrators. For example: 

1. The field Information Regarding the Source of the Information provides details on 

the source of the information regarding the vulnerability. While the existence of a 

vulnerability and its information is relevant, the source where the information on 

a vulnerability can be found is not. An IDS is supposed to reference the 

vulnerability data to find and prevent potential attacks. Its major task is simply 

detecting and reacting to the detected attack. The source of information for the 

vulnerability data helps researchers in ranking and prioritizing various 

vulnerabilities. However, ranking and prioritizing vulnerabilities are not relevant 

inside the suggested model because the task of an intrusion detection system is to 

try to prevent any vulnerability from being exploited, no matter what the ranking 

and priority are. 

2. Similarly, the field References provides additional references regarding the found 

vulnerability, such as which websites have further descriptions on the 

vulnerability. This is for human use only. 

3. The fields ease_of_exploit and complexity_of_exploit inside the schema field 

Detailed Information About Exploitation are subjective rankings on how easy the 

vulnerability can be exploited. 

Generally speaking, an intrusion detection system detects an attack by examining the 

current operation or sequence of operations. The IDS needs to prevent any vulnerability 

arising from these operations from being exploited. 
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The IDS will use the following information: 

1. System information, such as name, version and vendor of both the server and the 

operating system, together with the current environment of the system when the 

vulnerability is detected. This information identifies under what situation(s) a 

vulnerability can be exploited. It helps the system administrators determine the 

appropriate patch(es) to be uploaded to the system. 

2. Identification for the vulnerability, including information like what category, 

subcategory and exploitation method(s) it belongs to. For all vulnerabilities that 

belong to the same category and subcategory, the exploitation method for each of 

them may be different. Therefore, we need to classify the vulnerability with one 

more hierarchy level such that for each classified vulnerability, it belongs to a 

unique exploitation method under one subcategory of a certain category. This 

additional hierarchy level is necessary in defining the negation of each 

vulnerability because the specification for an operation is a conglomeration of 

unambiguous negations of all vulnerabilities found in that operation. In addition, 

Chapter 3 has already illustrated the importance of unambiguous vulnerability 

classification in the generation of a unique vulnerability negation. 

3. Information regarding how the vulnerability is exploited, including which set of 

system calls are used, and in what module or program the calls occur. The 

exploitation method is also critical to specification definition because the 

vulnerability arises when a sequence of system calls arises with a certain set of 

parameters, so we need to make a specification such that this sequence can never 

occur with this set of parameters. Therefore, the IDS needs to allow queries on the 
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exploitation method so that specifications can be added to these system calls to 

help prevent the vulnerability from being exploited when this set of parameters is 

passed to the system calls. 

4. Impact caused by the vulnerability, for example whether it will open the door to 

another vulnerability. This enables the IDS to identify any residual vulnerability 

that can be exploited as a result of the exploitation of the first vulnerability. The 

IDS can thus prevent any disastrous chain of attacks. For example, in the “open 

window” vulnerability mentioned in section 2.6, conventional signature-based 

IDS may not be able to detect any residual attack if none of the residual attacks 

forms an attack pattern known to the IDS. However, with the existence of the 

Impact_ID field in the vulnerability database schema to be shown later in this 

chapter, the IDS in this model is able to detect any possible malicious code 

execution in addition to the “open window” vulnerability. 

5. Patch information, which needs to be updated regularly by the security officers. 

Security officers not only manage the IDS but also regularly update the system 

with patches to address reported vulnerabilities. The patch information identifies 

how the vulnerability is addressed. It may also provide additional descriptions on 

certain vulnerabilities. These descriptions can serve as further references on how 

to handle these vulnerabilities within the system in this suggested model. The 

references mentioned here are different from the references mentioned earlier. 

Although these references here are not for detections inside the IDS, they are for 

maintenance purposes in the IDS. The additional descriptions here may be about 

the vulnerability identification, the category it belongs to, the corresponding 
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environment, how it is exploited, and the resulting impact(s). The main purpose 

for the patch information inside the database is for maintenance. The 

administrators need this information for reference in the future so that they know 

whether and what they have applied any appropriate patches to the IDS. On the 

other hand, the references mentioned much earlier are mainly about subjective 

information like rankings and priorities. 

6. The specification for each vulnerability, which needs to be referenced by both the 

IDS itself and the system administrators and programmers. System administrators 

and programmers also need to update the specifications when necessary. The IDS 

references these specifications by obtaining every vulnerability that belongs to a 

particular combination of category and subcategory. The negation of a 

vulnerability's specification is a general specification for all processes, in addition 

to any particular per-process specifications. 

4.2 IDS-compatible Vulnerability Schema 

The proposed vulnerability schema adopts the format of the Aslam/Krsul schema with 

some adjustments to make it more applicable to an intrusion detection system. The 

vulnerability ID naming is based on the CVE reference for the benefit of system 

administrators or programmers. This reference is used in many existing public 

vulnerability databases. The schema for the tables used in the IDS-compatible 

vulnerability database is as follows. 
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Field Name Field Description 

Vulnerability_ID The CVE-format vulnerability ID 

Category_ID Aslam category ( i.e., coding, operational or environmental ) 

Subcategory_ID Aslam-format additional subcategory within a category 

Patch_ID ID for the patch, if any 

Date_found Date when this vulnerability is first discovered 

Date_addressed Date when a patch starts to apply on the vulnerability 

Description Manually added details about the vulnerability 

Table 1. Vulnerability_Identification 

Field Name Field Description 

Category_ID Aslam category ( i.e., coding, operational or environmental ) 

Subcategory_ID Possible additional subcategory within a category 

Exploit_ID ID for the exploitation method 

System_ID ID for the affected system 

Description Manually added details about the subcategory 

Specification Specification for each classification 

Table 2. Vulnerability_Classification 



Chapter 4  

 

33 

 

Field Name Field Description 

System_ID ID for this system 

Server_Name Name of the server 

Server_Version Version of the server 

Server_Vendor Vendor for the server 

OS_Name Name of the OS 

OS_Version Version of the OS 

OS_Vendor Vendor for the OS 

Table 3. System 

Field Name Field Description 

Vulnerability_ID The CVE-format vulnerability ID 

Impact_ID The CVE-format ID for the subsequent vulnerability, if any 

Description Manually added details about the impact and/or consequence 

Table 4. Vulnerability_Impact 

Field Name Field Description 

Vulnerability_ID The CVE-format vulnerability ID 

Exploit_ID ID for the exploitation method 

Module_Name Name of the module or program 

Module_Version Version of the module or program 

System_Call System call in which the vulnerability is exploited 

Description Manually added details about the nature of the exploit 

Table 5. Vulnerability_Exploit 
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Field Name Field Description 

Vulnerability_ID The CVE-format vulnerability ID 

Name Environment name 

Value Environment value when vulnerability is exploited 

Description Manually added details about the environment 

Table 6. Environment 

Field Name Field Description 

Vulnerability_ID The CVE-format vulnerability ID that the patch is for 

Patch_ID ID for the patch 

Description Manually added details about the environment 

Table 7. Patch 
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Figure 2. Relation Diagram among the tables in the vulnerability database 
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addition, some tables and fields of other tables need to be initialized to make the 

vulnerability database and IDS useful over the entire network right after the deployment 

of the vulnerability database. For example, the whole System table has to be initialized 

with system data so that the servers can report data regarding what system is exploited 

upon any newly discovered vulnerability. 

4.3 Examples on How to Populate and Use the Vulnerability Database 

Consider the buffer overflow vulnerability, with “AllowOverride” not set to “None”, in 

the system call mod_compat_directive of the module mod_ssl inside an Apache module 

(CVE number CVE-2002-0653) [12, 30], resulting in denial of service against an Apache 

HTTP server (CVE number CAN-2003-0132). The following sample codes show the 

basics on how to populate and use the vulnerability database. Let 4 be the System_ID for 

the system describing Apache 1.3 webserver and Red Hat Linux version 8.2, and let 5 be 

the Exploit_ID. 

First of all, the database needs to have the system data populated, in order to understand 

the information on the existing systems available in the real world. For example, to insert 

the data for Red Hat Linux version 8.2 on Apache 1.3 webserver, the SQL source code 

will be like the following: 

INSERT INTO System 
(System_ID, Server_Name, Server_Version, 
OS_Name, OS_Version, OS_Vendor) 

VALUES (“4”, “Apache”, “1.3”, “Linux”, “8.2”, “Red Hat”); 
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In addition, the vulnerability database needs to include all classifications of 

vulnerabilities. For the vulnerability used in this example, it can be done in the SQL 

codes shown below: 

INSERT INTO Vulnerability_Classification 
(Category_ID, Subcategory_ID, System_ID, Descriptio n) 

VALUES 
(“3”, “a5”, “4”, “Buffer overflow vulnerability”); 

Before the IDS can be used, the programmer or system administrator needs to provide the 

already-available generic specification to each classification of vulnerability. The form of 

this information is: 

INSERT INTO Vulnerability_Classification (Specifica tion) 
VALUES (“Some Specification”) 
WHERE Category_ID = “3” AND 

Subcategory_ID = “a5” AND 
Exploit_ID = “5”; 

Suppose this vulnerability was exploited by using an unprivileged username. The data for 

the newly found vulnerability will be added into the Vulnerability_Identification, 

Vulnerability_Classification, Vulnerability_Impact, Vulnerability_Exploit, and 

Environment tables, so that the IDS can prohibit the unprivileged user from actually 

exploiting this vulnerability in the future. 

SELECT DISTINCT Sys_ID = System_ID 
FROM System 
WHERE Server_Name = “Apache” AND 
 Server_Version = “1.3” AND 
 Server_Vendor = “Apache Software Foundation” AND 
 OS_Name = “Linux” AND 
 OS_Version = “8.2” AND 
 OS_Vendor = “Red Hat”; 
INSERT INTO Vulnerability_Identification 

(Vulnerability_ID, Category_ID, Subcategory_ID, 
Date_found) 

VALUES (“CVE-2002-0653”, “3”, “a5”, NOW ()); 
INSERT INTO Vulernability_Category 
 (Category_ID, Subcategory_ID, Exploit_ID, System_I D) 
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VALUES (“3”, “a5”, “5”, “4”); 
INSERT INTO Vulnerability_Impact 
 (Vulnerability_ID, Impact_ID) 
VALUES (“CVE-2002-0653”, “CAN-2003-0132”); 
INSERT INTO Vulnerability_Exploit 

(Vulnerability_ID, Exploit_ID, Module_Name, 
Module_Version, System_Call) 

VALUES 
(“CVE-2002-0653”, 5, “mod_ssl”, “2.4.9”, 
“ssl_compat_directive”); 

INSERT INTO Environment (Vulnerability_ID, Name, Va lue) 
VALUES (“CVE-2002-0653”, “user_name”, “*”); 
INSERT INTO Environment (Vulnerability_ID, Name, Va lue) 
VALUES (“CVE-2002-0653”, “account_type”, “user”); 

In another example, consider querying all system calls that can result in denial of service 

attacks against an Apache HTTP server. Based on the previous situation, one of the 

library calls returned from the query should be ssl_compat_directive. 

SELECT DISTINCT ve.System_Call 
FROM Vulnerability_Exploit ve, 

Vulnerability_Impact vim, 
Environment e, 
Vulnerability_Identification vid 

WHERE vim.Impact_ID = “CAN-2003-0132” AND 
 vim.Vulnerability_ID = ve.Vulnerability_ID AND 
 vim.Vulnerability_ID = e.Vulnerability_ID AND 
 e.Name = “account_type” AND 
 e.Value = “user” AND 
 vim.Vulnerability_ID = vid.Vulnerability_ID; 

When the administrator applies a patch for this vulnerability by installing an upgraded 

version of the module mod_ssl, like version 2.8.10, as a fix for the vulnerability, the 

following updates the vulnerability database: 

INSERT INTO Patches 
VALUES 

(“CVE-2002-0653”, Some_Patch_ID, “mod_ssl 2.8.10 ha s 
been installed and this version has reported no 
vulnerability”); 

The next two sections will show more practical examples of applying vulnerability data 

to IDSes. 
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4.4 Integration with Specification Language using a General Example 

Consider a race condition vulnerability for writing to a file [9]. An attacker can exploit 

this vulnerability by first running program A to create an arbitrary file. Then he can run 

program B to create a symbolic link of that arbitrary file to a privileged file like the 

passwd file. As a result, he will be able to alter the password(s) for all account(s) that he 

wants to get access to [9], before destroying the symbolic link and returning the 

operations to program A. A simple, generic example in the specification language paper 

by Ko, Ruschitzka, and Levitt [23] demonstrated how to use the specification language to 

handle this vulnerability. In that example, program A can write a file if the environment 

variable E is 0, and it will change that environment variable to a non-zero value upon 

opening the file. The value of the environment variable remains non-zero until that file is 

closed by program A. Meanwhile, program B follows the same hyperrules as program A. 

So, in this case, program B cannot write to the file if A has already opened it. The 

specification language describes this in such a way as to prevent A and B from writing to 

the same file. One of them can only write to the file when the other has closed its handle 

for that file. The specification is as follows [22, 23]. 

Codes         Line 
-----         ---- 
 
Environment Variables      1 
ENV int E = 0;       2 
LOCAL ENV int L = 0;      3 

 
Start Expression       4 
SE: <progA> || <progB>      5 
 
Hyperrules        6 
<progA> -> <writeA, E>.      7 
<writeA, 0> -> <openA> <closeA> { E = E – 1; }.  8 
<openA> -> open_A { E = E + 1; L = 1; }.   9 
<closeA> -> close_A.      10 

 
<progB> -> <writeB, E>.      11 
<writeB, 0> -> <openB> <closeB> { E = E – 1; }.  12  
<openB> -> open_B { E = E + 1; L = 1; }.   13 
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<closeB> -> close_B.      14 

In the specification, lines 7 to 10 are for program A. If program A successfully opens a 

file for write access, the global environment variable E will be incremented from 0 to 1. 

Since there is no rule for <writeA, 1> (E is 1 in <writeA, E>), program A is not allowed 

to write to that file if this file has already been opened by another program (E = 1). 

Similarly, program B has the same requirements as shown in lines 11 to 14. This 

specification handles in a way such that when the environment variable E is set to 1 upon 

the creation of the arbitrary file by program A, program B will not be able to link and 

write to that file as long as it stays open. 

It is undoubtedly desirable to use a specification language to trace possible vulnerability 

exploitations within the operation sequences. However, the programmer will sometimes 

have a hard time coding each vulnerability specification manually if each process inside 

the program has a lot of vulnerabilities to be addressed, especially when any particular 

process occurs in several places inside the program. The programmer will also have to 

spend time to write additional programs if many modules share the same hyperrules. In 

this case, the programmer has to create a utility program to generate a specification for 

each of these programs by automating the modifications of the same hyperrules with a 

different module name. However, the programmer needs to obtain a manually generated 

list of modules sharing the same hyperrules before he can make the utility program work, 

and without an organized data storage, it is always possible that the list is incorrect or 

incomplete. Besides, the more modifications that he needs to change in the list, the more 

probable that he will make mistakes. An alternative and more efficient way is to integrate 
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specifications with a vulnerability database. In this method, we populate various 

vulnerabilities in the database, and when the IDS needs to address a particular 

vulnerability, it can obtain the specification constraining all the functions or system calls 

related to that vulnerability. 

As explained above, the following lines for the hyperrules can be duplicated as follows: 

<progGeneric> -> <writeGeneric, E>. 
<writeGeneric, 0> -> 

<openGeneric> <closeGeneric> { E = E – 1; }. 
<openGeneric> -> open_Generic { E = E + 1; L = 1; } . 
<closeGeneric> -> close_Generic. 

The same specifications will then be applied to those modules or system calls sharing the 

same race condition vulnerability. For example, one of the race condition vulnerabilities 

in Samba smbmnt (CVE-1999-0812) allows local users to mount file systems in arbitrary 

locations. This is one of the practical examples in the race condition vulnerability that 

allows a file to be symbolically linked to a system file after its creation. We can use Perl 

to write a script to automate the replication of the same sample specification for each 

module resulted from the query. The entire Perl script is shown in Appendix A.1. 

To look for all modules that can be exploited by this vulnerability, a query is made to the 

vulnerability database to retrieve all modules that can be exploited by the vulnerability 

having the CVE ID of “CVE-1999-0812”. Since the vulnerability classification is 

unambiguous before a vulnerability is stored into the database, and since only one 

vulnerability is being looked at in this example, all modules in the queried list must 

belong to the same vulnerability classification because all of these modules can be 

exploited by the same vulnerability. With only one set of generic hyperrules for each 
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vulnerability class, a specification of the same hyperrules should be assigned to all 

modules exploitable by this vulnerability. The generic version of the hyperrules should 

already be defined in and queried from the Specification field of the 

Vulnerability_Classification table in the vulnerability database. In the specification, all of 

these modules exploited by the same vulnerability should be appended to the list 

appearing in the Start Expression section. Besides, the same piece of generic hyperrules 

should be appended to the current specification after replacing every existence of the 

string “Generic” in the generic specification with the module name. To specify the 

hyperrules for program A, every existence of the string “Generic” in the Hyperrules 

portion of the generic specification will be replaced by the string “A”, before A’s 

hyperrules are added to the specification. Similarly, every existence of the string 

“Generic” in the Start Expression portion of the specification will also be replaced by the 

string “A”. As a result, after the hyperrules for program A are appended to the 

specification but before those for program B are appended, the specification will look like 

this: 

Environment Variables 
ENV int E = 0; 
LOCAL ENV int L = 0; 
 
Start Expression 
SE: <progA> 
 
Hyperrules 
<progA> -> <writeA, E>. 
<writeA, 0> -> <openA> <closeA> { E = E – 1; }. 
<openA> -> open_A { E = E + 1; L = 1; }. 
<closeA> -> close_A. 

After the hyperrules for program B are also appended, the specification will finally be the 

same as the one shown at the beginning of this section . 
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4.5 Integration with Specification Language using a Practical Example 

This section presents a more practical example on the integration of vulnerability 

database and specification language. This example focuses on the UNIX module binmail. 

In Calvin Ko’s PhD thesis, he demonstrated the use of specification language on four 

UNIX modules that have well-documented vulnerabilities such as binmail. We use the 

binmail module as an example. This UNIX backend mail delivery module, which is 

responsible for appending a mail message directly to the users’ mailbox files, creates a 

temporary file with an internally specified file name. However, if an attacker knows the 

temporary file name, then he can create a symbolic link pointing a locally created file to a 

system file that he wants to modify, such as the passwd file [22]. The following is the 

original specification for binmail presented in his thesis. 

SPEC <(?, binmail, U, H)> 
 

ENV int CREATTMP = 0; 
ENV int PID = getpid (); 

 
SE: <binmail> || <other> 

 
<binmail> -> <init> <mktemp> <rest>. 
<init> -> <not_mktemp> <init> | Nil. 
<rest> -> any_op <rest> | Nil. 
<mktemp> -> open_tmpfile-PID { CREATTMP = 1; }. 
<not_mktemp> -> not_open_tmpfile-PID. 
<other> -> <vop, CREATTMP> <other> | Nil. 
<vop, 0> -> not_chgtmp. 
<vop, 1> -> any_op. 
 

  END; 

As an extension, instead of explicitly naming binmail, the same hyperrules can be 

assigned to any module that calls open_rwtc. In the vulnerability category, subcategory, 

exploitation method and the system ID that binmail belongs to, the Specification field in 

the Vulnerability_Classification table should have the generic version of the above 
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specification. This is obtained by replacing every occurrence of the string “binmail” with 

the string “Generic”. Hence, the generic specification stored inside the database is: 

SPEC <(?, Generic, U, H)> 
 

ENV int CREATTMP = 0; 
ENV int PID = getpid (); 

 
SE: <Generic> || <other> 

 
<Generic> -> <init> <mktemp> <rest>. 
<init> -> <not_mktemp> <init> | Nil. 
<rest> -> any_op <rest> | Nil. 
<mktemp> -> open_tmpfile-PID { CREATTMP = 1; }. 
<not_mktemp> -> not_open_tmpfile-PID. 
<other> -> <vop, CREATTMP> <other> | Nil. 
<vop, 0> -> not_chgtmp. 
<vop, 1> -> any_op. 
 

  END; 

To obtain a list of modules which call open_rwtc, a query is made to get all values in the 

Exploit_ID field of the vulnerability database that has the value of the System_Call field 

set to “open_rwtc”. The query result would include the value of the Exploit_ID field used 

for binmail. This follows by assigning the specification to every module in the query 

result by replacing the “Generic” string in the generic specification with the module 

name. The Perl codes in Appendix A.2 outline all these steps. This specification allows 

the IDS to detect any symbolic link attempt to a system file whenever any program that 

calls binmail is being processed, and helps prevent any unprivileged write access to any 

system file. 

4.6 Consistency and Error Prevention 

As shown in the above two examples, augmenting the vulnerability database with a set of 

specifications provides a mechanism for consistent specifications for all vulnerabilities in 

the same classification. It also eliminates recoding the same specification for different 
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vulnerabilities. Since the specifications describe a set of negations of vulnerabilities, the 

IDS can detect any attack based on the patterns shown in the exploitations.
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Chapter 5 Integrations with Specification-Based IDSes 

5.1 Integration with Non-distributed Intrusion Detection Systems 

As shown in Chapter 4, a vulnerability database can be integrated with a specification-

based intrusion detection system. Sections 3.3, 4.4 and 4.5 provided some examples of 

how to populate and update the vulnerability database given a specific vulnerability. To 

review, the integration consists of two stages: initial data population and data update. 

During the initial data population stage, relevant information on all known vulnerabilities 

has to be inserted accurately into the database so that the analysts can provide precise 

specifications for use by the intrusion detection system. After that comes the data update 

stage. This stage spans the entire lifetime of the intrusion detection system because new 

vulnerability information will be added to the vulnerability database as it becomes 

known. This information can be either a previously unknown vulnerability, a new 

vulnerability introduced by reconfiguration, or a new exploitation of an existing 

vulnerability. A newly discovered vulnerability belonging to an existing vulnerability 

classification can use the hyperrules from that classification. So the hyperrules of this 

classification will be retrieved from the vulnerability database. In the other case, a new 

classification will be created by negating the relevant specifications of the exploit. The 

new classification and its corresponding specification will then be added to the 

vulnerability database. The specification will also be used in the creation or update of the 

specification for the current module. If the currently executing module does not have a 

specification yet, the programmer will be responsible for providing the specification that 

should at least include these hyperrules for this vulnerability. If there is already a 

specification for this module but the new hyperrules are not featured in the specification 
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yet, then the programmer will be responsible for adding the new hyperrules to the 

specification. 

Both the initial data population stage and the data update stage apply the same procedures 

to add the data to the database. While the initial data population stage adds all currently 

known information, the data update stage always adds previously unknown information, 

as this stage inserts the information that has just been discovered. Using the same Apache 

server vulnerability example in Chapter 4, the necessary steps to add data, together with 

their corresponding source codes written in Perl-embedded SQL, are described as 

follows: 

1. Add identification information of the vulnerability if it is a new vulnerability. 

my $sth = $dbh->prepare ( 
‘ 
SELECT Vul_ID = ?; 
SELECT Desc = ?; 
 
SELECT DISTINCT Total_Vuls = COUNT (*) 
FROM Vulnerability_Identification 
WHERE Vulnerability_ID = Vul_ID; 
 
CASE Total_Vuls < 1 THEN 

INSERT INTO Vulnerability_Identification 
  (Vulnerability_ID, Date_found, 
  Description) 

VALUES (Vul_ID, NOW (), Desc); 
END 
’ 

); 
$sth->execute (“CVE-2002-0653”, 

“Buffer overflow caused by AllowOverride set to Non e 
in mod_ssl inside an Apache 1.3 server running Red 
Hat Linux 8.2”); 

2. Derive the category and subcategory of the vulnerability based on the 

Aslam/Krsul scheme, and create the classification if it does not exist yet. Then 

add this initial classification data to the database. 
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my $sth = $dbh->prepare ( 
 ‘ 

SELECT Vul_ID = ?; 
 SELECT Cat_ID = ?; 
 SELECT Subcat_ID = ?; 
 SELECT Desc = ?; 
 

SELECT DISTINCT Total_classes = COUNT (*) 
FROM Vulnerability_Identification 
WHERE Vulnerability_ID = Vul_ID AND 
 Category_ID = Cat_ID AND 
 Subcategory_ID = Subcat_ID; 
 
CASE Total_classes < 1 THEN 

INSERT INTO Vulnerability_Identification 
  (Category_ID, Subcategory_ID) 

VALUES (Cat_ID, Subcat_ID) 
    WHERE Vulnerability_ID = Vul_ID; 
   END 
 
   SELECT DISTINCT Total_classes = COUNT (*) 
   FROM Vulnerability_Classification 
   WHERE Vulnerability_ID = Vul_ID AND 
    Category_ID = Cat_ID AND 
    Subcategory_ID = Subcat_ID; 
 
   CASE Total_classes < 1 THEN 
    INSERT INTO Vulnerability_Classification 
     (Vulnerability_ID, Category_ID, 
     Subcategory_ID, Description) 
    VALUES (Vul_ID, Cat_ID, Subcat_ID, Desc); 
   ELSE 
    INSERT INTO Vulnerability_Classification 
     (Description) 
    VALUES (Desc) 
    WHERE Vulnerability_ID = Vul_ID AND 
     Category_ID = Cat_ID AND 
     Subcategory_ID = Subcat_ID; 

END 
’ 

); 
$sth->execute (“CVE-2002-0653”, “3”, “a5”, 

“Buffer overflow”); 

3. Determine how the vulnerability is exploited. Obtain information about the 

system call, under each version of each module being executed when the 

exploitation occurs. The exploit information, which includes the name and version 

of the module and a system call sequence, will then be compared against the 

existing sets of exploit information in the Vulnerability_Exploit table of the 

database. As shown in the Vulnerability_Exploit table (Table 5) in Chapter 4, 
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each set of exploit information in the table includes the name and version of the 

module, the system call sequence involved in the exploitation, and is represented 

by a unique exploitation ID. If this set of exploitation information does not exist 

in the table, a new, unique ID will be assigned to represent the set, and the new 

exploitation ID will be added to the database. This enables the classification of 

this vulnerability to include the exploitation ID. 

my $sth = $dbh->prepare ( 
‘ 
SELECT Vul_ID = ?; 
SELECT Cat_ID = ?; 
SELECT Subcat_ID = ?; 
SELECT Mod_name = ?; 
SELECT Mod_version = ?; 
SELECT Sys_call = ?; 
SELECT Desc = ?; 
 
SELECT DISTINCT Exp_ID = Exploit_ID 
FROM Vulnerability_Exploit 
WHERE Vulnerability_ID = Vul_ID AND 

System_Call = Sys_call; 
 

SELECT Total_IDs_returned = COUNT (Exp_ID); 
 
CASE Total_IDs_returned > 0 THEN 

INSERT INTO Vulnerability_Classification 
(Exploit_ID) 

VALUES (Exp_ID) 
WHERE Vulnerability_ID = Vul_ID AND 

Category_ID = Cat_ID AND 
Subcategory_ID = Subcat_ID; 

ELSE 
 SELECT DISTINCT Max_Exp_ID = MAX (Exploit_ID) 
 FROM Vulnerability_Exploit; 
 
 INSERT INTO Vulnerability_Classification 
  (Exploit_ID) 
 VALUES (Max_Exp_ID + 1) 
 WHERE Vulnerability_ID = Vul_ID AND 
  Category_ID = Cat_ID AND 
  Subcategory_ID = Subcat_ID AND 
  LENGTH (Exploit_ID) = 0; 
 

INSERT INTO Vulnerability_Exploit 
VALUES 

(Vul_ID, Max_Exp_ID + 1, Mod_name, 
Mod_version, Sys_call, Desc); 

END 
’ 

); 
$sth->execute (“CVE-2002-0653”, “3”, “a5”, “mod_ssl ”, 

“2.4.9”, “ssl_compat_directive”, 
“AllowOverride not set to None”); 
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4. Identify the system information under which the vulnerability may be exploited. 

The system information should include the name, version and vendor name of the 

server that the exploited station belongs to, and the corresponding information of 

the operating system used by the server. If this set of system information has not 

been represented by an existing system ID yet, it means that this set of system 

information does not exist in the database. Therefore, a new, unique ID has to be 

generated to represent this set of system information. The system ID will then be 

included in the classification of this vulnerability. As shown in Table 3, each 

combination of server name, version, vendor, and OS name, version, vendor 

constitutes a unique system ID. Therefore, for example, the set of system 

information {“Apache”, “1.3”, “Apache Software Foundation”, “Linux”, “8.2”, 

“Red Hat”} should have a different system ID from the set {“Apache”, “1.3”, 

“Apache Software Foundation”, “Linux”, “8.1”, “Red Hat”} due to the difference 

in the versions of their respective Linux operating systems. 

my $sth = $dbh->prepare ( 
‘ 
SELECT Vul_ID = ?; 
SELECT Cat_ID = ?; 
SELECT Subcat_ID = ?; 
SELECT Serv_name = ?; 
SELECT Serv_version = ?; 
SELECT Serv_vendor = ?; 
SELECT Oper_name = ?; 
SELECT Oper_version = ?; 
SELECT Oper_vendor = ?; 
 
SELECT DISTINCT Sys_ID = System_ID 
FROM System 
WHERE Server_Name = Serv_name AND 
 Server_Version = Serv_version AND 
 Server_Vendor = Serv_vendor AND 
 OS_Name = Oper_name AND 
 OS_Version = Oper_version AND 
 OS_Vendor = Oper_vendor; 
 
SELECT Total_System_IDs = COUNT (Sys_ID); 
 
CASE Total_System_IDs > 0 THEN 
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INSERT INTO Vulnerability_Classification 
  (System_ID) 

VALUES (Sys_ID) 
    WHERE Vulnerability_ID = Vul_ID AND 
     Category_ID = Cat_ID AND 
     Subcategory_ID = Subcat_ID; 
   ELSE 
    SELECT DISTINCT Max_Sys_ID = MAX (System_ID) 
    FROM System; 
 
    INSERT INTO Vulnerability_Classification 
     (System_ID) 
    VALUES (Max_Sys_ID + 1) 
    WHERE Vulnerability_ID = Vul_ID AND 
     Category_ID = Cat_ID AND 
     Subcategory_ID = Subcat_ID; 
 
    INSERT INTO System 
    VALUES 

(Max_Sys_ID + 1, Serv_name, 
     Serv_version, Serv_vendor, Oper_name, 
     Oper_version, Oper_vendor); 

END 
’ 

); 
$sth->execute (“CVE-2002-0653”, “3”, “a5”, “Apache” , “1.3”, 

“Apache Software Foundation”, “Linux”, “8.2”, 
“Red Hat”); 

5. Determine the environment(s) in which the vulnerability, denoted as v, is 

exploited, and, if so, what settings and values are involved. The environmental 

information includes some variable name(s) representing the environment(s) and 

their corresponding value(s) when v is exploited. For example, the information 

may include the input parameter (environment variable) of the UNIX system call 

getenv and its corresponding output (environment value for that variable), or some 

Windows registry keys and their corresponding values. A list of existing 

environment variables can be made by executing a shell command or a batch 

program. In UNIX case, shell command printenv lists all current environment 

variables and their respective values. Each set of environmental information {En, 

en} is recognized by v’s vulnerability ID in order to indicate that en is the setting 

of En during v’s exploitation. On the other hand, v can have multiple sets of 
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environmental information. For instance, {E1, e1} and {E2, e2} can be two 

different sets of environmental information recognized by v’s vulnerability ID  

because when v is exploited, e1 must be an explicit value of environment variable 

E1 and e2 must be an explicit value of environment variable E2. For each {En, en} 

that has not yet been recognized by v, it will be added to the entry for v to indicate 

that this setting plays a part in the exploitation. 

my $sth = $dbh->prepare ( 
‘ 
SELECT Vul_ID = ?; 
SELECT Env_name = ?; 
SELECT Env_val = ?; 
SELECT Env_desc = ?; 
 
SELECT DISTINCT Total_envs = COUNT (*) 
FROM Environment 
WHERE Vulnerability_ID = Vul_ID AND 
 Name = Env_name AND 
 Value = Env_val; 
 
CASE Total_envs < 1 THEN 

INSERT INTO Environment 
VALUES (Vul_ID, Env_name, Env_val, Env_desc); 

END 
’ 

); 
$sth->execute (“CVE-2002-0653”, “user_name”, “*”, 

“Unauthorized user”); 

6. Look for possible impacts caused by the vulnerability to see if any residual 

vulnerability will also be exploited. If, for example, Krsul’s taxonomy is being 

used in a vulnerability search, the data found in the vulnerability search will 

contain information not only about the vulnerability itself, but also the possible 

impacts if any attack successfully exploits the vulnerability, as Krsul’s taxonomy 

includes information about how to derive the impacts of a vulnerability using 

decision trees [24]. For other taxonomies that do not consider impacts caused by a 

vulnerability, the Requires/Provides model proposed by Templeton and Levitt can 
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be a viable option to determine the possible impacts of a vulnerability [47]. This 

model helps relate a vulnerability to its residual vulnerabilities if it is exploited by 

an attack. It describes an attack as a model, in terms of capabilities and concepts, 

based on the required components, their capabilities of leading to components 

needed for other attack(s), and the method in composing these secondary 

components into another form of attack. By its definition, an attack is a 

composition of abstract attack concepts, each of which requires certain 

capabilities to occur for a particular instance of the concept to be entailed or to 

introduce another concept. 

For example, consider the “open window” vulnerability in a packet filtering 

firewall mentioned in section 2.6. A vulnerability search using Krsul’s taxonomy 

should be able to include buffer overflow as one of the possible impacts (CVE 

number CAN-2003-0132 as seen in section 4.3) because it allows an unauthorized 

program to be attached to the end of a valid data packet, allowing the program to 

be executed in the router after the packet gets past the open window. As a result, 

the router can be compromised if the unauthorized program execution changes 

access permission filters in favor of the attacker, and this enables the attacker to 

launch a denial of service attack. Therefore, a buffer overflow vulnerability is one 

of the possible impacts for the “open window” vulnerability, and for the buffer 

overflow vulnerability, unauthorized program execution becomes a possible 

impact. 
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Likewise, based on the Requires/Provides model, the concept of “open window” 

requires the router window to be open for valid data packet and provides the data 

packets a limited time of authorized actions. On the other hand, the concept of 

buffer overflow requires the data packets to look valid and provides an attacker an 

opportunity by running the authorized execution(s) as an unauthorized user from 

the extra data packet(s) appended beyond the valid size of the valid data buffer 

during the authorized state inside the “open window”. Consequently, the relation 

between “open window” vulnerability and unauthorized executions becomes 

apparent because the “open window” vulnerability introduces an impact – the 

buffer overflow vulnerability, which can lead to another impact – unauthorized 

program executions. 

Similar to the system information and the exploitation information, if there is no 

existing ID for the impact information, a new, unique impact ID will be generated 

and added to the database together with some relevant description provided by the 

system administrator or programmer. 

my $sth = $dbh->prepare ( 
‘ 
SELECT Vul_ID = ?; 
SELECT Imp_ID = ?; 
SELECT Desc = ?; 
 
SELECT DISTINCT Total_impacts = COUNT (*) 
FROM Vulnerability_Impact 
WHERE Vulnerability_ID = Vul_ID AND 
 Impact_ID = Imp_ID; 
 
CASE Total_impacts < 1 THEN 

INSERT INTO Vulnerability_Impact 
VALUES (Vul_ID, Imp_ID, Desc); 

END 
’ 

); 
$sth->execute (“CVE-2002-0653”, “CAN-2003-0132”, 

“DOS on Apache server as a result of open window”);  
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7. The programmer or system administrator for the IDS should generate or update 

the specification based on the vulnerability information in the database. The 

specification has to include generic hyperrules for its entire vulnerability 

classification, and must be added to the database as soon as it is ready, so that the 

intrusion detection system can detect attempts to exploit this vulnerability. 

my $sth = $dbh->prepare ( 
‘ 
SELECT Vul_ID = ?; 
SELECT Cat_ID = ?; 
SELECT Subcat_ID = ?; 
SELECT Exp_ID = ?; 
SELECT Sys_ID = ?; 
SELECT Spec = ?; 
 
INSERT INTO Vulnerability_Classification 
 (Specification) 
VALUES (Spec) 
WHERE Vulnerability_ID = Vul_ID AND 
 Category_ID = Cat_ID AND 
 Subcategory_ID = Subcat_ID AND 
 Exploit_ID = Exp_ID AND 
 System_ID = Sys_ID; 
 
INSERT INTO Vulnerability_Identification 
 (Date_addressed) 
VALUES (NOW ()) 
WHERE Vulnerability_ID = Vul_ID AND 
 Category_ID = Cat_ID AND 
 Subcategory_ID = Subcat_ID; 
’ 

); 
$sth->execute (“CVE-2002-0653”, “3”, “a5”, “5”, “4” , 

“Environment Variables 
 ENV int E = 0; 
 LOCAL ENV int L = 0; 

 
 Start Expression 
 SE: <progGeneric> 

 
 Hyperrules 
 <progGeneric> -> <writeGeneric, E>. 
 <writeGeneric, 0> -> 

<openGeneric> <closeGeneric> { E = E – 1; }. 
 <openGeneric> -> open_Generic { E = E + 1; L = 1; }. 
 <closeGeneric> -> close_Generic.”); 

5.2 Integration with Distributed Intrusion Detection Systems 
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An intrusion detection system can be either centralized or distributed. Most of the 

traditional IDSes are centralized, so data is processed and analyzed inside a single host 

housing the intrusion detection director. In recent years, with the increased use of 

distributed operating systems and the emergence of the World Wide Web, distributed 

intrusion detection systems are becoming available. A distributed intrusion detection 

system is defined as a system where data monitoring can be performed at a number of 

locations, while data analysis can be conducted at one single location or various locations 

throughout the network [4, 34, 35, 40, 45, 46]. 

A well-known framework, called Common Intrusion Detection Framework (CIDF), uses 

an event-and-response approach to define a list of components that can make up each 

agent or sensor of an intrusion detection system. These components are the event 

generators (E-boxes), event analyzers (A-boxes), event databases (D-boxes), and 

response units (R-boxes), respectively [35]. 

Distributed intrusion detection systems use intelligent agents or external sensors. The 

approach emphasizes multiple-location data analysis in addition to multiple-location data 

collection. They communicate actively with each other, or with a distributed analysis 

unit, using communication events and alerts. The data collection components and data 

analysis components are analogous to the E-boxes and A-boxes in the CIDF definition, 

respectively. Each agent is designed to report events of a particular kind of interests, and 

the agents dynamically monitor in response to event notifications or alerts. Analyses are 

mostly performed hierarchically. They observe the behaviors of the data packets by one 

of two ways before allowing the data packets to invoke any library functions. One way is 



Chapter 5  

 

57 

to capture the packets and compare with the system states, and the other way is to 

intercept the packets and analyze them [44, 45]. 

The intelligent agents approach is found in many popular frameworks of distributed 

intrusion detection systems like DIDS, GrIDS, EMERALD, and AAFID. DIDS [40] uses 

only one level of hierarchy, the centralized director, to analyze data, despite distributed 

data monitoring. GrIDS [46] uses activity graphs to build a hierarchy of departments and 

hosts based on an organization model. The graphs represent hosts and network activities. 

EMERALD [34] employs monitors at the levels of hosts, domains, and enterprises to 

form an analysis hierarchy, and uses a subscription-based communication scheme both 

within and between monitors. The subscription scheme between monitors is hierarchical. 

AAFID [4, 45] employs autonomous agents at the lowest level for data collection and 

analysis, and monitors at higher hierarchical levels to control the agents and overlook the 

activities in the global sense of view. 

A vulnerability database is a data source that all agents and monitors can share. The 

information in the database indicates the version and OS involved in the vulnerability and 

specification, so that all agents and monitors can determine if certain information is 

relevant or not for their own purposes. As the database is OS-independent, data sharing 

among the agents is possible regardless of the system that each agent or monitor runs on. 

Since the agents are the only components conducting data analysis, any new updates to 

the vulnerability database will require notifying the agents so that every other intelligent 

agent can update itself and send information back to the vulnerability database. 

Alternatively, the agents can regularly perform polling to look for and pick up updated 
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information. However, this would require all agents to continuously retrieve status 

information from the database, and since most of the time the database remains 

unchanged, the majority of pollings become pointless, making resource overhead a 

concern in this approach. 

The importance of communications among the agents requires that any integration of a 

vulnerability database with an intrusion detection system must not affect inter-agent 

communications efficiency. Many relational database systems use B-tree data structure to 

store information. With cardinality n, i.e., total keys in O (2n), most dynamic-set 

operations in a B-tree have performance of O (log 2n) = O (n). Hence, a typical database 

retrieve operation SELECT depends on the cardinality and is O (n), which is very 

efficient. The overall cost for a query is the sum of query cost and communication cost. If 

M is the cost of sending the request or response, the overall cost is 2M + O (n) or 2M + 

nD, where D is the number of database accesses and there are O (2n) keys. In a wide area 

network environment, as M >> D, the communication cost is the dominant factor, which 

means that the query cost will not affect the overall performance very much. On the other 

hand, in a local area network environment, the values of M and D are much closer to each 

other. As a result, the query cost will play as an important role as the communication 

cost. In a usual LAN environment, the size of the database is also relatively smaller 

because less data is shared among fewer users in the network than in the WAN 

environment. The smaller database in LAN environment implies that the cardinality in 

the SELECT operation will be in limited size, meaning that the query cost will also be 

limited. Therefore, a database with vulnerability taxonomy as its schema can be 
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integrated with the intrusion detection system so as to increase security functionalities 

without sacrificing efficiency. 

Figure 3 shows a specification-based distributed intrusion detection model which has 

three agents performing intrusion detection and is integrated with a vulnerability 

database. Since a distributed IDS can perform intrusion detection in more than one 

location, the same specifications have to be present in all the locations that participate in 

the detections. Therefore, each of these locations has to maintain the same specification 

for each involved vulnerability. This means that whenever a specification is updated in 

one location, the updates have to be reflected in the vulnerability database. This allows 

the database to send automated alerts to the agents so that the agents can pick up the 

updates from the database and apply the updates onto the same specifications for their 

respective locations. For example, if a programmer updates some specifications at agent 

Vulnerability 
Database 

Network 

Agent #1 Agent #2 Agent #3 

Figure 3. A Distributed IDS model integrated with vulnerability database 

Workstation Workstation 
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#1, he also has to update the same specifications in the database, so that the database can 

alert both agent #2 and agent #3 regarding the updates. For agent #2 and agent #3, if 

these new updates are needed in their own detection participations, they can immediately 

pick up the updates and make necessary modifications on the same specifications on their 

respective agents. 

5.3 Case study: Building Block Approach 

Crosbie and Kuperman, citing the shortcomings in the attack-signature matching 

approach in most conventional intrusion detection systems, proposed an IDS model 

which monitors the system in real-time fashion by looking for the building blocks of 

misuse actions. These building blocks of misuse actions are listed in section 1.2. In this 

approach, a detection tool, based on a detection template listing all the building blocks of 

misuse actions, resides in the kernel together with the detection itself as well as a 

specialized kernel data source. The detection tool in the kernel references this template to 

look for possible attack patterns [13]. In order to avoid much sacrifice in kernel 

efficiency, both the template and the data source have to be minimal and effective. As a 

result, any future growth in either the template or the data source will have to be very 

limited. Scalability, therefore, becomes a concern. 

Since the detection template in the building block model has its own classification of 

misuse actions, we can view it as a schema based on a primitive taxonomy. The only 

difference between this building block model and the general model described in Chapter 

3 is that the schema in the building block model needs to explicitly reside inside the 

kernel. As a schema in general merely describes the organization and classification of the 
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data inside a database, the size of a kernel-based schema is not big enough to deteriorate 

the kernel efficiency. Hence, a vulnerability schema can be used to replace the detection 

template in the building block model as it is much more detailed and well-structured. On 

the other hand, the building block data source inside the kernel will be replaced with the 

vulnerability database outside the kernel, so that the data source can be scalable. The 

delay caused by kernel latency as a result of each query is minimal because experiments 

have shown that, on a Linux system with the 2.4.17 kernel, each disk access averages 79 

ms [53], so database queries on that system have an acceptable cost. Thus, the kernel will 

not have much additional burden to hinder its performance during data query even if the 

database is located outside the kernel. This suggests that with the vulnerability database 

residing outside the kernel, the kernel efficiency will not be affected much, as long as all 

other kernel tasks performed inside the building block model will still be performed in 

the same manner as they are originally defined. As a result, kernel efficiency becomes a 

non-issue. In addition, this modified building block model can still enjoy the same 

advantages of vulnerability database integration with a general intrusion detection system 

described in previous chapters.
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Chapter 6 Conclusions and Future Works 

6.1 Summary 

An intrusion detection system integrated with a vulnerability database has the following 

advantages:  

1. Specification updates upon a discovery of new vulnerability  

2. Unambiguous specifications for all vulnerabilities under the same classification so 

that there will be no inconsistency in handling any attack that exploits the same 

vulnerability 

3. Computation overhead reduction by saving the efforts of complicated and 

possibly erratic manual programming statements upon any human update on 

specifications 

4. No additional scalability concern as long as the whole network system is scalable 

because the vulnerability database itself is already scalable 

One purpose of vulnerability analysis is to look for unknown vulnerabilities based on the 

knowledge of known vulnerabilities combined with different possible methods of 

exploitations before the unknown vulnerabilities become exploitable to actual attacks. On 

the other hand, specification-based intrusion detections apply the knowledge of known 

vulnerabilities onto dynamic detections of actual attacks without requiring attack 

signatures. Therefore, with the vulnerability database as the bridge between vulnerability 

analysis and intrusion detection, an intrusion prevention model will be able to both look 

for new vulnerabilities and detect intrusions at the same time. 
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6.2 Applying Penetration Analysis 

There are two aspects for the security characteristics of a system, the expected security 

functionality and the possible implied security behaviors affecting the environment. 

Expected security functionality reflects how secure the module is when it executes, while 

implied security behavior demonstrates the security state when the module runs 

simultaneously with other modules. A module being secure when it runs by itself by no 

means guarantees that it is also secure when it runs simultaneously with other modules. 

Race conditions demonstrate this. 

Formal verification begins with the preconditions, which hold states before a system 

begins, and analyzes the postconditions, the states resulting from some execution(s) of 

the system [7]. To verify security requirements, functional testing is mostly a 

straightforward solution. To verify security implications and security interactions of 

separately designed packages is more difficult due to more complications [29], when 

each module needs to check the states against each of the other components running at 

the same time in order to verify that the required security is still maintained. These 

verifications are usually handled by penetration analysis. 

Penetration analysis, a technique that has security analysts try to violate the security 

policy, tests not only procedural and operational, but also technological controls [7]. A 

common model for performing penetration analysis is the Flaw Hypothesis Methodology 

(FHM) [27, 49, 55, 56, 57]. Also, Gupta and Gligor presented two hypotheses regarding 

penetration testing. The Hypothesis of Penetration Patterns asserts system flaws are 

caused by penetration patterns arising from errors in system condition checks or 
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integrated flow conditions. The Hypothesis of Penetration-Resistant Systems asserts a 

system is resistant to penetration as long as it adheres to a specific design property set 

[18]. 

To construct a foundation for a penetration-resistant computer system, penetration 

analysis selects different vulnerability detection methodologies and taxonomies based on 

a set of formalized design properties that characterize resistance to penetration. It uses 

both flow-based models and a state-analysis approach for possible flaws. It helps define a 

system state as a set of integrated flow paths traversed by the system up to a certain point 

during the execution. It is a simulation by an appointed tiger team or red team with goals 

to exploit known and new vulnerabilities by attempting to break the security such as 

gaining unauthorized access, causing denial-of-service, and bypassing system 

accountability, etc. The penetration pretends that system calls are being made at certain 

points of the penetration analysis. 

Before a run of penetration analysis, each system entity has a set of penetration-resistance 

policies associated with some permissions to be altered, viewed, and invoked within an 

atomic sequence during a penetration test. While these rules define access control and 

accountability in a high-level sense, penetration analysis can be viewed as the low-level 

analysis of how these rules are complied and cooperated during the penetration test. 

Besides, both rules and penetration analysis must be consistent, preserving and trusted, 

meaning that they have to be carefully reviewed before the test, and during the test they 

must always be enforced and verified during any possible state change. 
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During the penetration test, Primitive Flow Generator (PFG) converts the source codes 

into execution flow paths conducted in an atomic sequence. These execution flow paths 

can consist of information flows, function calls, conditions, or a combination of them 

[18]. Any improper state at some certain location along the series of integrated execution 

flow paths for a particular system call results in a flaw. This flaw can lead to illegal or 

unintended gain of access to the system and its resource if an unprivileged user takes 

advantage of it. 

Penetration analysis can also work with fault injection. Fault injection is a simulation that 

looks for, and predicts, a modified function, say f’ , which is different from the targeted 

original normal function, f, of the program. Hence, f’  can result in different program 

states at least for some inputs. Using such algorithms as Adaptive Vulnerability Analysis 

(AVA) [16] for fault injection, primitive flow generator converts both f and f’  into two 

different sets of execution flows so that state difference will be identified at any point that 

normal state is diverted into another undesired state. 

Given a defined standard environment, not only can penetration analysis provide a list of 

found vulnerabilities and how they can be exploited, but also can enable the testers to rate 

the potential damage from an exploitation based on such usual factors as ease of 

exploitation, likelihood that the flaw exists, and possible effects of the exploitation of the 

flaws [15]. All of these are helpful for security research, designs and improvements. In 

addition, the rankings enable an analyst to compare vulnerabilities among different 

products with similar security functionalities. Another importance of the vulnerability 
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information obtained through penetration analysis is that it helps a specification-based 

intrusion detection system to learn how to detect these security violations in the future. 

The papers by Gupta and Gligor also presented the automation of penetration analysis in 

the theoretical points of view, but so far there has not been much work on putting these 

ideas into practical or experimental achievements. As shown in the automated penetration 

analysis paper by Gupta and Gligor [18], certain aspects of penetration analysis can be 

automated. However, a completely automated penetration analysis will enable automatic 

updates in the vulnerability database, allowing the entire vulnerability analysis to be 

automated. 

6.3 Future Works 

The proposed model is ideal for dynamic detections of both known and unknown attacks. 

The integration of vulnerability database is even more desirable with the never-ending 

discovery of new vulnerabilities as a result of growing complexities of new systems and 

new software applications. Yet there are still some future works required. One major area 

that requires a lot of effort is the complete automation of penetration analysis. It will be 

an important addition if the whole vulnerability analysis can be automated inside this 

model so that the vulnerability data can also be updated automatically. This feature adds 

another significance in the design, implementation, and verification for an intrusion 

detection system. Applying automated penetration analysis with a vulnerability database 

allows adaptations, as the vulnerability data inside the database is updated automatically 

after each penetration test. 
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Since the vulnerability database used in this proposed model also includes information on 

not only the vulnerabilities but also fixes, regular users of the database will include the 

system administrators. As a result, network maintenance becomes one of the purposes of 

the vulnerability database, and system administrators need to provide additional 

information to the database regularly for this purpose. Therefore, several entities will 

reference the vulnerability database inside the suggested model. It would also be nice if 

the specifications can be updated automatically upon changes in the vulnerability 

database. To accomplish this, a nice correlation module is required among the newly 

discovered vulnerabilities, the updated vulnerability data, and the corresponding 

specifications. The correlation module needs to easily and efficiently alert the kick-off of 

any specifications update using specification language whenever there is any addition or 

modification of vulnerability data. 

Future research on how to best correlate a discovered vulnerability to a category without 

any interface can lead to full automation of penetration analysis and vulnerability data 

update, while future research on how to best correlate vulnerability data changes to 

corresponding specification modifications without human intervention can lead to full 

automation of specification updates. The combined automation will, therefore, lead to full 

automation of this integrated model.
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Appendix A  Source Listings 

A.1 Source listing for generic example in section 4.4 

#!/bin/perl –w 
 

use Mysql; 
 

$new_file = 0; 
 
  # Open the specification file if it exists, 
  # otherwise create one. 

unless ( open ( PEG, "+<./peg" ) ) 
{ 

open ( PEG, ">./peg" ); 
$new_file = 1; 

} 
 
# Generic specifications. 
my $generic_spec = join ( "", 

"    <progGeneric> -> <writeGeneric, E>.\n", 
"    <writeGeneric, 0> -> ", 
"<openGeneric> <closeGeneric> { E = E – 1; }.\n", 
"    <openGeneric> -> open_Generic ", 
"{ E = E + 1; L = 1; }.\n", 
"    <closeGeneric> -> close_Generic.\n" ); 

  my $new_spec = "Hyperrules\n"; 
 

# Environment variable declarations and module list s. 
my $vars_decl = join ( "", "    Environment Variabl es\n", 

"    ENV int E = 0;\n", 
"    LOCAL ENV int L = 0;\n " ); 

  my $module_list = "    Start Expression\n    SE: "; 
 
  # Assume using the database "test" inside this se rver. 

my $dbh = Mysql->connect; 
$dbh = selectdb ( "test" ); 
 
# Query all system calls that have this vulnerabili ty. 
my $sth = $dbh->prepare ( 

‘ 
SELECT DISTINCT ve.System_Call 
FROM Vulnerability_Exploit ve, 

Vulnerability_Classification vc, 
Vulnerability_Identification vi 

WHERE ve.Vulnerability_ID = ? AND 
ve.Module_Name = ? AND 
ve.Exploit_ID = vc.Exploit_ID AND 
ve.Vulnerability_ID = vi.Vulnerability_ID AND 
vc.Category_ID = vi.Category_ID AND 
vc.Subcategory_ID = vi.Subcategory_ID; 

’ 
); 
$sth->execute ( "CVE-1999-0812", "submnt" ); 
 

  # Handle each system call in the specification la nguage. 
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my $sys_call = ""; 
my $join_string = ""; 
while ( $sys_call = $sth->fetchrow () ) 
{ 

$i = 0; 
 
# Create the specifications string for this module.  
my @s = split ( "Generic", $generic_spec ); 
my $current_spec = join ( $sys_call, @s ); 

 
   # Check if @sys_call has already been handled. 

CHECKLINE: while ( !$new_file ) 
{ 

last CHECKLINE if eof PEG; 
$line = <PEG>; 
$i++; 
last CHECKLINE 

if index ( $line, $current_spec, 0 ) 
>= 0; 

} 
 
   # If @module_name does not have these specificat ions, 

# then add these specifications. 
if ( $i <= 0 ) 
{ 

# Append another module name into the 
# start expression string. 
if ( length ( $module_list ) < 20 ) 
 $join_string = ""; 
else 
 $join_string = " || "; 
my $current_module = join ( "", "<", 

$sys_call, ">" ); 
$module_list = join ( $join_string, 

$module_list, $current_module ); 
 
    # Append another generic hyperrules. 

 $new_spec = join ( "\n", $new_spec, 
$current_spec ); 

} 
} 
 
# Write everything as specifications. 
print PEG $vars_decl; 
print PEG "\n"; 
print PEG $module_list; 
print PEG "\n"; 
print PEG $new_spec; 
 
$sth->finish (); 
$sth2->finish (); 
 
close PEG; 
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A.2 Source listing for practical example in section 4.5 

#!/bin/perl –w 
 

use Mysql; 
 

$new_file = 0; 
 
  # Open the specification file if it exists, 
  # otherwise create one. 

unless ( open ( PEG, "+<./peg" ) ) 
{ 

open ( PEG, ">./peg" ); 
$new_file = 1; 

} 
 
  # Assume using the database "test" inside this se rver. 

my $dbh = Mysql->connect; 
$dbh = selectdb ( "test" ); 
 
# Query the exploit ID that have this vulnerability . 
my $sth = $dbh->prepare ( 

‘ 
SELECT DISTINCT Exploit_ID 
FROM Vulnerability_Exploit 
WHERE System_Call = ?; 
’ 

); 
$sth->execute ( "open_rwtc" ); 
my ( $exploit_ID ) = $sth->fetchrow (); 
 
# Query all the modules and the specification codes  
# for this exploit ID. 
my $sth2 = $dbh->prepare ( 
 ‘ 

SELECT DISTINCT ve.Module_Name, vc.Specification 
 FROM Vulnerability_Exploit ve, 
      Vulnerability_Identification vi, 
      Vulnerability_Classification vc 
 WHERE ve.Vulnerability_ID = vi.Vulnerability_ID AN D 
  ve.Exploit_ID = ? AND 
  ve.Exploit_ID = vc.Exploit_ID AND 
       vi.Category_ID = vc.Category_ID AND 
       vi.Subcategory_ID = vc.Subcategory_ID; 

’ 
); 
$sth2->execute ( $exploit_ID ); 
my @data = (); 

 
  # Handle each module in the specification languag e. 

my $module_name = ""; 
my $spec = ""; 
while ( @data = $sth2->fetchrow () ) 
{ 
 $module_name = $data[0]; 
 $spec = $data[1]; 
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$i = 0; 
 
# Replace the generic specification codes 
# with a customized one by replacing every 
# existence of the string "Generic" with 
# the name of the module. 
my @s = split ( "Generic", $spec ); 
$new_spec = join ( $module_name, @s ); 

 
CHECKLINE: while ( !$new_file ) 
{ 

last CHECKLINE if eof PEG; 
$line = <PEG>; 
$i++; 
last CHECKLINE 

if index ( $line, $new_spec, 0 ) >= 0; 
} 

 
   # If $module_name does not have these specificat ions, 

# then add these specifications. 
if ( $i <= 0 ) 
{ 

    # Write everything into the specification file 
    # after customizations. 

print PEG $new_spec; 
} 

} 
 
$sth->finish (); 
$sth2->finish (); 
 
close PEG; 

 


