
Protocoles d’Etablissement de
Confiance pour Objets Communicants

(Trust Establishment Protocols for Communicating Devices)

THÈSE

présentée pour obtenir le grade de docteur

de l’Ecole Nationale Supérieure des Télécommunications

Spécialité : Informatique et réseaux

par

Laurent Bussard

Soutenue publiquement le 15 Octobre 2004 devant le jury composé de

David Powell Président
Alexis Bonnecaze Rapporteur
Marc Joye Rapporteur
Frédéric Cuppens Examinateur

Refik Molva Directeur de thèse
Yves Roudier Co-encadrant

ii

to Cécile, Quentin, and Margot

v

Abstract

With the advent of self-organizing systems such as ad hoc networks or pervasive com-
puting, security protocols have to meet a new requirement for establishing trust among
parties that have no a priori relationship such as a shared naming structure or a common
organization. Trust establishment in this context calls for a new paradigm with respect to
classical scenarios whereby entities build trust based on some existing security association.
This thesis suggests cryptographic protocols through which some party can build trust
based on the history of its interactions with other parties. Those protocols allow a party
to get a proof of history, i.e. the evidence that it was involved in some interaction with
another party. During further interactions, other parties consider the prover trustworthy
based on the verification of the history.

Privacy is an essential requirement for such a protocol since providing a proof of history
to several parties without privacy would severely expose the behavior of the prover. In
this work, we propose a dedicated scheme for unlinkable credentials that ensures the
anonymity of the prover and the unlinkability of its interactions. This scheme is an
extension of group signatures and enables the prover to choose which part of his history
is disclosed when submitting a proof.

Another approach consists of using evidence of physical location as a means of building
trust based on the locality of communicating parties. We define the distance-bounding
proof of knowledge scheme that combines a distance measurement technique and a cryp-
tographic mechanism in order to verify the proximity of a party knowing a secret like
a private key. This mechanism can be used when delivering a proof of interaction or a
location stamp.

Last we consider a possible architecture for establishing trust based on history. Our
approach combines unlinkable credentials and distance-bounding proofs of knowledge.
Thanks to this new scheme, we can show that trust among unknown parties can be built
while preserving their privacy. The results of a preliminary implementation are discussed.

vi Abstract

vii

Résumé

Avec l’arrivée des systèmes auto-organisés tels que les réseaux ad hoc ou l’informatique
diffuse, les protocoles de sécurité doivent répondre à de nouveaux besoins. Dans ce travail
nous étudions comment une relation de confiance peut être établie entre des entités qui ne
se connaissent pas a priori. Nous proposons des protocoles de sécurité permettant à une
entité de garder un historique de ses interactions : après chaque interaction, une preuve est
délivrée par exemple sous la forme d’une recommandation ou d’une preuve d’interaction.
Chaque preuve concernant une entité est stockée par celle-ci dans son historique. Les
preuves peuvent être sélectivement démontrées, lorsqu’il est nécessaire de dévoiler une
partie de son historique pour établir une relation de confiance.

Prouver son historique à différentes entités révèle en général trop d’information et des
mécanismes pour protéger la vie privée des utilisateurs sont nécessaires. Dans ce but,
nous proposons un mécanisme de certificat non-traçable qui empêche de faire le lien entre
plusieurs preuves et qui protège l’anonymat des utilisateurs. Ce schéma est une extension
des signatures de groupe où le signataire n’est plus un membre anonyme d’un groupe mais
le détenteur d’un historique.

Un autre besoin récurrent de l’informatique diffuse est la création d’un lien entre les
entités virtuelles et le monde physique qui les entoure. Dans ce but, nous proposons les
preuves de proximité qui combinent une mesure de distance et de la cryptographie dans le
but de vérifier la proximité d’une entité connaissant un secret, par exemple une clé privée.
Ce mécanisme peut être utilisé durant une interaction pour obtenir une preuve de cette
interaction ou une preuve de localisation.

Finalement, nous combinons ces deux mécanismes pour définir une architecture dédiée
à l’établissement de confiance basé sur un historique. Ce schéma nous permet de confirmer
la thèse qu’il est possible d’établir une relation de confiance en protégeant sa vie privée.
Les résultats d’une première implémentation sont également discutés.

Un résumé détaillé des résultats de cette thèse est disponible à la fin de ce manuscrit
(pages 185 à 203).

viii Résumé

ix

Acknowledgements

This thesis is the result of three and a half years of work whereby I have been accompanied
and supported by many people. I have now the opportunity to express my gratitude for
all of them.

The first person I would like to thank is my supervisor Refik Molva. I have worked in
his team (network-security team at Eurecom) since May 2001 when I started this Ph.D.
thesis. During these years he gave me the opportunity to work on mobile code protection,
privacy, proof of location, and trust establishment and always supported me. I owe him
lots of gratitude for having shown me this way of research.

I wish to express my gratitude to my co-supervisor Yves Roudier who kept a closer eye
on the progress of my work. During these years, I visited his office daily and he always
was available when I needed his advices.

It has been a pleasure to work in the NS-Team. The valuable critics and comments
from Marc Dacier, Pietro Michiardi, Melek Önen, Jean-Christophe Pazzaglia, and Fabien
Pouget were very fruitful. Collaborating with Walid Bagga was a pleasure. He helped me
to solve a problem that I had in mind since the beginning of this thesis: distance-bounding
proofs of knowledge. Stefano Crosta, did a marvelous job during implementation phases
and provided me with any available information on XML security. I thank you all.

I would like to express my gratitude to Jacques Labetoulle who convinced me to start
working as a researcher and who hired me at Eurecom Institute.

I thank my other co-authors that have not yet been mentioned: Joris Claessens, Jochen
Haller, Roger Kilian Kehr, Sergio Loureiro, Joachim Posegga, Philip Robinson, Thomas
Walter, and Alf Zugenmaier. It was inspiring to work with you. Thanks to numerous
researchers that asked me interesting questions or gave me important feedbacks when I
was presenting parts of this work. Moreover, I am grateful to authors of [MVO96, And01,
Kob94] which became my preferred reference books.

I would like to thanks Alexis Bonnecaze and Marc Joye for their comments. David
Powell and Frédéric Cuppens have honored me by accepting to be part of the thesis
committee.

Funds for this work were provided by the Eurecom Institute and by the European
Commission (WiTness project funded under Fifth Framework Program).

Last, but certainly not least, I am grateful to Cécile, who became my wife and the
mother of two beautiful children while I was working on this thesis.

Laurent Bussard, October 2004

x Acknowledgements

xi

Contents

Abstract vi

Résumé vii

Acknowledgements ix

Table of Contents xvi

List of Figures xviii

List of tables xix

Acronyms and Abbreviations xxi

Glossary xxiii

Introduction 1
New Paradigms . 1
Impact on Security and Privacy . 2
Problem Statement . 4
Organization of this Thesis . 7
Contributions of this Thesis . 10

I Trust without Infrastructure 13

1 Authorization without Trust 15
1.1 Introduction . 15
1.2 Problem Statement . 17

1.2.1 Example . 18
1.2.2 State of the Art: Access Control and Penalty 18

1.3 Preliminaries . 20
1.3.1 Blind Signature . 20
1.3.2 Electronic Cash . 22

1.4 Our Solution: One-time and Off-line Credentials 25
1.5 Protocol . 27

1.5.1 Penalty without Hierarchical Relationships 27

xii CONTENTS

1.5.2 Phase 1: Credential Creation . 28
1.5.3 Phase 2: Service Access with One-time Credential 30
1.5.4 Phase 3: Detection of Double Use and Penalty 31
1.5.5 Defining Attributes . 31

1.6 Security Evaluation . 32
1.7 Conclusion . 35

2 Establishing Trust without Infrastructure 37
2.1 Introduction . 37
2.2 Problem Statement . 38

2.2.1 Expected Features . 39
2.3 Preliminaries . 41

2.3.1 Interactive Proof of Knowledge . 42
2.3.2 Schnorr Digital Signature Scheme 43
2.3.3 Signature Based on a Proof of Knowledge 44
2.3.4 Group Signature . 44
2.3.5 Group Blind Signature . 45

2.4 Untraceable Signature of Secret . 45
2.4.1 Principle . 45
2.4.2 Restricting Possible Values of a Signed Secret 46
2.4.3 Protected Keys . 47

2.5 Trust Establishment Protocol . 48
2.5.1 Protocol Description . 48
2.5.2 Security Evaluation . 49

2.6 Conclusion . 50

II History-Based Trust Establishment 53

3 History-based Signature Scheme 55
3.1 Introduction . 55
3.2 Principle . 57
3.3 State of the Art: Unlinkable Credentials 58
3.4 Protocols . 60

3.4.1 Zero-Knowledge versus Statistical Zero-Knowledge 60
3.4.2 Certification . 61
3.4.3 Obtaining Credentials . 62
3.4.4 Using History for Signing . 63

3.5 Encoding Attribute Values . 64
3.5.1 Principle . 64
3.5.2 Possible Codes . 65

3.6 Proof of Knowledge . 66
3.6.1 Proof of Equality of a Log and a Double Log 67
3.6.2 Signature Based on a Proof of Equality of Double Log 67

3.7 Security Evaluation . 68

CONTENTS xiii

3.8 Conclusion . 71

4 Distance-Bounding Proof of Knowledge 73
4.1 Introduction . 73
4.2 Problem Statement: Authentication in Pervasive Computing 75

4.2.1 Redefining Authentication . 75
4.2.2 New Attacks against Authentication 76
4.2.3 Definitions . 79
4.2.4 Attack Examples . 80

4.3 State of the Art: How to Prove One’s Location 82
4.3.1 Location-Limited Channels . 83
4.3.2 Context Sharing . 85
4.3.3 Proximity Evaluation . 85
4.3.4 System Observation . 85
4.3.5 Certification of Fixed Location . 86
4.3.6 Isolation . 86
4.3.7 Unforgeable Channel . 86
4.3.8 Radio Frequency ToF . 87

4.4 Distance Bounding Protocol . 88
4.4.1 Principle . 88
4.4.2 Implementation Constraints . 90

4.5 Tackling Terrorist Frauds . 91
4.5.1 Description . 91
4.5.2 Sketch of Security Properties . 93

4.6 Distance-bounding Proof of Discrete Log 94
4.6.1 Initialization . 94
4.6.2 Registration . 94
4.6.3 Bit Commitments . 95
4.6.4 Distance-Bounding . 95
4.6.5 Commitment Opening . 96
4.6.6 Proof of Knowledge . 96

4.7 Security Analysis . 97
4.7.1 Preventing Distance, Mafia, and Terrorist Frauds 97
4.7.2 The Representation Problem . 99
4.7.3 Encryption of the Private Key . 100

4.8 Conclusion . 105

5 History-Based Trust Establishment 107
5.1 Introduction . 107
5.2 State of the Art: How to Establish Trust 108

5.2.1 Deriving Trust from a priori Relationships 109
5.2.2 Trust Establishment without a priori Relationships 111
5.2.3 Trust and Privacy . 113

5.3 Prooving Contextual Information . 113
5.3.1 Location- and Time-Stamper . 113

xiv CONTENTS

5.3.2 Combining DBPK and Unlinkable Credentials 115

5.4 History . 116

5.4.1 Properties . 116

5.4.2 History Management . 117

5.4.3 Trust Establishment . 118

5.5 Conclusion . 118

III Implementing Trust Establishment 119

6 Implementing Trust Mechanisms in Federations 121

6.1 Introduction . 121

6.2 Cost of Privacy . 122

6.2.1 State of the Art: How to Speed up Signatures 123

6.3 Pervasive B2E . 124

6.3.1 General Scenario . 124

6.3.2 Security Implications . 126

6.3.3 Trust Model . 126

6.4 Security Architecture . 127

6.4.1 Architecture Overview . 127

6.4.2 User-level Access Control Infrastructure 129

6.4.3 Device-Level Access Control Infrastructure 131

6.5 Structure of Certificates . 133

6.6 Demonstrators . 135

6.6.1 Federative Access to Corporate Data 135

6.6.2 Pervasive Meeting . 136

6.7 Conclusion . 136

Conclusions 139

Perspectives . 140

A Using Quantum Cryptography to Build Unforgeable Channels 143

A.1 Principle . 143

A.2 Unforgeable Channels . 144

B Drag-and-Drop: User-friendly Distance-Bounding Protocols 147

B.1 Usability of the Environment . 147

B.2 Security Requirements . 148

B.2.1 Strong Authentication in Pervasive Environments 148

B.2.2 Presence of User . 149

B.3 Solution: Drag-and-Drop Methaphor . 149

B.3.1 Verifying Attributes of Artifacts . 150

CONTENTS xv

C Demonstrator 1: Device Certification 153
C.1 Prototype Scenario . 153
C.2 Principle . 154

C.2.1 Data and Key Distribution . 154
C.2.2 XML Documents . 156

C.3 Platform . 156
C.3.1 Software Environment. 157
C.3.2 PAN Communications. 157

C.4 Result: Secure Federation . 157

D Demonstrator 2: Context-Based Trust Establishment 161
D.1 Application Description . 161
D.2 Security Requirements . 162
D.3 Demonstrator Federative Network Architecture 163

D.3.1 Bluetooth implementations issues: lessons learnt 163
D.3.2 Architecture of the demonstrator 164

E Mobile Code Protection Can Rely on Trust 165
E.1 Problem Statement . 165
E.2 Approaches to Protect Environment and Code 166

E.2.1 Protecting Execution Environments 167
E.2.2 Protecting Mobile Codes . 168
E.2.3 Trust-Based Application Protection 170

E.3 Pragmatic Approach . 170
E.3.1 Nomadic System Organization . 171
E.3.2 Defining Trust Relationships . 171

Bibliography 184

Résumé 185
1 Motivation : quatre nouvelles contraintes 187

1.1 Manque de relations de confiance 188
1.2 Manque d’infrastructure de communication 188
1.3 Besoin de protéger la vie privée des utilisateurs 189
1.4 Besoin de prendre en compte le contexte 189
1.5 Notre approche . 190

2 Certificats non-traçables . 190
2.1 Solutions existantes . 191
2.2 Notre solution : extension des signatures de groupe 192

3 Preuves de proximité . 194
3.1 Nouvelles attaques et solutions existantes 194
3.2 Notre solution : preuves de connaissance et de proximité 196

4 Historique : prouver sans être tracé . 199
4.1 Protection de la vie privée . 199
4.2 Implémentation . 200

xvi Table of Contents

CV and Publications 203

xvii

List of Figures

1 Application-level security in pervasive computing 4
2 Three layers for ensuring user’s privacy . 6
3 Organization of this thesis . 8

1.1 Access Control in pervasive computing application scenario 17
1.2 Different steps of one-time credential lifecycle 26

2.1 Creation and use of a credential with secret attribute 40
2.2 Group blind signature scheme used as unlinkable secret credential 47

3.1 Getting history items . 57
3.2 History-based signature . 57
3.3 Proof of History . 58

4.1 Links between artifacts and their virtual representations 74
4.2 Three Real-Time Frauds . 79
4.3 Attack against artifact authentication . 81
4.4 Attack against proof of location . 82
4.5 Dedicated hardware for distance bounding protocols 90
4.6 Distribution of b when e = x− k mod p− 1 102
4.7 Distribution of b when e = u · x− k mod p− 1 104

5.1 Trust and risk evaluations . 108
5.2 Different ways to define a priori trust relationships. 109
5.3 A priori trust . 111
5.4 Trust establishment . 112

6.1 General overview of relationships in a federation 129
6.2 Different views on the trustworthiness of a federation. 132
6.3 XML structure of a WiTness attribute certificate 134

A.1 Principle of quantum cryptography . 144
A.2 Quantum cryptography in order to disable mafia frauds 145

B.1 Drag-and-drop to show attributes of an artifact 150

C.1 Two stage access control . 155
C.2 Prototype architecture . 158

xviii List of Figures

C.3 example of trust-based distribution . 158

D.1 Federative groupware . 164

E.1 General overview: certified pieces of code within certified devices 171
1 Différentes approches pour définir une relation de confiance 188
2 Interactions déconnectées : impossibilité de joindre un tiers de confiance

distant . 189
3 Relations entre un objet physique et son identité virtuelle 190
4 Certificats non-traçables utilisés de manière interactive ou non. 191
5 Trois nouvelles attaques. 195
6 Deux principaux types de protection contre les fraudes par relais. 196
7 La non traçabilité est nécessaire sur trois plans 200

xix

List of Tables

1.1 Chaum’s blind signature scheme . 21
1.2 Simple e-cash system ensuring client’s untraceability 23
1.3 Notations for various states of an electronic check 27

2.1 Interactive proof of knowledge of double discrete logarithm 42
2.2 Blind signature with secret attribute i . 46
2.3 Distribution of secrets among parties . 48

3.1 Comparison of different schemes . 59
3.2 Creation and first certification of A’s secret x 61
3.3 Obtaining some credential to build history 62

4.1 Mafia-fraud attack using access control protocol 77
4.2 Comparison of location mechanisms . 84
4.3 Basic principle of Chaum’s distance bounding protocols 89
4.4 A general scheme for DBPK[α : y = Γ(α)] 92

5.1 Context data: location and time . 114

A.1 Eavesdropping quantum cryptography . 144

B.1 Basic drag-and-drop protocol between two artifacts 151

1 Principe de base du protocole proposé par Brands et Chaum 197
2 Vue générale des preuves de connaissance et de proximité 198

xx List of tables

xxi

Acronyms and Abbreviations

AC Access Control
ACL Access Control List
AoN All or Nothing
API Application Programming Interface
ASN.1 Abstract Syntax Notation One
ATM Automated Teller Machine
B2B Business to Business
B2E Business to Employee
CA Certifying Authority
CDC Connected Device Configuration (J2ME)
CLDC Connected Limited Device Configuration (J2ME)
CRL Certificate Revocation List
DBP1 Distance Bounding Protocol
DBPK1 Distance Bounding Proof of Knowledge
DL Discrete Logarithm
DoS Denial of Service
GPS Global Positioning System
GSM Global System for Mobile Communications
GPRS General Packet Radio Service
GRBAC Generalized Role-Based Access Control
IDS Intrusion Detection System
IFF Identification Friend or Foe
IrDA Infrared Data Association
J2ME Java 2 Micro Edition
JCE Java Cryptographic Extension
JDK Java Development Kit
JNI Java Native Interface
JSR Java Specification Request
JVM Java Virtual Machine
KP Public Key
KS Private Key
LTS1 Location-and-Time Stamper
MAC MAC address: Media Access Control address
OCSP On-line Certificate Status Protocol

1New acronyms and new abbreviations that have been coined in this thesis.

xxii Acronyms and Abbreviations

OTC1 One-Time Credential
P2P Peer-to-Peer
P3P Platform for Privacy Preferences Project
PAN Personal Area Network
PCE1 Pervasive Computing Environment
PDA Personal Digital Assistant
PGP Pretty Good Privacy
PIN Personal Identification Number
PK Proof of Knowledge
PKI Public Key Infrastructure
RBAC Role Based Access Control
RF Radio Frequency
RFID Radio Frequency Identification
RSA Rivest-Shamir-Adleman public key cryptosystem
RTT Round-Trip Time
SAML Security Assertion Markup Language
SIM Subscriber Identity Module
SOAP Simple Object Access Protocol
SPK Signature based on a Proof of Knowledge
SPKI Simple Public Key Infrastructure
TCG Trusted Computing Group
ToF Time of Flight
TPH Tamper-proof Hardware
TTP Trusted Third Party
UMTS Universal Mobile Telecommunication System
USIM Universal Subscriber Identity Module
UTC Coordinated Universal Time
WAN Wide Area Network
WiFi Wireless Fidelity
WLAN Wireless Local Area Network
XACML Extensible Access Control Markup Language
XML Extensible Markup Language
XSLT Extensible Style-sheet Language Transformation

xxiii

Glossary

The following notations and definitions aim at reminding common notations as well as
defining specific notations of this thesis. Definitions are given in alphabetical order and
are based on [PHS03, CS97, MVO96, PK01a, GS00]

Notations

Zn Integers modulo n: the set of integers {0, 1, . . . , n− 1}
Z∗

n The multiplicative group of Zn

G A cyclic group with generator g
?
= Check equality

H(m) Cryptographic hash function: H : {0, 1}∗ → {0, 1}k

m1 ‖ m2 Concatenation of strings m1 and m2

{a, b, c} Set of values

∈R Randomly chosen value, e.g r ∈R Z∗
n

PK[...] Proof of knowledge

SPK[...](m) Signature based on a proof of knowledge (or signature of knowledge)

Ki Secret key (symmetric key).

EKi
(m) Encryption of message m using symmetric key Ki

DKi
(c) Decryption of ciphertext c using symmetric key Ki

KSA
Private key of A.

KPA
Public key of A.

EKS,A
(m) Using private key KSA

on m (signature, decryption)

EKP,A
(m) Using public key KSA

on m (verification of signature, encryption)

SIGNA(m) Signature by entity A on message m.
E.g. SIGNA(m) = EKS,A

(H(m))

A
m−→ B Protocol exchange: A sends message m to B.

xxiv Glossary

Terminology

Anonymity: anonymity during an interaction is the state of being not identifiable
among all entities that might have take part to this interaction.

Artifact: in the context of pervasive computing, artifact describes any physical object
with embedded computation and communication facilities, be it a laptop, a watch, or a
shoe with an embedded RFID-tag. Artifact are also referred as communicating devices.

Authentication: entity authentication is the process whereby one party is assured
of the identity of a second party involved in a protocol.
In this thesis, artifact authentication is the process whereby a person or an artifact is
assured of the properties (i.e. identity or attributes) of a given artifact that he can touch
or see.

Bit commitment: a bit commitment protocol makes it possible to choose a bit and to
reveal it later without any possibility of changing this bit in the meantime. This protocols
involves two parties (a prover and a verifier) and relies on two functions (commit, open)
that satisfies the following conditions: Binding : once the prover has committed herself to
a bit b by presenting a blob to the verifier, she is later unable to change the bit; Secrecy :
there is no leakage of information about the committed bit from the blob as long as it is
not opened by the prover.

Blind signature: a blind signature is a digital signature scheme where the signer is
prevented from reading the message to be signed. The requestor obfuscates (or blinds)
the message m and sends it to the signer. The signer signs this blinded message and sends
it back. The requestor is able to treat (or unblind) the signature in order to get a valid
signature on the initial message m.

Blob: see Bit commitment.

Certificate: a certificate is a data structure that associates the public key of the
holder to a set of attributes (e.g. identity, role, authorization, or properties). This data
structure is signed by an issuer guaranteeing the validity of the attributes. The signature
also ensures the integrity of the certificate.

Certification Authority: a certification authority (CA) is a trusted third party
that generates and issues certificates.

Challenge-response protocol: a challenge-response protocol is a two-party pro-
tocol during which a prover proves the knowledge of a password, a secret key, or a private
key to a verifier. In the context of this thesis, we use challenge-response protocols to
interactively prove the knowledge of a private key.

Context: the context is the logical state of a party as well as its surrounding physical
environment. In this thesis, we focus on provable information on the physical context:

Glossary xxv

mainly the time, the location, or the proximity of another party.

Credential: A credential is an assertion about a specific party (credential holder) that
is digitally signed by a trusted authority (credential issuer). A certificate is a particular
instance of credential.

Cut-and-choose protocol: a cut-and-choose protocol is a two-party protocol. One
party sends some data and tries to convince the other party that this data was constructed
according to a method they agreed upon.

Electronic cash: e-cash aims at defining a new type of money based on digital
information. Since an e-coin is just a bunch of bits, it is easy to duplicate. The copy
being indistinguishable from the original, a major challenge is to define mechanisms that
avoid double-spending. Another important aspect of e-cash is to respect the anonymity
offered by classical money.

Group signature: A group signature allows any member of a group to digitally sign
a document in a manner such that a verifier can confirm that it came from the group, but
does not know which individual in the group signed the document. The protocol allows
for the identity of the signer to be discovered, in case of problem, by a designated group
manager. Four protocols are generally defined: Join is a protocol between the group
manager and a user that results in the user becoming a new group member; Sign is a
protocol between a group member and a user whereby a group signature on a user supplied
message is computed by the group member; Verify is an algorithm for establishing the
validity of a group signature given a group public key and a signed message; Open is an
algorithm that, given a signed message and a group secret key, determines the identity of
the signer.

History: the provable history of a party is the set of credentials that this party re-
ceived when interacting with other parties. The history can contain proofs of location,
recommendations, hierarchical relationships, etc.

Nonce: a nonce is a random challenge (see challenge-response protocol).

Non-transferability: A credential is said non-transferable when the holder has to
provide a valuable secret to enable another party to use this credential. For instance a
certificate cannot be transferred because it implies providing ones private key as well.

Off-line: Off-line (or disconnected) interactions are interactions that involve two or
more local parties but that cannot rely on a remote trusted third party.

One-time pad the one-time pad (OTP) is a theoretically unbreakable method of
encryption where the plaintext is combined with a random pad that is only used once.
The pad has to be the same length as the plaintext to encrypt and thus the major problem
is the secure distribution of pads.

Penalty: penalty is the punishment for violating rules or for abusing the system. Penal-

xxvi Glossary

ties are usually monetary fines. In this thesis, penalties enable some additional control
on misbehaving users when access control is not sufficient.

Personal area network: a personal area network (PAN) is a network for commu-
nication among artifacts surrounding one person. The artifacts may or may not belong
to the person in question. The range of a PAN is typically a few meters. A Bluetooth
PAN is called a piconet.

Pervasive computing: pervasive computing or ubiquitous computing describes the
concept of integrating computation into all surrounding objects (artifacts). Embedding
computation into the environment would enable people to move around and interact with
computers more naturally than they currently do. Another goal of pervasive computing
is to enable devices to sense changes in their environment and to automatically adapt and
act based on these changes and on user needs and preferences.

Privacy: in this thesis, privacy is defined as the right of an individual to be secure from
unauthorized disclosure of information about oneself. Different services are associated
with privacy: anonymity, pseudonymity, unlinkability, and unobservability.

Proof of knowledge: a proof of knowledge (PK) is a two-party protocol by which
the prover P proves that he knows some secret, e.g. the discrete logarithm of some y to
the base g, without revealing this secret. A proof is defined as zero-knowledge when it is
possible to prove that no information about the secret is revealed.

Pseudonymity: pseudonymity is the use of pseudonyms as identifiers. A digital
pseudonym is a unique identifier that can be used to authenticate the holder but that
does not reveal his identity.

Selective disclosure: selective disclosure is the technique that enables the holder
of some information to choose the granularity of revealed information. For instance the
holder of a digital identity card should be able to prove his nationality without revealing
any information on his/her name or age.

Signature based on a proof of knowledge: a signature based on a proof of
knowledge (SPK) or signature of knowledge (SK) is a non-interactive version of the proof
of knowledge. It enables a signer to sign a message as ”someone knowing some secret”
without revealing this secret. The signature can be verified by any party.

String commitment: a string commitment scheme is a generalization of a bit com-
mitment scheme. Unlike in a bit commitment, the prover can hide a string of bits in a
single blob.

Timestamp: A digital time stamp is an unequivocal proof that a piece of data existed
at a point-in-time and that the contents have not changed since that time. A timestamp
is a digital notary that is generally used for witnessing intellectual property.

Trust: trust is the firm belief that an entity is competent and willing to act securely and

Glossary xxvii

reliably in a given situation. Trust is established based on knowledge, beliefs, or claims
about another party.
In this thesis, we focus on resource access trust where a party trusts another party and
gives it access to its resources and service provision trust where a party trusts another
party to provide a service.

Trusted Third Party: a trusted third party is an authority that is trusted by
other parties with respect to specific security-related activities (e.g., authentication, times-
tamps, privacy, or authorizations).

Unlinkability: unlinkability of two or more items (e.g., subjects, messages, events,
actions, etc.) means that, these items are no more and no less related than they are
related concerning the a priori knowledge.

Untraceability: in this thesis we assume that untraceability and unlinkability are
synonym.

Valuable secret: a valuable secret is a secret that cannot be disclosed because it
would enable identity theft. For instance, in a public key infrastructure, private keys are
valuable secrets.

xxviii Glossary

1

Introduction

”It was a device by means of which everyone could be surrounded night
and day by informers who knew him intimately.”

– George Orwell (Nineteen eigthy-four)

Thirteen years ago, Mark Weiser proposed the pervasive computing paradigm [Wei91]: a
world in which computing power and communication facilities could be embedded in any
object. In his vision, users would transparently interact with objects without being aware
that they indeed interact with computers. Today, pervasive computing is an important
research field involving hundreds of researchers worldwide. The outcome of this research
already started to impact real life: personal digital assistants (PDAs), smart-phones and
other highly communicating devices are ubiquitous; radio frequency identification tags
(RFID-tags) will soon become the widest market for chip manufacturers; and smart
appliances are more and more common. This evolution entails unforeseen threats and
vulnerabilities, and thus protecting users in terms of security and privacy is becoming a
major concern. Therefore assuring security and privacy in pervasive computing is at issue
in this dissertation.

New Paradigms

Pervasive computing literally denotes a situation in which computers are present and felt
everywhere. This, however, may mean many things, and indeed authors have used the
term in significantly different ways. Computation and communication facilities can be
spread in many manners. Large intelligent environments, be it an office, a building, or a
town, are envisioned to offer services to users [CLS+01]. In this case, an infrastructure is
deployed to observe users with location sensors, smart floors, or cameras and to provide
services such as printing, opening doors, or guiding visitors within a campus. Without
infrastructure, intelligent appliances like vending machines or printers are expected to
offer wireless interfaces in order to provide (or request) services [KZ03]. Federations
of appliances and devices such as PDAs are emerging, and thus pairing mechanisms,
which enable the establishment of a secure link between two devices, become important

2 Introduction

[HMS+01, SA99]. A more futuristic trend is to embed chips in any object: from clothes
and books (RFID tags [Bri03]) to human beings (wearable computers like e-rings [Cur98]
or smart watches [NKR+02]). An even wider deployment could be achieved with very
small communicating devices like smart dust [KKP99] spread in environments. However,
in this thesis we will only focus on communicating devices that are powerful enough
for supporting asymmetric cryptography. In other words, we will mainly look at smart
environments offering services to a user carrying a trusted device, for example a personal
digital assistant, a cell phone, or a smart watch.

Pervasive computing brings together several different research topics: intuitive hu-
man machine interactions [Bor00], context awareness (sensing and monitoring) [GBEE02,
KH00], software architecture, self-organized networking [MM02], energy management,
security, etc. This dissertation specifically addresses security and privacy in pervasive
computing.

Research on pervasive computing being quite recent, different designations are actu-
ally used: ubiquitous computing, disappearing computing, and communicating devices are
synonymous with pervasive computing. In this dissertation, we focus on application level
and thus neither address ad hoc networks, which mainly focus on routing in autonomous
and self-organized networks, nor sensor networks, which define networks of devices with
very restricted resources.

Today some basic concepts of pervasive computing are becoming a reality for the gen-
eral public: cell-phones or even cars’ computers propose multiple services like location or
hotel reservation; more and more sensors are spread in public and private environments;
and electronic cash, electronic vouchers, and electronic travel tickets are becoming com-
mon. Furthermore, pervasive computing is now a mature research topic and numerous
research institutes work on more advanced concepts. At least three international confer-
ences cover it: conference on ubiquitous computing (Ubicomp) since 1999, conference on
pervasive computing (Pervasive) since 2002, and IEEE conference on pervasive computing
and communication (PerCom) since 2003. Two journals also focus on this topic: personal
and ubiquitous computing edited by ACM and Springer since 1997 and IEEE pervasive
computing (mobile and ubiquitous systems) since 2002. Workshops on security and/or
privacy in pervasive computing are regularly organized in these conferences and in secu-
rity conferences as well. In 2003 the first conference on security in pervasive computing
(SPC) was launched and the first book on this topic [Sta02] was printed in 2002.

New Requirements for Security and Privacy

The large scale deployment of pervasive computing heavily depends on the assurance of
essential security properties for users and service providers. Indeed, pervasive comput-
ing impacts daily interactions that often involve assets of users and service providers.

Introduction 3

For instance, walking through a gate controlling the access to an office may require an
authorization or getting on a bus may imply an automatic micro-payment.

In addition to security exposures due to the underlying mobile and wireless communi-
cations, pervasive computing brings up new security issues. In pervasive computing, users
should not be aware of the presence of computers. Thus interactions between users and
artifacts (i.e. objects with embedded computation and communication facilities) have to
be intuitive and non-disturbing. In terms of security it means that users cannot be ex-
pected to enter a password before interacting with an artifact. Moreover, the association
between a physical entity and a virtual service is specific to pervasive computing that
thus bridges the gap between physical and virtual worlds [Sat01, IU97, McC01]. This has
a strong impact on the meaning of authentication. Indeed, numerous security protocols
exist for verifying that a virtual service (e.g. e-banking) is certified by a trusted authority
but protocols to check whether a given artifact (e.g. the printer in front of the verifier) is
certified are uncommon. This relation with the real world also promotes the use of con-
textual information. The context can even be used for authentication [MRCM02], access
control (only users that are present in a room can turn on the light of this room) [CMA00],
or privacy protection (displayed information depends on who can see the screen) [RNP03].

Another particular characteristic of pervasive computing is that it lacks infrastructure
in terms of communication and trust. First, communication among artifacts often relies
on short-range channels (e.g. Bluetooth) defining personal area networks (PAN) and
thus it is realistic to assume that there is no permanent global connectivity [CGS+03].
This is referred to as disconnected mode in the remainder of this thesis and means that
during some interactions it is impossible to rely on remote trusted third parties such
as certification authorities or revocation lists. Moreover, pervasive computing foresees
billions of devices leading to frequent interactions among unknown parties. Thus there is
potentially a lack of a priory trust among parties [BSSW02, CGRZ03] and mechanisms
to build trust have to be deployed.

Finally, privacy is also a major concern. Indeed, initial applications of pervasive
computing that are already deployed yet reduce the privacy of users: nowadays private
data can be automatically logged in order to make a profile of a person. For instance,
shopping malls or credit card companies can keep track of users’ purchase, Internet service
providers can observe Web pages accessed by their clients. The gathering and combination
of this data is an important threat against privacy that can lead to targeted advertisement
or even weaken political systems [Ger04]. Moreover, real-time location of people can
also be achieved thanks to their credit card payments, cell-phones, auto-tolls, or car’s
security system. The future development of pervasive computing will affect more and
more daily interactions and thus if no privacy protection is provided, it will be possible to
log any interaction. Indeed, RFID tags, proximity sensors, micro payments, or automatic
authentication could feed huge databases logging daily interactions of users and enable to
accurately profile users leading to violation of their privacy.

4 Introduction

Problem Statement

In this dissertation, we present different solutions to deal with the following scenario:
Alice (A) visits an environment managed by Bob (B). We assume a lack of a priori trust
among A and B. In other words, there is no global trust infrastructure such as a public
key infrastructure (PKI) defining a relationship between A and B. Moreover, we observe
a lack of communication infrastructure so that a part of the operation has to be done
in disconnected mode without relying on centralized authorities. More details on each
property are provided in the remainder of this section.

Figure 1 describes the problem we tackle in this dissertation: how to provide rights
to parties when there is no a priori trust, when permanent connection to trusted third
party (TTP) cannot be assured, and when privacy and context are important concerns.

Access
Control

(authorization)

Lack of
Trust

Off-line
Mode

Privacy-
aware

Context-
aware

Privacy in terms of anonymity
and unlinkability has to be
taken into account.

No a priori trust among
parties: trust establishment
protocols are necessary.

The context has to be
taken into account.

Part of the interactions has
to be done off-line, i.e.
without access to any
trusted third party.

Figure 1: Application-level security in pervasive computing

Lack of Trust Infrastructure

Trust is generally defined as the belief that one can depend on something or someone. In
this definition, there are clearly notions of uncertainty and risk. A resulting property is
that if party B trusts A then B can grant A some rights. Likewise, any information that
enables B to decide whether he can grant A some rights is part of the trust establishment
process.

Trust is usually derived from some existing relationship known as a priori trust. For
instance, C trusts B and then C trusts A if B says that A is trustworthy. In a web of
trust, B is a friend of C, and in the simple public key infrastructure, B is the hierarchical
authority of A.

Introduction 5

However, in any large environment involving unknown parties, be it peer-to-peer data
sharing, pervasive computing, or ad hoc networks, there is a lack of a priori trust among
parties and thus a new mechanism is required to build trust in an a posteriori fashion based
on monitored evidence. The following two alternatives appear to be suitable concepts on
which to build a posteriori trust:

• Reputation (statistical evidence).

• History of interactions (provable evidence).

In this thesis we focus on the latter case. A interacts with B and receives a credential
proving that this interaction occurred. Subsequently, A can prove to B or to another
party C that this interaction occurred in the past. As a result of this proof, B or C can
grant A some rights. History may contain trust-related evidence like recommendation as
well as more general evidence like having been at a given location or being a member of
a group.

Disconnectivity: Lack of Communication Infrastructure

Defining a security infrastructure supporting disconnected interaction may be question-
able since workstations and servers are permanently on-line and even in mobile context,
permanent connectivity can be achieved by using local communication infrastructure (e.g.
WiFi access points) and/or global cellular networks (e.g. GSM, UMTS). However, an ex-
clusively on-line approach is sometimes simply not affordable for building and securing
systems. Long distance communication might simply be impossible because of obstacles
(buildings, tunnel, etc.) or because the infrastructure might have been destroyed in a
disaster such as an earthquake, even though local appliances might be in reach. Server
crash, network problems, or denial of service attacks can also temporarily forbid connec-
tion or make it too difficult to use because of an excessive response time. Complexity for
deploying a fully connected environment might also be overwhelming. Finally, the cost
for permanent mobile communications is still prohibitive.

Thus, despite the ubiquitous and cheap availability of communication channels, dis-
connected situations are likely to occur.

Privacy Aware Protocols

Users need a way to prove their history of interactions to another party. However, a proof
must not be linkable to a previous event (untraceability) and the identity of the user must
remain secret (anonymity). Moreover, when a credential can be used more than once, it
is necessary that different proofs are not linkable (unlinkability).

6 Introduction

Disclosure Management

Selective Attribute Disclosure

Unlinkable Credential

Anonymous Network

Privacy in security protocol

Privacy at network layer

Privacy at application layer

Figure 2: Three layers for ensuring user’s privacy

Our architecture for protecting the untraceability of users in such a context relies on
three layers (see Figure 2). First, at the bottom of the architecture, privacy at network
level is required in order to prevent tracing of user behavior based on the monitoring of
network traffic. In a personal area network (e.g. Bluetooth), MAC addresses should not
be visible or should change regularly. And in the Internet, where MAC addresses are not
visible, IP addresses should be kept secret by using, for instance, onion routing or mixes
[Cha81]. The second layer assures that the credentials delivered to the users cannot
be traced. Indeed, private user data (e.g. identity) can be directly exposed through
security protocols since most classical security mechanisms are based on identification
and authentication. Schemes relying on blind signatures or on signatures of knowledge
can solve this problem. Third, at the application layer, the attributes that are revealed
have to be carefully chosen in order to avoid traceability based on the attributes. It is
obvious that identity certificates enable traceability of holders even when the credential is
unlinkable. However, less precise attributes like the birthday or the office number can also
be used to trace some person in a small group. Statistical disclosure control [WdW00]
aims at controlling what information can be revealed without threatening user’s privacy.
In this thesis we only focus on the second layer and propose new schemes for unlinkable
credentials dedicated to trust establishment.

Context Aware Protocols

In pervasive computing the context refers to any information on the local environment:
time, location, brightness, temperature, presence of another entity, etc. On one hand, a
solution for monitoring the context and subsequently using this measure as a proof would
be useful. On the other hand, only results signed by a trusted sensor could be seen as
proof, and, even in this case, it is easy to tamper with context: GPS signal can be spoofed,
temperature sensors can be warmed up, and so on.

To enable proofs of context, we defined a protocol that lets a verifier measure the
maximum distance to a prover that knows a secret. We state that time and distance is
the only contextual information that cannot be manipulated by an attacker. Indeed, time
can be taken into account by security protocols and the bounded speed of light makes it

Introduction 7

possible to associate maximum distance to maximum response time. In this dissertation
we will show that distance-bounding protocols are important building blocks for defining
security protocols in pervasive computing. Distance-bounding protocols can be used in
order to authenticate artifacts: a user verifies that the printer in front of him is indeed
certified by a trusted party. These protocols also enable secure device pairing in order
to establish a secure channel between two artifacts. Finally, they can be used with a
trusted third party that delivers a proof of context. For instance, an appliance verifies the
proximity of a party knowing a private key and next delivers a proof of location associated
to the corresponding public key. This proof can then be shown to another party to assert
the location of the user at a given time.

Access Control in Pervasive Computing

Defining an access control model taking into account the lack of trust and communication
infrastructure, and the requirements for privacy and context awareness is a challenging
task. To decide whether an entity can be authorized to access a service, it is necessary
to rely on trust relationships. When no trust is defined, this means establishing trust
based on observation, recommendation, or reputation mechanisms. The fact that the
communication media is not reliable disables access control based on trusted third parties
and promotes credentials. Privacy, in terms of anonymity of the credential holder and
unlinkability of the credential, supports unlinkable credential schemes. Last, to deal with
contextual information means to be able to prove the context of a party, e.g. its location
at a given time.

Some related approaches support part of the mentioned constraints but no approach
deals with all constraints. In this thesis, we will describe different extensions of existing
schemes, namely electronic cash, group signature, proof of knowledge, and attribute cer-
tificate, to enable trust establishment and access control in disconnected environments
requiring privacy and context awareness.

Organization of this Thesis

Each chapter proposes a building block for tackling trust relationships in pervasive com-
puting environments when part of the interactions are done in disconnected mode. For
the sake of readability, the state of the art is not centralized but distributed in suitable
chapters. Figure 3 summarizes the structure of this dissertation. We start with the most
constraining hypothesis: privacy of users is required, no trust infrastructure is available,
and it is impossible to build any trust on a history of interactions. This shows that, even
without trust relationship, it is possible to define access control enabling clients to use
services while protecting service providers. Next, we describe how a history of interactions
can be used to establish trust among parties. Because no trust infrastructure leads to

8 Introduction

strong limitations, we assume that a minimal trust infrastructure exists and assures that
each user has a valuable secret, i.e. something equivalent to a private key. History-based
trust establishment is defined in this context. Finally, we focus on implementation results
related to trust establishment in pervasive computing.

Part I Part II Part III

Chap. 1 Chap. 2 Chap. 3,4,5

Privacy No privacy

No infrastructure Infrastructure

No history History History

Chap. 6

History

Infrastructure

Worst case Easiest case
(no a priori trust, privacy required) (a priori trust, no privacy)

Trust establishment in
pervasive computing

Privacy: unlinkability of interaction
and anonymity of users.

Trust Infrastructure: certification
of users.

History: users come more
than once and their �fairness�
can be measured.

Figure 3: Organization of this thesis

Part I

Part I focuses on environments without authentication mechanisms, i.e. without certifi-
cation of entities. Preliminary sections of Chapters 1 and 2 introduce few techniques and
mechanisms that are developed for this thesis.

First, Chapter 1 studies whether it is possible to provide rights to users when there is no
a priori trust and no way to build trust. In this chapter we propose a new approach using
one-time credentials that can be used off-line, i.e. only relying on local communications.
This solution assumes that neither the service provider B trusts the user A nor A trusts
B. In this scheme money, i.e. electronic check, is envisioned as a universal penalty
mechanism.

Having shown the limitations due to the lack of trust, Chapter 2 proposes an original
way to build trust. It is also assumed that there is no a priori relationships among client
A and service provider B. However, in this case A will request multiple times services of
B that can evaluate whether the behavior of A during an interaction was correct. After
an interaction B provides a credential to A depending on the result of the interaction.
During a subsequent interaction with B or partner of B, A can use this credential to assert

Introduction 9

some previous relationship. This is an embryo of history-based trust establishment that
is developed in the second part of this dissertation. Chapter 2 presents a protocol that
ensures unlinkability of interaction by defining unlinkable credentials. Attribute values
are encrypted to enable positive as well as negative statements.

Part II

Part II is the core of this thesis. It focuses on trust establishment based on evidence like
proof of context (e.g. location and time) or proofs of interactions (e.g. recommendations).

The main limitation of the protocol proposed in Chapter 2 is the small cardinality of
the set of possible attribute values that makes it unsuitable for defining complex attributes
such as time or rights. Chapter 3 describes the first building block of history-based trust
establishment: an unlinkable signature scheme. It relies on credentials with cleartext
attributes that can be disclosed in a controlled way.

Chapter 4 shows that contextual information (especially time and location) is an
important aspect of security in pervasive computing and thus impacts the trust estab-
lishment. Some approaches to prove the location of a party are compared and distance-
bounding proofs of knowledge are introduced. This extension of distance-bounding proto-
cols enables unforgeable proofs of proximity.

Chapter 5 describes the history-based trust establishment protocol that combines un-
linkable signatures (Chapter 3) and distance-bounding proofs of knowledge (Chapter 4).

Part III

Part III presents our implementation of trust establishment in pervasive computing. This
work was part of a wider project on the security of mobile and pervasive business appli-
cations.

Chapter 6 explains why nowadays mobile environments cannot afford privacy. Without
taking privacy into account, we describe how trust can be established in a very specific
context: a federation of devices and users from different trust domains collaborate in
business-to-employee and business-to-business applications. This chapter describes our
contribution to the European project Wireless Trust for Mobile Business (WiTness).

10 Introduction

Appendices

Each appendix gives more details on implementation or on possible extensions related to
a given chapter. Readers can skip the appendices and we do not recommend examining
an appendix without having read the related chapter.

Contributions of this Thesis

Privacy and security in pervasive computing are not mature enough and thus this dis-
sertation does not aim at defining finalized security protocols but investigates how new
problems could be solved.

Trust Establishment with Privacy

The main contribution of this thesis is to demonstrate that it is possible to build trust
relationships while preserving privacy. A framework for trust establishment based on
history is defined and a set of security protocols are proposed with different assumptions
on the existing infrastructure. Another contribution of this thesis is the implementation
of a simple trust establishment protocol in the WiTness project (Wireless Trust for Mobile
Business). Moreover, the remainder of this section shows that part of the results presented
in this dissertation may be used in another context.

Unlinkable Credentials

Unlinkable credentials and trust establishment protocols described in this dissertation
have been designed to address specific security problems related to pervasive computing.
However, not only future systems but also various emerging mobile computing applications
could benefit from this approach. It could also help collaborations over the Internet where
correspondents’ identities and intentions are difficult to establish.

Proof of Proximity

Distance-bounding proof of knowledge is a generic mechanism to prove the proximity of
an entity knowing a secret. This protocol extends the initial distance-bounding protocols
[BC93] in order to disable a type of attack referred as ”terrorist fraud”, which was let as
an open issue. In this dissertation, this mechanism is used for defining proofs of location
that are necessary during trust establishment. However, this mechanism also enables

Introduction 11

proofs of physical interactions, certification of artifacts, authentication of artifacts, etc.
We think that a long-term contribution could be the deployment of distance-bounding
mechanisms in any device that needs to verify certified attributes of another device, be it
a smart card, a cell-phone, or a trusted computing platform.

12 Introduction

13

Part I

Trust without Infrastructure

15

Chapter 1

Authorization without Trust

”If, indeed, you want praise, esteem, kindness, and friendship, you are
welcome to any amount; but money, that’s a different affair.”

– Molière (The Miser, II:V)

This chapter studies whether it is possible to provide rights to users when there is no
a-priori trust and no way to build trust. We propose a new approach using one-time
credentials that can be used in disconnected mode, only relying on local communications
during access control. Money, i.e. electronic check, is envisioned as a universal penalty
mechanism. This solution assumes that neither the service provider B trusts the user A
nor A trusts B.

1.1 Introduction

In this chapter we focus on the worst trust model where neither the client Alice (A) trusts
the service provider Bob (B) nor B trusts A and where there is no assurance that A will
interact with B more than once. In other words, there is no trust among parties and
no way to build some trust based on a history of previous interactions. New solutions
addressing these issues are required both for the protection of users, including privacy
measures, and for controlling the access to valuable resources like commercial services.
We define a new access control scheme suited to pervasive computing with the following
requirements:

• The service provider B does not trust the client A: misbehavior of the client leads
to direct penalty.

16 1. Authorization without Trust

• Lack of permanent communication channels: verification of access rights is per-
formed in a disconnected mode, i.e. without relying on a trusted third party (TTP).

• A does not trust B: privacy concerns are taken into account in order to assure the
anonymity of clients and untraceability of transactions.

In this scheme, some rights are granted to any visitor of a pervasive computing en-
vironment so that visitors can use local facilities. Before granting rights, authentication
may be used in order to define rights according to some role that is checked at a front
desk before entering the place. For instance, any visitor in a conference center could be
authorized to print few pages or any patient of a physician could get one coffee while
waiting.

Controlling access rights is necessary: the suggested access control scheme allows a
user to get authorized access to a service based on the one-time credential concept. One-
time credentials are provided to let users print n pages, get a coffee, or use a meeting
room during one hour. Misbehavior is defined as the attempt to access services beyond
authorization, i.e. attempts for multiple uses of one-time credentials. The one-time
property and the resulting double use prevention rely on a penalty mechanism whereby a
cheating user looses some money she deposited as a guarantee of her loyalty prior to a set
of service accesses. The one-time property is enforced by a mechanism based on money.

The verification of the user’s credential can be performed without any communication
with a third party system, since the validity of each one-time credential can be locally
checked by each service provider. Mechanisms to avoid double-use of rights in an off-line
context have been largely debated in the context of electronic cash and the work described
in this chapter is an extension of existing e-cash schemes. We propose that the double-use
of a credential makes the misbehaving user loose some money deposited earlier. Using
this access control scheme, the user and the service provider do not need to be part of the
same organization or to trust one another.

Protecting the user’s privacy is necessary: depending on the application, the user
may be authenticated when getting credentials. However, an honest user should not
be traceable based on her interactions with various servers. In this chapter we propose
untraceable one-time credentials that allow the service provider to cash an electronic check
deposited by the client in case of misbehavior by the latter.

We first give a precise description of the target application scenario with respect to
the access control problem and analyze the limitations of existing access control solutions
in the light of this scenario. Next we describe some mechanisms that will be extended in
the remainder of this chapter, namely blind signatures and electronic cash. Our solution
based on the one-time credential concept is then introduced first with a high level sketch
of the idea. A detailed description is given in terms of a protocol in three phases. The
security of the protocol is discussed in the last sections of the chapter.

1.2. Problem Statement 17

1.2 Problem Statement

The application scenario envisioned in this chapter consists of several pervasive comput-
ing environments (PCE) as shown in Figure 1.1. Each PCE includes a set of appliance
servers (C1, C2 · · · , Cz) whose access is controlled by B, the authority of the PCE. A
dynamic user population called visitors or clients (A1, , A2, · · · , Av) randomly visits PCEs
and requests services from appliance servers. The authority of each PCE is in charge of
providing each visitor with rights to access servers. Due to the possibly large coverage of
each PCE and the limited transmission capabilities of pervasive servers, no on-line con-
nectivity between the servers and the authority is required. However, servers periodically
exchange some data with the authority. For instance, once a day, vending machines pro-
vide data to the authority via the support personnel. Since servers cannot communicate
with the authority in a timely and interactive way, we qualify the interactions between the
clients and the servers of a PCE as off-line. Each client on the other hand can establish
interactive exchanges with the server he/she is in touch with. Another characteristic of
this environment is the lack of a priori trust between servers and visitors. Servers do not
trust visitors and possibly are not even able to identify them. Within a PCE, servers
trust the authority with respect to the authorization scheme in that each access requests
bearing a valid authorization proof delivered by the authority are granted access by the
server to which they are destined. The policy according to which the authority grants
access rights is out of the scope of this dissertation. Moreover the authority is only in
charge of enforcing access control within a PCE and the fact that there is a single au-
thority in each PCE does not necessarily imply that all servers of the PCE belong to the
same administrative domain. Furthermore, multiple servers might offer the same type of
service like printing, vending food and beverages, or opening doors.

B

A

PCE1

PCE2

PCE3

C1

C2

C3

C4

Figure 1.1: Access Control in pervasive computing application scenario

The access control in the pervasive computing application scenario can be illustrated
by an example as follows.

18 1. Authorization without Trust

1.2.1 Example

A visitor (Alice, A) arrives at the gate of a shopping mall (PCE). Once she is through
the registration she passes near a wireless sensor acting on behalf of the authority B. The
sensor loads the visitor’s personal device (e.g. cell-phone, PDA, or smart card) with a
set of rights based on the visitor’s attributes (e.g. role, identity, or location) and on the
types of services the visitor has subscribed to during the registration. Using the rights she
thus obtained, the visitor can access various services like vending machines. The access
control is operated by the shopping mall but the services to which access is granted by
means of the authorization scheme can be managed by independent service providers.
The main security goal in this context is to prevent the visitor from unauthorized access
to services even when the services are provided by off-line devices. For instance, if the
visitor is authorized to get one coffee and tries to use his right with two different coffee
machines that cannot communicate with one another or with the authority, the access
control mechanism should detect and prevent the duplicate access attempt.

1.2.2 State of the Art: Access Control and Penalty

In this dissertation, we have chosen to distribute the state of the art within different
chapters according to the topic of those chapters. Preliminary sections present more
specifically mechanisms and protocols that are used or modified in the dissertation.

A straightforward solution to deal with access control consists of access control lists
(ACL) that would be supported by the servers of the pervasive computing scenario.
Whereas ACLs satisfy off-line requirement by allowing each server to be able to locally
take the access control decision pertaining to its resources, because ACL relies on au-
thentication this approach cannot be used in pervasive computing where the identity of
visitors cannot be known in advance and authentication thus is impossible. Indeed, not
only visitors and servers do not belong to the same security domain but there is not
even a common naming convention for all visitors and servers on which to build an au-
thentication mechanism. The simple public key infrastructure (SPKI/SDSI) [EFL+99]
proposes authorization certificates to deal with unknown entities. The drawback of this
approach is the complexity of revocation. It is indeed extremely difficult to distribute
and update revocation lists and the only realistic solution for revocation of authorizations
during off-line interactions is thus based on short-term certificates that would require the
visitors to frequently communicate with the authority B to get new certificates and that
would not allow detection of duplicate access with several off-line servers. Addressing the
privacy requirement [Bra02, Bra00] presents digital credentials with selective disclosure.
Idemix [CH02, CL01] offers an interesting approach to create non-transferable anony-
mous multi-show credentials assuring unlinkability: each user has different pseudonyms
that cannot be correlated across various access attempts. In this scheme, credentials
cannot be transferred because the transfer thereof would require sharing a pseudonym
with another entity. Even though perfectly suitable for addressing privacy concerns like

1.2. Problem Statement 19

unlinkability and non-transferability, Idemix would not meet off-line revocation require-
ments of the ubiquitous application scenario. Trusted environments like the platform
proposed by the Trusted Computing Group (TCG) or smartcards could be viewed as a
viable alternative for building a trusted reference monitor in each server but the access
control mechanism implemented by the trusted environments would still suffer from the
lack or limitation of a priori trust in our scenario. Chaum’s electronic cash [CFN89] offers
a one-time credential that suits the off-line nature of the servers in the ubiquitous ap-
plication scenario. Moreover, in this scheme, unlinkability is assured by blind signatures
[CR82]. When an electronic coin is used twice, it is possible to retrieve the identity of the
cheater and the bank that issued the coin can act against this cheater. An access control
scheme suitable for the ubiquitous application scenario could be envisioned based on an
extension of electronic cash whereby the amount in the electronic cash is replaced by the
encoding of some rights. A strong requirement of electronic cash is the existence of a
widespread banking organization that issues electronic coins to users and performs com-
pensation for merchants. The main deterrent to double spending in this scheme is thus
based on the disclosure of cheaters’ identity by the banking organization that can debit
the bank account of the cheater. This requirement is relaxed in the pervasive application
scenario whereby assuming a shared organization within a PCE or across several PCEs is
not realistic.

Access Control and Penalty in Pervasive Computing

Pervasive computing environments limit the use of existing access control mechanisms:
part of the interactions are off-line, i.e. when a visitor asks for a service, the server cannot
rely on any centralized authority to verify whether the request is authorized; there is
no a priori organizational relationship like a hierarchical structure between visitors and
environments, it thus is difficult to prevent cheating thanks to hierarchical pressure; and,
last, privacy of visitors in terms of anonymity and untraceability is a major concern in
such an environment.

Off-line Access Control: because certificate revocation lists cannot be used in off-
line context, validity of multi-show credentials has to rely on time, i.e. validity end.
Unfortunately, it is often not sufficient to give access to some service during a period
of time. Service providers often want to restrict accesses more precisely by limiting the
number of successful attempts to use resources by a user. For instance, an unknown
visitor may be authorized to print a limited number of pages or may receive only one
special discount when visiting a given area. N-times credentials seem appropriate as a
more refined technique assuring fine-grained control of access attempts. In this chapter,
we thus propose a new one-time credentials scheme.

One-time authorization: there are two ways to avoid double usage of one-time au-
thorizations during off-line interactions: on one hand, it is possible to rely on a neutral
device that controls the credential, i.e. use it once and delete it. Such architecture could

20 1. Authorization without Trust

be based on TCG or smart cards but the wide deployment of neutral hardware is difficult
to achieve. On the other hand, it is possible to deliver the service, postpone the verifica-
tion to the next on-line interaction, and punish cheaters. This approach is used to avoid
double spending of electronic cash [CFN89]. However, a hierarchical relationship between
cheaters and service providers is required to enable punishment. For instance, a client
can get some electronic cash from his bank or an employee could receive some credential
from his employer. In both case, bank and employer have a way to press cheaters. In
pervasive computing environments, this relationship does not exist.

Privacy: last but not least, privacy concerns are very important and it is necessary to
ensure anonymity as well as untraceability of users.

1.3 Preliminaries

The work described in this chapter is an extension of earlier electronic cash schemes
whereby electronic coins are used as untraceable credentials for authorization. This section
only describes blind signatures and electronic cash schemes that will be used subsequently.

1.3.1 Blind Signature

First proposed by David Chaum [CR82], a blind signature scheme consists of a two-party
protocol that allows a party to get a message signed by another party without revealing
any information about the message to the signer.

The main goal of a blind signature is to assure that once the signature is issued, the
signer cannot trace back the signed message to the requestor of the signature.

More formally, a requester A sends a piece of information m′ to a signer B. B signs
m′ and returns it to A. From this signature, A can compute B’s signature on an a priori
message m of A’s choice. After the protocol, B knows neither the message m nor the
value of the signature on this message s = SIGNB(m).

Chaum’s Protocol

The RSA public and private keys of the signer (B) are (n, e) and (d, p, q), respectively. r
is a random secret integer chosen by A satisfying 1 ≤ r ≤ n− 1 and gcd(n, r) = 1 where
n = pq.

Requester A receives a signature (s′) of B on a blinded message (m′). From this, A

1.3. Preliminaries 21

computes B’s signature (s) on the message (m) chosen a priori by A, 0 ≤ m ≤ n− 1. B
has no knowledge of message and signature (respectively m and s).

Details of the protocol are given in Table 1.1.

A B
chooses m and k

computes m′ = m · re mod n

m′
-

computes s′ = (m′)d mod n

s′
�

computes s = r−1 · s′ mod n

Table 1.1: Chaum’s blind signature scheme

The blind signature works because A can get the signature s from the blind signature
s′ as follows:

s = r−1 · s′ = r−1 · (m′)d = r−1 · (m · re)d = r−1 ·md · r = md mod n

Now s is a signature on A’s message m that cannot have been generated without the
help of B. This signature scheme is secure provided that factorization and root extraction
remain difficult. However, regardless of the status of these problems the signature scheme
is unconditionally blind since r is randomly chosen in the set {1, . . . , n − 1}. In this
dissertation, we will use ∈R to describe the random selection of an element of a set. The
random r does not allow the signer to learn about the message even if the signer can solve
the underlying hard problems.

Blind signatures have numerous uses including time-stamping, anonymous access con-
trol, and digital cash. It is thus not surprising that there are numerous blind signature
schemes. The first scheme proposed by Chaum and summarized in this section is based
on RSA. However, work on blinding different signature schemes has been carried out.
For instance, [Ram99] defines a blind version of the Schnorr’s signature scheme, which is
presented in Chapter 2.

22 1. Authorization without Trust

1.3.2 Electronic Cash

This section briefly describes a simple e-cash mechanism that will be modified in the
remainder of this chapter. This scheme is based on the blind signature scheme described
in Section 1.3.1. We focus on mechanisms to avoid double spending of coins in an off-line
context.

Basic Scheme

Digital money or electronic cash is the most ambitious solution for electronic payment
systems [She00]. Indeed, e-cash aims at defining a new type of money based on digi-
tal information while respecting the properties of classical money that are, anonymity,
untraceability, and difficulty of counterfeiting. Table 1.2 describes the basic protocol of
electronic cash that assures the untraceability of clients. The bank has a public RSA key
(e, n) and a private RSA key (d, p, q): n = pq where p and q are large primes, e is selected
so that 1 < e < φ(n) and gcd(e, φ(n)) = 1 with φ(n) = (p− 1)(q − 1), and d is computed
such that ed = 1 mod φ(n) and 1 < d < φ(n). The client chooses randomly a blinding
factor r in {1, 2, . . . , n−1} and computes the serial number sn (e.g. m = H(sn) where H
is a public hash function). In steps 1) and 2), A gets a signature s′ of B on the blinded
message m′ and computes a signature s = s′ · r−1 on message m. In step 3), A pays the
vendor C with the e-coin and in 4), the vendor cashes the e-coin.

Unlinkability and integrity can be achieved by using a blind signature or a proof of
knowledge. However, unlinkability makes double spending prevention a difficult task in
disconnected context. Indeed, vendors being not connected, it is not possible to forbid
a malicious user from showing a one-time credential to multiple vendors. And, once
the misbehavior is discovered, unlinkability disables any action against the cheater that
remains anonymous. Next section presents a simple mechanism that prevents double
spending.

Preventing Double Spending

Different approaches exist to forbid multiple uses in disconnected mode, e.g. [CFN89,
Fer94, Bra93]. They always rely on the same principle: when an electronic coin is used by
A, the vendor C sends a challenge c to A that replies with a response resp = f(c, x) where
x is a valuable information. Knowing one pair (c, resp) does not reveal any information
on x but knowing two pairs {(c0, resp0), (c1, resp1)} allows to retrieve x. In e-cash, the
secret x is the identity of the client. When the same e-coin is used by A to pay two
vendors C1 and C2, the bank gets enough information to identify and penalize A (e.g.
debit a second time A’s account). The challenge response can be based on cut-and-choose
protocols or on proofs of knowledge. In this chapter we will extend the cut-and-choose

1.3. Preliminaries 23

A B C
client bank vendor

n = pq, d, e

Loading of value
r ∈R {1, . . . , n− 1}

1) get coin, m′ = m · re mod n
-

debit A’s account
2) s′ = (m′)d mod n

�

s = s′ · r−1 = md mod n

Purchase
3) m, s

-

Cashing
4) m, s

�

credit C’s account

Table 1.2: Simple e-cash system ensuring client’s untraceability

protocol [CFN89] that works as follows:

Alice A has a bank account numbered u and the bank keeps a counter v associated
with it. Let f and g be two-argument collision-free functions; that is, for any particular
such function, it is infeasible to find two different inputs that yield the same output.

1.1) A chooses ai, ci, di, and ri independently and uniformly randomly in Zn for all i
such that 0 ≤ i ≤ k − 1 where k is a security parameter that is multiple of 4.

1.2) A forms and sends to the bank k blinded candidates m′
i

m′
i = re

i ·mi mod n for all i ∈ {0, 1, . . . , k − 1}

where
mi = f(xi, yi), xi = g(ai, ci), yi = g (ai ⊕ (u||(v + i)), di)

1.3) The bank chooses a random subset of k/2 blinded candidate indices R = {ij} where
ij ∈ {0, 1, . . . , k− 1} for all j such that 0 ≤ j ≤ k/2− 1 and transmits it to A. The
complementary set R̄ is the set of k/2 blinded candidate indices that are not sent
to A.

24 1. Authorization without Trust

1.4) A reveals the ai, ci, di, and ri values for all i in R, and the bank checks them as
follows:

m′
i

?
= f (g (ai, ci), g(ai ⊕ (u||(v + i)), di)) · re

i for all i ∈ R

Where (u||(v + i)) is known to the bank.

1.5) The bank charges Alice’s account, increments her counter and sends her:

s′R̄ =
∏
i/∈R

s′i =
∏
i/∈R

(m′
i)

d =
∏
i∈R̄

(m′
i)

d mod n

1.6) Alice can then easily extract the signature sR̄ on the electronic coin mR̄:

sR̄ = s′R̄ ·
∏
i∈R̄

r−1
i = ·

∏
i∈R̄

(m′
i)

d · r−1
i = ·

∏
i∈R̄

(mi)
d = (mR̄)d mod n

This process allows Alice to get a valid electronic coin that is signed by the bank but
that cannot be traced when used only once. To pay the vendor C, Alice and the vendor
proceed with the following steps of the protocol.

2.1) A sends the coin sR̄ to the vendor C.

2.2) C chooses T a random subset of R̄ such that T = {ij}, where ij ∈ {0, 1, . . . , k/2−1}
for all j such that 0 ≤ j ≤ k/4− 1 and C transmits T to A.

2.3) Let us define T̄ = R̄\T . For all i ∈ {0, 1, . . . , k/2− 1}, A responds as follows:

– If i ∈ T , then A sends ai, ci, and yi to C.

– If i ∈ T̄ , then A sends xi, (ai ⊕ (u||(v + i))), and di to C.

2.4) C verifies that A’s response is consistent with sR̄ and mi where i ∈ R̄ based on the
following tests:

– If i ∈ T , then mi = f (g(ai, ci), yi)

– If i ∈ T̄ , then mi = f (xi, g(ai ⊕ (u||(v + i)), di))

se
R̄

?
=
∏
i∈R̄

mi mod n

2.5) C subsequently sends sR̄ and A’s responses to the bank, which verifies their correct-
ness and credits C’s account.

The bank must store sR̄ and A’s responses. If A uses the same coin twice, then she
will have a high risk of being traced: with high probability, vendors will define different
subsets T1 and T2. The bank will have both ai and ai⊕ (u||(v+ i)) when i ∈ T1 and i ∈ T̄2

or when i ∈ T̄1 and i ∈ T2. The bank can thus trace the payment to A’s account.

1.4. Our Solution: One-time and Off-line Credentials 25

1.4 Our Solution: One-time and Off-line Credentials

Section 1.3.2 shows that verification and penalty have to be postponed when one-time
credentials are used off-line without client side trusted tamper-resistant devices such as
smart cards. The penalty is generally based on retrieving the identity (or account number)
of the cheater in order to debit the account of the cheater. In pervasive computing, due
to the absence of a global organization, disclosure of identity cannot serve as a deterrent
against double spending. We thus propose a more direct penalty mechanism whereby the
cheater immediately looses money in case of double use of a one time credential.

In order to come up with an access control solution that meets the requirements of the
ubiquitous application scenario, we introduce the concept of one-time credential (OTC):
rights granted to the holder by the issuer and only usable once. The OTC issued by the
authority represents the right to perform a single access to a resource. A OTC can be
verified by a server off-line, that is, without any interaction with another server or with the
local authority. The validation of the access right encoded in the OTC does not require
the authentication of the visitor that issued the request including the OTC; the visitor
only needs to prove that it is the party to whom the OTC was granted. The ultimate
issue in this context is the assurance of the one-time property with off-line servers. Our
solution to this problem is based on the postponed punishment principle, inspired by
electronic cash, that if a visitor uses an OTC more than once then the violation of the
one-time property will necessarily be detected later and cause the punishment of the
cheating visitor with a penalty mechanism. Unlike electronic cash whereby the penalty
consists of the disclosure of the cheater’s identity and compensation of double spending by
a banking organization that is trusted both by the payers and the payee, the OTC penalty
mechanism does not require a unique banking organization or access control authority for
all visitors and servers. The OTC penalty mechanism is based on a universal payment
order or an electronic check (e-check). The payment order or the e-check do not need to
be issued by a unique banking organization, any order issued by a financial organization
recognized by the authority is suitable for the purpose of the OTC mechanism. Since
visitors mutually distrust the authority and the servers, the payment order (called the e-
check for the sake of simplicity) embedded in an OTC has to be protected against possible
misbehavior as follows:

• The authority or the server should not be able to cash the e-check if the OTC is
properly used (only once) by the visitor.

• The authority should be able to verify that a valid e-check is embedded in the OTC.

Finally, the one-time credential mechanism ensures untraceability of fair users thanks
to blind signatures.

The solution consists of three phases: First, during the credential creation phase
(Figure 1.2(a)) the authority B provides a set of OTC to a visitor entering the PCE.

26 1. Authorization without Trust

Authority B Alice A

Deposit

One-time credential

+ Signature on deposit

Get credential, deposit

(a) Credential creation

Server C1

Alice A
(anonymous)

Request +

One-time credential

Resource / Service Signature part

?

(b) Access

Authority B

Deposit

e-check

Signature

C1

C2

Cz

(c) Detection of double use

Figure 1.2: Different steps of one-time credential lifecycle

Apart from the classical access control operations through which access rights will be
granted in terms of credentials, the main purpose of the protocol in this phase is twofold:
to prove the authority that it will be able to cash the e-check if the visitor misbehaves
(uses the OTC more than once within the PCE) and to assure that the authority cannot
cash the e-check if the visitor properly behaves. These purposes are fulfilled by a new
mechanism that allows B to verify that the e-check is properly filled and that the OTC
includes a valid signature on this e-check that is revealed only in case of misbehavior.

In the second phase, the visitor uses a OTC to access resources kept by various servers
(Figure 1.2(b)). The resource access takes place off-line, that is, the server cannot rely
on the authority to verify the credential. When the visitor proves that she knows the
secret corresponding to the credential, part of the information to retrieve the signature
is provided to the server. This information is not sufficient to get a valid signature but
prevents double use of the OTC.

Last, detection of double use is necessary to identify and punish visitors that use an
OTC more than once (Figure 1.2(c)). This phase is postponed as long as the servers are
not on-line. With off-line servers, visitor access logs will be provided in batch by servers
to the authority (for instance through a daily data collection by service personnel). When
the use of the same OTC appears in more than one server’s log, the authority B is able
to retrieve the signature of the e-check embedded in the OTC and to cash this e-check.

1.5. Protocol 27

1.5 Protocol

This section presents the one-time credential protocols for credential creation, service
access, and detection of double use. In this section we keep the notations of Section 1.3
for RSA parameters (n, p, q, d, e) and security parameter (k).

1.5.1 Penalty without Hierarchical Relationships

In the OTC mechanism, an electronic check serves as a deterrent against double use of a
one-time credential. Common e-checks [She00] are not sufficient in this context because
it is not possible to verify that they have been signed without revealing the signature that
allows one to cash them. A new signature scheme has thus to be used when the client A
signs the e-check, when service provider B verifies the signature, and when B cashes this
e-check. This mechanism can replace signature of on-line as well as off-line e-checks. For
the sake of simplicity we only present a basic scheme where e-checks are on-line payment
orders: A orders his bank to transfer some amount from his account to B’s account.

During the creation of a one-time credential, the client A can prove to the service
provider B that a secret K such that H(K) ∈ HK where HK = {H(K0), H(K1), . . . ,
H(Kk−1)} will be revealed in case of double use (Section 1.5.2). An unsigned e-check is
defined as uc = SIGNbank (A, B, amount, sn) where A and B could be substituted with the
account identification of A and B, respectively. This unsigned e-check is created during
an on-line interaction with the bank. A provides as deposit a signed e-check sc such that
sc = SIGNA(uc,HK). This deposit can only be cashed by the service provider B when
one of the secret K | H(K) ∈ HK is known. A valid e-check vc consist of a deposit and
a corresponding secret: vc = {sc,K}. It can be endorsed and cashed by B. Table 1.3
summarizes those different e-checks.

short
name

Description

uc unsigned e-check (filled by V and signed by the bank).
uc = SIGNbank(payer, beneficiary, amount, sn)
For instance, uc1 = SIGNBank(PKA, PKB, 10$, 001)

sc signed e-check (also called deposit).
sc = SIGNpayer(uc,HK) where HK = {H(K0),H(K1), · · · ,H(Kk−1)}
For instance, sc1 = SIGNA(uc1, HK1)

vc valid e-check (that can be directly cashed).
vc = {sc,K} where H(K) ∈ HK.

Table 1.3: Notations for various states of an electronic check

28 1. Authorization without Trust

1.5.2 Phase 1: Credential Creation

One-time credentials are created by the authority B that optionally can authenticate
visitor A. The protocol guarantees that a penalty (i.e. a signature on the deposit) is
embedded within the credential and that B cannot obtain a valid electronic check during
this process (see Figure 1.2(a)).

Authentication is optional in this protocol. Any entity able to provide an e-check
could receive some rights. The only requirement in this phase is that the requestor has
a valid account. However, some authorizations can be restricted to visitors having some
attributes, e.g. employee of a partner company or role. In this case authentication would
be required. To that effect, attribute certificates and challenge-response protocols or face
to face authentication based on paper id-cards could be used. The following protocols do
not address this point.

The visitor and the authority have to negotiate rights to be granted and the corre-
sponding deposit. The authority B proposes some authorizations to the visitor A and
asks for a corresponding deposit. At the end of this phase, A and B have agreed on
the authorization (rights) that will be provided to A and the penalty (e-check) that will
be cashed if the credential is used twice. An unsigned e-check is generated: ucA =
SIGNBank(A, B, amount)

Let A and B define k that is the size of the set that will be used in the cut-and-choose
protocol [CFN89] during the creation of one-time credentials and the access to services.
k is a security parameter that determines the probability of undetected double use (see
Section 1.6).

1.1) A generates keys Ki for all i ∈ {0, 1, . . . , k − 1}
A commits keys HK = {H(K0),H(K1), · · · ,H(Kk−1)}

K0, K1, . . . , Kk−1 are kept secret by A and HK is a commitment on those secrets that is
partially opened by A during further steps of the protocol.

1.2) A chooses ai, ci, di, ri ∈R Zn for all i ∈ {0, 1, . . . , k − 1}
A computes m′

i = mi ·re
i mod n for all i ∈ {0, 1, . . . , k−1}

where mi = H(xi||yi)
where xi = H(ai||ci) and yi = H((ai ⊕ datai)||di)
and where datai = {Ki||sn}

This construction is necessary for avoiding double use of one-time credentials. It assures
that datai can only be revealed when ai and (ai ⊕ datai) are known, i.e. when the cre-
dential has been used twice (see Step 3.2). ai, ci, di and ri are random numbers. This
mechanism is similar to the one used in electronic cash to reveal the identity of double

1.5. Protocol 29

spenders. Here, due to the lack of a shared organization, disclosure of identity has no
effect. With this protocol, cheating results in the cashing of the e-check: datai contains
a secret Ki and a reference to a deposit (check number sn). A valid e-check is obtained
when combining the secret and the deposit.

1.3) A→ B HK, m′
0, . . . ,m

′
k−1, ucA

A sends k blind candidates (m′
0, . . . ,m

′
k−1), k commitments on keys (HK), and the de-

posit to the authority B in order to create the one-time credential. Before releasing the
one-time credential, B verifies that a valid signature on the deposit is embedded in the
credential.

1.4) B → A R ⊂ {0, . . . , k − 1} where |R| = k
2

The authority B chooses randomly a subset R (half of the blind candidates) for verifi-
cation purposes and requests A to send details on how each m′

i where i ∈ R is constructed.

1.5) A→ B ai, ci, di, ri, Ki for all i ∈ R

A discloses the details to construct each m′
i | i ∈ R and open commitments on related

keys for verification purposes.

1.6) B verifies H(Ki)
?
∈ HK for all i ∈ R

m′
i

?
= H (H(ai||ci)||H((ai ⊕ datai)||di)) · re

i for all i ∈ R

B verifies the results. When all m′
i with i ∈ R are well-constructed, there is a high prob-

ability (see Section 1.6) that other m′
j where j ∈ R̄ contain a secret Kj that is required

to generate a valid e-check from the deposit.

1.7) B computes s′
R̄

=
∏

i∈R̄(m′
i)

d mod n
B computes HKR̄ = {H(Ki) | i ∈ R̄}

Both B and A suppress verified secrets (in R) and keep unrevealed secrets (in R̄) to build
the one-time credential and the deposit. The authority B requests the deposit.

1.8) A→ B scA = SIGNA(ucA, HKR̄)

A signs the set of unrevealed secrets. This is the deposit that has to be combined with
one of the secrets Ki where i ∈ R̄ to get a valid e-check. However, the protocol assures

30 1. Authorization without Trust

that Ki can only be revealed when A attempts to use his credential more than once.

1.9) B → A s′
R̄

B stores the deposit and provides the one-time credential to A. As with a simple public
key infrastructure, authorizations are application specific. The actual format and details
of authorizations thus are out of the scope of this chapter. A unblinds the credential that
will be used in the second phase of this protocol as follows:

sR̄ = s′R̄ ·
∏
i∈R̄

r−1
i mod n

1.5.3 Phase 2: Service Access with One-time Credential

Visitor A shows her credential to one of the servers C1, C2, · · · , Cz in order to get access
to resources or services (see Figure 1.2(b)). Servers cannot rely on the authority B during
this phase. This phase is very similar to spending an e-coin and the specific properties of
our protocol do not appear here.

2.1) A→ C Resource access request, sR̄

A interacts with a server C that trusts authority B. A requests a resource and provides
the one-time credential sR̄ to prove that the operation is authorized. C verifies with re-
spect to the security policy that the resource request can be authorized, checks that the
credential is signed by B and that it is still valid.

2.2) C → A T ⊂ R̄ where |T | = |R̄|
2

C starts a challenge-response based on cut and choose: The server chooses randomly a
subset T (half of the set R̄) and sends it to A. This step has two goals: verifying that the
visitor knows the secret corresponding to the credential and forcing this visitor to reveal
some information in order to forbid double use of the credential.

2.3) A→ C ai, ci, and yi for all i ∈ T
xi, (ai ⊕ datai), and di for all i ∈ T̄

A reveals half the information for the set R̄ to prove that it can construct mR̄. However,
C has no way to get any datai where i ∈ R̄ and thus cannot collude with B to cash the
e-check.

1.5. Protocol 31

2.4) C computes mi = H (H(ai||ci)||yi) for all i ∈ T
mi = H (xi||H((ai ⊕ datai)||di)) for all i ∈ T̄

C verifies (sR̄)e ?
=
∏

i∈R̄ mi

C verifies that the visitor knows the secrets corresponding to the credential. A can be
authorized to access the resource.

1.5.4 Phase 3: Detection of Double Use and Penalty

Servers C1, C2, · · · , Cz are periodically on-line and thus able to send data to the authority
B. If a one-time credential has been used twice, there is a high probability that B can
retrieve the embedded penalty (i.e. a valid e-check) and use it.

3.1) C1 → B sR̄

ai, ci, yi for all i ∈ TC1

xi, (ai ⊕ datai), di for all i ∈ T̄C1

Periodically, when the server C1 is on-line, it sends relevant data to B (dotted star of
Figure 1.2(c)). The set TC1 has been randomly chosen by C1 and is different for each
server and for each credential. As long as A does not cheat, i.e. does not use twice the
same OTC, those data are useless.

3.2) C2 → B sR̄

ai, ci, yi for all i ∈ TC2

xi, (ai ⊕ datai), di for all i ∈ T̄C2

If the same one-time credential has been used with servers C1 and C2, there is a high
probability that there exists an i such that ai and (ai ⊕ datai) are known. B can thus
retrieve datai and the secret Ki. This secret combined with the deposit is a valid e-check:
vcA = (scA, Ki) where H(Ki) ∈ HKR̄. The authority B can send the e-check to the bank
in order to cash it.

1.5.5 Defining Attributes

Attributes have to be associated to the one-time credential in order to define rights or
roles. This could be achieved by using different keys for different rights like printing a
page or getting a coffee. More efficiently, this can be done by slightly modifying the RSA
blind signature: instead of defining s′ as s′ = (m′)d, we use s′ = (m′)d′ where d′ =

∏
di

32 1. Authorization without Trust

mod φ(n) with ei is the ith odd prime.

The decimal attribute value 12d or its binary representation 01100b can thus be defined
as s′ = (m′)d3d4 because the third and fourth bit (numbering from the least significant
bit) are set to one. More details on this approach are given in Section 3.5.1.

1.6 Security Evaluation

Previous sections define a solution to avoid double use of one-time credentials in off-line
context. When a credential is used more than once, there is a high probability that an
electronic check is revealed.

The first requirement for one-time credential scheme presented in this chapter is that
credentials can only be issued by the legitimate issuer as summarized by the following
definition.

Requirement 1.1 (Signature Integrity) it is infeasible to generate a one-time cre-
dential without knowing the private key of the service provider B.

Proposition 1.1 The one-time credential scheme is conformant to Requirement 1.1

Proof: Generating a blind signature with attributes requires the knowledge of the private
key of B. s′

R̄
=
∏

i∈R̄(m′
i)

d′ where d′ ·e′ = 1 mod φ(n) and e′ =
∏

ej where ej are primes.
d′ cannot be computed from e′ without knowing φ(n) = (p − 1)(q − 1) and d′ can thus
only be computed from d0, d1, etc. where d0 · e0 = 1 mod φ(n). In other words, breaking
the blind signature scheme is equivalent to breaking the RSA signature scheme. �

The second requirement for one-time credential scheme is that credential holders are not
traceable.

Requirement 1.2 (Untraceability) The credential provided by B to user A does not
enable servers C or authority B to trace A.

Proposition 1.2 The one-time credential scheme is conformant to Requirement 1.2

Proof: The credential sR̄ is unconditionally independent of s′
R̄
. Our scheme respects this

property because the blinding factors ri ensure that sR̄ is unconditionally independent of

1.6. Security Evaluation 33

s′
R̄
. Indeed, sR̄ = s′

R̄
·
∏

i∈R r−1
i where ri are random values. Moreover, the k/2 remaining

blinded candidates are reordered so that there is no more trace of R̄. �

The third requirement for one-time credential scheme is that the service provider has the
guarantee that he will be able to cash the deposit in case of misbehavior.

Requirement 1.3 (Server Side Safety) A valid electronic check will be revealed with
a high probability in case of double use of a one-time credential

Proposition 1.3 The one-time credential scheme is conformant to Requirement 1.3.

Proof: The probability that a one-time credential without valid e-check exist depends on
k and can be chosen as small as required. Attacks against this scheme require that the
visitor A can obtain a valid credential that does not embed an e-check. The credential
creation protocol ensures that the secrets of half the set are verified. Thus, when an
attacker tries to generate a credential that will never reveal a valid e-check, she has to
provide k/2 invalid secrets. The probability that the service provider B does not verify
one of those invalid data is:

pno e-check =
k
2

k︸︷︷︸
valid m′

1

·
k
2
− 1

k − 1︸ ︷︷ ︸
valid m′

2

· · · · · 1
k
2

+ 1︸ ︷︷ ︸
valid m′

k/2

=
k
2
!

k!
k
2
!

=
(k
2
!)2

k!

(
=

1

C
k/2
k

)

By properly setting the size k of the cut and choose protocol, it is possible to choose a
probability of successful attack as small as required. For instance, if k = 100, pno e-check

∼=
2−96 �

The fourth requirement for one-time credential scheme is that the service provider cannot
cash the deposit without misbehavior. It is important to protect the visitor against a
malicious service provider trying to get a valid signature for an existing deposit in order
to retrieve a valid e-check.

Requirement 1.4 (Client Side Safety) It is infeasible to obtain a valid e-check when
the user A is behaving fairly.

Proposition 1.4 The one-time credential scheme is conformant to Requirement 1.4.

34 1. Authorization without Trust

Proof: The attacker has to find a valid Ki corresponding to an embedded H(Ki) where
i ∈ R̄. The birthday attack is not relevant in this case and the probability of a successful
brute force attack against the hash function is:

pdisclose =
k

2︸︷︷︸
|R̄|

· 2−l︸︷︷︸
hash

where l is the size of the hash output.

For instance, using k = 100 and hash function SHA-1 (l = 160 bits), pdisclose
∼= 2−154 �

Impact of Multiple Use

Because each server has to keep track of credentials it already received, double use at-
tempts performed with the same server are detected by the server itself. Double use of
an OTC with different servers on the other hand will be detected by the authority based
on the protocol and the penalty mechanism. But when the same OTC is used more than
twice with different servers, only one e-check can be cashed as part of the penalty mecha-
nism. The degree of the penalty (the amount of the e-check) should thus be set according
to the type of resource and to the threat model: when access control matters, the penalty
has to be sufficiently important in order to eliminate possible advantages of multiple uses
beyond the double use; when one-time credentials are used to disable denial of service
attacks, small penalties can be sufficient.

Protection of the Visitor

It is important to assure that credentials of a user and corresponding secrets cannot be
disclosed by intruders since based on this information an intruder could get a valid e-check.
It is also necessary to prevent any sequence of operations that could cause unintended
double use by the visitor.

Moreover, a rogue server could perpetrate a denial of service attack by getting a one-
time credential without delivering the requested service. Even though this type of attack
does not provide any benefit to the attacker, it would prevent further legitimate access
to the service by the visitor. To restrict denial of service attacks, it could be necessary
that the authority certifies the servers so that visitors can verify them before providing
one-time credentials.

1.7. Conclusion 35

Validity End

Off-line scenarios, cannot rely on certificate revocation lists to verify the validity of long-
term credentials. The alternative to revocation, which still does not suit the off-line
nature of the ubiquitous application scenario, consists of short-term certificates that in
turn require frequent interaction between the holder of the certificate and the issuer for
the renewal of certificates. As opposed to these alternatives, the validity of one-time
credentials presented in this chapter does not rely on time. However, it can be interesting
to introduce a lifetime for OTC and deposits in order to limit the storage of data in time.
When the appliances C1, . . . , Cz cannot afford a real-time clock, the authority B can act
as a trusted time server to synchronize the servers when getting in touch with them to
collect the access logs. B can thus discard deposits that are no more required by any
server.

1.7 Conclusion

This chapter presents a mechanism for implementing off-line one-time credentials. It
focuses on the separation of duty in trust model: the bank guarantees that a visitor A
will be able to pay in case of misbehavior but this bank does not deal with access rights;
the service provider B defines rights without having to rely on an a priori relationship with
A but only has to check that A can sign e-checks; and A has the guarantee that as long
as she behaves fairly, no valid e-check can be computed by the service provider or by the
bank. This scheme seems to be promising for countering denial of service (DoS) attacks
in pervasive computing. For instance, a shopping mall offering free printing facilities
to visitors may want to avoid DoS attacks whereby malicious clients print anonymously
hundreds of pages to exhaust printer resources. In this case our scheme would assure that
attackers would loose their deposit. Money would then be a good deterrent against such
attacks.

This scheme is based on the cut-and-choose protocol of the classical e-cash scheme
and it would be more efficient to use other schemes [Fer94, Bra93] that do not rely on
this protocol. However, it is still an open issue whether such schemes could fulfill our
requirements. Our one-time credential scheme requires a dedicated e-check mechanism
and the deployment of our proposal would thus need that banks accept to deal with such
e-checks. Verifiable encryption schemes [CD00a] enable to verify that a valid signature
is encrypted without revealing this signature. It seems to be a promising approach to
prove that credentials will indeed reveal a valid signature in case of double use. More-
over verifiable encryption could perhaps allow embedding ”standard” e-check within our
scheme.

The solution that has been presented in this chapter is suitable to scenarios where there
is no way to establish trust among parties. However, impossibility of establishing trust

36 1. Authorization without Trust

leads to an extreme case with several limitations. First, one-time credentials have limited
coverage with respect to access control. Second, the concept of a penalty mechanism based
on real money can also be questionable in some scenarios despite the fairness guarantee of
our scheme. In order to cope with those limitations, the remainder of this thesis will focus
on trust establishment where these limits do not exist. First, in Chapter 2 we will assume
that users visit more than once a pervasive computing environment and that it thus is
possible to build trust based on previous interactions. The second part of this thesis,
Chapters 3, 4, and 5 proposes an architecture to establish trust relationships based on a
history of interactions when users have a valuable secret.

37

Chapter 2

Establishing Trust without
Infrastructure

”Hence, when able to attack, we must seem unable; when
using our forces, we must seem inactive; when we are near, we

must make the enemy believe we are far away; when far away, we
must make him believe we are near.”

– Sun-Tzu (The Art of War)

This chapter proposes an original way to build trust. It is assumed that there is no a
priori relationships among the client A and the service provider B. We assume multiple
interactions between A and a set of service providers B, B′, etc. so that trust can be
based on a history of interactions. B can provide some untraceable credential to A defining
the quality of the interaction that occurred. During a subsequent interaction with B or
B′, which is a partner of B, A can show this credential to demonstrate some previous
relationship. In this thesis, such mechanism is called history-based trust establishment.
This chapter presents a protocol implementing history-based trust establishment with a
particular accent on privacy in terms of untraceability of interactions.

2.1 Introduction

Chapter 1 has shown that a service provider can give access rights to another party
without requiring trust relationships when neither a priori trust nor trust establishment
apply. However a guarantee of direct penalty is necessary, and the solution presented
in Chapter 1 thus relies on the fact that service providers can cash a deposit in case of
misbehavior.

38 2. Establishing Trust without Infrastructure

This chapter proposes to establish trust relationships when a priori trust among par-
ties is lacking. In this case, it is still impossible to rely on a public key infrastructure
and identity based authentication is meaningless [SFJ+03] but trust relationships can
however be established. Moreover, lack of identification mechanisms does not prevent
malicious parties from monitoring user behavior, thus privacy still is a major concern in
this environment.

Trying to build history-based trust establishment protocols with privacy, we face a
dilemma: on one hand, B wants to keep track of previous interactions with A in order
to be able to evaluate whether A is trustworthy and thus whether some rights can be
granted to A, on the other hand privacy calls for unlinkability among interactions. A
tradeoff between both properties is that B delivers A unlinkable credentials that encode
the degree of trust granted to A by B. The degree of trust should be encrypted in order
to assure that A will show negative as well as positive statements. Moreover, encryption
of attributes is a pragmatic way to ensure non-transferability of credentials that cannot
be linked to a valuable secret like a private key. A party would thus be able to prove that
she was previously recognized as reliable by the entity she is interacting with. After each
interaction, a credential is provided in order to subsequently assert what happened.

Assuring privacy in this context means that credential issuers cannot trace users
through the credentials they delivered them. More precisely, a credential has to be created
in a way that prevents the issuer from recognizing the credential when it is presented.
As in Chapter 1, we use blind signature mechanisms to ensure unlinkability of the mes-
sage and the signature. It is therefore required to have a way to verify that the secret
attribute is the encryption of one element of a public set of cleartexts. Otherwise, if the
holder could embed any encrypted attribute, he could attach a unique identifier to each
credential in order to trace holders. We thus suggest to use a mechanism proving that
the secret is the encryption of an element of a public set of values. This makes it possible
for a credential holder to prove his history of interactions to the issuer or to one of the
issuer’s partners without being linkable to a previous event (untraceability) and without
revealing his identity (anonymity).

2.2 Problem Statement

Throughout this chapter a basic scenario will be used to illustrate our solution. In this
scenario, Bob (B) meets Alice (A), he interacts with her and gives her a credential as
an evidence of the interaction. Subsequently, A comes back and shows her credential to
B. The new interaction depends on the first one but should be unlinkable as long as B
provides enough credentials to other users.

For instance, A interacts with B that provides three types of credentials (excellent,
good, or poor) to qualify an interaction. A is qualified as good by B. We assume that tens

2.2. Problem Statement 39

of other users interacts with B before A comes back and show her credential to B or to
a partner of B. The unlinkability of the credential makes it impossible to recognize the
credential and the small set of attribute values disable B to know whether he is interacting
with A or any other user tagged as good.

It is obvious that the cardinality (u) of the set of possible attributes has to be small.
Indeed, a malicious service provider could reserve up to u−1 attributes values for tracing
up to u − 1 clients. This approach however ensures the unlinkability of the majority of
users. In the previous example where the cardinality is equal to three and assuming a
population of one hundred users, the privacy of ninety-eight users is assured and only two
users could be traced in the worst case.

2.2.1 Expected Features

This section summarizes the different properties that are expected when defining an un-
linkable credential scheme dedicated to trust establishment in pervasive computing.

• (Disconnected verification) It is possible to locally verify the validity of an un-
linkable credential without relying on classical protocols based on on-line trusted
third parties.

• (Credential Integrity) It is infeasible to generate an unlinkable credential without
knowing the private key of the issuer.

• (Credential Unlinkability) The issuer B or any other party cannot trace the
credential. In other words, the issuer B must not be able to recognize the credential
that has been unblinded and thus when A comes back, B does not know that she
is talking to the same entity.

• (Attribute Secrecy) As in Chapter 1, we assume that users do not have a valuable
secret certified by some trusted entity, unlike in a public key infrastructure. In
order to avoid transferability and credential trading, we thus propose to keep secret
attribute value of credentials. In order to achieve attribute secrecy while protecting
A’s privacy, the credential scheme has to fulfill the following requirements:

– A cannot decrypt the attribute of a credential: A cannot know whether she
was described as good or poor.

– A can verify that the credential’s secret attribute is part of a public set of values,
e.g. {very poor, poor, fair, good, excellent} or {0, 1, 2}. The cardinality gives
to A a good estimate of the absence of risk that B may use secret values as
covert channels for tracing A.

– Probabilistic encryption ensures that A has no way to check whether two cre-
dentials embed the same secret attribute value.

40 2. Establishing Trust without Infrastructure

• (Attribute Decryption) The issuer B and his trusted partners called B′ can
retrieve secrets embedded in credentials signed by B.

2) Good

1) Interaction

B

E(attr)
3) Credential with
encrypted attribute

good

4) attr ∈ {excellent, good, poor}
 A

(anonymous)

?

(a) Get credential

6) attr=Good

8) Excellent

B or B�

E(attr) 5) Credential
good

7) Interaction

E(attr)9) New Credential
Exe

10) attr ∈ {excellent good, poor}

A
(anonymous)

?

(b) Show credential

Figure 2.1: Creation and use of a credential with secret attribute

Figure 2.1(a) presents the steps for getting a credential and Figure 2.1(b) shows how such
a credential can be used in order to assert previous degree of trust.

1) An interaction takes place between a client A and a service provider B.

2) B decides to tag A as good according to some measure of her fairness.

3) The credential containing the tag is provided to A

4) The attribute of the credential is encrypted so that A cannot know its value but
she can verify that the value is an element of a restricted set of possible values, e.g.
excellent, good, or poor.

The credential is unblinded by A so that it cannot be traced by B. Figure 2.1(b) presents
the different steps that are required when using a credential.

5) The user A shows her unblinded credential to the service provider B or to B′. The
possibility that the credential contains a positive feedback, which A cannot evaluate,
represents an incentive for A to show her credential to B or B′.

6) The service provider B or B′ can open the credential and retrieve the encrypted
tag. However, he cannot trace the credential back to A.

7) The new interaction depends on history but cannot be linked to any specific previous
interaction like step 1 and cannot be linked to any party, i.e. A.

After an interaction, the service provider can deliver a new credential as follows:

2.3. Preliminaries 41

8) B decides to tag A as excellent.

9) The credential containing this tag is provided to A

10) As in step 4), the attribute of this credential is encrypted so that A cannot know
its value, cannot know whether the attribute changed, but can verify that the value
is an element of a restricted set of possible values.

2.3 Preliminaries

This section presents some mechanisms that will be used in the remainder of this dis-
sertation: proofs of knowledge, signatures based on a proof of knowledge, and group
signatures. Blind versions of those mechanisms are shortly described and are only used
in this chapter.

• A group signature scheme allows group members to sign messages on behalf of the
group. Signatures can be verified with a group public key but do not reveal the
signer’s identity. Only the group manager can open signatures, i.e. reveal the
identity of the signer.

• A blind signature is a protocol in which a signer signs some message m without
seeing this message (See section 1.3.1). It was first introduced by Chaum [CR82] to
ensure untraceability of electronic cash.

• A group blind signature is a protocol in which a group member blindly signs a
message. Only the manager can know who signed the message and no party can
recognize the unblinded message.

All existing group blind signature schemes [Ram99] and [NMV99] are based on the
group signature schemes proposed by Camenisch in [CS97]. The conclusion of [CM98]
gives a quick sketch of two other possible approaches. In this chapter, we only describe
the first blind group signature scheme [Ram99, LR98] and modify it so that it fulfills
requirements of untraceable secret credentials. However, it seems possible to modify other
schemes as well. The remainder of this section briefly presents the first group signature
schemes that relies on signatures based on a proof of knowledge.

As a basis for the discussion on group signatures let us define some basic terminology:
n = pq where p and q are two large primes; Zn = {0, 1, 2, . . . , n− 1} is a ring of integers
modulo n; Z∗

n = {i ∈ Zn | gcd(i, n) = 1} is a multiplicative group; G = {1, g, g2, . . . , gn−1}
is a cyclic group of order n; g is a generator of this group G; a ∈ Z∗

n is an element of the
multiplicative group.

42 2. Establishing Trust without Infrastructure

2.3.1 Interactive Proof of Knowledge

The protocol of Table 2.1 shows an example of interactive proof of knowledge PK[α | z =
g(aα)] where some prover A proves to a verifier B that she knows x the double discrete
logarithm of z to the bases g and a without revealing any information on x. It is assumed
that there is an upper bound of λ on the length of x, i.e. 0 ≤ x < 2λ (e.g. λ = |n|).
The security parameter ε > 1 defines the probability of disclosing information on x in
statistical zero knowledge.

A B
Prover Verifier

claims to know double discrete log x tests if A knows double discrete
such that z = g(ax). log of z to the bases g and a.

r ∈R {2λ, . . . , 2λ·ε − 1}
w = g(ar)

witness w
-

Flip a coin : c ∈R {0, 1}
challenge c

�

s =

{
r if c = 0
r − x otherwise

response s
-

w
?
=

{
g(as) if c = 0
z(as) otherwise

Table 2.1: Interactive proof of knowledge of double discrete logarithm

The proof is successful if the results satisfy the following verification equations:

if c = 0 : w
?
= g(as)

(
= g(ar) = w

)
if c = 1 : w

?
= z(as)

(
=
(
g(ax)

)(as)
= g(ax·as) = g(ax+s) = g(ar) = w

)

To be sure that A knows the double discrete logarithm of z (i.e. with a low enough
probability of successful attack), this protocol has to be run l times where l is a security
parameter. Note that if the order of a ∈ Z∗

n is known, s can be computed modulo this
order.

2.3. Preliminaries 43

2.3.2 Schnorr Digital Signature Scheme

This section introduces the digital signature scheme proposed by Schnorr in [Sch89]. This
scheme will be used to explain non-interactive proofs of knowledge. The Schnorr signature
is a variant of the ElGamal scheme [MVO96] and is also based on the intractability of the
discrete logarithm problem.

Principle

We describe the Schnorr signature using the group previously described: G is a cyclic
group of order n. A generator g ∈ G is chosen so that computing discrete logarithm in G
is difficult. x is the private key of the prover A and y = gx is her public key. The method
also requires a collision-resistant hash function H : {0, 1}∗ → Zn.

For a message m ∈ {0, 1}∗, a pair (c, s) is said to be a valid Schnorr signature on m if
it satisfies the following verification equation:

c = H(m ‖ gsyc)

The variable c occurs in both the left hand and right hand side of the equation. Given
that H is collision resistant, it appears to be quite difficult to construct such a valid
signature. It turns out that it is feasible for one knowing the discrete logarithm of y to
the base g. A knows x = logg(y) and can compute a signature as follows:

• Choose r ∈R Zn

• Let c = H(m ‖ gr)

• Choose s = r − cx mod n

(c, s) is a valid Schnorr signature of m because:

gsyc = gr−cx(gx)c = gr−cxgcx = gr

Hence, c = H(m ‖ gr) = H(m ‖ gsyc). A blind versions of this signature scheme exist
[Ram99] and is used for defining group blind signatures.

44 2. Establishing Trust without Infrastructure

2.3.3 Signature Based on a Proof of Knowledge

A signature based on a proof of knowledge (SPK) or signature of knowledge (SK) is a non-
interactive version of a proof of knowledge where challenges are replaced by a message m.
Such a signature proves that some party knowing a secret (e.g. the discrete logarithm of
some public value) signed the message.

The signature based on a proof of knowledge of a double discrete logarithm of z to the
bases g and a, on message m, with security parameter l is denoted SPKl[α | z = g(aα)](m).
It is a non-interactive version of the protocol depicted in Section 2.3.1. The signature is
an l + 1 tuple (c, s1, . . . , sl) satisfying the equation:

c = Hl(m ‖ z ‖ g ‖ a ‖ P1 ‖ . . . ‖ Pl) where Pi =

{
g(asi) if c[i] = 0
z(asi) otherwise

It is computed as following:

1. For all 1 ≤ i ≤ l, generate random ri.

2. Set Pi = g(ari) and compute c = Hl(m ‖ z ‖ g ‖ a ‖ P1 ‖ . . . ‖ Pl).

3. Set si =

{
ri if c[i] = 0
ri − x otherwise

2.3.4 Group Signature

The group signature scheme in [CS97] is based on two signatures of knowledge: one that
proves the signer knows some secret and another one that proves this secret is certified by
the group manager. The scheme relies on the hardness of computing discrete logarithm,
double discrete logarithm and eth root of the discrete logarithm.

The public key of a group is (n, e, G, g, a, λ) where e is chosen so that gcd(e, φ(n)) = 1
where n = pq. The private key of the manager is (p, q, d) where de = 1 mod φ(n). When
Alice joins the group, i.e. becomes a member, she uses her secret x to compute a mem-
bership key (y, z) where y = ax mod n and z = gy. A sends (y, z) to the group manager,
proves that she knows x and receives a group certificate (y + 1)d mod n corresponding
to her secret x. In order to sign a message m, A chooses r ∈R Zn and computes g̃ = gr,
z̃ = g̃y (= zr), and two signatures:

V1 = SPK[α | z̃ = g̃(aα)](m)
V2 = SPK[β | z̃g̃ = g̃(βe)](m)

2.4. Untraceable Signature of Secret 45

V1 is a signature of knowledge of a double discrete logarithm that can be computed
when knowing some secret x. Similarly, V2 is a signature of knowledge of an eth root of
the discrete logarithm that can be computed using the certificate (y + 1)d mod n. The
group signature of message m is (g̃, z̃, V1, V2).

The verifier checks that V1 and V2 are valid signatures of m. Both signatures together
mean that g̃(βe) = z̃g̃ = g̃(aα+1) and thus β = (aα + 1)d mod n. The verifier knows that
the signer holds a certified secret x. However, the verifier cannot get any information on
x. In other words, the identity of the signer is preserved: this is a group signature.

2.3.5 Group Blind Signature

In the remaining of this chapter, we use the group blind signature scheme proposed in
[Ram99], which is a blind version of the group signature scheme of Camenisch presented
in the previous section. A more efficient group blind signature scheme is described in
[NMV99]. It is based on another group signature scheme described in [CS97] and could
potentially be used for our purpose but its security remains uncertain.

The following notations are used: the public key of group G is KPG
= {n, e, G, g, a, . . .},

the private key of group member A is KSA
= {x, (ax + 1)d}.

2.4 Untraceable Signature of Secret

This section shows how the group blind signature scheme presented in Section 2.3 can be
used to define an untraceable signature of secret, which constitutes a basic building block
of privacy-preserving trust establishment.

2.4.1 Principle

Untraceability is guaranteed by the blind signature mechanism. However, it is necessary
to associate some attribute value to this signature. We propose to assign each signer B
a set of private keys, e.g. {KSB,0

, KSB,1
} and to let signer choose one of the key based on

the attribute value. For instance, a random number signed with key KSB,0
should have

a different meaning than this random number signed with key KSB,1
. Attribute secrecy

is assured through the group signature scheme: when all private keys are part of a same
group, the verifier A cannot know which key was chosen and thus cannot discover the
attribute value.

A new group is created for each entity that signs secrets. The group key becomes the

46 2. Establishing Trust without Infrastructure

entity’s public key and the same signer uses different private keys according to the value
of the attribute that has to remain secret (see right part of Figure 2.2). In other words,
the blind signature assures the untraceability of the credential and the group signature
assures the secrecy of attributes.

A B
KPB

KSB
= {KSB,0

, KSB,1
, . . . , KSB,u

}

chooses m
blinds m as m′

m′
-

s′ = SIGNKSB,i
(m′) where KSB,i

∈ KSB

s′
�

verifies ’group’ signature
a key ∈ KSB

was used
unblinds signature: s′ → s

m, s
-

opens signature
knows which key was used
knows attribute value 0,1,2

Table 2.2: Blind signature with secret attribute i

For instance (see Figure 2.2), a signer B that can use attribute values from the set
{0:poor, 1:good, 2:excellent}, will have a group public key KPB

and three private keys
KSB,0

, KSB,1
, and KSB,2

. When the signer wants to encrypt the value excellent, he signs
with the corresponding private key KSB,2

. Anybody can verify that the unblinded message
has been signed with a private key corresponding to the public key KPB

without knowing
which key was used. When the unblinded message is subsequently shown to the signer,
he cannot trace the holder but can open the signature to know which key was used and
can thus retrieve the secret value.

2.4.2 Restricting Possible Values of a Signed Secret

Unfortunately, the chosen group signature scheme allows new members to join the group
without modifying the group public key. In other words, it is not possible to know how
many private keys exist for a given group public key. In the context of secret attributes,

2.4. Untraceable Signature of Secret 47

it means that the cardinality of the set of possible attributes cannot be deduced from
the public key. To solve this problem it is necessary that the ’group manager’ role be
assumed by a trusted third party (TTP). This TTP would provide a set of private keys
to the signer and certify the public key along with the number of related private keys
that have been created. The certificate issued by the TTP is denoted by CERT in the
following protocols. It could then be possible to ensure that the set of keys is fixed and
that the secret attributes can only be the encryption of an element of a public set (see
Figure 2.2).

M1M0 M2

x�, (a
x�
+1)

d

Group public
key: n,e,G,g,a

x, (a
x
+1)

d
x��, (a

x��
+1)

d

Mgr

B

B�s public key: n,e,G,g,a

B�s private key: x, (a
x
+1)

d
, x�,

(a
x�
+1)

d
, x��, (a

x��
+1)

d
, CERT

TTPp,q,d p,q,d

Group Blind Signature Unlinkable Secret Credential

B�

B�s protected key:
y,y�,y��

Figure 2.2: Group blind signature scheme used as unlinkable secret credential

2.4.3 Protected Keys

In a group signature scheme, only the group manager can open signatures. In the context
of unlinkable secret credentials, this means that only the issuer B of a credential can read
the secret attribute value. This section shows how an issuer can let some trusted partners
read secret attributes. Table 2.3 shows a three stage keying architecture: the private key
is used to sign a credential with a secret attribute and is kept secret by signers. The
protected key enables the signature verification and access to the secret attribute value
and is only distributed to trusted partners of the signer. The public key enables the
verification of the signature and the set of possible values without revealing the secret
value. The new type of key, which we introduced, is said to be a protected key: this
terminology was chosen by analogy with object oriented programming languages where
access to methods can be defined as public, protected, or private. Protected keys are only
distributed to trusted partners that are thus able to decrypt attributes. For instance,
each employee of a company could be allowed to open credentials signed by coworkers in
order to establish trust relationships in a distributed way.

48 2. Establishing Trust without Infrastructure

2.5 Trust Establishment Protocol

We now introduce though a generic scenario the trust establishment protocol that is
based on the previous building blocks. In this scenario, B is a service provider that issues
credentials to entities that interact with him. A is a holder that collects credentials from
different entities in order to build a history. TTP is a trusted third party that issued B’s
keys. B′ is a partner of B that knows the protected key of B.

2.5.1 Protocol Description

Before any interaction, B starts u times a join protocol with the TTP, u being the number
of different values that can be attached to a credential, e.g. with {0:poor, 1:fair, 2:good},
u = 3. As shown in the right part of Figure 2.2, B knows u secrets x, x′, . . . and receives
u membership certificates (y + 1)d, (y′ + 1)d, B also receives a public key certificate
CERT = SIGNTTP (KPB

, u), which guarantees a set of possible values. Private, protected,
and public keys are distributed according to Table 2.3.

When B wants to provide a credential to A, the following exchange occurs: A chooses
a random message m, B blindly signs this message with the private key corresponding
to the chosen attribute value. A verifies with the public key of B that the signature is
correct. The certificate CERT is public and defines the set of possible values in the secret
attribute.

Subsequently, when A gets in touch with B or B′, she shows an unblinded version of
the credential and B or B′ opens the signature to retrieve the secret attribute. The only
information available to B is that he is interacting with an entity that was previously
tagged as good.

Credential TTP B B’ A
B’s public key {n, e, G, g, a},CERT × × × ×
B’s protected key {y, y′, . . .} × × × -
B’s private key {x, (y + 1)d, x′, . . .} - × - -
TTP’s secret on B {p, q, d} × - - -
Verify signature of B and attr ∈ set × × × ×
Retrieve value of secret attribute × × × -
Sign credential as B - × - -
Define set of attribute values × - - -

Table 2.3: Distribution of secrets among parties

2.5. Trust Establishment Protocol 49

2.5.2 Security Evaluation

This chapter proposed to use group blind signature schemes to define unlinkable secret
credentials. Assuming that the group blind signature scheme proposed in [Ram99, CS97]
is secure, evaluating the security of our scheme is straightforward.

Proposition 2.1 (Credential Integrity) It is infeasible to generate an unlinkable se-
cret credential without knowing the private key of the service provider B.

The first requirement for unlinkable secret credential scheme presented in this chapter is
that credentials can only be issued by the legitimate issuer. Each credential is signed with
a group member key corresponding to the public key of B. The group signature scheme
ensures that only group members can generate valid signatures. The TTP could generate
a new group member key and use it for signing as B. However in this case, B could prove
that this TTP misbehaves.

Proposition 2.2 (Credential Unlinkability) the issuer B or any other party cannot
trace a credential to a user except for a very small number of users.

The second requirement for unlinkable secret credential scheme presented in this chapter
is that it is not possible to link the credential that is blindly created and signed by B and
the credential that is shown subsequently to B or B′.

First, the credential m, s is unconditionally independent of m′ and s′. By definition,
any blind signature fulfills this property.

Next, the attribute value cannot be used to trace all users. It is necessary that
the cardinality u of the set of possible attribute values be as small as possible. For
instance, defining three different attribute values (u = 3) when thousands of entities
receive credentials assure the ’average unlinkability’ of users. The cardinality of the set
does not give a direct information on the entropy of a given attribute value. A malicious
environment could thus spot up to u− 1 specific users and reserve one attribute value for
each one in order to trace them. Even in this case, the unlinkability of all other entities
is assured.

Proposition 2.3 (Attribute Secrecy) The secret attribute cannot be decrypted by A.

The third requirement for unlinkable secret credential scheme presented in this chapter is
that what B said about A is kept secret.

50 2. Establishing Trust without Infrastructure

Group signature schemes ensure that the signature does not reveal any information
on the effective signer. It is not possible to find out which member of a group generated
a given signature. Because each attribute value is attached to one of the group key it is
not feasible to find which key, i.e. which attribute, was used.

Moreover, without knowing the value of the attribute, the credential holder can verify
that it is part of a finite set of public attributes. The cardinality of the set of possible
attributes is equal to the number of member keys known by B because each key is related
to one attribute value. The TTP provides the member keys and certifies the number u
of keys. To assure that A cannot generate a new member key even if she acts as multiple
group members and knows related secrets and certificates, it is necessary that the group
signature scheme be resistant to coalition attacks. The initial join protocol of [CS97] has
to be replaced by a more secure one. This modification is taken into account in the group
blind signature scheme [Ram99].

Proposition 2.4 (Attribute Decryption) Only the issuer B and his trusted partners
(e.g. B′) can retrieve secrets embedded in credentials signed by B.

The fourth requirement for unlinkable secret credential scheme presented in this chapter
is that the service provider B can share information on A with partner B′ that knows the
protected key of B.

Distributing protected keys (y, y′, etc.) to partners (e.g. B′) does not weaken the
scheme. Indeed, partners as well as manager cannot impersonate group members and
partners cannot enable covert channels (new members) because they do not have access
to TTP’s secrets.

2.6 Conclusion

This chapter presents a technique of untraceable secret credentials to establish history-
based trust relationships in a privacy-preserving way. Secrecy ensures that positive as well
as negative statements can be used in the behavior description attached to an entity. Blind
group signature scheme is shown to be a possible mechanism to achieve untraceability.

The principle of unlinkable secret credentials has inherent limitations. Knowing the
cardinality of the set of possible attributes is not sufficient to know the entropy of each
encrypted attributes. In other words, a given attribute can be used to trace a given user.
The ’average untraceability’ is ensured by the scheme: only a small subset of the user
group can potentially be traced. To ensure unlinkability, it is necessary to have a small set
of possible attributes. The attribute can thus define a degree or a rank but cannot define
elements of large sets like integers or dates. In chapter 3 we will show another approach
that assures untraceability of attributes by enabling selective disclosure of attributes.

2.6. Conclusion 51

Implementing unlinkable secret credentials based on the blind group signature scheme
[Ram99] leads to other limitations. Non-transferability is weakly assured. However, it
seems realistic to assume that secrecy of credentials makes it impossible to trade them
but a better approach would require to link the credential to a valuable secret of its holder.
Such an approach requires a minimal trust infrastructure and will be presented in Chapter
3. Another limitation of this scheme is that a trusted third party is required to certify
that the number of possible values of secret attributes is restricted. Indeed, knowing the
public key is not sufficient to determine the number of group members, i.e. the set of
possible attribute values. Whether it is possible to render blind a group signature scheme
with a public key depending on the number of members, and thus to do without TTP, is
still an open issue.

This chapter and chapter 1 have tackled the difficult problem of achieving non-
transferability of credentials without a minimal infrastructure. In the second part of
this dissertation, we will investigate solutions that rely on some infrastructure. We will
show that a minimal infrastructure is sufficient to overcome restrictions on attributes
while preserving untraceability.

52 2. Establishing Trust without Infrastructure

53

Part II

History-Based Trust Establishment:
Establishing Trust while Preserving Privacy

55

Chapter 3

History-based Signature Scheme

”He said the right thing to that cat. I like his prudence-
He learned it through experience.

Which taught that lesson of maturity:
Mistrust is the mother of security.”

– Jean de la Fontaine (The Cat and the Old Mouse, III)

The main limitation of the protocol proposed in Chapter 2 is the small cardinality of the set
of possible attribute values that makes it unsuitable for describing complex interactions
because only simple attributes are supported. This chapter describes another solution
relying on credentials with cleartext attributes that can be disclosed in a controlled way.
This mechanism allows a full featured history-based trust establishment yet protects the
privacy of users.

3.1 Introduction

We introduce a protocol through which an entity can give cryptographic evidence on the
history of its past interactions with other parties. This history makes it possible to eval-
uate the past behavior of that entity, and accordingly regard it more or less trustworthy
when performing other interactions. Privacy is an essential requirement for such a pro-
tocol that builds up trust at the expense of exposing the intimate behavior of a user: for
instance, an electronic discount coupon valid for various locations other than the shop-
ping mall where the coupon was generated should not enable the tracing of clients. The
anonymity of the history proving entity and the unlinkability of its interactions thus was
a design objective for the history proving protocol detailed here.

This chapter presents a new signature scheme that can be used for anonymously

56 3. History-based Signature Scheme

signing and for proving the validity of attributes of the signer. This scheme enables non-
interactive signatures as well as challenge-response protocols without the attributes being
traceable. This mechanism will be used in Chapter 5 to prove previous interactions when
establishing trust.

Verifying the reliability of a piece of information without revealing the identity of its
source is becoming an important privacy requirement. Indeed, on one hand, anybody can
easily broadcast inaccurate or even deliberately deceptive information as illustrated by
urban legends or hoaxes. Author authentication thanks to the signature of the document
is frequently used when the author is known by the reader. Indeed, according to the
trustworthiness of the author, it is possible to determine whether the document is accurate
or misleading. On the other hand, protecting the privacy of signers is necessary. When
people are exchanging ideas in a public forum, anonymity may be a requirement in order
to be able to state some disturbing fact or even simply so that contributors not be traced
based on their opinions. When users have a way to attach comments to surrounding
physical objects like a painting in a museum [Ing03], the chance that statistics be made
on their interests might simply refrain them from commenting at all.

An unlinkable credential aims at proving that some entity has a given attribute in an
unlinkable way. For instance Alice may have to prove her nationality to enter an embassy,
reveal her age to enter a movie theater, or prove that she has a driving license. This can be
done in a face-to-face interaction, e.g. when asked by a policeman, or remotely, e.g. when
accessing a Web service. In both cases, only the necessary attributes should be proven
and no information on the identity (or public key) of the user should be revealed. In
our scheme, the challenge response protocol is implemented as the signature of a random
nonce and relies on the anonymous signature scheme.

The requirements of anonymous signature are partially met by the group member-
ship notion in group signature schemes [CS97] that proves the existence of a relationship
with other members of the group while ensuring the anonymity of the signer. This chap-
ter extends the group membership concept and associates embedded attributes within a
signature in order to prove that attribute without revealing the identity of the signer.

In an open environment where trust can only be based on the past behavior of a user
A, we propose to implement the history as a set of credentials. When signing, A chooses
which part of her history (a subset of credentials) she wants to reveal. For instance,
a report relating some event can be signed by a person who was there when this event
occurred ; an e-mail can be signed by an inhabitant of a given district of a town. Like this,
the signature is not based on the identity of the signer anymore but rather on her history.
Such a history is defined as a set of the context (time and location), group memberships
(reporter, trade unionist), and recommendations (defined by Bob as a trusted party). The
signer chooses the accuracy of the attributes she discloses, e.g. someone that can prove
that he was in Paris on the 15th of January could choose to sign a document as someone
who was in France in January.

3.2. Principle 57

3.2 Principle

Users anonymously collect credentials, which are proofs of their activity, and store them
as a provable history. In Figure 3.1, a user gets a credential with some attributes. To
associate a credential with the user, non-transferable credentials are used, i.e. credentials
attached to a valuable secret. Credentials can define group membership, location- and
time-stamps, recommendations, etc. As depicted in Figure 3.1, obtaining a credential is
performed in three steps:

2) attributes

1) Interaction

BA

Age=31
Gender=F

3) Credential

History item
Location,
attributes, or
recommendation.

Client A is
certified by CA

?

Figure 3.1: Getting history items

1. Some interaction occurs between A and B. This step can require an authentication,
a payment, or even a real world protocol (e.g. handshake, graduation ceremony).

2. The party B who is in charge of providing the credential defines the attributes. For
instance, an Id-card will contain a name, a surname, a birth date, and a nationality;
a bus pass will include a validity end date; and a recommendation will define whether
B trusts the holder A.

3. The credential is provided to A that stores it in her history database.

Such a credential can be used for signing a document (Figure 3.2) or during an inter-
active proof (Figure 3.3).

History
- was in place x at time t
- is said �reliable� by Z
- is member of group Q
- Id card
- etc.

History-based signature
Sign document as �someone
that was in place x at time t�.

A

?

Figure 3.2: History-based signature

When signing a document, the author A chooses some credentials in her history,
modifies them, and signs the document with those credentials. In Figure 3.2, a user is

58 3. History-based Signature Scheme

able to prove that she was at location x at time t, that she is said reliable by some entity
Z, that she is a member of group Q, and that she has a given name and address (electronic
id card). She chooses to sign the document as someone that was at location x at time t
or as someone that is older than 18. The signature does not reveal more information on
the signer and it is even impossible to link two signatures of the same signer. To ensure
untraceability, it is necessary to avoid being too precise: it is indeed easier to identify a
person that signed as having been in a given room at a precise time than to recognize this
person based on the knowledge that she was in the building at some time.

4) Proof Age>18
Gender=F

C

History
- was in place x at time t
- is said �reliable� by Z
- is member of group Q
- Id card
- etc.

A

?

Figure 3.3: Proof of History

Credentials have to fulfill the following requirements to build a provable yet anonymous
history:

• Non-transferability : credentials should not be transferable to another party.

• Anonymity : use of history-based credentials should not reveal the identity of the
author.

• Untraceability : it is not possible to link different documents signed by a same person
even when the same credential is used.

Non-transferability is indeed achieved because credentials can only be used by the
owner of some valuable secret (equivalent to the private key in public key infrastructures).
This secret is critical and thus will not be transferred to another entity. As a result,
credentials cannot be transferred.

3.3 State of the Art: Unlinkable Credentials

Common attribute certificates such as X.509 and SPKI [EFL+99] are based on a public
key infrastructure and thus cannot be made unlinkable because the public key of a user
can be recognized.

The schemes presented in [CL01, Bra02] already allow for privacy-preserving attribute
verification. The target of these schemes is anonymous attribute certificates and untrace-
able access control. Credentials defined in Idemix [CL01] rely on pseudonyms and thus

3.3. State of the Art: Unlinkable Credentials 59

cannot be used for non-interactive signatures. Credentials defined by Brands [Bra02]
weakly assure non-transferability and have to be used as one-time credentials to ensure
untraceability. The one-time usage of these credentials also does not suit multiple inter-
actions as required by our scenario.

Table 3.1 compares different approaches with our scheme. All approaches provide a
way to prove some attributes without being traceable and thus are types of unlinkable
credentials. However, in group signature as well as in our scheme, the group manager
or CA can trace users. Selective disclosure means that the user can choose to reveal a
part of the attribute when signing. For instance, a credential asserting that its holder is
thirty years old can be used so that it only discloses that its holder is older than eighteen.
More complex disclosure schemes are defined in some related work. Non-transferability
means that a user cannot let another person use one of her credentials without revealing
some valuable data. In a public key infrastructure (PKI), the valuable data is the users
private key. In Idemix, a model referred as ”all or nothing” (AoN) is introduced so that
transferring one credential reveals all pseudonyms and credentials. The number of use is
another important parameter for history: it is mandatory that credentials can be used
multiple times yet ensure unlinkability. The possibility of combining credentials when
signing is another important issue. Indeed, a document signed by a doctor that has seen
a given patient is different from a document that is signed by a doctor and by someone
else that have seen this patient. Non-interactive signature is necessary when the scheme
is used to sign public documents, e.g. web pages, and authorize off-line verification by
unknown parties. For instance, Idemix is a pseudonym scheme and thus cannot be used
to sign documents. Finally, a scheme integrated with a distance-bounding protocol (DBP)
is necessary to prove that A is close enough to a location- and time-stamper.

Properties Group Brands’ Camenisch History-
signatures credentials Idemix based Sig

Unlinkable × × × ×
Unlinkable by CA - × × -
Selective Disclosure - × × ×
Complex Disclosure Schemes - × × -
Non-transferable PKI Biometrics AoN or PKI PKI
Number of Use ∞ 1 1 or ∞ ∞
Combining Credentials - × × ×
Non-interactive Signature × × - ×
Integration with DBP ? ? ? ×

Table 3.1: Comparison of different schemes

60 3. History-based Signature Scheme

3.4 Protocols

History-based signature is an extension of the group signature scheme described in Section
2.3. Let Alice (A) be the signer: she collects credentials to subsequently prove a history of
her interactions. For instance, A holds credentials to prove that she has been in some place.
When A is traveling or visiting partners, she collects location stamps. A has credentials
to prove her affiliation to a company, her membership to the IEEE computer society, her
participation in some project, her membership to a golf club, her citizenship of a particular
country, etc. Finally, A can collect recommendations asserting her collaboration with
other entities. All those credentials define her provable history. Each credential can be
used as a proof during a challenge-response protocol or as an attribute of a signature.

Let us define the following elements for computing that signature: a RSA modulo
n = pq where p and q are two large primes, a cyclic group G of order n with generator g,
and an element of the multiplicative group a ∈ Z∗

n.

3.4.1 Zero-Knowledge versus Statistical Zero-Knowledge

In [Sti02], Stinson defines a Zero-Knowledge Proof of Knowledge as a protocol that allows
some prover A to prove to some verifier B that it knows a secret x without revealing any
information on this secret x.

In a proof of knowledge of a double discrete logarithm (see Section 2.3.1) PK[α | z =
g(aα)], the response is s = r−c ·x where c is the challenge bit and r is randomly chosen. If
the order of a ∈ Z∗

n is known, s can be computed modulo this order. But when this order
is not known or when a proof of knowledge involves different orders, it is not possible to
compute responses modulo. In this case zero-knowledge cannot be achieved and statistical
zero knowledge is necessary. Statistical zero knowledge proposes to compute s in a larger
group in order to make it more difficult to get information on x. A security parameter
ε > 1 defines this larger group: random parameter r is chosen in {2λ, . . . , 2λ·ε − 1} where
λ defines an upper bound on the length of x, i.e. 0 ≤ x < 2λ.

In the remaining of this thesis we use the term Proof of Knowledge for a protocol
that allows some prover A to prove to some verifier B that it knows a secret x when it is
computationally impossible for B to discover any information on x, be it zero-knowledge
or statistical zero-knowledge.

3.4. Protocols 61

3.4.2 Certification

The main difference between this chapter and Part I of this thesis is that here, user A
has a valuable secret x. In other words, credentials can be linked to this secret to avoid
transferability. We use certification to prove that a secret is valuable. To initiate the
system, each entity has to get some certificate proving that it has a valid secret, i.e. a
secret linked to its identity. This part is similar to the join protocol of Camenisch’s group
signature scheme. However, we use a modified version proposed in [AT99, Ram99] because
a coalition attack exists against the initial scheme.

A CA
private: pca, qca, dca

public: nca, eca, Gca, gca, aca, λca

1.1) chooses random secret x′

x′ ∈R {0, 1, ..2λca−1}
1.2) y′ = ax′

ca mod nca
-

1.3) ξ ∈R {0, 1, .., 2λca−1 − 1}
�

1.4) computes x = x′ + ξ
y = ax

ca mod nca

commits to z = gy
ca

1.5) y, z
-

1.6) PK[α | y = aα
ca]

� -

1.7) verifies y
?
= y′ · aξ

ca

1.8) cert1ca = (y + 1)dca mod nca
�

Table 3.2: Creation and first certification of A’s secret x

As depicted in Table 3.2, A generates some secret x with the help of a certification
authority (CA) or a group manager. Moreover, A receives a certificate for this secret
x: cert1ca = (ax

ca + 1)dca mod nca. From that moment on, A is certified and can act
anonymously as a member of a group or as an entity certified by a given CA in order to
get credentials and build a provable history.

62 3. History-based Signature Scheme

3.4.3 Obtaining Credentials

Once certified, A can visit different entities that will provide proofs of location, proofs of
interaction, recommendations, etc. A provable history is a set of such proofs. Table 3.3
shows how A can get a credential from B. The identity of A is not known but B verifies
that this entity is certified by some known CA or Group manager. It is always necessary
to have some trust relationship with previous signers when providing credentials or when
verifying history. In this example, B has to trust CA otherwise the certification protocol
has to be done once more. However, when an entity C needs to verify the signature of A
on some document, C only has to know B.

A B
private: x, (ax

ca + 1)dca private: pb, qb, db, db1 , . . . dbk

public: nb, eb, eb1 , . . . ebk
,

Gb, gb, ab, bb, λb

2.1) y2 = ax
b mod nb

g̃ca = gr
ca for r ∈R Znca

z̃ = g̃ca
y (i.e. z̃ = zr)

2.2) y2
-

2.3) pk2: PK[α | y2 = aα
b ∧ z̃ = g̃ca

(aα
ca)]

pk3: PK[β | z̃g̃ca = g̃ca
(βeca)]

� -

2.4) t ∈R {0, 1, . . . , 2λb − 1}
cert1b = (ax

b + 1)db

cert2b = (ax
b + bt

b)
dh

cert3b = (bt
b + 1)db

where dh =
∏

i∈S dbi

2.5) t, cert1b, cert2b, cert3b, S
�

Table 3.3: Obtaining some credential to build history

Two proofs of knowledge are done at step 2.3). The first one proves that y2 is based on
some secret. Combining the both proofs shows that this secret has been certified by CA.
Indeed, g̃ca

(βeca) = z̃g̃ca = g̃ca
(aα

ca)g̃ca = g̃ca
(1+aα

ca) and thus 1 + aα
ca = βeca . It means that A

knows β = (1 + aα
ca)

dca that is a certification of α, which is also the discrete logarithm of
y2 to the base ab. In other words, y2 has been computed from the same secret x.

At step 2.4) A receives a new credential cert2b = (ax
b + bt

b)
dh mod nb from B that

will be used to prove some history. bb as well as ab are elements of Z∗
nb

, x prevents
the transferability of credentials, and t is different for each credential to forbid a user

3.4. Protocols 63

from forging attributes by combining multiple credentials (see Section 3.7). The attribute
value, be it a location or a recommendation, is defined using a technique that comes
from electronic cash: dh =

∏
i∈S dbi

where S is a set that generally defines the amount
associated with an e-coin but can be used for other attributes as well. The construction of
dh is described in Section 3.5. Two other credentials can be provided: cert1b = (ax

b + 1)db

mod nb is a certification of the secret that can replace cert1ca. To prevent a potential
attack (see Section 3.7), we add cert3b = (bt

b + 1)db mod nb.

3.4.4 Using History for Signing

This section shows how Alice (A) can sign a document as the holder of a set of credentials.
A knows a secret x, the certification of this secret (cert1b), and some credential that is
part of her history (cert2b). Using these credentials, she can compute a signature on some
message m. A generates a random number r1 ∈R Znb

and computes:

ĝb = gr1
b , ẑ2 = ĝb

y2 , and ẑ3 = ĝb
(bt

b)

spk1 = SPK[α | ẑ2 = ĝb
(aα

b)](m)

spk2 = SPK[β | ẑ2ĝb = ĝb
(βeb)](m)

spk3 = SPK[δ | ẑ3 = ĝb
(bδ

b)](m)

spk4 = SPK[γ | ẑ2ẑ3 = ĝb
(γeh′)](m) where eh′ =

∏
i∈S′ ebi

and S ′ ⊆ S

spk5 = SPK[ε | ẑ3ĝb = ĝb
(εeb)](m)

The signature of message m is {spk1, spk2, spk3, spk4, spk5, ĝb, ẑ2, ẑ3, S
′}. The signa-

tures of knowledge spk1 and spk2 prove that the signer knows cert1b: β = (1 + aα
b)db

mod nb. The signatures of knowledge spk1, spk3 and spk4 prove that the signer knows
cert′2b: γ = (aα

b + bδ
b)

dh′ mod nb. The signatures of knowledge spk3 and spk5 prove that
t was generated by B: ε = (1 + bδ

b)
db mod nb.

When credentials from different entities (e.g. B and CA) must be used together, it
is necessary that A generate a random number r2 ∈R Znca and compute ĝca = gr2

ca and
ẑ = ĝca

y. spk1 and spk2 are then modified as follows:

spk′
1 = SPK[α | ẑ2 = ĝb

(aα
b) ∧ ẑ = ĝca

(aα
ca)](m)

spk′
2 = SPK[β | ẑĝca = ĝca

(βeca)](m)

64 3. History-based Signature Scheme

spk′
1 and spk′

2 prove that the signer knows cert1ca: β = (aα
ca + 1)dca mod nca and spk′

1

proves that cert1ca and cert2b are linked to the same secret x. spk′
1 is a signature based

on a proof of equality of two double discrete logarithms (see Section 3.6.2). The new
signature of message m is {spk′

1, spk
′
2, spk3, spk4, spk5, ĝca, ẑ, ĝb, ẑ2, ẑ3, S

′}. Similarly, it is
possible to link multiple credentials when signing a document.

3.5 Encoding Attribute Values

In Section 3.4, the user receives cert2b and signs with cert′2b to hide part of the attributes
when signing. This section presents a flexible mechanism for attribute encoding that
allows the user to choose the granularity of attributes.

A straightforward solution to define attributes with various levels of granularity would
be based on multiple credentials. For instance, a location stamper would provide creden-
tials defining room, building, quarter, town, state, etc. The holder would thus be able to
choose the granularity of the proof of location. Unfortunately, combinatorial attributes
(e.g. longitude, latitude, or time) with different granularities would lead to the distribu-
tion of too many credentials.

3.5.1 Principle

In our scheme, each authority that delivers certificates (time stamper, location stamper,
group manager, etc.) has a public key: a RSA modulo (n), and a public set of primes
e1, . . . , em where ∀i ∈ {1, . . . ,m} | gcd(ei, φ(n)) = 1. Each ei correspond to a mark whose
meaning is public as well. Each authority also has a private key: p, q, and {d1, . . . , dm}
where pq = n and ∀i ∈ {1, . . . ,m} | ei · di = 1 mod φ(n).

The signature SIGN(S,n)(m) = mdh mod n of a message m, where S is a set of
indices defining the attribute and dh =

∏
i∈S di, can then be transformed into a signature

SIGN(S′,n)(m) = mdh′ mod n, where S ′ is a subset of S and dh′ =
∏

i∈S′ di. The attribute
value is coded as S corresponding to the indices of the bits equal to one in the binary
representation of this attribute. This signature based on set S can be reduced to any
subset S ′ ⊆ S:

SIGN(S′,n)(m) =
(
SIGN(S,n)(m)

)(∏
j∈{S\S′} ej)

= m(
∏

i∈S di·
∏

j∈{S\S′} ej) = m(
∏

i∈S′ di) mod n

3.5. Encoding Attribute Values 65

An entity that received some credential cert2b is thus able to compute a derived cert′2b
and to sign a document with this new credential.

cert′2b = (cert2b)
∏

j∈{S\S′} ej =
((

ax
b + bt

b

)∏
i∈S di

)∏
j∈{S\S′} ej

=
(
ax

b + bt
b

)∏
i∈S′ di

This technique ensures that part of the signed attributes can be modified. For in-
stance, the decimal attribute value v = 13d is equivalent to the binary string 01101b

and can be encoded as S = {4, 3, 1}, i.e. 4th, 3rd, and 1st bits set to one. dh =
d4 · d3 · d1 mod φ(n). Knowing {ei | i ∈ S}, the following transformations are possi-
ble: S ′ ∈ {{4, 3, 1}; {3, 1}; {4, 3}; {4, 1}; {4}; {3}; {1}} and thus v′ ∈ {13, 5, 12, 9, 8, 4, 1}.
Any bit i equal to one can be replaced by a zero (by using ei) but any bit j equal to zero
cannot be replaced by a one (because dj is private).

3.5.2 Possible Codes

Choosing different ways to encode data enables to define which transformations of the
attribute values are authorized:

• greater-or-equal : values are encoded so that they can only be reduced. For instance,
v = 13d → 01101b → S = {1, 3, 4}. Because each bit equal to one can be replaced by
zero, value 01101b can be transformed into 01100b, 01001b, 01000b, 00101b, 00100b,
or 00001b, i.e. v′ ∈ {13, 12, 9, 8, 5, 4, 1}.
An attribute defined with this code can only be reduced. For instance, someone able
to show a capability with the age attribute set to eighteen at least, can be assumed
older than eighteen.

• less-or-equal : values are encoded so that they can only be increased. For instance,
v = 13d → 10010b → S = {2, 5}. It can be transformed into 10010b, 10000b, or
00010b, i.e. v′ ∈ {13, 15, 29}.
An attribute defined with this code can only be reduced. For instance, a capability
with the price attribute set to hundred at most ensures a negotiated price below
one hundred euros.

• unary more-or-equal : the problem with binary encoding is that it cannot be reduced
to any value. For instance, 7d = 111b can be shown as 7, 6, 5, 4, 3, 2, or 1 but
6d = 110b can only be shown as 6, 4, or 2. This limitation can be solved by using
a binary representation of unary counting: v = 6d = 111111u → 0111111b → S =
{1, 2, 3, 4, 5, 6} can be shown as v′ ∈ {6, 5, 4, 3, 2, 1}. The overhead is important
(l bits data is encoded with 2l bits) and the unary representation thus has to be
restricted to small values.

66 3. History-based Signature Scheme

• unary less-or-equal : a similar approach can be used for less-or-equal as well: v =
2d → 1111100b → S = {3, 4, 5, 6, 7} can be transformed into v′ ∈ {2, 3, 4, 5, 6}.

• frozen: values are encoded so that they cannot be changed. In this case, the number
of bits has to be larger: l bits become l + blog2(l)c + 1 bits. For instance, 13d →
0001101b, c = 100b → 0001101|100b → S = {7, 6, 4, 3}. The checksum c represents
the number of bits equal to zero, any modification of the value increases the number
of zeroes but the checksum can only be decreased. It is not possible to change such
frozen values.

• blocks : data are cut into blocks. Each block is encoded with one of the previous
schemes.

Selective disclosure is an important feature for preserving the privacy of users. Indeed,
even when credentials are unlinkable, showing too precise attributes can reveal a lot of
information about a user. For instance, assuming a system that generates less than one
certificate a minute, multiple shows of an unlinkable credential with a validity end equal
to ”26/05/2005 09:07” could be linked if this validity end is visible. Similarly, a credential
proving that some entity has been in a given place at a given time ”13:04, 15/10/2004,
43.6265o, -007.0470o” is too precise and enables a server to trace users.

This problem can be avoided by only revealing necessary information. When the
validity is checked, it is possible to prove that the validity is still valid instead of revealing
the validity end (e.g. ”xx/xx/2005 xx:xx”. If the system has to know whether the user
was in Sophia Antipolis this year, ”xx:xx, xx/xx/2004, 43.6xxxo, -007.0xxxo” is enough.
Similarly, a company can qualify customers as Platinum, Gold, or Silver and the customer
can prove that she is a least gold; a state can provide digital Id cards to citizen to certify
gender, name; birth date and the citizen can prove that she is older than eighteen. In
any case, the ability of selecting which attribute is displayed is very important to protect
privacy.

3.6 Proof of Knowledge

This section defines the new proof of knowledge PK[α | y2 = aα
b ∧ z̃ = g̃ca

(aα
ca)] that is

necessary when obtaining a credential (see Section 3.4.3) and the new signature based on
a proof of knowledge SPK[α | ẑ2 = ĝb

(aα
b) ∧ ẑ = ĝca

(aα
ca)](m) that is necessary when using

a credential (see Section 3.4.4).

3.6. Proof of Knowledge 67

3.6.1 Proof of Equality of a Log and a Double Log

The execution of this proof of knowledge is as follows: PK[α | y = aα
1 ∧ z = g

(aα
2)

2]

Given y = ax
1 and z = g

(ax
2)

2 , the interactions below are performed t times as long as the
verification step is performed successfully.

1. P −→ V : w1 = ar
1 and w2 = g

(ar
2)

2 where r ∈R {2λ, . . . 2ε·λ − 1}

2. V −→ P : c ∈R {0, 1}

3. P −→ V : s = r − cx

4. Verification :
if c = 0: w1

?
= as

1 and w2
?
= g

(as
2)

2

if c = 1: w1
?
= y · as

1 and w2
?
= z(as

2)

Indeed, if c = 1: y · as
1 = ax

1 · as
1 = ax+r−x

1 = w1 and

z(as
2) =

(
g

(ax
2)

2

)(as
2)

= g
(ax

2)·(as
2)

2 = g
(ax+s

2)
2 = w2

3.6.2 Signature Based on a Proof of Equality of Double Log

History-based signature uses a signature based on a proof of equality of two double discrete
logarithms.

SPKl[α | y1 = g
(aα

1)
1 ∧ · · · ∧ yk = g

(aα
k)

k](m)

where l is a security parameter. The signature is an l+1 tuple (c, s1, . . . , sl) satisfying
the equation

c = H (m‖k‖{y1 . . . yk}‖{g1 . . . gk}‖{a1 . . . ak}‖{P1,1 . . . P1,l}‖ · · · ‖{Pk,1 . . . Pk,l})

where Pi,j =

{
g

(a
sj
i)

i if c[j] = 0

y
(a

sj
i)

i otherwise

The signature can be computed as follows:

68 3. History-based Signature Scheme

1. For all j ∈ {0, 1, . . . , l − 1}, generate random rj ∈R {2λ, . . . , 2ε·λ − 1}

2. For all i ∈ {0, 1, . . . , k − 1} and for all j ∈ {0, 1, . . . , l − 1}, set Pi,j = g
(a

rj
i)

i

3. Compute c = H (m‖k‖{y1 . . . yk}‖{g1 . . . gk}‖{a1 . . . ak}‖{P1,1 . . . P1,l}‖ · · ·)

4. Set sj =

{
rj if c[j] = 0
rj − x otherwise

The verification works as follows for all i ∈ {0, 1, . . . , k − 1}:

if c[j] = 0: Pi,j = g
(a

rj
i)

i
?
= g

(a
sj
i)

i

if c[j] = 1: Pi,j = g
(a

rj
i)

i
?
= y

(a
sj
i)

i

Indeed, if c = 1: y
(a

sj
i)

i =
(
g

(ax
i)

i

)(a
sj
i)

= g
(ax

i ·a
sj
i)

i = g
(a

x+sj
i)

i = g
(a

rj
i)

i

It is not possible to reduce sj because the order of a1 ∈ Z∗
n1

is generally different from
the order of a2 ∈ Z∗

n2
.

3.7 Security Evaluation

The security of the scheme is based on the assumptions that the discrete logarithm, the
double discrete logarithm and the roots of discrete logarithm problems are hard problems.
In addition it is based on the security of Schnorr and RSA signature schemes and on the
additional assumption of [CS97] that computing membership certificates is hard.

Our proposal is based on the group signature scheme of [CS97], whose join protocol
is subject to a collusion attack [AT99]. Modifications suggested in [Ram99] that prevent
this attack have been taken into account (see Table 3.2).

The first requirement for the history-based signature scheme presented in this chapter
is that credentials can only be issued by the legitimate issuer B:

Requirement 3.1 (Credential unforgeability) - It is infeasible to generate an un-
linkable credential without knowing the private key of the service provider B.

Proposition 3.1 The unlinkable credential scheme is conformant to Requirement 3.1.

3.7. Security Evaluation 69

Proof: In order to encode attribute values, a set of different ei and di are used with the
same modulo n. However, the common modulus attack does not apply here because di’s
are kept secret and known by a single entity as with the standard RSA. Because there
are multiple valid signatures for a given message, this scheme seems to make brute force
attacks, which aim at creating a valid signature for a given message, easier: an attacker
can choose a message m and a random dR ∈R Z∗

n and compute a signature mdR mod n.
If ei and di are defined for i ∈ {1, . . . , k}, there are 2k − 1 valid sets S and thus 2k − 1
possible d =

∏
i∈S di. The probability that a random dR be acceptable is 2k − 1 times

higher than with standard RSA (where k = 1). However, even if the number of valid
signatures for a given message increases, an attacker has to find out the set S (i.e. eR)
corresponding to the randomly chosen signature. In other words, the attacker has to test

for all S, whether m
?
= (mdR)

∏
i∈S ei mod n. There are 2k − 1 possible sets S to check

and the security of this scheme thus is equivalent to RSA.

In some cases, the signature scheme can allow combining attributes of two credentials in
order to create a new one: naive credentials (ax + 1)dh1 and (ax + 1)dh2 could be used to
create (ax + 1)dh′ where S ′ ⊆ S1 ∪ S2. If S1 states that Alice was present from 8 a.m.
to 10 a.m. and S2 states that she was present from 4 p.m. to 6 p.m., it is necessary to
forbid that Alice could create S ′ stating that she was present from 8 a.m. to 6 p.m. To
avoid this attack, a unique secret t is associated with each credential. Hence (ax + bt1)dh1

cannot be combined with (ax + bt2)dh2 . �

The second requirement for the unlinkable credential scheme presented in this chapter
is that it is not possible to link the signature of A on some message with the identity of
A and that it is not possible to link different signatures done with the same credential.
Note that the scheme presented here is an extension of group signatures and thus assures
unlinkability from any party but the credential issuer (see Table 3.1).

Requirement 3.2 (Signature anonymity and unlinkability) - The anonymity of
signers and the unlinkability of signatures are assured.

Proposition 3.2 The unlinkable credential scheme is conformant to Requirement 3.2.

Proof: Linking two signatures {spk1, spk2, spk3, spk4, spk5, ĝb, ẑ2, ẑ3} and {spk′
1, spk′

2,
spk′

3, spk′
4, spk′

5, ĝb
′, ẑ2

′, ẑ3
′}, i.e., deciding whether these signatures have been issued

by the same user A, is only possible by deciding whether logĝb
(ẑ2) = logĝb

′(ẑ2
′) or decid-

ing whether logĝb
(ẑ3) = logĝb

′(ẑ3
′), which is equivalent to solving the discrete logarithm

problem that is considered a hard problem. The signatures generated by the credential
scheme are therefore unlinkable. The party B, be it a certification authority or a group
manager, certifies the secret x of A and knows the identity of A. Other parties have no
information on the holder of x and A can thus sign anonymously. �

As in the solutions proposed in Chapters 1 and 2 where the same credential is used in

70 3. History-based Signature Scheme

two signatures, the attribute revealed should be different or imprecise enough in order to
prevent linkability.

The third requirement for the history-based signature scheme presented in this chapter
is that a signature cannot be generated without holding the correct credentials:

Requirement 3.3 (Signature unforgeability) - It is infeasible to sign with respect to
some attribute without holding a credential with this attribute.

Proposition 3.3 The unlinkable credential scheme is conformant to Requirement 3.3.

Proof: The signature of knowledge spk1 proves that the signer knows his secret, spk3

proves that the signer knows a credential’s secret, and spk4 proves that the signer knows
a credential corresponding to both secrets. That is, spk1 and spk3 respectively show that

ẑ2 = ĝ(aα) and ẑ3 = ĝ(bδ)

and therefore:

ẑ2ẑ3 = ĝ(aα+bδ)

Whereby α and δ are known by the signer. In addition, spk4 proves that

(aα + bδ) = γeh′

for some γ that the signer knows. Under the hardness assumption on the unforgeability
of credentials, this can only happen if the signer received a credential (ax + bt)dh′ . �

The fourth requirement for history-based signature scheme presented in this chapter
is that credentials cannot be transferred:

Requirement 3.4 (Credential non-transferability) - Credentials are strongly linked
to a valuable secret of the holder and thus cannot be transferred.

Proposition 3.4 The unlinkable credential scheme is conformant to Requirement 3.4.

3.8. Conclusion 71

Proof: Each credential is linked to the valuable secret x of its holder. However, even
when the signature of a message cannot be forged, a desirable goal is to be able to assure
that it is not possible to find another message with the same signature. Violation of this
property with our protocol would require the generation of two pairs (x, t) and (x′, t′)
so that ax + bt = ax′ + bt′ mod n. In order to prevent transferability based on such a
generation of equivalent pairs, cert3b and spk5 were included in the protocol. Computing
(x′, t′) from a credential based on (x, t) would thus require computing x′ = loga(a

x+bt−bt′)
which is equivalent to solving the discrete logarithm problem. Our protocol thus assures
that the credential received as a proof of context or as a recommendation cannot be
transferred. �

A proof that the generation of suitable pairs is equivalent to a difficult problem (e.g.
the discrete logarithm problem) would allow for important simplifications of the history-
based signature scheme.

3.8 Conclusion

This chapter introduced a history-based signature scheme that makes it possible to sign
data with one’s history. In this scheme, signers collect unlinkable credentials in order
to build a provable history. This scheme preserves the privacy of users and makes a
large variety of attributes possible for defining trust: recommendations, contextual or
location-related proofs, reputation, and even hierarchical relationships.

This scheme can be useful in different situations. For instance, any visitor of a perva-
sive computing museum could be allowed to attach digital comments to painting and to
read comments of previous visitors. Notes could be signed by an art critic that visited the
museum one week ago. In this example, we assume that the critic received some credential
to prove that he is an expert (e.g. electronic diploma when completing study) and that he
can prove that he visited the gallery. Each visitor will filter the numerous notes according
to parameters defining trustworthiness as he envisions it, e.g. is the note authored by an
art critic, at the museum, or is the author recommended by the museum. The authors of
notes have a guarantee that they cannot be traced by any visitor. In another situation,
the signature of an article written by a journalist could require one credential to prove
that the author was where the event occurred and another credential to prove that he is
a reporter.

In chapter 5, we will show how this scheme can be used to build trust relationships
while preserving privacy.

72 3. History-based Signature Scheme

73

Chapter 4

Distance-Bounding Proof of
Knowledge

”I’ll put you through into Looking-glass House. How would you like that?”

– Lewis Carroll (Through the Looking-Glass)

This chapter focuses on the link between the physical world of artifacts and the virtual
world of logical entities. We show that authentication in pervasive computing requires
proving that an artifact, i.e. a physical entity, knows a secret. The distance-bounding
proof of knowledge paradigm is introduced and a possible implementation is proposed.
Chapter 5 will combine this mechanism with history-based signature in order to define
history-based trust establishment.

4.1 Introduction

In daily interactions, location provides privileges. For instance, a person has to be present
in a room to be able to use the switch that turns on the light of this room. It means that
this service (lightning) is restricted according to some user context. The widespread of
wireless communications renders the verification of location difficult. This chapter studies
how location, proximity, and physical interactions can be asserted and chapter 5 will use
those contextual assertions to establish and enforce trust relationships.

Ubiquitous computing [Wei91], context aware computing [SDA99], and augmented
reality [Ing03] have been topic of research since the 1990s. Those topics are related by
a desire to merge the physical world with the virtual world of electronic services and
applications (see Figure 4.1). One important effect of this merge is that applications need
to know the physical location of artifacts so that they can record them and report them

74 4. Distance-Bounding Proof of Knowledge

to us [IU97, BK, McC01]: what lab bench was I standing by when I prepared these tissue
samples? How should our search-and-rescue team move to quickly locate all the avalanche
victims? Can I automatically display this chart on the video projector I am standing next
to? Who is the owner of this object? And so on.

A, KP,A

?

P

Address

Book?

VirtualReal world

Alice

Printer

Figure 4.1: Links between artifacts and their virtual representations

Taking physical location into account has a strong impact on security. Indeed, is it
possible to authenticate a physical object: is it possible to certify and verify attributes of
a given artifact? How is it possible to prove one’s location to enable context-based access
control? How is it possible to prove that some entity was in some place? In general,
authentication is based on the knowledge of a secret, like a private key. When location
matters, authentication means verifying that a physical entity knows a secret. In other
words, new mechanisms are necessary to verify that a secret is locally known.

In this chapter, we focus on applications combining physical proximity and crypto-
graphic identification schemes. More precisely, we are interested in a quite recurring
family of applications in cryptography where a prover tries to convince a verifier of some
assertion related to his private key. The assertion in our case is that the prover is within
a certain physical distance. Brands and Chaum [BC93] were the first to specifically ad-
dress this problem. They introduced distance-bounding protocols that allow to determine
a practical upper bound on the distance between two communicating entities. The verifi-
cation is performed by timing the delay between sending out a challenge bit and receiving
back the corresponding response bit, the number of challenge-response interactions be-
ing determined by a chosen security parameter. This approach is feasible if and only if
the protocol uses very short messages (one bit) on a dedicated communication channel
(e.g. wired or infrared communication medium) and if nearly no computation is required
during each challenge-response exchange (few logical operations). These features enable
round-trip times of few-nanoseconds.

The protocols given in [BC93] address the case where an intruder sits between a legit-
imate prover and a verifier and succeeds in performing the distance verification process.

4.2. Problem Statement: Authentication in Pervasive Computing 75

Here, we provide an extension of those protocols. Our solution addresses the case where
the prover and the intruder collaborate to cheat the verifier.

4.2 Problem Statement: Authentication in Pervasive

Computing

In this section, we first study the requirements of authentication in pervasive computing.
Next, we describe three types of attacks that we tackle further on in this chapter, namely
distance frauds, mafia frauds, and terrorist frauds.

4.2.1 Redefining Authentication

Authentication aims at proving the validity of a claim to a verifier. This claim is often
the identity of the prover but it can be the fact that she is part of a group or even more
generic attributes. The authentication of human beings relies on:

• What the prover is (biometrics)

• What the prover knows (password, PIN code, etc.)

• What the prover has (tokens like smart cards, etc.)

In this dissertation we only focus on the latter case. We assume that each user carries a
trusted personal device that may be tamper-resistant and that protects its owner’s secrets
(secret key, private key, etc.). Authenticating this artifact is equivalent to authenticating
the user. Using the personal device can require biometric or password-based access control.

In pervasive computing, authentication has to be redefined because the number of
artifacts and the lack of trust infrastructure makes identity-based authentication mean-
ingless [CGRZ03] and because the authentication of a physical object does matter when
services are provided by artifacts. It is necessary to have a way to certify attributes of ar-
tifacts: the identity of the manufacturer, the guarantee that an artifact was controlled by
a trusted party, the identity of the owner, or any other characteristic should be associated
to the artifact in a tamper-proof manner.

For the sake of clarity, let us take a very simple example: Alice is in a public place
with a PDA. The PDA contains confidential data which she wants to print out. Alice
wants to use a wireless link to send data to a chosen printer. Authenticating the chosen
printer, i.e. proving some of its attributes can be split into two parts:

76 4. Distance-Bounding Proof of Knowledge

1. Linking the chosen artifact to a public key (e.g. the digest or fingerprint of the
artifact’s public key might be written on this artifact).

2. Linking the public key of the artifact to some attributes (e.g. an attribute certificate
might be generated by the artifact owner).

The former part links physical and virtual worlds and is subject to new types of
attacks. Those attacks and solutions to define artifact authentication will be discussed in
the remaining of this chapter.

4.2.2 New Attacks against Authentication

In this section we will present attacks against authentication in pervasive computing as
outlined above. We only focus on real-time attacks, i.e. attacks that need exchanges with
a legitimate prover. In other words, we assume that the private key of the prover cannot
be stolen by an intruder and that this private key is valuable so that the prover will not
disclose it to another party. The attack scheme is always the same: the verifier V , which
is in front of an intruder I, runs an authentication protocol, and gets convinced that he
is in front of a prover P .

This attack can seem similar to man-in-the-middle attacks. In a man-in-the-middle
attack, the intruder generally runs a security protocol with both legitimate parties. For
instance, P and V want to create a shared secret using Diffie-Hellman key agreement.
Unfortunately P is running the security protocol with the attacker I and this attacker
I is also running the protocol with V . As a result, instead of creating a secure channel
between P and V , two secure channels are created between P and I and between I and V .
I can observe and/or modify any information transiting between P and V . Fortunately,
this type of attack can be easily avoided when authentication is possible. In our case, we
focus on a similar problem: the mafia fraud attacks.

Classical Mafia Fraud Attack

The mafia fraud also involves a middleperson (intruder) but contrary to man-in-the-middle
attacks, this intruder does not perform any cryptographic operation based on the security
protocol and only acts as a proxy that forwards challenges and responses. The attack was
first introduced in [Des88].

A classical example is given in Figure 4.1. A prover P wants to access some server I
that requires authentication, for instance movies are only delivered if the customer can
prove how old she is. The attack works as follows: the server I is owned by the mafia
and, instead of providing a random challenge, it forwards a challenge required for accessing

4.2. Problem Statement: Authentication in Pervasive Computing 77

customer Mafia’s server Bank
P I V

Access
-

Request fund transfer
-

Sign challenge c
�

Prove your age
by signing c

�

r = SIGNP (c)
response r

-

response r
-

Verify signature
Transfer funds

�

Table 4.1: Mafia-fraud attack using access control protocol

78 4. Distance-Bounding Proof of Knowledge

another server V . By signing the challenge sent by V and forwarded by I, P lets I access
V . This attack seems näıve because it relies on the following assumptions:

• P is using the same asymmetric key pair to sign documents and during challenge-
response protocols.

• The challenges and responses are not specific to the protocol, e.g. the challenge is
a random number and the response is a signature on this nonce.

In other words, to avoid mafia frauds, it is mandatory to use different keys for different
purposes or to use more complex challenges.

Attacks in Pervasive Computing

Mafia frauds are more realistic and even easier to implement in pervasive computing when
the problem is to be sure that the verifier is in front of the certified prover that might
offer physical interfaces (e.g. keyboard, display) or deliver ”physical goods” (e.g. cash,
printout). Brands and Chaum [BC93] were the first to specifically address this problem.
The principle of this attack is very simple. Let us imagine that Alice carries some wireless
token that automatically responds to challenges sent by the environment. When arriving
at home Alice is authenticated by some sensor and the front door is opened. When Alice
sits in front of her terminal, she is automatically logged in. Some pairing mechanism
ensures that only authorized challenges are accepted. In other words, the token will not
respond to a challenge coming from an unknown source. We assume that the pairing is
secure and that man-in-the-middle attacks are not possible. We can even assume that
this token is tamper resistant or physically protected by its owner who carries or wears it.
However, a very simple attack can be performed: Eve is in front of the door of Alice, Eve
receives some challenge c that is directly forwarded to an accomplice Edgar who is waiting
close enough to Alice. Edgar sends this challenge to Alice’s token that returns a correct
response which is forwarded to the sensor with the help of Eve. The door is opened and
Eve can enter the house. The couple Eve-Edgar acts as an intruder (or proxy). This
attack is realistic if it is possible to forward the challenge-response protocol without being
detected. This happens in numerous situations because the round trip time is often long
[BB04a]: the signature is time-consuming especially when computed by limited tokens
(e.g. smart cards) and the protocol used for local communication adds delay. Moreover
due to the heterogeneous hardware that might be used by the prover, the verifier generally
tolerates the worst round-trip time.

4.2. Problem Statement: Authentication in Pervasive Computing 79

4.2.3 Definitions

Distance-bounding protocols have to take into account the three real-time frauds that
are depicted in Figure 4.2. These frauds can be applied in zero-knowledge or minimal
disclosure identification schemes.

Prover Verifier

(a) Distance Fraud

Prover Intruder
(mafia)

Verifier

(b) Mafia Fraud

Prover Intruder
(terrorist)

Verifier

(c) Terrorist Fraud

: Honest party

: Fraudulent party

: Close

: Remote

Figure 4.2: Three Real-Time Frauds

The first fraud is called the distance fraud and is defined in the following (Figure 4.2-a)

Definition 4.1 (Distance Fraud) In the distance fraud, two parties are involved: one
of them (the verifier V) is not aware of the fraud that is going on, the other one (the
fraudulent prover P) performs the fraud. The fraud enables P to convince V of a wrong
statement related to its physical distance to V .

The distance fraud has been addressed in [BC93]. This fraud consists in the following:
if there is no relationship between the challenge bits and the response bits during the
distance verification and if the prover P is able to know at which times the challenge bits
are sent by the verifier V , he can make V compute a wrong upper-bound of his physical
distance to V by sending out the response bits at the correct time before receiving the
challenge bit, regardless of his physical distance to V .

The second fraud is called the mafia fraud (Figure 4.2-b):

Definition 4.2 (Mafia Fraud) In the mafia fraud, three parties are involved: two of
them (the honest prover P and the verifier V) are not aware of the fraud that is going
on, the third party (the intruder I or mafia) performs the fraud. The fraud enables I to
convince V of an assertion related to the private key of P .

The mafia fraud has been first described in [Des88]. In this fraud, the intruder I is usually
modeled as a couple {P̄ , V̄ } where P̄ is a dishonest prover interacting with the honest

80 4. Distance-Bounding Proof of Knowledge

verifier V and where V̄ is a dishonest verifier interacting with the honest prover P . Thanks
to the collaboration of V̄ , the fraud enables P̄ to convince V of an assertion related to the
private key of P . The assertion is that the prover is within a certain physical distance.
This fraud was also called Mig-in-the-middle attack in [And01].

The third fraud is called the terrorist fraud (Figure 4.2-c):

Definition 4.3 (Terrorist Fraud) In the terrorist fraud, three parties are involved, one
of them (the verifier V) is not aware of the fraud going on, the two others (the dishonest
prover P and the intruder I or terrorist) collaborate to perform the fraud. The help of P
enables I to convince V of an assertion related to the private key of P .

The terrorist fraud was first described in [Des88]. In this fraud, the prover and the
intruder collaborate to perform the fraud whereas in the mafia fraud the intruder is the
only entity that performs the fraud. Note that the prevention of terrorist frauds assures
the prevention of mafia frauds.

4.2.4 Attack Examples

Nowadays, wireless technology is easy to integrate and might be used to mount mafia
frauds against deployed services. For instance, such an attack could be performed against
point of sale terminals even if terminals and credit cards are tamper-resistant and certified.
We think that such attacks will spread quickly when numerous daily interactions involving
micro payments and access control will happen in pervasive computing environments.

This section presents two types of attack against systems that do not address artifact
authentication properly. First, a dummy artifact acts as a proxy in order to impersonate
the original artifact that is hidden. This attack aims at verifying attributes or transferring
rights to a wrong object. Next, a malicious visitor acts as a proxy in order to get location
stamps for remote peers.

Artifact Impersonation

The first type of physical proxy attack aims at impersonating some artifact. We assume
that artifacts are able to prove that they know some secret (e.g. a private key) and that
this secret is protected by some tamper-resistant hardware:

• A watch could embed a tamper-resistant core (e.g. a smart card) that protects its
private key (see Figure 4.3(a)). The watch’s public key is certified by the manufac-
turer and the public key of the manufacturer is known by the verifier.

4.2. Problem Statement: Authentication in Pervasive Computing 81

• An automatic teller machine (ATM) is shaped as a safe and protected by alarms
and thus cannot be tampered with. Each ATM has a private key and a public key,
which is certified by the bank. The verifier knows the public key of the bank.

Prover
(Watch)

Challenge n

x
cert PK(x), cert

Verifier
(Alice + PDA)

(a) Expected Interaction

Intruder

n

PK(x), cert

Prover
(Hidden)

nx
cert

Verifier

(b) Attack

Figure 4.3: Attack against the authentication of an artifact: the attribute certificate
displayed by the PDA is not related to the chosen artifact (watch).

Impersonating the device means that, during the interaction, a dummy device is pre-
sented to the user. In Figure 4.3(b), a user wants to buy some valuable artifact (e.g. a
Swiss watch). To fight against forgery, the manufacturer has embedded a chip that enables
digital certification. A malicious seller presents a faked watch that acts as a proxy and
forwards the challenge-response protocol to the real watch that is hidden in the pocket of
the malicious seller. In another situation, a user checks whether he is in front of a certified
ATM, the dummy ATM acts as a proxy and forward the challenge responses. When the
user requests 100$, the cash is delivered in another place where the attacker is waiting.

This attack is meaningful when physical entities (printer, ATM, watch, etc.) offer phys-
ical services (printout of confidential data, cash delivery, changing ownership of consumer
electronics, etc.). This attack is meaningless in purely virtual interactions (accessing a
server, obtaining a map, etc.).

User Impersonation and P2P Privilege Exchange

The second example of attack aims at impersonating a user (e.g. Alice) so that a verifier
will think that she is physically present when only a colluding partner is present and acts
as a proxy. We assume that persons are able to prove that they know some secret (e.g.
their private key) and that this secret is valuable or not available, i.e. generated and
protected by a tamper-resistant module. Different attack cases can be proposed:

• Some building access control mechanism using sensors or card readers can easily be
misled and open the door to an attacker.

82 4. Distance-Bounding Proof of Knowledge

Km 10

Stamp(P1)
x
cert

Prover (P1)
(Alice + PDA)

Verifier
(Location Stamper)

PK(x), cert

Challenge n

(a) Expected Interaction

Provers
(Remote) Intruder

P1

P2
Km 10

Stamp(P1)

Verifier
(Location Stamper)

PK(x), cert

n

x
cert

Stamp(P1)

PK(x), cert

n

(b) Attack

Figure 4.4: Attack against location service. A malicious visitor acts as a proxy and
forwards the challenges and responses of peers in order to let them get discount without
visiting the shop.

• Deploying terminals to provide location- and time-stamps could be interesting to
let users prove that they were somewhere at some time (see Figure 4.4(a)). Such
a system could be defeated by intruders acting as proxies for someone else. Alice
could thus prove that she went to some place without having moved (see Figure
4.4(b)).

• Discounts could be offered to people that frequently visit some shop or to people
that participated to some event. The attack would result in a discount offered to
friends of such people, defeating the commercial policy of the shop.

Figure 4.4(b) shows how provers P1 and P2 (peers of the intruder) can receive location
stamps without visiting the delivery place. Tokens of malicious users are not tampered
with.

4.3 State of the Art: How to Prove One’s Location

Examples of Section 4.2.4 show in what attacks against a combination of physical and vir-
tual entities is counterintuitive. Each time we presented this work [BR02] and [BR03b], it
led to interesting exchanges, numerous questions, and multiple proposals. Unfortunately,
careful verifications have often shown security holes approaches that seemed promising.
This section presents a state of the art listing possible approaches and explaining why a
large part of them do not fulfill our threat model or are not practical enough.

There are many techniques to get one’s location or to locate devices [HB01], the global
positioning system (GPS) being one of the most widely deployed. Cell-phones operators
can locate phones knowing the cell and using triangulation [GW98]. In that manner they
can propose location service to their customers. Active Badge [WHFG92] has been the
first indoor location system. Badges used infrared to emit identifiers that were collected by

4.3. State of the Art: How to Prove One’s Location 83

fixed infrared sensors and transmitted to a server. Active Bat [HHS+99] uses ultrasound
time of flight to provide more accurate physical positioning than Active Badge. Users
and objects carry Active Bat tags. A controller sends a short range radio signal that
synchronizes sensors and makes the bat emit an ultrasonic pulse that is detected by
surrounding sensors. Each sensor computes the distance to the bat and sends it to a
server that find out the location of the bat. Cricket [PCB00] proposes a passive technique
for indoor location similar to GPS: a set of ultrasound emitters sends signals to objects
that perform their own triangulation to know their location. Radar [BP00] is a building-
wide tracking system based on WLAN. Base stations use the signal strength of wireless
devices to evaluate their distance. Magnetic tracker generates axial magnetic-field pulses
so that receivers can compute their orientation and location. Finally, authors of [GLHB03]
propose the combination of different location techniques and works on location in ad-hoc
and sensor networks [BHE00] explore distributed approaches.

Unfortunately, the approaches presented in the previous paragraph do not address
security. Indeed such techniques enable the location of an honest user but do not tackle
malicious users pretending to be at a specific location: location systems can be attacked,
e.g. GPS signal can be spoofed. Moreover, knowing its location is not sufficient to prove
it. The following subsections present different approaches that can be used to prove one’s
location. Table 4.2 summarizes the evaluation of such approaches.

4.3.1 Location-Limited Channels

Location-limited channels (or constrained channels [KZS02]) aim at exchanging some
secret between two physical entities and thus assure the proximity of two devices. An
obvious implementation is to have a physical contact or a wire between both artifacts.
This mechanism can be used during the whole interaction, e.g. smart card plugged in a
point of sale terminal, or during some initialization or pairing protocol. In other words,
two devices can be physically linked for exchanging their public keys or for sharing a secret
key. Thanks to this initial key exchange, confidentiality, integrity, and authentication can
be ensured on any wireless communication channel. [SA99] proposed to initially share
a secret through a contact channel in order to secure subsequent interaction based on
wireless channels. This model was extended to address peer-to-peer interactions [Sta00].

This basic concept has been extended in order to go without any wire or contact.
Active badges were already using infrared as a local channel. In [BSSW02], IrDA is used
as a location-limited channel and physical contact is also seen as an option. IrDA is
interesting because it is short-range and directional enough to select a specific device.
Limited-range radio channels allow local exchanges of secrets [CN02, CD00b].

This scheme works only when the attacker is not physically present. It can only protect
a system against distance frauds.

84 4. Distance-Bounding Proof of Knowledge

Disable Disable Disable

Mechanism Description distance mafia terrorist Mutual User-

fraud fraud fraud authent. friendly

General Purpose Location: no security con-
sideration (e.g. GPS, Cricket)

- - - - ×

Location Limited Channels: exchange secret
trough local channel (e.g. wire, IrDA)

× - - × (×)

Context Sharing: create a secret from contex-
tual data (e.g. local beacon, movement patern)

× - - × ×

Proximity Evaluation: evaluate proximity
thanks to physical effects (e.g. sound propaga-
tion, signal strength)

× - - × ×

System Observation: trace devices and/or
users in order to check the coherence of there ac-
tions (cannot be in two places at the same time,
etc.).

(×) (×) (×) - -

Certification of Location: trusted third party
certifies that some appliances is fixed at some
location.

× × × - -

Isolation: isolates the artifact when verifying
that it knows some secret.

× × × - -

Unforgeable Channel: uses channels that are
difficult to forward without knowing a secret.

× (×) - × ×

Quantum Cryptography: based on quantum
effect that forbid a proxy to forward photons.

× × - × ×

Radio Frequency ToF: measure round trip
time at the bounded speed of light.

× (×) - × (×)

Distance-bounding Proof of Knowledge:
the solution presented in this chapter.

× × × × (×)

Table 4.2: Comparison of location mechanisms. ×: fulfill the requirement; (×): partially
fulfill the requirement; −: do not fulfill the requirement.

4.3. State of the Art: How to Prove One’s Location 85

4.3.2 Context Sharing

A straightforward extension of location limited channels is to use some contextual data
to initiate the key exchange: all devices within some space can observe the environment
in order to share some local knowledge. For instance, a beacon can broadcast some secret
to all devices within a room. This secret can be used to bootstrap some secure group
among entities that are present.

In [DM96] the signal of Global Positioning System (GPS) satellite is used. The GPS
signal of a set of up to twelve satellites is used to compute a local secret and exchange
keys. Users can be involved to force some context sharing. Bluetooth, in its most secure
configuration requires the user to enter a PIN into both devices in order to secure their first
communication. The pairing mechanism of Smart-Its Friends [HMS+01] also involves the
user who has to shake artifacts together in order to create a common movement pattern
that is subsequently used to bootstrap the security of communications.

Some secrets, especially GPS signal, can be computed by remote attackers and thus do
not protect the initialization. However, it is possible to provide secure enough contextual
secrets that are not available to attackers. This approach prevents distance frauds and
makes mafia frauds more difficult to mount.

4.3.3 Proximity Evaluation

Different solutions exist to evaluate the distance between two devices. This subsection
describes various approaches and subsection 4.3.8 focuses on solutions relying on the speed
of light that ensure the bounded round-trip time of an electromagnetic or electric signal.

Sound and especially ultra-sound is interesting to measure distance because it is slow
enough to authorize computation without reducing the accuracy of the measure. Authors
of [SSW03] go one step forward: the verifier sends a radio challenge to the prover that
responds with an ultrasound response. The processing delay due to the computation
of the response is shorter than the propagation time of the ultrasound media and only
slightly reduces the location precision. Sound-based approaches cannot protect against
physically present attackers and thus can only prevent distance frauds.

4.3.4 System Observation

Keeping a trace of all interactions involving a user can allow real-time verification. For
instance, a user cannot enter a building twice without leaving or a user cannot get a proof
of location in Europe and a few minutes later get another proof of location in the USA.
Such a system could be seen as a real-world Intrusion Detection System (IDS). Sensors,

86 4. Distance-Bounding Proof of Knowledge

be they embedded into the floor [OA00] or cameras [KHM+00] could also be involved.
Such a scheme could be deployed in a restricted perimeter (military base, airport, etc.)
but is very difficult to use for daily interactions. Moreover it is incompatible with privacy
concerns.

4.3.5 Certification of Fixed Location

Another approach to verify proximity is to compare the location of two devices. The
verifier is mobile and knows his location (e.g. GPS, cell phone network). The prover is
fixed and is certified as standing in a given place.

The verifier obtains his own location and gets the certificate of the server (e.g. ATM)
that should be in front of him. The verifier checks the certificate, computes the distance
and direction of the server, and displays it. The user can verify that he is in front of an
appliance certified by some entity, e.g. a bank.

This solution avoids physical proxy attacks but imposes that only fixed devices can be
verified. In other words, the prover can prove his location to the verifier but the verifier
cannot prove his location. This scheme can only work when one device is fixed.

4.3.6 Isolation

A widely deployed solution to check whether a physical entity knows a secret is to isolate
this artifact during a challenge-response protocol. Using a Faraday cage during identifi-
cation is not new [BBD+91] and is used in ATM to check that a smart card embeds a
private key.

This solution prevents distance frauds, mafia frauds as well as terrorist frauds. How-
ever, it is difficult to deploy, not user-friendly, and it does not allow mutual authentication.

4.3.7 Unforgeable Channel

The goal of unforgeable channels is to use communication media that are difficult to create
without knowing some secret. For instance, channel hopping or RF watermarking makes
it difficult to transfer data necessary to create the signal to another place. In Appendix A,
we propose the use of quantum cryptography as an ultimate channel protection scheme.

Authors of [AS02] propose a new implementation of Identification between Friend or
Foe (IFF). Since IFF systems were introduced during World War II, they become today

4.3. State of the Art: How to Prove One’s Location 87

an essential part of military equipment, be it a ship, an aircraft, or even a soldier. Authors
propose to use channel hopping: tamper resistant devices secretly choose the next channel
to use. An intruder has to listen to and forward all channels because it does not know
which channel is listened by the impersonated device. When numerous channels are
available to a large set of devices, the bandwidth necessary to forward potential messages
becomes unaffordable.

Another approach is to hide some geographical information within data packets (packet
leashes [HPJ03]) or even within the radio frequency signal form (RF watermarking). A
proxy thus cannot forward the signal when each communicating artifact knows its own
location.

Channel hopping seems very promising because it could be integrated within standard
communication systems (GSM, UMTS, Bluetooth, 802.11, etc.). Unfortunately, when two
given artifacts are communicating, it is easy to detect which channels are used. Channel
hopping seems more appropriate when a large infrastructure exists, like in a cell-phone
network. In this case, the proxy cannot detect which channel is used by the infrastructure
to communicate with the real device and thus has to forward all channels used by the
infrastructure.

This scheme protects against distance frauds and the solution proposed in [AS02] can
prevent mafia frauds as well when it is not possible to identify communication sources.

4.3.8 Radio Frequency ToF

Measuring the time of flight (ToF) of an electromagnetic or electric signal assures that
cheaters can only pretend being farther by adding delays. Indeed, the speed of light is
an upper bound for the round-trip time. This approach assures security properties that
cannot be achieved with sound-based distance measurement schemes but very short delays
and very precise time measurements are required to obtain precise proximity information.
Indeed, one meter accuracy implies responding within a few nanoseconds and thus cannot
be done through standard communication channels nor rely on cryptography [WF]. The
solution proposed in [BC93] uses very short challenges and responses (one bit) and only
Boolean operations for verifying the distance between prover and verifier. Cryptographic
functions are combined with this measurement scheme in order to prove that some entity
is in the vicinity. This scheme prevents both distance and mafia frauds. More details on
this approach are given in the next section and the remainder of this chapter extends this
scheme.

88 4. Distance-Bounding Proof of Knowledge

4.4 Distance Bounding Protocol

This section discusses why contact-based distance bounding protocols have been chosen
for the authentication of artifacts. Table 4.2 summarizes the different approaches proposed
in the previous section.

Only isolation and distance-bounding protocols are secure and precise enough to defeat
an intruder who is in front of the verifier (i.e. mafia and terrorist frauds). Isolation is
not user-friendly enough and cannot ensure mutual authentication. We thus focus on
an extension of the distance-bounding protocols proposed in [BC93]. In our solution,
we keep the initial constraints: single bit exchanges and no cryptography during the
challenge-response bits exchange.

We introduce distance-bounding proof of knowledge protocols that are adequate com-
binations of distance-bounding protocols [BC93], bit commitment schemes [PHS03] and
zero-knowledge proof of knowledge protocols. Our proposal prevents the three frauds
described above.

4.4.1 Principle

This section describes the work of Brands and Chaum [BC93] that addresses distance and
mafia frauds but that lets terrorist frauds as an open issue. In Section 4.5, we will present
our scheme that addresses distance, mafia, and terrorist frauds.

Distance-bounding protocols allow determining a practical upper bound on the dis-
tance between two communicating entities. Distance measurement is associated with
cryptographic properties in order to prove that a secret is known within a physical area.
The measurement is performed by timing the delay between sending out a challenge bit
and receiving back the corresponding response bit. The number of challenge-response
interactions being determined by a chosen security parameter. This approach is feasible
if and only if the protocol is very simple:

• Asymmetric cryptography, symmetric cryptography and even hash functions cannot
be used during the protocol (at least during the rapid exchange).

• The messages exchanged have to be as short as possible, i.e. one bit long.

• Dedicated hardware has to be used to measure the round trip time: no application-
level operation can be performed during the rapid exchange.

Based on those assumptions, we proposed a fast challenge-response protocol in [BR02]
and reached round-trip times of few-nanoseconds with a prototype. Indeed, using fast

4.4. Distance Bounding Protocol 89

logical gates, we were able to measure 2 ns RTT that is 30 cm of maximum distance (i.e.
60 cm round trip). However, we discovered shortly thereafter that Brands and Chaum
had presented a distance bounding protocol with very similar properties in [BC93].

Verifier V wants to check that the prover P (a given artifact) has some properties. P
can show a certificate signed by a trusted certification authority (CA) which certifies that
the owner of the public key KPP

has some properties. The distance-bounding protocol is
used to verify that the entity knowing the private key KSP

is close enough, i.e. this entity
is indeed the selected artifact.

One-bit challenges and one-bit responses being used, the probability of a successful
attack during a single round is high: 1/2. Using m rounds ensures that the probability
of successful attack is 2−m. Table 4.3 shows how artifact V can measure the distance to
artifact P .

P V
prover verifier

KPP
, KSP

KPP

2) Computes m bits 1) Computes m bits
random number b random number a

Begin Rapid Bit Exchange (for i ∈ {0, 1, . . . ,m− 1})
3) start measuring RTT

4) a[i]
�

5) b[i]
-

6) end measuring RTT
End Rapid Bit Exchange

7) verify RTTs
8) SIGNP (a, b)

-

9) verify signature

Table 4.3: Basic principle of Chaum’s distance bounding protocols

In steps 1 and 2, both artifacts V and P generate m random bits (respectively a and
b). Next m rapid bit exchanges occur. During rounds 0 . . . m− 1, the dedicated interface
(bold arrows) is used and the response time (few nanoseconds) is measured by V in order
to evaluate the distance to P .

90 4. Distance-Bounding Proof of Knowledge

The protocol proves that someone knowing a secret b is present. The signature of P
on {a, b} proves that P knows the secret and that it is present. This assumption is only
right when the prover does not misbehave, i.e. does not collude with an intruder. In other
words, this protocol prevents mafia frauds and distance frauds when a bit commitment is
used [BC93], but does not prevent terrorist frauds.

4.4.2 Implementation Constraints

Figure 4.5 presents the hardware architecture required to deploy distance-bounding pro-
tocols. Any involved artifact (i.e. P and V), be it a smart card or a workstation, offer
computation (PC and VC), communication facilities (label a), and specific interface hard-
ware (PH and VH). Interface hardware ensures the fast exchange of one-bit messages
(label c). The interface hardware is very simple and based on a few fast logical gates.

P V

Interface
Hardware

Interface
Hardware

a)

b)
c)

d)

Chip
PC

PH VH

Chip
VC

Figure 4.5: Dedicated hardware for distance bounding protocols

Different parameters have to be taken into account when implementing distance-
bounding protocols. First, such protocols rely on a large number of simple rounds at
each of which the probability of a successful attack is quite high. Such a protocol is thus
difficult to be rendered fault-tolerant and has to be implemented on a noiseless channel.
Broadcast media such as radio are thus seemingly out of question for implementing these
protocols.

In addition to these technical problems, radio communications do not offer a way to
precisely select a (physical) artifact, which is essential for the user who wants to authen-
ticate a precise device and not any device that can listen and answer to his requests.
Contact based approaches are better in this respect. Alternately, a directional technique
like the use of a laser may allow contacting wirelessly a precise artifact. It should be
noted however that the laser performs two different tasks at the same time. It first se-
lects a precise artifact and measures its physical distance, like the plugging of a socket
in a contact based approach. It is then used to implement a distance-bounding protocol,
therefore checking that the logical entity is effectively embodied in that artifact through
the measurement of the time taken to transmit a secret. Performing these two tasks
suggests a difficult technological integration.

Finally, mutual authentication is often required and, in this case, the selection process

4.5. Tackling Terrorist Frauds 91

has to be bi-directional. Again, defining a wireless approach based on lasers seems difficult
in that case. The easiest solution is to use contact based approaches, be they electrical
or optical. Moreover, contact-based approaches are less subject to data losses and denial
of service (DoS) attacks.

4.5 Tackling Terrorist Frauds

In this section, we present a general scheme that contains the basic building blocks of
distance-bounding proof of knowledge protocols. The scheme will be denoted DBPK. It
is an extension of the protocol of Table 4.3 with specific constraints on challenge and
response bits to prevent distance, mafia, and terrorist frauds.

4.5.1 Description

The DBPK protocol is depicted in Table 4.4. This scheme relies on a set of system-wide
settings that have to be performed before the execution of any interaction between the
prover and the verifier. Besides the cryptosystem’s public parameters, these global settings
require the prover to have a valuable private key and a certificate on the corresponding
public key. That is, before any interaction with the verifier, the prover holds a private
key x ∈ {0, 1}m whose importance is so high that the prover cannot reveal it to any
other party. In addition, the prover holds a certificate (generated by a globally trusted
authority) on its public key y = Γ(x).

The first stage of the DBPK protocol is called the Bit Commitment stage. During
this stage the prover first picks a random symmetric key k ∈R {0, 1}m and uses it to
encrypt her private key x according to a publicly known symmetric key encryption method
E : {0, 1}m → {0, 1}m. This leads to e = Ek(x) ∈ {0, 1}m. Note that as in every encryption
scheme, only the knowledge of both e and k allows to compute the private key x = Dk(e).
Once the encryption performed, the prover commits to each bit of both k and e according
to a secure bit commitment scheme commit. For each bit k[i] (resp. e[i]), a string vi (resp.
v′i) is randomly chosen by the prover to construct the commitment blob c(k,i) (resp. c(e,i)).

Once the Bit Commitment stage is completed, the actual distance-bounding inter-
actions are executed during the Distance-Bounding stage. Basically, m interactions are
performed between the prover and the verifier. In the ith interaction, the prover releases
either k[i] or e[i] depending on whether the challenge bit is equal to 0 or to 1. Note that
k[i] (resp. e[i]) denotes the ith bit in the binary representation of k (resp. e) where k[0]
(resp. e[0]) is the least significant bit of k (resp. e).

After the execution of the m challenge-response bit exchanges, the prover opens the
commitments on the released bits of k and e. The Commitment Opening stage consists

92 4. Distance-Bounding Proof of Knowledge

P V
Prover Verifier

private key x
public key y = Γ(x)

Bit Commitments
secret key k ∈R K

m = dlog2(|K|)e ,M = {0, . . . ,m− 1}
e = Ek(x) ∈ {0, 1}m

for all i ∈M vi, v
′
i ∈R {0, 1}∗

for all i ∈M c(k,i) = commit(k[i], vi)
for all i ∈M c(e,i) = commit(e[i], v′i)

for all i ∈M c(k,i), c(e,i)
-

Distance-Bounding (for all i ∈M)
ai ∈R {0, 1}

�

bi = k[i] if ai = 0
bi = e[i] if ai = 1

bi ∈ {0, 1}
-

Commitment Opening
for all i ∈M

vi (if ai = 0) v′i (if ai = 1)
-

c(k,i)
?
= commit(bi, vi) if ai = 0

c(e,i)
?
= commit(bi, v

′
i) if ai = 1

Proof of knowledge
{c(k,i), c(e,i)}0≤i≤m−1 7→ z = Ω(x, v)

PK[(α, β) : z = Ω(α, β) ∧ y = Γ(α)]
� -

Table 4.4: A general scheme for DBPK[α : y = Γ(α)]

4.5. Tackling Terrorist Frauds 93

on sending the string vi if k[i] has been released and v′i otherwise. Note that only half the
bits of k and e are released to the verifier. This should not allow the verifier to get any
significant information about the valuable private key x. In the case where the verification
of c(k,i) (resp. c(e,i)) fails, the verifier sends back an error notification of the form errork(i)
(resp. errore(i)).

The last step in the DBPK protocol is the Proof of Knowledge stage. During this stage,
the prover convinces the verifier in a zero-knowledge interaction that she is the party who
performed the three previously described stages. That is, the prover proves that she has
generated the different commitments, that the generated commitments correspond to a
unique private key, and that this private key corresponds to the public key y that is used
by the verifier to authenticate the prover. Note that before the proof of knowledge process
can be performed, the verifier must compute z = Ω(x, v) where v is known only by the
prover. As z depends on and only on the commitments on the bits of k and e, it may
even be computed just after the Bit Commitment stage. The proof of knowledge we use
is denoted PK[(α, β) : z = Ω(α, β) ∧ y = Γ(α)] where the Greek small letters denote the
quantity the knowledge of which is being proved, while all other parameters are known to
the verifier. The functions Ω, Γ, and commit are adequately chosen to meet our security
requirements, namely the prevention of the distance, mafia, and terrorist frauds. More
details about the needed properties are given in Section 4.7.

4.5.2 Sketch of Security Properties

To sum up, we point out, in the following, the major principles behind the general scheme
described above. We define by DBPK[α : y = Γ(α)] the distance-bounding proof of
knowledge of a secret x so that y = Γ(x). The principle of the scheme can be sketched as
follows:

(1) Distance bounding phase implies that someone knowing k′ and e′ is close.

(2) Bit commitments on bits of k and e can be transformed into z that is the result of
a collision-free one-way function applied to the decryption of e: z = Ω(Dk(e), v

′).

(3) Opening bit commitments shows that k′ = k and e′ = e.

(4) Proof of knowledge shows that z is the result of a collision-free one-way function
applied to x: z = Ω(x, v)

And thus:

(4),(2): Because it is not possible to have the same result z when the collision-free one-way
function is applied to two different values, x = Dk(e).

94 4. Distance-Bounding Proof of Knowledge

(4),(2),(3): x = Dk(e) = Dk′(e
′).

(4),(2),(3),(1): Someone knowing x is close.

4.6 Distance-bounding Proof of Discrete Log

This section presents specific instantiation of DBPK: distance-bounding proof of knowl-
edge of a discrete logarithm, which consists of exactly the same building blocks of the
DBPK protocol. The described protocol will be denoted DBPK-Log = DBPK[α : y =
gα].

The two first phases of the DBPK-Log protocol are global settings. In the Initialization
stage, a certification authority (CA) provides the public parameters of the system.

4.6.1 Initialization

CA sets up the system’s global parameters

• CA chooses a large enough strong prime p, i.e. there exists a large enough prime q
such that p = 2q + 1

• CA chooses a generator g of Z∗
p

• CA chooses an element h ∈R Z∗
p

The randomly chosen element h will be used by the commitment scheme. The only
requirement is that neither of the prover and the verifier knows logg(h). This can be
achieved either by letting the trusted authority generate this element or by making the
prover and the verifier jointly generate h. The two alternatives rely on the intractability
of the discrete logarithm problem [MVO96].

In the Registration stage, a user chooses a private key and registers at the trust
authority so to get a certificate on the corresponding public key.

4.6.2 Registration

The following steps are taken by P to get a certified public key corresponding to a valuable
private key

4.6. Distance-bounding Proof of Discrete Log 95

• P selects an odd secret x ∈R Zp−1 \ {q}, then computes y = gx. The public key of
P is y and his private key is x

• P registers his public key with CA so CA publishes a certificate on this public key

Assuming that the global settings have been performed, the actual distance-bounding
proof of knowledge protocol can be performed by the prover P and the verifier V . In the
Bit Commitments stage, P chooses a randomization factor u, generates a random key k,
and uses this key to encrypt the randomized private key ux. Then, P performs a secure
commitment on each bit of the key k and encryption e.

4.6.3 Bit Commitments

The following steps are performed

• P chooses u ∈R {1, . . . , p− 2}, then sends u to V

• P chooses k ∈R Zp−1 and let e = ux− k mod p− 1

• For all i ∈ {0, . . . ,m − 1} where m = dlog2(p)e, P chooses vk,i, ve,i ∈R Zp−1,
computes ck,i = gk[i] · hvk,i and ce,i = ge[i] · hve,i , then sends ck,i and ce,i to V

Once the verifier V receives all the commitment blobs corresponding to the bits of k
and e, the Distance-Bounding stage can start: a set of fast single bit challenge-response
interactions is performed. A challenge corresponds to a bit chosen randomly by V while
a response corresponds either to a bit of k or to a bit of e.

4.6.4 Distance-Bounding

The following interactions are performed m times and P reveals half bits of k and e.
For all i ∈ {0, . . . ,m− 1},

• V sends a challenge bit ai ∈R {0, 1} to P

• P immediately sends the response bit bi = āik[i] + aie[i] to V

At the end of the Distance-Bounding stage, the verifier V is able to compute an upper-
bound on the distance to P . In order to be sure that P holds the secrets k and e, the
prover P opens, during the Commitment Opening stage, the commitments on the bits of
k and e that have been released during the Distance-Bounding stage.

96 4. Distance-Bounding Proof of Knowledge

4.6.5 Commitment Opening

The commitments of the released bits are opened. If all the checks hold, all the bit
commitments on k and e are accepted, otherwise they are rejected and an error message
is sent back

• For all i ∈ {0, . . . ,m− 1}, P sends āivk,i + aive,i to V

• For all i ∈ {0, . . . ,m− 1}, V performs the following verification:

āick,i + aice,i
?
= gāik[i]+aie[i] · hāivk,i+aive,i

The Proof of Knowledge allows the verifier V to be sure that the sum of the secrets k and
e is equal to the randomization of the valuable private key of the prover P . From the bit
commitments, V can compute:

z =
∏m−1

i=0 (ck,i · ce,i)
2i

=
∏m−1

i=0

(
gk[i]hvk,i · ge[i]hve,i

)2i

=
∏m−1

i=0

(
gk[i]+e[i]

)2i

·
∏m−1

i=0 (hvk,i+ve,i)
2i

=
∏m−1

i=0

(
g2ik[i]+2ie[i]

)
·
∏m−1

i=0

(
h2ivk,i+2ive,i

)
= g

∑m−1
i=0 (2i·k[i]+2i·e[i]) · h

∑m−1
i=0 (2i·(vk,i+ve,i)) = gk+e · hv = gu·x · hv mod p

Note that V is able to compute z as soon as all the commitments on the bits of k and
e are received and that u is public.

4.6.6 Proof of Knowledge

Given z = gu·x ·hv, the following proof of knowledge is performed by P and V : PK[(α, β) :
z = guαhβ ∧ y = gα].

Here is a possible execution of this proof of knowledge: PK[(α, β) : z = guαhβ∧y = gα]
Given z = gux ·hv and y = gx, the interactions below are performed t times as long as the
verification step is performed successfully.

1. P −→ V : w1 = gur1 · hr2 and w2 = gr1 where r1, r2 ∈R Zp−1

2. V −→ P : c ∈R {0, 1}

3. P −→ V : s1 = r1 − cx and s2 = r2 − cv

4.7. Security Analysis 97

4. Verification :
if c = 0: w1

?
= gus1 · hs2 and w2

?
= gs1

if c = 1: w1
?
= z · gus1 · hs2 and w2

?
= y · gs1

4.7 Security Analysis

In this section, we discuss the relevant security properties of the DBPK-Log protocol.
First, we show that our protocol prevents distance, mafia, and terrorist frauds. Next, the
security properties of the encryption scheme that is used to hide the prover’s private key
are studied.

4.7.1 Preventing Distance, Mafia, and Terrorist Frauds

The first security requirement for our distance-bounding proof of knowledge protocol is
a correct computation of an upper-bound of the distance between the prover and the
verifier. This requirement is already achieved in the DBPK general scheme:

Proposition 4.1 If the DBPK protocol is performed correctly, then the distance fraud
has a negligible probability of success.

Proof: Assume that the prover P knows at which times the verifier V will send out bit
challenges. In this case, she can convince V that she is nearby by sending out the bit
response bi at the correct time before he receives the bit ai. The probability that P sends
correct responses to V before receiving the challenges is equal to:

p =
m∏

i=1

(P [bi = k[i]|ai = 0] + P [bi = e[i]|ai = 1]) = 2−m

�

In Proposition 4.1, the correct execution of the protocol means that each party performs
exactly and correctly the actions specified in the different steps of the protocol. The
DBPK-Log protocol is an implementation of the DBPK protocol and thus:

Proposition 4.2 If the DBPK-Log protocol is performed correctly, then the distance fraud
has a negligible probability of success.

98 4. Distance-Bounding Proof of Knowledge

Using the same notations of Section 4.5, we introduce the three following properties.

Property 4.1 Let Γ : {0, 1}∗ → {0, 1}∗ be the function such that y = Γ(x), then the
following holds:

• Given y, it is hard to find x such that y = Γ(x).

• It is hard to find x 6= x′ such that Γ(x) = Γ(x′).

Property 4.2 Let Ω : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be the function such that z = Ω(x, v),
then the following holds:

• Knowing z and Ω, it is hard to find (x, v).

• It is hard to find (x, v) 6= (x′, v′) such that Ω(x, v) = Ω(x′, v′).

Property 4.3 Let E : {0, 1}m × {0, 1}m → {0, 1}m be the function such that e = Ek(x).
then the following holds:

(a) E is an encryption scheme: knowing e and E, it is hard to find x without knowing
k; and given e and k, x = Dk(e) is efficiently computable.

(b) Given either k[i] or e[i] for all i ∈ {0, . . . ,m− 1}, it is hard to find x.

(c) It is efficient to compute z = Ω(x, v) from the commitments on the bits of k and e.

The second security requirement for distance-bounding proof of knowledge protocols con-
sists in preventing terrorist frauds. This requirement can already be achieved in the
DBPK general scheme according to the following.

Proposition 4.3 If Property 4.1, Property 4.2, and Property 4.3 are valid and if the
DBPK protocol is performed correctly, then the terrorist fraud has a negligible probability
of success.

Proof: A successful execution of the Proof of Knowledge stage proves that the entity
knowing the private key corresponding to the public key y has performed the Bit Com-
mitments stage. Assume that the latter has been performed using k and e. Then, the
probability for an intruder to perform the Distance-Bounding stage successfully using
(k′, e′) 6= (k, e) is equal to:

4.7. Security Analysis 99

p =
m∏

i=1

(P [k[i] = k′[i]|ai = 0] + P [e[i] = e′[i]|ai = 1]) = 2−m

This shows that without knowing (k, e), i.e. without knowing x = Dk(e), the proba-
bility of success of a terrorist fraud is negligible. �

The DBPK-Log consists of the same building blocks than those of the DBPK protocol.
Moreover, the three following statements hold:

(1) The function Γ : x 7→ gx respects Property 4.1 thanks to the intractability of the
discrete logarithm problem.

(2) The function Ω : (x, v) 7→ gx · hv respects Property 4.2 thanks to the intractability
of the representation problem (see Section 4.7.2).

(3) Given u, the one-time pad Ek(x) 7→ u · x− k mod p− 1 satisfies Property 4.3 (see
Section 4.7.3).

The properties listed above lead to the following.

Proposition 4.4 If the DBPK-Log protocol is performed correctly, then the terrorist
fraud has a negligible probability of success.

Recall that the prevention of terrorist frauds makes the prevention of mafia frauds
straightforward.

4.7.2 The Representation Problem

This section proves that it is not possible to generate two representations of a value
z with respect to a generator tuple (g, h), i.e. two pairs (a1, a2) and (a′1, a

′
2) so that

ga1ha2 = ga′1ha′2 . Generator g and h are chosen randomly so that the logarithm of h to
the base g remains unknown. In our scheme, it means that g and h cannot be chosen by
the prover. The remaining of this section is a simplification of the complete proof that
can be found in [Bra93].

Proposition 4.5 The following statements are equivalent.

(1) There exists a polynomial-time algorithm A(1) which, on input a generator tuple
(g, h), output a number z and two different representing index tuple of z:
A(1)(g, h)→ z, (a1, a2), (a

′
1, a

′
2) with z = ga1ha2 = ga′1ha′2.

100 4. Distance-Bounding Proof of Knowledge

(2) There exists a polynomial-time algorithm A(2) which, on input a generator tuple
(g, h), output a nontrivial representing index tuple of 1: A(2)(g, h) → (a1, a2) with
1 = ga1ha2.

(3) There exists a polynomial-time algorithm A(3) which solves the Discrete Log problem.

Proof: We only need to show probabilistic polynomial-time transformations from 3) to 1)
and 2), since we can come up easily with feasible algorithms A(1) and A(2) if we have A(3).

(1) ⇒ (2) Algorithm A(2) proceeds as follows:

1. Feed the generator tuple (g, h) into A(1) and receive z and two representing index
tuples (a1, a2) and (a′1, a

′
2) of z.

2. Output (a1 − a′1, a2 − a′2). Like this, ga1−a′1 · ha2−a′2 = z/z = 1.

(2) ⇒ (3) Algorithm A(3) proceeds as follows:

1. Generate a 2-tuple (u1, u2) at random, and compute the generator-tuple (g, h) ac-
cording to g = au1 , h = bu2 .

2. Receive an index-tuple (a1, a2) from A(2).

3. Compute and output logb(a): ga1 · ha2 = 1 it means that au1a1 · bu2a2 = b0 and thus

logb

(
au1a1 ḃu2a2

)
= u1a1logb(a) + u2a2 = 0

logb(a) = −u2a2

u1a1

�

4.7.3 Encryption of the Private Key

To be compliant with Poperty 4.3, we propose a dedicated one-time pad: e = Ek(x) =
u·x−k mod p−1 where k ∈ Zp−1 and u ∈ {1, . . . , p−2} are randomly chosen before each
encryption and where u is publicly disclosed while k is kept secret. The prime number
p is a strong prime, i.e. p = 2q + 1 where q is an enough large prime. This scheme is
compliant with:

• Poperty 4.3.a: With this encryption scheme, revealing e still ensures perfect secrecy
of x:

4.7. Security Analysis 101

PX|E(X = x | E = e) = PX(X = x) = (p− 1)−1 for all x, e

• Poperty 4.3.b: We show that revealing b, where b[i] = bi is either k[i] or e[i] for
all i ∈ {0, . . . ,m − 1}, does not reveal information on x with probability 1 − 2m/2.
Indeed, when e and k are defined in Zp−1, the combination of their bits (denoted b)
is in Z2m . Without a randomization factor u, i.e. when e = x − k mod p − 1, the
distribution of b reveals information on x. Using a randomization factor u prevents
such statistical attack because more than one result based on the same u is required
to study the distribution of badd when knowing b.

• Poperty 4.3.c: It is possible to deduce a representation of z depending on x from
commitments on bits of k and e (see Section 4.6):

z =
m−1∏
i=0

(ck,i · ce,i)
2i

= gu·x · hv mod p

Rationale Behind the Chosen Encryption Scheme

The remainder of this section explains how the encryption scheme was chosen. Prop-
erty 4.3.b states that during the ith challenge-response bit exchange in the Distance-
Bounding stage, the prover has to reveal either the ith bit of the encryption of the secret
x i.e. e[i] where e = Ek(x) or the ith bit of the key i.e. k[i]. Of course revealing either e[i]
or k[i] should not reveal anything about x.

Property 4.3.c implies that the proof of knowledge links the knowledge of k and e to
the knowledge of x. Because k and e cannot be revealed, this proof has to be based on
the commitment blobs of each bit of k and e, i.e. c(k,i), c(e,i).

Proposition 4.6 One-time pad encryption respects Property 4.3.a and 4.3.b

Proof: One-time pad ensures perfect secrecy: e = Ek(x) = x ⊕ k where k is a m bit
random string that is randomly chosen for each encryption.

PX|E(X = x | E = e) = PX(X = x) = 2−m for all x, e

Revealing either bit i of k or bit i of e is done by choosing a random m-bits string:
s ∈R {0, . . . , 2m − 1}

For all i ∈ {0, . . . ,m− 1}, b[i] =

{
k[i] if s[i]=0
e[i] if s[i]=1

b′[i] =

{
e[i] if s[i]=0
k[i] if s[i]=1

102 4. Distance-Bounding Proof of Knowledge

Bits b are revealed and bits b′ are kept secret. x = e⊕ k = b⊕ b′ and thus, b = x⊕ b′ is a
new one-time pad that still ensures perfect secrecy of x. �

Unfortunately, exclusive-or does not suit modulo operations that seem mandatory when
dealing with string commitments and thus does not respect Property 4.3.c. Indeed, x =
e⊕ k mod p is generally not equal to (e mod p)⊕ (k mod p). For instance, 10⊕ 13 =
7 mod 11 but (10 mod 11) ⊕ (13 mod 11) = 8. Another type of encryption is thus
necessary.

Proposition 4.7 One-time pad like encryption based on group addition p − 1 respects
Property 4.3.a and 4.3.c.

Proposition 4.8 One-time pad like encryption based on addition modulo 2m respects
Property 4.3.a and 4.3.b.

Proof: Addition modulo can be used to implement perfect secrecy. For instance, let x be
a secret in Zn that is encrypted as e = x−k mod n where k ∈R Zn. Revealing e achieves
the perfect secrecy of x:

PX|E(X = x | E = e) = PX(X = x) =
1

n
for all x, e

When n = 2m, it is possible to reveal b while ensuring perfect secrecy of x. Indeed, in
this specific case, e, k, and b are part of the same group Zn. �

However, when n is not a power of two, perfect secrecy of x is not ensured any more
when revealing b. In this case, e, k ∈ Zn and b, b′ ∈ {0, . . . , 2k − 1}. For instance,
choosing randomly bits of k = 0111b ∈ Z12 and c = 1011b ∈ Z12 can possibly result in
b = 1111b /∈ Z12. Figure 4.6 shows an example of the distribution of b for different choices
of x.

0 20 40 60 80 100 120
0

0.01

0.02

b when e=x-k mod p-1

p
ro

b
a
b
ili

ty

x=1
x=6
x=51

Figure 4.6: Distribution of b when e = x−k mod p−1, (p = 73, 2m = 128, x = {1, 6, 51}).

4.7. Security Analysis 103

Even when the key is randomly chosen before each encryption, a statistical attack aiming
at retrieving x is possible (no perfect secrecy) but remains expensive. However, it is possi-
ble to obtain some information on x (e.g. the most significant bit of x). A straightforward
approach to make the statistical attack more difficult is to increase the noise, i.e. define k
and e in a larger set of values, e.g. {0, . . . , nε} where ε ≥ 1. Unfortunately this incurs an
important cost in terms of the number of challenge-response bits exchanged during the
Distance-Bounding stage.

Proposition 4.9 One-time pad like encryption based on addition modulo a Fermat prime
p respects Property 4.3.

Proof: A Fermat prime [MVO96] p = 2m + 1 combines Propositions 4.7 and 4.8 and thus
could solve our problem. �

Unfortunately there are less Fermat primes than Mersenne primes (i.e. p = 2m − 1).
Fermat primes can always be described as Fn = 22n

+ 1 and only five Fermat primes
are known: {F0, F1, F2, F3, F4}. It seems unlikely that any more will be discovered soon.
Anyway, F0 to F4 are too small to be used in the context of this chapter and the next Fk

prime, does it exist, would be too large (i.e Fk >> 21024).

Our Encryption Scheme

We did not find a scheme assuring the perfect secrecy of x when b is revealed and assuring
Property 4.3.c as well. In our protocol, we adopted an approach that makes the statistical
attack more difficult without increasing the size of e and k.

The ciphertext e = Ek(x) = u · x − k mod p − 1 where u ∈R {1, . . . , p − 2} and the
secret key k ∈R Zp−1 are randomly chosen before each encryption of the secret x. Even
though the parameter u is public, it makes statistical analysis more difficult.

In order to ensure that b reveals minimal information on x, it is necessary that the
order of subgroups created by different x be the same. In other words, it is better to use
specific primes such as strong primes: p = 2q +1 where p and q are primes. It means that
φ(p) = p− 1 = 2q and φ(φ(p)) = q − 1.

Efficient algorithms for finding strong primes exist. Indeed, the chances that a random
integer p is prime are about 1/ln(p) and the probability that p be a strong prime is thus
about 1/(ln(p) · ln((p− 1)/2)) ∼= 1/ln(p)2. When p is a m bits value, the probability that
p be a strong prime is about 1/(ln(2)2 ·m2). In other words, finding a 1024 bits strong
prime requires half a million primality verifications.

Using strong primes, the distribution of b does not reveal any information on x (see
Figure 4.7). In fact, the distribution depends only on p − 1 and 2m when x is odd and

104 4. Distance-Bounding Proof of Knowledge

0 20 40 60 80 100 120
0

0.01

0.02

b when e=ux-k mod p-1

p
ro

b
a
b
ili

ty

x=1
x=6
x=51

Figure 4.7: Distribution of b when e = u · x − k mod p − 1 and p is a strong prime
(p = 83, 2m = 128, x = {1, 6, 51}).

different from q. In practice, it is only necessary to avoid subgroups with very small
cardinality, i.e. when p is a strong prime, x 6= q is the only constraint.

Proposition 4.10 One-time pad like encryption based on addition modulo p − 1 and
multiplicative factor u respects Property 4.3. when e = Ek(x) = u · x− k mod p− 1 and
p is a strong prime, i.e. p = 2q + 1 where q is prime.

Proof: The number of samples necessary to deduce information on x from b when e = x−k
mod p−1 is difficult to evaluate because it depends on the effect of the modulo operation
and of the random selection of bits (see Figure 4.6). However, we can show that at least
two different values of b are necessary to retrieve some information on x.

Thus, when x is encrypted as e = u · x − k mod p − 1, it is necessary to collect at
least two b corresponding to the same u. The birthday paradox shows that 2m/2 samples
are necessary and the probability of disclosing information on x is thus smaller than the
probability of using twice the same key k:

Pinfo on x < 2−m/2 where m is the size of b, x, k

�

Defeating Intruders with Partial Knowledge

The security of the scheme relies on the fact that a prover that is able to participate to
the Distance-Bounding stage has to know e and k and thus can retrieve x. However, we
can imagine that a malicious prover P could provide all bits of e and k but j random bits.
For instance, ẽ = {e0, e1, . . . , ēi, . . . , em−1} and k̃ = {k0, k1, . . . , k̄i′ , . . . , km−1} where two
bits ei and ki′ have been changed. Because the verifier selects randomly half bits during
the Distance-Bounding stage, the probability of undetected use of ẽ, k̃ is:

Pundetected ẽ,k̃ = 2−j

4.8. Conclusion 105

and the probability of I finding x is:

PI gets x = (2 ·m)−j

For instance, with m = 1024 bits and j = 6, 32 tries are necessary to let I impersonate
P and the probability that I discovers x is 2−66. Even though this is a marginal attack, we
propose to let V return an error message whenever the verification step in the Commitment
Opening stage fails in order to help a potential intruder find out x. Hence, P cannot
provide e and k or even ẽ and k̃ to another party.

4.8 Conclusion

In this chapter, we addressed the problem of terrorist frauds in application scenarios
where cryptographic identification requires the physical proximity of the prover. Our
solution consists in distance-bounding proof of knowledge protocols that extend Brands’
and Chaum’s distance-bounding protocols [BC93]. We first presented a general scheme
that shows the main components of such protocols. We then presented a possible imple-
mentation of such protocols and analyzed its security properties.

The general scheme presented in this chapter (DBPK) could be used with any pub-
lic key scheme if adequate commitment scheme, encryption method, and representation
function exist. We proposed a solution, DBPK-Log = DBPK[α : y = gα], relying on
a public key scheme based on the discrete log problem, a bit commitment based on the
discrete logarithm, a group addition one-time pad, and the representation problem. This
scheme could directly be used with ElGamal’s and Schnorr’s identification schemes that
both rely on the discrete log problem.

Even though the proof of knowledge is zero-knowledge, the whole scheme can only
achieve statistical zero-knowledge: when revealing b, the encryption scheme does not
assure perfect secrecy of the private key x.

Terrorist frauds could also be prevented by combining the initial distance-bounding
protocol with a certified tamper-resistant hardware [BR03b]. In this case, the verifier can
check that k and e were generated by a trustworthy (i.e. certified by a TTP) hardware
that will not disclose those secrets to an intruder. In comparison, the DBPK protocol
is more general and is easier to deploy because it does not require any tamper-resistant
hardware or device certification process.

Distance-bounding proofs of knowledge will be used in Chapter 5 to define location-
stampers that are part of our trust-establishment scheme.

106 4. Distance-Bounding Proof of Knowledge

107

Chapter 5

History-Based Trust Establishment

”Every kind of peaceful cooperation among men is primarily based on
mutual trust and only secondarily on institutions such as courts of justice

and police.”

– Albert Einstein

This chapter describes our solution to establish trust while preserving privacy. In this
scheme, contrary to Part I of this dissertation, we assume a minimal infrastructure, i.e.
users have a valuable secret and services are deployed. Parties deliver credentials defined in
Chapter 3 that can define recommendation, group membership, or contextual information.
The latter relies on distance-bounding proofs of knowledge presented in Chapter 4.

5.1 Introduction

This chapter combines results already presented in this dissertation in order to define a
framework that enables trust establishment preserving privacy. Users collect evidence of
their interactions in order to build their history. This history is subsequently used to
assert some interaction during trust establishment. History may contain identity, role, or
authorization credentials as well as recommendations, and other evidence like ownership,
proof of location, etc. Two mechanisms are necessary to build such a scheme:

• Unlinkable credentials for proving history while preserving privacy.

• Proof of location for enabling context aware history.

In our solution, we have chosen to combine unlinkable credentials described in Chapter
3 and distance-bounding proofs of knowledge described in Chapter 4. However, a solution

108 5. History-Based Trust Establishment

based on [CL01] should be studied when non-interactive signatures are not required, i.e.
when trust is only built through interactive proofs. And when the threat model does
not take mafia and terrorist frauds into account, other approaches could be used, e.g.
ultrasound-based [SSW03] or infrared [BSSW02]. Isolation [BBD+91] is also an option to
ensure strong guarantees on location.

5.2 State of the Art: How to Establish Trust

Before defining our scheme, we first summarize existing approaches that tackle trust and
existing work combining trust and privacy.

When parties are registered and part of a controlled environment some accountabil-
ity can be assumed. However, pervasive computing implies large population of unknown
entities. Because of the infrastructure’s dynamism, service providers will be confronted
with requests from unknown entities, and users will need to obtain services in unfamiliar,
possibly malicious environments. A party facing such a complex world needs a way to
respond to new entities and assign meaningful privileges to them. Approaches based on
human notions of risk [JP04, Dem04] are subjective and have to tolerate partial informa-
tion. The ability to reason about trust and risk is thus necessary to let entities accept
risk when interacting with other entities [CGS+03, Ing03, SDB03]. Figure 5.1 presents a
common principle: the verifier collects evidence on the requester by monitoring this one
or by gathering recommendation or reputation on this entity. The request and its context
are combined with the evidence in order to evaluate how trustworthy the requester is and
the risk related to the request. Once trust and risk are known, a way for reasoning about
trust and risk is necessary in order to accept or reject an interaction.

Gathering
(Recommendations, reputation)

Observation

Trust

evaluation

Risk
evaluation

Request
(Identity,
context)

InteractionRequest
Analysis

Risk
Analysis

Evidence

store

Figure 5.1: Trust and risk evaluations

5.2. State of the Art: How to Establish Trust 109

In this dissertation we mainly focus on evidence gathering and storage. The remaining
of this section presents different type of evidence. When some clear hierarchy exists among
entities, a public key infrastructure [AH00] is sufficient to define trust relationships. A web
of trust [Gar95] allows non-hierarchical trust relations similar to those formed in human
communities. However, using a model based on human notions of trust is not straight-
forward. Three main sources of information are generally proposed to evaluate trust
[ENT+02, EWN+03]: personal observations of the entity’s behavior, recommendations
from trusted third parties, and reputation of an entity. However, indirect sources of infor-
mation may be used for evaluating the trustworthiness of a party: some approaches take
the physical context into account during the trust evaluation [SSW03, KZS02, CMA00].
In a simple example, any person present in a room can be authorized to turn on the light.
Surveys on trust establishment can be found in [GS00, KFJ01].

5.2.1 Deriving Trust from a priori Relationships

Trust is generally a derivation of some a priori trust. For instance, C trusts B and then
C trusts A if B says A is trustworthy. In a web of trust, B is a friend of C, and in a
public key infrastructure (PKI), B is the hierarchical authority of A.

B A

(a) Direct trust

B A C B
(root)

D

A F

E

G H

(b) Hierarchical trust

C D

B

A

E

F

(c) Web of trust

Figure 5.2: Different ways to define a priori trust relationships.

Direct Trust

Direct trust is the simplest case: in Figure 5.2(a), B trusts A and grants A some rights.
For instance, Bob trusts software company A and configures his Web browser so that any
piece of code signed by A can use local facilities like writing on the hard disk.

In case of direct trust, the authentication is simple and can even rely on symmetric
cryptography, i.e. A and B share a secret. Unfortunately, this approach is not scalable
and can no more be used when the number of parties increases.

110 5. History-Based Trust Establishment

Hierarchical Trust

Hierarchical trust enables C to trust one root authority that manages a whole tree (See
Figure 5.2(b)). For instance, company B is a partner of company C and C thus allows
any employee of B to access a subset of its Intranet. Likewise, A, an employee of B, can
access C’s resources.

The rights of A can be derivate from the rights of B by using a delegation mecha-
nism in a chain of certificates, e.g. SPKI [EFL+99] or X.509v3 [IT00]. In other models
like Kerberos [MVO96] or Web Services Security [FSLS03], the authority delivers a new
security token to A.

Web of Trust

The Web of Trust was initially proposed in PGP [Gar95] to deal with identity based
authentication. However, the concept can be extended to define trust as well. The
principle is that a friend of a friend is a friend (see Figure 5.2(c)). For instance, when two
friends of C say that KPA

is the public key of Alice, C can assume that KPA
is indeed

the public key of Alice. In such model, the trust is statistical: rules define a threshold for
accepting a statement.

Attributes: from Identity to Authorizations

Different types of attributes can be certified (see Figure 5.3): the identity (i.e. the name)
[IT00], the role [SCFY96], authorizations [EFL+99], or any other characteristic. When
only the identity of a party is certified, it is necessary to map this identity to some form of
trust. For instance, an access control list (ACL) can be used. In this case, it is necessary
that the verifier has an a priori knowledge of the prover, indeed if there is no entry in
the ACL corresponding to a given identity, no trust information can be deduced from
authentication. A more scalable approach is to use different roles. In role-based access
control (RBAC) [SCFY96], each party can prove that he has one or more roles and the
verifier only has to maintain a mapping between roles and rights. The access control is
thus able to deal with unknown parties as long as they can prove having a given role.
Finally, when the number of roles becomes too large, it is possible to rely on attributes
that directly define rights of credential holders (e.g. SPKI authorization certificate).

Trust Management

Modification of the rights of a party and especially revocation of his rights is a difficult
problem in disconnected contexts. Certificate Revocation Lists (CRL) and On-line Cer-

5.2. State of the Art: How to Establish Trust 111

Secret
(e.g. private key)

Trust
(authorization)

Identity
(e.g. name)

ACL, Attribute Certificate Id certificate (X.509)

Authorization certificate (SPKI)

Figure 5.3: A priori trust

tificate Status Protocols (OCSP) enable to check which certificates have been invalidated.
OCSP assume a way to contact this service: this approach cannot be deployed in off-line
context. CRL can be used in off-line context as long as lists can be regularly updated.
Unfortunately, the disadvantage of CRL is their potential large size, which makes them
inappropriate for mobile devices. Another way to control the rights delegated to a third
party is to rely on short-term [EFL+99] or even one-time certificates [CFN89]. In this
case, a mechanism for periodically renewing rights is necessary. It has already been shown
[Riv98] that revocation lists are not an optimum solution and thus a hybrid approach is
proposed: long-term certificates are used to define the roles, rights, authorizations, etc.
and short-term certificates are created when rights are delegated. More sophisticated
schemes exist: hash-based validity end [Mic96], certificate revocation trees, etc.

In this dissertation, we only focus on solutions based on credentials in order to support
disconnected interactions. Work on security policies like PolicyMaker [BFL96], KeyNote
[BFI99], or Ponder [DDLS01] are thus out of the scope of this dissertation because they
rely on a permanently connected model.

5.2.2 Trust Establishment without a priori Relationships

In emerging environments like peer-to-peer data sharing, pervasive computing, or ad hoc
networks, there is a lack of a priori trust among parties and new mechanisms are thus
required to build trust in an a posteriori fashion based on monitored evidence (see Figure
5.4). The three main sources of trust information are defined in the following:

• Personal observations of the entity’s behavior is ensured by recording the results of
interactions. It is essential for the subjective evaluation of direct trust.

• Recommendations from trusted third parties provide the possibility for trust re-
garding unknown entities to be propagated. Recommendations are based purely on
the recommender’s personal observations and as such it is possible to associate a

112 5. History-Based Trust Establishment

measure of trust in the opinion of the recommender (this is not the same as trust
in the recommender for other actions).

• Reputation of an entity can be consulted in the absence of experience or recom-
mendation. Reputation is anonymous in the sense that it is an aggregation of trust
information from different sources (including recommendations that are passed to
the verifier via intermediate parties) and as such the verifier cannot associate a level
of trust with the opinion expressed.

A strong basis for trust is established through an entity’s subjective observations. B
observes the behavior of A and generates a recommendation, i.e. a credential signed by
B that asserts the trustworthiness of A according to B.

Secret
(e.g. private key)

Trust
(authorization)

Evidence
Context, interaction, ownership, …

Statistical trust evidence
Reputation

Trust evidence
Recommendation, observation

Figure 5.4: Trust establishment

Evidence-based Trust

Trust can be built without any explicit a priori relationship, recommendation, or reputa-
tion concerning the trustworthiness of a party: when no information on the trustworthi-
ness of a party is available, it is possible to use evidence that is not related to trust. This
fourth source of trust has been less studied. For instance, the fact that Alice can prove
she was member of the program committee of some conference on networking, makes her
more trustworthy in the telecommunication community. Physical context (mainly loca-
tion at a given time) can be used to establish trust. For instance, being in a meeting
room could give some rights like accessing shared files or using the video projector. The
generalized role-based access control (GRBAC) [CMA00] takes the context into account
during access control.

In this dissertation we define history as an evidence store that is controlled by the
requester. Evidence can be an a priori trust relationship, a recommendation, or a proof
of context. We do not tackle reputation that is difficult to use when privacy of provers

5.3. Prooving Contextual Information 113

is a concern. In this scheme, Alice has to collect recommendations, as well as contextual
evidence in order to be able to prove to another party that she is trustworthy.

5.2.3 Trust and Privacy

It is common to use trust for enabling privacy. For instance, the platform for privacy
preferences project (P3P) [P3P] is emerging as an industry standard providing a simple,
automated way for users to gain more control over the use of personal information on Web
sites they visit. Thus, privacy policies of any visited web site can be checked and, if the
site is trusted, private data can be provided. [DFHM01] proposes to use reputation mech-
anisms for improving the reliability and efficiency of MIX networks. Similarly, [RBM03]
propose to use reputation for deciding whether private information can be provided to a
given Web Service.

However, few approaches focus on how to establish trust while preserving privacy of
users. [KP03] proposes a way to protect the identity of entities that feed a reputation
system. Only [CM04] describes an approach related to our scheme: each prover receives
recommendations that are linked to one of her pseudonyms and she can subsequently
show the recommendation using another pseudonym. It is thus possible for a party to
prove that she is trustworthy while preserving privacy. Unfortunately, this work is still at
its starting point and thus cannot be compared with our scheme.

5.3 Prooving Contextual Information

Having been at a location at a given time is an important part of the history. This section
shows how results of Chapters 3 and 4 can be combined to define location stamps, i.e.
unlinkable proof that the holder of a secret went to some place.

5.3.1 Location- and Time-Stamper

Let us define a location- and time-stamper (LTS) that certifies that some entity has been
in a given place at a given time. The proof can be provided by a cell-phone operator that
locates subscribers, by a beacon in a building, or even by using distance-bounding proofs of
knowledge. A LTS can define logical location (e.g. continent, country, department, town,
quarter, building, room) or geographic location (longitude, latitude). We only focus on
the latter case because it does not require the definition of a complex data structure.

A location- and time-stamper company can deploy a network of public terminals and
sensors. When Alice plugs her smart card in a terminal or when she passes a wireless

114 5. History-Based Trust Establishment

sensor, she receives a location- and time-stamp with the following attributes: time (UTC,
date) and location (latitude, longitude). Table 5.1 shows an example of the attributes
that could be delivered by some LTS at Eurecom Institute.

Value Meaning
180432 UTC in hhmmss format (18 hours, 4 minutes and 32 seconds)
24062004 Date in ddmmyyyy format (June 24, 2004)
43.6265 Geographic latitude in dd.dddd format (43.6265 degrees)
N Direction of latitude (N - North, S - South)
007.0470 Geographic longitude in ddd.dddd format (7.047 degrees)
E Direction of longitude (E - East, W - West)

Table 5.1: Context data: location and time

It can be represented by four attributes [180432, 24062004, 436265, 0070470] that
can be divided into frozen blocks (see Section 3.5.2): [18|04|32, 24|06|2004, 43|62|65,
007|04|70] the meaning of each block is publicly known: LTS defines his public key as
n and a set of e. For instance, e1 is the least significant bit (LSB) of the time in seconds
(0-59 : 6 bits), e6 is the most significant bit (MSB) of the time in seconds, e7 is the LSB of
checksum of time in seconds, etc. If a location- and time-stamper provides the following
credential to Alice:

[18|04|32, 24|06|2004, 43|62|65, 007|04|70]

i.e. she was in Eurecom building on 24 June, 2004 at four past six in the evening.

She can disclose a subset of this credential:

[18|XX|XX, XX|XX|XXXX, 43|62|65, 007|04|70]

i.e. She proves to be someone that was in Eurecom building someday around six
o’clock.

Or, she can disclose:

[XX|XX|XX, 24|06|2004, 43|XX|XX, 007|XX|XX]

i.e. She proves to be someone who was in the South of France the 24th of June.

Note that hidden attributes are different than zero values (XXX 6= 000). Indeed, XXX is
represented as 000|00 and is not equal to 000 that is defined as 000|11. It is thus impossible
to convert 09:08:30 into 09:00:30. Checksums of frozen blocks assure that information can
be kept secret but cannot be modified. In other words, the value 09:XX:XX does not mean
that some action occurred at nine o’clock but that it occurred between nine and ten
o’clock. Another code should be chosen whenever modifications are supported.

5.3. Prooving Contextual Information 115

5.3.2 Combining DBPK and Unlinkable Credentials

Before delivering a credential to Alice, a location- and time-stamper B has to check
whether she is indeed present. For this purpose, we propose to use the scheme de-
scribed in Chapter 4: distance-bounding proofs of knowledge. Distance-bounding proofs
of knowledge can replace any proof of knowledge or signature of knowledge in existing
protocols. Combining unlinkable credentials and distance-bounding proofs of knowledge
is thus straightforward.

B runs a distance bounding-protocol with A: in the protocol described in Table 4.4,
B acts as the verifier and A acts as the prover. The proof of knowledge used during the
creation of an unlinkable credential (see Table 3.3):

PK[α : y2 = aα
b ∧ z̃ = g̃ca

(aα
ca)]

is replaced by:

DBPK[α : y2 = aα
b ∧ z̃ = g̃ca

(aα
ca)]

or:

DBPK[α : y2 = aα
b] and PK[β : y2 = aβ

b ∧ z̃ = g̃ca
(aβ

ca)]

The latter does not require new DBPK because it relies on DBPK-Log that is evaluated
in Chapter 4. There are not two different discrete logarithms of y2 to the base ab and it
is thus obvious that α = β (= x). This proves that the entity knowing x is present and
that this x is certified by the CA.

Second, B delivers a location stamp to A. Any entity that trusts B can thus assume
that A really was at some location at a given time.

DBPK-LogLog

An interesting extension of our scheme could be the ability to prove that soemone with
some history is physically present. For instance, Alice gets a credential from B proving
that she is member of some group Q. Subsequently, A wants to prove to C that a
member of group Q is present. To do this, a new distance-bounding proof of knowledge
is required: DBPK-LogLog. Note that the credential provided by C will be linked to A
and thus cannot be used by another group member. The signature of knowledge spk1 of
Section 3.4.4 is replaced by a proof of knowledge in interactive proofs:

PK[α : ẑ2 = ĝb
(aα

b)]

116 5. History-Based Trust Establishment

To take proximity into account, the proof is replaced by:

DBPK[α : ẑ2 = ĝb
(aα

b)]

The distance-bounding proof of knowledge of a double discrete log to the bases g1

and a1, i.e. DBPK-LogLog=DBPK[α : y = g
(aα

1)
1], can be implemented as follows. Bit-

commitment, distance-bounding, and encryption schemes are the same as in DBPK-Log
but the final proof of knowledge changes:

PK[(α, β) : z = guαhβ ∧ y = gα].

is replaced by:

PK[(α, β) : z = guαhβ ∧ y = g
(aα

1)
1].

DBPK-LogLog as well as DBPK-Log relies on bit commitment based on discrete log,
group addition one-time pad, and representation problem. Both rely on the same groups
and the security properties are thus not modified. The only difference is the use of a
statistical zero-knowledge proof of knowledge during the final step of the protocol.

5.4 History

This section studies how users can obtain, store, and disclose their history, which is a
collection of unlinkable credentials.

5.4.1 Properties

The building block being defined, it is possible to use them in order to establish trust
without a priori relationships. The framework relies on the following assumptions:

• Users (e.g. A) keep a history of their interactions.
They can thus subsequently prove that they are recommended by B or that they
indeed went to some location.

• There are third parties (e.g. B) that deliver credentials.
Those credentials can define recommendations (e.g. A is trustworthy) or statements
(e.g. A was at a given location at a given time). Each credential is signed by its
issuer.

• Trust establishment can be done in disconnected mode.
Before granting some rights to A, a service provider C can assert the trustworthiness

5.4. History 117

of A without relying on a remote TTP. Indeed, A keeps an history, i.e. a collection
of credentials, that can be partially disclosed to C. No interaction with any issuer
is required during the verification.

• History of A is non-transferable.
Each user has a valuable secret x. This secret is certified by a CA and cannot
be transferred to another party, i.e. it is equivalent to a private key giving access
to other services like e-banking. Credentials are associated with this secret and
credentials are thus non-transferable as well.

• Privacy of A is protected.
While using credentials for proving former interactions, the anonymity and unlink-
ability of A are assured.

5.4.2 History Management

It is important to study who should store evidence. There are generally three different
roles in an interaction: a client A that is asking for a service, some credential issuers
B that previously interacted with A, and a service provider C that has to evaluate the
trustworthiness of A based on credentials. Evidence can be stored in four different ways:

1. Client stores credentials and can selectively disclose them.

2. Credential issuer keeps a record of observations on clients. Service provider can
request information on a given user.

3. Service provider stores information on users: recommendation sent by credential
issuer, reputation of users, etc.

4. Distributed storage could be envisioned for instance by combining 1), 2), and 3).

While the second approach is generally used, the first solution has been chosen because
it allows the user to control credentials related to her. Indeed, privacy is easier to achieve
when the user can choose which information will be disclosed while establishing trust. It
seems impossible to define a reputation or recommendation mechanism that ensures user’s
untraceability but that does not imply this user when exchanging information. Moreover,
like in SPKI, the users can send credentials with request and no connection to trusted
third parties is thus required when showing history.

The main drawback of credential schemes is the difficulty to modify or remove cre-
dentials once delivered. When revocation lists are not an option, it is possible to define
different validity ends according to the type of attribute. Statements like proofs of lo-
cation could stay indefinitely valid, role or identity credentials should be long-term, and
recommendations as well as authorizations may have short-term validity.

118 5. History-Based Trust Establishment

5.4.3 Trust Establishment

This dissertation mainly shows how evidence can be proven in an unlinkable way. Build-
ing trust, i.e. granting access rights, based on evidence is straightforward in simple cases
(e.g. sharing files among people in a same meeting room) but more complex reasoning
on evidence could be necessary. For instance, the meaning of a document signed by ”a
resident of building y” or by ”someone that was at location z” is application dependent.
Application-level rules are also necessary to deal with access control or face-to-face inter-
actions relying on such evidence.

5.5 Conclusion

This Chapter shows how unlinkable credentials of Chapter 3 and distance-bounding proofs
of knowledge of Chapter 4 can be combined. The resulting framework enables unlinkable
evidence on trust, i.e. recommendations. A can thus prove to C that she is trusted by
B. The framework also enables unlinkable evidence on location so that A can prove to C
that she was in some place at a given time. Finally any kind of evidence can similarly be
defined.

The granularity of evidence disclosure can be chosen by the prover. This makes the
scheme very flexible and assures that only required information is shown to verifiers in
order to enable privacy.

Based on disclosed evidence, trust among parties can be established at application
level. When no a priori relationship exist, trust evidence like recommendations may
help. When no trust evidence is available, trust can still be based on general evidence.

Part III of this dissertation describes the implementation of a subset of the concepts
presented in this dissertation. Generic credentials for application-level trust establish-
ment are depicted and prototypes taking contextual information into account are also
described.

119

Part III

Implementing Trust Establishment:
Architecture and Deployment

121

Chapter 6

Implementing Trust Mechanisms in
Federations

”You have zero privacy now. Get over it.”

– Scott McNealy

This chapter describes how we implemented trust establishment in a very specific context:
business-to-employee and business-to-business interactions. This is our main contribution
to the WiTness project: the implementation of dynamic trust establishment within a
federation of devices and users.

6.1 Introduction

Nomadic computing is becoming mature enough to interest software companies, hard-
ware manufacturers, and operators of mobile network. The WiTness project (Wireless
T rust for Mobile Business) sets out to define a framework for the easy development of se-
cure business to employee (B2E) and business to business (B2B) applications in nomadic
environments. Employees remotely access their corporate application server from their
personal device, be it a laptop, a personal digital assistant (PDA), or a cell phone. In
nomadic context, the operator’s smart card (SIM or USIM card) is a ubiquitous security
module. One goal of this project was to use this security module to assure the security of
business applications. In WiTness, it is thus assumed that each employee has a modified
SIM card that acts as a security module hosting the cryptographic secrets necessary to
authenticate this employee, to ensure the integrity and confidentiality of data, and to
enable signatures.

This chapter focuses on our contribution to the WiTness project: an implementation

122 6. Implementing Trust Mechanisms in Federations

of a subset of history-based trust establishment. This work was part of a pre-competitive
research project mainly involving industrial partners and focusing on B2E and B2B ap-
plications. In such a context, minimal a priori trust relationships exist among parties
and privacy is not a concern.

The ”research work package”, which we were leading, focused on the establishment
of trust within a federation of users and devices. In nomadic computing scenarios, the
personal device of a user is mainly used to access corporate services remotely. In pervasive
computing scenarios, the personal device is also used to access local services offered by
the environment, thereby creating a local federation with devices in its vicinity. Even
if federations are an extension of the nomadic access to corporate servers, we assume
that federations are self-standing associations where several devices communicate. They
also extend the nomadic model of access to fixed corporate servers by enabling temporary
access to these servers through members of the federation or to perform off-line operations
using pre-fetched data.

Federations generally associate devices from different trust domains. For instance, a
corporate PDA can be federated with a public terminal in order to get a more convenient
display for reading corporate e-mails. To estimate the trustworthiness of surrounding
devices, we use device certification (each device holds its own asymmetric key pair) and
certificates defining agreements between companies. The WiTness framework being ded-
icated to mobile and pervasive computing, restrictions on computational power and com-
munication channels are assumed. The creation and validation of credentials thus have to
remain simple in terms of cryptography and parsing. Moreover, the scheme cannot rely
on remote third parties during access control.

Privacy being an important issue, we first study whether it is affordable in nowadays
mobile environments. Next, we describe our contribution to WiTness.

6.2 Cost of Privacy

Unlinkability and anonymity are important to avoid that all daily interactions of users be
logged. However, privacy (as well as security) always has a cost in terms of communication
and delays (Mix networks, private information retrieval [CGKS95]), computational power
(proofs of knowledge), memory (one-time credential, e-cash), etc.

Moreover, as stated in the introduction of this dissertation, even with unlinkable cre-
dentials, it is necessary that the communication channels protect the privacy and that
the application carefully controls the disclosure of attributes. In the WiTness project we
used Bluetooth for personal area networking and GPRS for global communications. None
of those communication media ensures privacy.

6.2. Cost of Privacy 123

Finally, our collaboration with industrial partners has shown that the deployment of
privacy is very limited in wired applications because there is no clear business model yet.
Unlinkable credentials in mobile applications are moreover compromised by the limited
computational power of SIM cards and cell-phones. Even a powerful PDA (iPaq, 200MHz)
requires 0.2 second for generating a RSA (1024 bits) signature. When adding delays due
to communications through Bluetooth and XML parsing, any transaction requiring some
delegation of rights takes about one second. It seems difficult to slow down user interaction
for privacy purposes. In the remaining of this section, we thus study how signatures and
especially signatures based on a proof of knowledge could be speed up.

6.2.1 State of the Art: How to Speed up Signatures

This section presents different approaches that have been proposed to accelerate the com-
putation of a digital signature and shows how interactions requiring a signature based on
a proof of knowledge could be accelerated as well.

Server-Aided Signature: a small tamper-resistant trusted module uses the computa-
tional power of an untrusted server to compute a signature [BQ95, Bla96]. The server
can try to obtain the secret (i.e. private key) of the module or to cheat with a false
result. The trusted module must protect its secret and verify the computation received
from the server. With enough bandwidth between the server and the trusted module, this
scheme can be up to ten times faster than the trusted module alone. The drawback of
this approach is that it implies the availability of a powerful server each time a signature
has to be computed. Finally, numerous former server-aided signature schemes have been
found insecure [Mer00].

Verifiable Server : an approach similar to server-aided signature is proposed in [BB03].
A trusted module asks a trusted server to sign some data. The server is in charge of all
asymmetric cryptography operations. However, the signature scheme is modified so that
a valid signature cannot be generated without the help of the security module. Non-
repudiation is ensured even if the private key is hold by the server. As in the previous
scheme this approach suffers from relying on surrounding servers. Moreover, in this case,
the servers have to be trusted.

Batch Signatures : the idea of batch signatures [PB99] is to do only one asymmetric
operation for a set of signatures. A set of messages are linked and signed together. For
instance, a hash tree can be used to ensure that the signature of a message can be verified
without knowing the other messages. This approach is useful when a set of messages
has to be signed simultaneously but it cannot be used to accelerate the response-time of
individual signatures.

Other Public Key Cryptosystems : it is also possible to use special signature schemes.
For instance, the McEliece cryptosystem [McE78] can be used to efficiently sign data

124 6. Implementing Trust Mechanisms in Federations

[CFS01], the main drawback of this approach being the size of the public key. Elliptic
curve cryptography could be investigated too. However, all asymmetric cryptosystem are
computationally expensive compared with hash functions [PSW+01].

On-line/Off-line Signatures : the principle of on-line/off-line signature schemes is to
enable the pre-computation of the signature in order to fasten the signature when the
message to sign is known [EGM96].

Pervasive computing makes it difficult to rely on trusted third party or even untrusted
surrounding servers because there could be no available server or the bandwidth could
be insufficient for accelerating the signature. On-line/off-line signatures make it possible
to define a background process that pre-computes signatures when the system is not
overloaded. On-line/off-line concept can be applied to proofs of knowledge and signatures
of knowledge that are based on Schnorr’s signature scheme. For instance, the signature
based on a proof of knowledge of a double discrete log SPKl[α : z = g(aα)](m) (see
Section 2.3.3) could be pre-computed as follows.

1. For all i ∈ {1, 2, . . . , l}, generate random ri and set Pi = g(ari).

Next, when m is known, the signer computes a hash and returns a set of values:

2. computes c = Hl(m ‖ z ‖ g ‖ a ‖ P1 ‖ . . . ‖ Pl).

3. Set si =

{
ri if c[i] = 0
ri − x otherwise

The signature is the l + 1 tuple (c, s1, . . . , sl). Of course, in our unlinkable credential
scheme, the signature can only be pre-computed when the signer knows in advance which
attributes will be disclosed.

6.3 Pervasive B2E

The remaining of this chapter describes the framework that has been implemented to
establish trust in federations of users and devices from different trust domains.

6.3.1 General Scenario

Alice comes to visit commercial partners. She only carries a small trusted personal device
that could be a personal digital assistant (PDA), a watch, or even some wearable com-
puter. A positioning service provided by the building makes it possible for her PDA to

6.3. Pervasive B2E 125

guide her to the meeting room, opening the doors to the only rooms she is authorized to
access. While she is waiting for other participants to arrive, she wants to read her e-mail
on a workstation in the meeting room. She federates her PDA with the workstation so
that this workstation can have access to her corporate mail box and can display the list of
e-mails received. Alice reads a few non-classified e-mails, and then selects one e-mail that
is tagged as confidential. According to the security policy of her company, confidential
data must not be displayed on any device not belonging to the company: the mail does
appear on the smaller display of her PDA that is trustworthy. As other meeting partici-
pants arrive, their virtual business cards are displayed on each PDA. When the meeting
starts, a space for securely sharing data is created between the meeting members. A slide
show application in the visitor’s PDA can then have all people in the meeting room sign
an electronic non-disclosure agreement before it shows the visitor’s corporate data on the
local video projector. Even after Alice has left the building, she has access to a list of
the interactions performed with meeting participants. Back in her office, she can browse
classified data and e-mails on any corporate terminal. Because those displays are trusted
by her company, she can directly access confidential data. This scenario can be divided
into four types of pervasive B2E services:

1. Ambient services / devices

Federative B2E technologies are an ideal tool for deploying ambient services all over
corporate buildings. Employees can easily be empowered with devices like mobile
phones, PDAs, e-rings, etc. so that they can be granted the right to open an
electronically locked door, use a coffee machine, and so on.

2. Face-to-face liable interactions

Federative B2E technologies should be expected to have a very important impact
on face-to-face interactions. Federations make it possible to incorporate personal
devices that unambiguously identify some individual through a digital signature
into B2E and B2B corporate processes. This implies that employees’ as well as
companies’ rights to perform operations may be better enforced. It also means that
their liability may be established in some business critical process, like ordering
some product, in that sense getting quite close to real-life signature.

3. Access to corporate data and processes

Access to corporate data and processes using federations, i.e. surrounding devices, is
essential to most B2E applications. Federative applications in which access control
is a very important feature also bring up critical issues. Mechanisms like delegation,
and even new types of delegations between users and devices, are required to enable
such access control scenarios. Rights need not be given to a particular individual
that may in fact be replaced by someone else. In addition, roles make it possible
to grant access rights to several persons simultaneously, a very important feature
given the fact that federations are dynamic groups.

4. Access to group data

126 6. Implementing Trust Mechanisms in Federations

Mobile groupware will probably become more ubiquitous with the development of
federations. Such scenarios are clearly illustrated by business applications used in
meetings. Security-wise, the needs in such scenarios are primarily authentication of
the origin of documents or non repudiation of an action performed like modification
of a document or approval.

6.3.2 Security Implications

The scenario outlined in Section 6.3.1 shows that B2E applications can be expected to
collaborate dynamically with surrounding devices. A federation is defined as a group of
users and devices from different trust domains that collaborate within the same applica-
tion. Security is an integral part of federations. By their very nature, federations of
communicating devices are more exposed to attacks than plain mobile devices since an
application running within a federation spans across devices owned by different entities.

This scenario entails multiple security implications. Users need some authorization
to use local facilities. They must also have the right to access corporate data remotely
and a way to delegate specific rights to federated devices. Federations have to evaluate
whether an execution environment is trustworthy. And last but not least, communication
channels have to be protected, i.e. confidentiality, integrity, message authentication, and
sometimes non-repudiation are necessary for applications used in a federation.

6.3.3 Trust Model

Corporate security policies define whether a given operation (e.g. dealing with confidential
data) can be done by an appliance with an ascertained security level.

Most of federation security thus is about evaluating the rights of each user and the
security level of each device that takes part in the federation. This evaluation is not easy
to achieve in general. If a person makes use of a terminal in a public place, it is impossible
to assume that the terminal is trusted in any way without some additional information
that makes up the trust model. In general, there is no relation that can be exploited
between the user or her company and the owner of the terminal: this can be called an
open trust model as opposed to an a priori trust model.

The B2E context introduces assumptions that make it simpler to construct a workable
trust model based on limited a priori trust information. First of all, public key based
authentication is possible and meaningful since employees are directly managed by their
corporation. In contrast, in an open trust model, there will generally be no authentication
(or trust) infrastructure shared by all entities (see Parts I and II of this dissertation).
Second, trust may be based on the partnership established between companies. The trust

6.4. Security Architecture 127

expectations regarding every partner’s tasks and behaviors are contractual and can be
translated into a security policy. Trust may also be based on the certification of devices,
and specifically their level of tamper-resistance. Again compared with the open trust
model, this assumption enables the automation of secure data distribution to different
devices.

6.4 Security Architecture

This section presents the architecture developed to enable security features as described
in Section 6.3.2.

6.4.1 Architecture Overview

Any employee has a trusted personal device that contains some credentials that may be
used to prove his rights. Java enabled PDAs and cell-phones have been chosen for this
purpose as Java is becoming an ideal platform for developing applications that have to be
deployed on heterogeneous appliances. This trusted personal device is part of a federation
of surrounding devices that can be managed by other companies. The federation is used
by the employee when accessing some resources protected by a corporate server. Access
control is based on the user’s rights and on the security level of each federated device.

Each device has its own asymmetric key pair and can be certified by its owner. Security
level evaluation and access control are based on those certificates. The corporate server
and the trusted device are in charge of enforcing the corporate security policy.

Access Control.

Access control in WiTness is very flexible: it is based on generic credentials (attribute
certificates) that can take into account different characteristics of the federation (see
Section 6.5). Access control is based on users’ rights that are defined by authorization or
role certificates, devices’ security-level (see demonstrator I, Section 6.6.1), or context like
being in a same meeting room (see demonstrator II, Section 6.6.2).

Tamper-Resistant Module.

The tamper-resistance of the trusted device is also essential for enforcing the corporate
security policy since it can hold private keys as well as the decryption keys for confidential

128 6. Implementing Trust Mechanisms in Federations

data. A straightforward way to ensure that a device can be trusted is proposed by
the Trusted Computing Group (TCG) [TCG]. The hardware is certified and can verify
whether a certified kernel is running on top of it. This kernel controls the OS, which can
check applications. This architecture makes it possible to prove that a given environment
is running. As long as all layers are trusted (i.e. certified) and without implementation
errors, it is possible to trust the environment. In other words, confidential data can
be provided to any TCG public terminal with the guarantee that those data will not be
misused. TCG being not deployed as of now, a pragmatic approach relying on trust-based
distribution has been chosen: data are distributed according to the security level of each
federated device. Security level evaluation is possible because the trust model proposed
in this project is restricted to B2E scenarios. When B2B relationships exist, a priori
trust is a realistic assumption as well: it is possible to base trust on the knowledge of who
manages a device. Expectations can be set regarding partners’ behavior or the way partner
companies manage their devices (patches, antivirus, etc.) in order to protect themselves.
Instead of proving the security of an involved device in the open, data distribution is
performed according to the trust that can be derived from established relationships.

Flexibility versus Security

On one hand, employees would like to use transparently any surrounding appliance such
as a screen embedded in a plane seat, a printer in an airport lounge, or location services
offered by a building. On the other hand, the corporation has to protect its resources
and prevent that an employee unintentionally reveal corporate data to untrusted and
potentially malicious devices. The tradeoff between flexibility and security is based on
the corporate security policy that defines whether a given device certified by an entity can
be involved when getting access to non-public data. Such an open federation, in which
devices owned by different entities are used, has to be restricted to secure interactions,
and yet remain fully usable.

In this architecture, access control must be enforced, devices have to be certified, and
resources have to be tagged. Deploying such a solution is possible in a B2E application
context in which a local PKI exists [AH00] (without a global CA) and where trust can be
specified. This architecture offers a pragmatic approach to secure the use of potentially
malicious environments in B2E applications. It ensures that federations be secure without
loosing their flexibility and user-friendliness.

Notations

Figure 6.1 shows different parties in a federation: companies, users (employees), devices,
and resources. A full representation of relationships should include intermediate levels
like departments or teams. Alice (A) is an employee of company CA. She is visiting
company CB and would like to federate her cell-phone DA2 with the public terminal DB1

6.4. Security Architecture 129

DB

CA CB

A’

DA1

RA1

DB

RA2

DA2

A DB1 DB2

B’B

DB

RB1

DB

RB2

Figure 6.1: General overview of relationships in a federation

in order to access corporate data RA1. A must be granted the right to use DB1 and to
access RA1 (see Section 6.4.2). The security level of DB1 has to be evaluated in order to
decide whether it can deal with classified data (see Section 6.4.3).

In the remaining of this section, we use a simplified notation for describing attribute
certificates: CERTx(y, attr) means that party x signs an XML data structure (see Sec-
tion 6.5) linking the public key of y to some attribute. Details such as validity end or
certificate version are omitted in this notation.

6.4.2 User-level Access Control Infrastructure

In order to enforce security, an access control system to corporate resources has to be
set up. In this system, each employee receives a security profile (set of rights) to access
resources or to use other devices.

Access control is a classical problem that becomes complex when delegation is required.
To be compatible with the issuance of local rights, we propose to use authorization cer-
tificates (similar to SPKI [EFL+99]). Delegation happens for instance when a secretary
gives a visitor access to a meeting room for a few hours. It also takes place when a visitor
authorizes a wall display to access some specific corporate data and display them. Short
term and application specific rights may also be required.

130 6. Implementing Trust Mechanisms in Federations

Accessing Corporate Database

Any employee of company CA receives authorization certificates. For instance, Alice may
receive:

CERTCA
(A, rA, deleg = 1)

where rA = {r1, r2, · · · , rn} is a set of rights and deleg is the ability to delegate those
rights to another person. Even if it does not appear in this notation, it is possible to
choose which attributes can be delegated. It is also necessary to distinguish between
delegation to other users (deleg tag) and delegation to devices. Indeed, when employee
A wants to let a federated device DB1 access a resource, she has to delegate some specific
short-term rights. For instance, A will browse a file server on her cell-phone and authorize
the terminal in front of her to access a given file RA1 in order to open it for edition work.
A provides the following certificate to DB1:

CERTA(DB1, rDB1
, deleg = 0)

where rDB1
⊆ rA is a subset of Alice’s rights that authorizes accessing RA1. It is

important to define rDB1
as precisely as possible and to set a short validity in order to

avoid unexpected access from federated devices. When DB1 accesses the resource RA1, it
has to provide the following certificate chain:

 CERTCA
(A, rA, deleg = 1)︸ ︷︷ ︸

authorization

, CERTA(DB1, rDB1
, deleg = 0)︸ ︷︷ ︸

authorization (delegation)

where rDB1

⊆ rA. During access control, the links between certificates of the chain are
verified, and the signature and validity of certificates are controlled. A challenge-response
protocol is used to check whether DB1 knows the private key KSDB1

corresponding to
the public key KPDB1

embedded in the last certificate of the chain, and the server finally
verifies that rDB1

indeed gives access to RA1. When the whole verification is successful,
access is authorized.

Using Surrounding Devices

Authorization certificates are similarly defined to enable the use of surrounding devices
that can be owned by another company. When a visitor A enters the building of the
partner company CB, she needs some rights to benefit from the services offered by the

6.4. Security Architecture 131

environment (like using wall displays and printers, getting a map of a building and her
location, opening a door to access a room, getting a lunch, etc.). Those rights can be
based on an agreement between the visitor’s company and the visited company, or can be
delivered when the visitor enters the building. Depending on the security policy, rights can
be provided automatically or require that a human being B be involved. For instance, the
security policy may specify that anybody physically in the building can use wall displays
but that registration is necessary in order to get access to some restricted areas. Different
chains are possible. For instance, company CB authorizes company CA to use its wall
displays DB1 and to delegate this right to its employees:

 CERTCB
(CA, rCA

, deleg = 1)︸ ︷︷ ︸
authorization

, CERTCA
(A, rA, deleg = 0)︸ ︷︷ ︸

authorization (delegation)

where rA ⊆ rCA

and rA is the authorization to use device DB1. Similarly, company
CB could authorize a secretary B to delegate rights to any visitor. When A enters the
building and registers, B grants her some rights:

 CERTCB
(B, rB, deleg = 1)︸ ︷︷ ︸
authorization

, CERTB(A, rA, deleg = 0)︸ ︷︷ ︸
authorization (delegation)

where rA ⊆ rB and rA is the authorization to use device DB1. The certificate chain

can be longer but it can be assumed in B2E environments that certificate chains remain
short enough. Their verification can thus be simplified by providing well-formed chains
instead of individual certificates that would have to be assembled by the verifier on the
corporate side.

6.4.3 Device-Level Access Control Infrastructure

It is not sufficient to base access control on users’ rights: characteristics of federated
devices have to be taken into account as well.

Security Level Verification

The security level of a device depends on features of this device (owner, tamper-resistance,
etc.) but depends on the observer as well. Figure 6.2 presents the trustworthiness of a
whole federation according to two parties A and B.

132 6. Implementing Trust Mechanisms in Federations

A�s cell phone

A�s SIM

B�s cell phone

B�s SIM

CB�s terminal

CA�s printer

Public terminal

Bob (B) Alice (A)

(a) Trust according to A

A�s cell phone

A�s SIM

B�s cell phone

B�s SIM

CB�s terminal

CA�s printer

Public terminal

Bob (B) Alice (A)

(b) Trust according to B

High security level Medium s.l. Low s.l. Unknown s.l.

(c) Keys: security-levels

Figure 6.2: Different views on the trustworthiness of a federation.

New types of credentials have been defined to evaluate the security level of federated
devices. Device DB1 is owned and managed by company CB (say for instance a wall-
display in a meeting room that is physically protected). Company CB provides to device
DB1 an ownership certificate

CERTCB
(DB1, slDB1

)

where slDB1
∈ {high,medium, low , unknown} is the security level of DB1 according to

CB. For instance, slDB1
= high could mean that DB1 is a computer managed and trusted

by CB (i.e. antivirus, regularly patched, physically protected, etc.) that can deal with any
kind of classified data. Agreements between companies are necessary to formally define
trust relationships. Such agreements are also defined by certificates. Company CA is a
partner of CB. Employees of CA frequently need to work in CB’s offices and use local
facilities, e.g. DB1. Because CA trusts CB, they can have the following agreement:

CERTCA
(CB, slCB

)

For instance, slCB
= low could mean that devices owned by CB can be used to deal with

confidential and unclassified data. The security level of a federated device is evaluated
thanks to the chain:

6.5. Structure of Certificates 133

 CERTCA
(CB, slCB

)︸ ︷︷ ︸
agreement

, CERTCB
(DB1, slDB1

)︸ ︷︷ ︸
ownership

where slDB1
does not have to be a subset of slCB

. It is not a delegation chain and
the trustworthiness of DB1 according to CA is defined by slDB1

∩ slCB
. The definition of

security levels is application dependent and it is thus possible to define more precise trust
relationships involving other parameters such as tamper-resistance or location.

6.5 Structure of Certificates

The natural choice for the format of attribute certificates has been the extensible markup
language (XML). XML is becoming the standard format for data transactions on the In-
ternet for many reasons: it is text based, human legible, self describing, structured, easy
to treat, modular, and object oriented. Associating XML with one of the many existing
libraries for parsing, displaying, transforming documents, and standards for signatures
(XML-Dsig) [dsi], encryption (XML-encrypt) [XEn], remote procedure call (SOAP), user
data exchange (SAML) [SAM], access control (XACML) [XAC] delivers a powerful com-
bination. Using XML as the format for attribute certificates instead of S-expressions
(SPKI) or ASN.1 (X.509) is not a novelty, and references can be found in an expired
draft [OSM] and some projects: Akenti [ake] and ICare [ICa]. However, the WiTness
framework deals with different problems and environments, which cannot be fulfilled with
existing standards or applications.

WiTness certificates have been designed as a simple and very flexible data structure for
the management of distributed credentials, easy to deploy and use in a off-line scenario.
A certificate associates some content to the holder with a signature based tamper-proof
guarantee of an issuer. The holder proves the ownership of the certificate through a classic
challenge-response protocol demonstrating he knows the private key associated to the
public key contained in the certificate. WiTness certificates holder and Issuer can either
be a public key or another referenced WiTness certificate. In addition, validity duration,
delegation level, and attributes can be evaluated at application level. The whole structure
is signed with standard XML-Dsig using the issuer private key, although limitations in the
Jeode Java Virtual Machine used on PDAs also required implementing an additional and
alternative ad-hoc signature format. Figure 6.3 gives the structure of WiTness attribute
certificates. More details on the structure can be found in [BCC+04, BRKC03].

134 6. Implementing Trust Mechanisms in Federations

Attribute
Attribute Certificate

Content

Public Key

Attribute Certificate

Issuer

Attribute Certificate
Holder

Public Key

Name
Validity

Attribute

Value

Resource

Delegation

Version

Id

Type

Certificate Info

Signature

Figure 6.3: XML structure of a WiTness attribute certificate

Attributes

Most of the flexibility of this data structure comes from the very open attribute format.
An attribute is defined by its name, value, resource, and delegation. The content of
the attribute must be evaluated at application level, though some simple rules apply
at library level to validate the certificate. The name of the attribute, associated with
the application-level certificate type, allows applying semantic aware validation to the
value for the attribute, and the optional related resource. A toolkit is provided with the
certificate library in order to easily define new attributes with specific validity rules.

Delegation

WiTness certificates are designed to allow dynamic roles and rights distribution and dele-
gation in a mixed on-line/off-line scenario. Any entity can act as a certification authority,
creating new attributes or delegating existent attributes, and distributing them to other
entities.

Certificate Chains and Validation

The chain from the root to the leaf delegated certificate is called a ‘physical chain’. All
parent certificates in a physical chain can be included in the final certificate for off-line
validation, since they are generated in sequence. A different kind of chain, called ‘logical
chain’ is used to create inter-domain delegation, and corresponds to an agreement between
two companies, linking existing physical chains from different authorities.

6.6. Demonstrators 135

For a certificate to be validated, the root of the physical chain must be a ‘trusted (root)
certificate’ (as in X.509), or it must be trusted through an inter-domain delegation signed
by a trusted certificate. Additionally, delegation level must be coherent, and application
level validation is enforced on the attributes in the chain.

Off-line Revocation

Revocation of rights is a difficult problem in disconnected contexts. Certificate Revocation
Lists (CRL) and On-line Certificate Status Protocols (OCSP) enable to check which cer-
tificates have been invalidated. OCSP needs full connectivity, while CRL can be used in
off-line context as long as lists can be updated on a regular basis. The main disadvantage
of CRL is their potential large size, which makes them inappropriate for mobile devices.
A different way to control the duration of rights is to rely on short-term [EFL+99] or
even one-time certificates. In this case, a mechanism for periodically renewing rights is
necessary. A hybrid approach was chosen in WiTness: long-term certificates are used to
define the roles, rights, or security levels of employees and devices, and are updated along
with revocation information when connectivity is available; while short-term certificates
are used for delegating rights. Short-term delegation enables Alice to let a terminal access
corporate data as long as she is present. When she leaves, i.e. when the terminal is out
of Bluetooth range, authorizations are no more renewed.

6.6 Demonstrators

This section presents the two demonstrators that we implemented at Eurecom to validate
the framework presented in this chapter.

6.6.1 Federative Access to Corporate Data

The first demonstrator shows how access control can takes user’s rights as well as security
level of devices into account (more details can be found in Appendix C). Alice federates
her cell-phone with a public terminal in order to enlarge the display when reading some
corporate document (Web mail). Parts of the document are differently classified (e.g.
confidential, secret). Depending on the trustworthiness of the terminal, be it a corporate
terminal, a partner’s terminal, or even an unknown terminal, only a subset of the doc-
ument appears. Each piece of data that cannot be decrypted is replaced by an applet
displaying a button. When this button is selected, encrypted data is sent to a trusted
enough member of the federation (e.g. Alice’s cell-phone) that can decrypt and display
this part of the document. This allows flexible yet secure document viewing in federa-
tions. A similar concept was presented at PerCom’04 by IBM to protect users’ privacy

136 6. Implementing Trust Mechanisms in Federations

[RNP03].

This demonstrator requires at least two workstations (terminals) and one iPaq (trusted
personal device). Local communications are based on the serial profile of Bluetooth. The
application is written in Java to be portable on both platform (JDK 1.4 on workstations
and Jeode Personal Java on iPaqs). On each platform, the application is split between
a web server and a set of applets that run within a web browser. It thus is possible to
define a federation of interacting browsers.

6.6.2 Pervasive Meeting

The second demonstrator tackles face-to-face interactions (more details are available in
Appendix D). In a meeting room, employees of different companies can vote, share files,
discuss an agenda, etc. The context, i.e. the fact that parties are present in the same
room, is asserted by a simple mechanism: the short range of the communication chan-
nel. However, as presented in Chapter 4, more sophisticated schemes could be deployed.
Federations make it possible to incorporate personal devices that unambiguously identify
some individual through a digital signature into B2E and B2B corporate processes. This
implies that employees’ as well as companies’ rights to perform operations may be better
enforced. It also means that their liability may be established in some business critical
process, like ordering some product, in that sense getting quite close to real-life signature.

The main goal is to demonstrate the implementation of the security features in WiT-
ness libraries. Specific interfaces have been added to show the creation, distribution, and
validation of certificates within a federation. This prototype illustrates how federations
may rely on roles and track important decisions of employees.

6.7 Conclusion

Our contribution to the WiTness project is briefly described in this chapter. However,
in terms of time and effort, the project was an important part of this Ph.D. thesis.
The collaboration with R&D teams of industrial partners was fruitful in spite of some
disagreements about expected results. Being leader of the research work package, we
focused on extensions of the main framework and went towards pervasive computing. We
implemented a certificate library and two demonstrators that were successfully presented
during the second review meeting (Sophia Antipolis, February 2003) and final review
meetings (Prague, April 2004).

Interestingly, the most time-consuming task has not been the implementation of the
concept developed in this chapter (i.e. certificate library and demonstrators) but the use
on immature technologies: access to Bluetooth and SIM card from Java. The industrial

6.7. Conclusion 137

environment imposed the operating system Pocket PC (Windows CE). Pocket Linux
being not an option, the only Java virtual machine available at this time was Jeode, an
implementation of Personal Java (i.e. Java 1.1.8 + some extensions). Another constraint
was the choice of Bluetooth (instead of WiFi) for local area networks. Bluetooth was
chosen because it is available on major devices (cell-phones, PDAs, laptops, etc.) and
because it only assures short-range communications and thus suits well personal area
networks. Due to those constraints, a lot of time was lost to get access to Bluetooth stack
and to a SIM card from Personal Java. Using modern XML parsers and Bouncy Castle
crypto library as well as running web servers and applets on PDAs have been challenging
and very instructive.

We were not involved in the modification of the SIM card for supporting business
application security but however proposed to access this crypto-processor through a stan-
dard interface (Java crypto extension: JCE). This enables using transparently a SIM card,
bouncy castle, or both together for cryptographic operations.

Our main contribution is a library for defining generic XML attribute certificates. For
the sake of efficiency, XML digital signature has been replaced by a standard signature
on raw XML data. Those generic credentials were used for combining a priori trust
relationships and context-based trust within the prototypes.

Today, Bluetooth PAN profile, JSR-82 [JSRa], JSR-177 [JSRb], and J2ME personal
profile are available and would make the development easier. Combining our approach
with Web Services is discussed in a research report [BCC+04]. The use of trust for pro-
tecting mobile code against malicious execution environment and protecting environment
against malicious pieces of code is discussed in Appendix E and [BR04].

138 6. Implementing Trust Mechanisms in Federations

139

Conclusions

”It’s only by going too far that you can hope to break the mould and do
something new.”

– Francis Bacon (the painter)

This dissertation has presented different approaches to deal with the establishment of trust
relationships in pervasive computing. We tackled extreme cases where there is neither a
priori trust nor permanent connectivity and where privacy of users is a concern.

The first part of this thesis presents two specific security protocols to deal with users
that do not have valuable secrets, i.e. lacking something similar to a private key. The first
scheme is computationally expensive because it relies on one-time credentials that have to
be generated and stored beforehand and because electronic checks have to be associated
with credentials. However, the principle of attaching attributes to ”the purse of a user”
instead of relying on the identity of this user seems promising in pervasive computing
where identity is often meaningless. The combination of other digital cash and credential
schemes could be studied for the same purpose. The second scheme presented in this
dissertation enables encrypted attributes and only suits applications where attributes are
defined in a small set of values. In other words, this approach cannot be used with
complex attributes like location, authorizations, or time. It is however a new way to
define unlinkable credentials suitable for specific attributes. Due to the strong limitations
of both schemes, in the second part of this dissertation we assume that each user holds a
valuable secret.

The second part described the architecture for collecting and showing any kind of
evidence implemented as a credential. Credentials are based on an extension of group
signatures in order to be unlinkable and anonymous. Credentials are strongly linked
to the secret of the holder and thus are non-transferable. The attributes embedded in
a credential can be selectively disclosed. Credentials can be used in challenge-response
protocols as well as in non-interactive signatures. Finally, a distance-bounding proof of
knowledge can be used when generating or presenting a credential. This general scheme
enables a prover to collect a set of credentials in order to build a provable history that is
subsequently used to establish trust relationships with unknown verifiers. Building trust
relationships on evidence that is not directly related to trust is potentially fruitful when

140 Conclusions

no trust evidence like recommendation or reputation is available. Trust-establishment
and privacy seems to be two major requirements of pervasive computing security. Our
approach fulfill both requirements and only recently other researchers started to work on
this topic [CM04].

The last part of this thesis presented some implementation results. For practical
reasons, privacy was not taken into account in this work. However, due to the increasing
computational power of PDAs, it seems feasible to deploy unlinkable credentials in mobile
environments. Unfortunately, as long as communication channels do not protect the
privacy of users, it is useless to use any unlinkable credentials.

Perspectives

A possible continuation of this work would be to remove constraints on communications.
In fact, assuming an on-line security model is realistic in numerous cases because a large
part of business activities that require security require connectivity as well (access to cor-
porate data, workflows, etc.). Permitting devices to have a permanent access to trusted
third parties would simplify the scheme (see our research report [BCC+04]). Another
advantage of a connected model would be the possibility of using Idemix [CL01] instead
of our unlinkable credential scheme. Idemix has two major advantages over our scheme
(see Table 3.1): First it ensures unlinkability from any party including the credential
issuer itself. Second it is becoming a standard and is already part of the trusted com-
puting group’s platform. Whether it is possible to combine distance-bounding proofs of
knowledge with this scheme is still an open issue.

We think that distance-bounding proofs of knowledge and other distance-bounding
protocols will be more and more important because physical artifacts are already ubiq-
uitous in our daily interactions: plug a smart card in a point of sale terminal, auto-toll
systems to pay for highway tolls, electronic keys for starting cars or accessing offices, etc.
Thus mafia and terrorist frauds are more and more likely to occur. We would like to study
how distance-bounding protocols could be integrated in trusted computing platforms and
smart cards in order to avoid mafia fraud attacks. Indeed, even with tamper-resistant
devices and sound security protocols, it is possible to mount a mafia fraud attack against,
for instance, what you see is what you sign: the smart card protects the signer’s private
key and runs a challenge-response protocol to check that the terminal displaying the doc-
ument to sign is indeed a certified trusted computing platform. However, similarly to
Figure 4.3(b), the verifier could be in front of a dummy terminal that forward challenges
to an authentic one. Such a fraud would enable the attacker to get a signature on a chosen
document.

This dissertation mainly focused on security protocols but did not define application
layers. Thus, it is still necessary to define verifier-side mechanisms to compute the trust-

Conclusions 141

level of a prover according to disclosed evidence. Moreover, we have to define prover-side
techniques to decide which part of a history can be shown without threatening the privacy.
Statistical disclosure control seems to be an interesting approach to assure user’s privacy
at application layer.

Prototypes have shown that there is a lack of high-level tools for describing trust
in terms of a priori relationships, recommendations, and context. Security policies are
envisioned for defining general rules and we also proposed to use a meta object protocol
for enforcing policies related to the protection of the execution environment [BR04].

Finally, we will be involved in Mosquito, another European project (IST-FP6) that
will start in September 2004 and mainly focus on the security of pervasive business ap-
plications. Mosquito will exploit results of WiTness, which ended in April 2004.

142 Conclusions

143

Appendix A

Using Quantum Cryptography to
Build Unforgeable Channels

This appendix describes a new idea: using quantum cryptography for proximity verifica-
tion. It is still impossible to integrate this technology in mobile devices but it is a powerful
solution that could enable secure device pairing.

Quantum cryptography [Sin00] is a technique for transmitting data over optical fiber
or even through the open air using quantum state to code binary values. Quantum cryp-
tography is already used to protect some communication channels. The first deployment
outside of a physics laboratory was done using an optical fiber part of an installed cable
used by the telecommunication company Swisscom for carrying phone conversations in
1995. It runs between the Swiss cities of Geneva and Nyon (my birth place), under Lake
Geneva. Quantum cryptography does not rely on Quantum computing, which aims at us-
ing the quantum state to define bits (or qubits) for computation. If such a computer can
be built, algorithms exist to tackle difficult problems, e.g. factoring very large composite
numbers into their primes. This is, however, out of the scope of this dissertation.

A.1 Principle

Quantum cryptography offers a similar service than the Diffie-Hellman protocol without
relying on complexity theory assumptions: it enables the exchange of a secret that cannot
be known by eavesdroppers but it does not ensure authentication. The main application
of quantum cryptography is the distribution of secret keys to secure point to point com-
munications. A direct link, generally an optical fiber, is used to exchange the secret keys
encoded as quantum states of photons. This approach does not rely on cryptography and
is provably secure. Once the secret key is shared, common secret-key cryptography can
be used to achieve the integrity and confidentiality of exchanged data.

144 A. Using Quantum Cryptography to Build Unforgeable Channels

I

A

B

Polarizer

Observer

Eavesdropper
(Intruder)

Source

Figure A.1: Principle of quantum cryptography

Each bit of the secret key is encoded as a quantum state generally referred as a
qubit. Typically photons are put into a particular state by the sender and then observed
by the recipient (see Figure A.1). Thanks to the uncertainty principle, some quantum
information occurs as conjugates that cannot be measured simultaneously. Depending on
how the observation is carried out, different aspects of the system can be measured but
observing one aspect randomizes the conjugates. Thus, if the receiver and sender do not
agree on what basis of a quantum system they are using, the receiver may destroy the
sender’s information (see Table A.1).

1

0

R
e

c
ti
lin

e
a

r

0

1

0 or 1

0 or 1

A�s
bit

A�s
scheme

A
sends

B�s
detector

1

0

D
ia

g
o

n
a

l

0 or 1

0 or 1

0

1

or

or

or

or

B
detects

B�s
bit

A�s
bit

A�s
scheme

A
sends

B�s
detector

B
detects

B�s
bit

Table A.1: Eavesdropping quantum cryptography

A.2 Unforgeable Channels

The main properties of quantum cryptography is that an eavesdropper cannot get the
secret exchanged by two entities and when the channel is noiseless, eavesdroppers can be

A.2. Unforgeable Channels 145

detected. A resulting property can help to build unforgeable channels: it is impossible
to forward data without being detected. The intruder can redirect the photon through
an optical fiber but cannot read the data and transmit them through another media like
radio (see Figure A.2. Note that this technique only prevents mafia frauds attacks (prover
and verifier behave fairly).

P V
Optical
Fiber

qubits

(a) Initial scheme

PVP V
Optical
Fiber

Optical
Fiber

Radio
Link

qubits qubits
bits

(b) Mafia fraud attack

Figure A.2: Quantum cryptography in order to disable mafia frauds

Quantum cryptography is an interesting approach but current technology neither en-
ables its implementation in small mobile devices nor allows cheap deployment. Moreover,
it does not fit big appliances like printers or ATM that could forward photons thanks to
an optical fiber. This method could fit very well scenarios in which a user holds the arti-
fact he wants to authenticate because it is easy to see that this artifact is not connected
to something else. This method can prevent distance as well as mafia frauds but cannot
prevent terrorist frauds.

Theoretically, quantum teleportation could be used to attack this scheme. Quantum
teleportation enables the exchange of one quantum state through a classical channel when
the sender and the receiver share an entangled pair of particles. Thus, if P̄ and V̄ could
store entangled pairs, they could threaten this scheme. However, entangled pairs are not
stable and the probability of successful state transfer is bounded. Thus, such an attack
does not seem realistic.

146 A. Using Quantum Cryptography to Build Unforgeable Channels

147

Appendix B

Drag-and-Drop: User-friendly
Distance-Bounding Protocols

It is well known that security can have a strong impact on usability. Security leads to
more complex protocols, requires users’ action such as entering a password, and sometimes
relies on additional tokens such as smart cards. In pervasive computing, users should
transparently interact with computers without caring about security. This appendix shows
how distance-bounding protocols and authentication of artifacts can be deployed in a user-
friendly way.

B.1 Usability of the Environment

Interactions between users and artifacts can be complex but have to stay as transparent as
possible. If some service requires the explicit interaction of users with real-world objects,
this interaction should be rendered as intuitive as possible.

Discovery and advertisement [Ric00] approaches impose the selection of virtual rep-
resentations of surrounding devices: it is obviously neither transparent nor intuitive to
select a printer in a list on one’s PDA when it stands in front of the user and could be
directly selected by touching it.

Physical contact with the device whose service is required may be constraining in the
sense that it has to be within physical reach, but is extremely intuitive for the user; rooms
containing devices out of reach might even be equipped with authentication switches alike
light switches. However, plain physical contact lacks the details provided by a computer
interface, which suggests that combining both approaches might be relevant.

Multi-party interactions involving multiple devices and/or multiple users should be

148 B. Drag-and-Drop: User-friendly Distance-Bounding Protocols

possible in pervasive environments. Most paradigms essentially focus on two party inter-
actions scenarios, but scenarios of sales typically involve two people and one device for
instance.

B.2 Security Requirements

Securing interactions between users and artifacts is mandatory as soon as resources have
to be protected. Access Control is necessary to verify the rights of users interacting with
the environment. Pervasive computing environments are shared by numerous users. It is
the reason why it is necessary to account for their respective actions and to keep a proof
that some critical interaction happened. In this context, non-repudiation can be required
for establishing user liability.

Artifacts have an important role in pervasive computing and it is thus necessary to
have a way to verify their characteristics. For instance, an interaction may require that
the rights of an artifact or who its owner is be verified. The establishment of trust
relationships has to be investigated as well.

Last but not least, finding a way to ensure security without bothering users is not
trivial. Prompting the user for passwords each time he interacts with his environment is
not a credible solution and does not fit with the expected transparency or ”pervasiveness”.
We propose a new user-centric approach based on personal tokens with contact interface
that are used to touch devices in order to dynamically and securely create relationships.
In this solution, the user is authenticated and his rights are used during the operation.

B.2.1 Strong Authentication in Pervasive Environments

Pervasive computing environments seem to head for totally wireless interactions, suppos-
edly simplifying the interactions between artifacts. Unfortunately, wireless networks make
it easier to snoop on some protocol or to attack it by inserting malicious traffic. Artifact
authentication is thus an essential security feature.

Former work is mainly concerned with providing a unified and informative interface
to all services and artifacts. It relies on a purely virtual representation, accessible on a
PDA for instance, in which the user chooses the service or specific artifact that he wants
to make use of. In such an approach, traditional techniques of authentication and key
distribution apply quite straightforwardly. This approach however does not bridge the
gap between the theoretical representation of the environment and the reality of it: no
proof is given that the printer in front of the user is the one that the PDA says should be
in this room.

B.3. Solution: Drag-and-Drop Methaphor 149

Depending on the criticality of the resources accessed or of the goods exchanged, it
can be sufficient to base the access control or the transaction on weak authentication.
However, pervasive computing will lead to numerous payment or micro-payment schemes
and access to critical resources will take place in some applications. This appendix aims
at answering the following question: Is it possible to define user-friendly interactions in
pervasive computing environments requiring strong authentication?

B.2.2 Presence of User

Distance-bounding protocols can be used to verify that an artifact is physically present.
When it is necessary to check if a human being is present during a transaction or to deliver
a proof of location, it is in fact the presence of his token that is verified, the token being for
instance an electronic ring [Cur98] that can be worn by the user. Tokens may potentially
carry numerous rights such as accessing office, house, car, and paid services and may be
used to sign documents, for payment, or to delegate rights. However, even such tokens
can be stolen: directly authenticating the user of a token is thus critical. PIN codes are
generally used to unlock tokens such as SIM cards. However, in pervasive computing, it is
not possible to rely on passwords for each interaction because it suppresses intuitiveness.
Two mechanisms can be proposed to diminish the threats on the personal token: when
the interactions are done on-line, it is possible to create a token revocation list; when the
interactions are done off-line it is necessary to lock the token periodically. Both rely on
surrounding artifacts: the former needs a terminal to add the token to the revocation list;
the latter requires a way to delegate the right of unlocking the token to another artifact.
For instance, an e-ring could be unlocked by entering a PIN code on a cell-phone or by
touching a finger print reader integrated in the user’s watch.

B.3 Solution: Drag-and-Drop Methaphor

Pervasive computing requires the most transparent interaction semantics in order to re-
main intuitive: touching a device holds such a promise. For instance, Alice may plug
her ring into an ATM in order to be authenticated and retrieve money. In order to pre-
vent mafia frauds, the setup will be slightly more complex so that, for instance, the user
be warned with a blinking led on her ring that the device she believes to be an ATM
is potentially a fake because it cannot associate a certificate issued by a bank with a
distance-bounding protocol. In addition, interesting interactions often involve three or
more artifacts. For instance, Alice may have to connect two artifacts using her ring.

This section describes how the drag-and-drop metaphor can be recycled to implement
several security mechanisms that often come up in pervasive scenarios: how to be sure
that an artifact conforms to some specification? How to enable an artifact to perform

150 B. Drag-and-Drop: User-friendly Distance-Bounding Protocols

some access on behalf of a user? How to provide some proof about an operation? Finally,
how to be sure of the ownership of an artifact and how to transfer it?

In the following, we will assume that each user (e.g. Alice A) carries a personal
token DA that identifies her and that is used to interact with surrounding artifacts. We
propose to implement tokens as tamper-resistant electronic rings with dedicated distance-
bounding interface. They can be used for protecting the private key KSA

of their owner
and to select other artifacts by touching them.

Each artifact Di has its own private key KSDi
. It is possible to provide rights to an

artifact by defining an authorization certificate. The features and the owner of an artifact
may also be defined by attribute certificates.

B.3.1 Verifying Attributes of Artifacts

Data are often associated with a physical object, be it a comment associated to paintings
in a museum or the expiring date of some food. Protecting those data against forgery
requires certifying and linking them to the artifact thanks to a distance-bounding protocol.
For instance, when someone buys an artifact, let’s say a pervasive Swiss watch or a
pervasive box of pills, it is necessary to verify that the manufacturer did actually certify
this artifact. Mechanisms ensuring that artifacts (or at least the chips associated to these
artifacts [KZS02]) cannot be cloned and that they are physically present are required.
This approach relies on the following hypotheses:

• Tamper-resistant hardware are available

• Hardware interfaces dedicated to distance-bounding protocols are deployed.

• Each user has a unique personal token (e-ring) that is used for authentication and
interactions.

Alice�s e-ring (DA)

PDA (D2)

Watch (D1)

Watch

Features
State
Owner
�

Figure B.1: Drag-and-drop to show attributes of an artifact

B.3. Solution: Drag-and-Drop Methaphor 151

Figure B.1 shows how a drag-and-drop mechanism can be used to intuitively display
the characteristics of an artifact. This protocol ensures that the displayed data correspond
to the artifact that has been touched (e.g. the watch). The user trusts his token to perform
a distance-bounding protocol with the artifact. The artifact can be verified anonymously
using the token, hence protecting the user privacy. Alternately, the artifact can require
the user identity or an authorization to control access to its services or resources.

Protocol Description

Table B.1 describes how a drag-and-drop protocol can be used between two artifacts in
order to verify attributes of the first one.

1) Drag
1.1) DA → D1 <Get description>
1.2) DA ← D1 CERT -D1 = CERTCA(KPD1

, attributes)
1.3) DA ⇒ D1 Distance-bounding protocol

2) Drop (before timeout)
2.1) DA → D2 <Put description>:

CERTDA(DA touched D1, CERT -D1)
2.2) D2 Display description of D1

Table B.1: Basic drag-and-drop protocol between two artifacts

The user touches the two artifacts in succession with his token. The protocol is
described in two parts: drag, which is the interaction between the token DA and the
artifact D1, and drop, which is the interaction between the token and another artifact D2.
In 1.2, DA receives a certificate describing D1 signed by a Certification Authority (CA).
In 1.3, DA verifies that the touched artifact knows the private key KSD1

corresponding to
the certified public key KPD1

. As a result of the drag operation, the token has the proof
that it touched an artifact knowing KSD1

and that CA certifies that the entity knowing
KSD1

has some attributes. In 2.1, DA drops the certificate of D1 to D2. It is certified by
DA.

On a side note, the distance-bounding protocol, for it involves nonces, provides a one-
time proof that the token is in contact with the owner of the secret key each time it is
performed. No additional nonce or timestamp is required in the derived protocol. In
any case, a timer should be available in the token to cancel operations if the drag is not
performed after some timeout.

This scheme can be extended. For instance, mutual authentication could be required
in order to provide access control so that D1 only delivers description to authorized to-
kens. In this case, there is an obvious tradeoff between access control and privacy, that

152 B. Drag-and-Drop: User-friendly Distance-Bounding Protocols

is, can anonymous drag be used or not. Another important feature is non-repudiation
of interaction that aims at proving that an interaction occurred between users and/or
artifacts. Distance-bounding protocols are not sufficient to ensure non-repudiation. In-
deed, after a distance-bounding protocol DA ⇒ D1, the artifact DA has the proof that
D1 is within some distance. However this information must be associated with a certain
context: providing a non-repudiation service to a pervasive interaction may not only re-
quire certifying the identity of the involved parties, but also the time at which it occurred
and the history of previous interactions, for instance. Different types of non-repudiation
(e.g. order of interaction, initiator, or target) can be integrated within the drag-and-drop
protocol.

153

Appendix C

Demonstrator 1: Device
Certification

A prototype showing in what way secure federations are required in B2E was developed
at Eurecom and presented during the second review meeting of the WiTness project.

C.1 Prototype Scenario

A salesman travels with his trusted device. He can use this device to access corporate
e-mails but reading them on a small display is not always user-friendly or even realistic.
He therefore uses surrounding public terminals, laptops, or video projectors to enlarge
his display. The salesman selects an e-mail on his trusted device and delegates it to a
discovered device. If the security level of the latter device permits so, this device can be
allowed to retrieve the e-mail and to display it.

The prototype focuses on a specific service: displaying Web pages on surrounding
devices. It is of course possible to extend this concept to other distributed applications
like edition or signature of documents. In our prototype, the access control protecting
Web pages takes into account the authorizations of users as well as contextual information:
the security level of involved devices.

The corporate security policy defines which data can be accessed by a given user, e.g.
e-mails, and the classification of the data that can be handled by federated devices. For
instance, some e-mails or attachments can be tagged as confidential. The access control
leads to the following cases:

• Case 1: User not authorized. Access control ensures that the salesman can only

154 C. Demonstrator 1: Device Certification

access the documents that he is authorized to.

• Case 2: User authorized but untrusted terminal. Using a public terminal,
the e-mails (or parts of e-mails) that are confidential will not appear but will be
replaced by a hypertext link. Upon selecting this link, the e-mail is displayed by
the salesman’s personal device that is a trusted enough member of the federation.

• Case 3: User authorized and trusted terminal. When the salesman uses a
terminal of a partner company, the confidential document is displayed.

Federations allow user-friendly interactions with surrounding artifacts and security is
ensured by combining authorization (i.e. what a user is authorized to do) and security
levels (i.e. what kind of data can be securely handled by a federated device).

C.2 Principle

Access to resources is protected at two levels (see Figure C.1). The first access control
layer (label 1) verifies whether a given user is authorized to access the required resource.
Each employee has his own asymmetric key pair, the private key being kept in the user’s
PDA or physically protected by a dedicated tamper-resistant module. SIM cards [sim]
are specifically envisioned because of their ubiquity in mobile devices. The user’s rights
are described in authorization certificates referencing the user’s public key as an identi-
fier. The second access control layer (label 2) distributes data according to the security
level of each federated device. Each device has its own asymmetric key pair that may
also be physically protected. Manufacturers, owners, or administrators of devices can
install certificates providing useful information about the device security level. When the
security level of a federated device is known, it becomes possible to decide whether it can
access some confidential data or not. Layer 1 resolves a chain of certificates defining the
relationships between the user and a know root key and layer 2 resolves a set of chains
corresponding to the relationships between each federated device and a root key. Data is
distributed according to the employee and the devices he is using.

C.2.1 Data and Key Distribution

Data distribution is based on the rights of the requestor and on the security level of the
devices involved. Suppose that a set of resources Rreq = {RA1, RA2, . . .} are requested
from a server of company CA by an employee A using a federation F = {DA2, DB1, . . .}.
The first access control layer requires the user authorization chain and delivers authorized
resources R = rA ∩Rreq where rA are the rights of A.

C.2. Principle 155

DB1

DB2

DB3

< ---- >
 < ---- >
 < confidential/ >

 < /---- >

 < ---- >
 < unclassified/ >

 < /---- >
< /---- >

Rreq R

1) Authorization
User�s Credential

< ---- >
 < ---- >

 < /---- >

 < ---- >

 < /---- >
< /---- >

EKP-iPAQ{K1,K2}
EKP-display{K2}

XML
XML-encryption +
Keys distribution

{ }K1

{ }K2

Security Policy

2) Devices� Security Level
Federation�s Credentials

Federation�s request Rreq

Server side
(Access Control)

R R

Federation

3)

R+keys
^^

Figure C.1: Server-side two stage access control based on the employee’s rights and on
the security level of each federated device

Each device can receive any data in an encrypted form but can only retrieve keys
corresponding to its security level. Resources R are encrypted according to their classifi-
cation cl ∈ CL. For instance, CL = {unclassified = 0, confidential = 1, secret = 2}. The
classification of a resource Ri is defined as cl(Ri). Tags are associated with resources in
order to specify their classification. The security level of a device Dj is defined as cl(Dj)
(see Section 6.3.3). A chain of certificates has to be resolved for each device in order to
know whether it is trustworthy enough. When cl(Dj) ≥ cl(Ri), device Dj is enabled to
deal with resource Ri. A symmetric key Kcl has to be defined for each classification cl:

For all cl ∈ CL : Server generates a symmetric key Kcl

Each resource Ri has to be encrypted with the symmetric key Kcl corresponding to
its classification cl(Ri):

For all Ri ∈ R : Server computes the encrypted resource R̂i = EKcl(Ri)
(Ri)

The set of encrypted resources is R̂ = {R̂i | Ri ∈ R}. Before sending it to the
federation, the devices trust chains are necessary for discovering security levels in order
to distribute the necessary keys:

For all Dj ∈ F and for all cl ∈ CL : if cl(Dj) ≥ cl : Server computes EKPDj
(Kcl(Dj))

Key distribution (see label 3 of Figure C.1) ensures that federated devices can only
receive keys for decrypting data they are authorized to deal with. For instance, a ter-
minal that is trusted enough to deal with confidential data will receive Kconfidential and
Kunclassified but will not receive Ksecret.

156 C. Demonstrator 1: Device Certification

C.2.2 XML Documents

XML has been chosen for defining certificates and also as the format for document storage.
XML is actually becoming the natural format for many kinds of documents, be they in
pure text, vector graphics, or more complex data formats; XML databases are spreading.
Adding trust and security information to an XML document is quite straightforward,
because XML has been conceived to be naturally extensible. In this work, there are two
different kinds of XML documents. One is the stored document, which can be seen in the
middle of Figure C.1. The other one is the transmitted document, on the right part of
Figure C.1.

Upon a user request to the server for a resource stored in the corporate database,
an XML Parser generates a document depending on security policies, user credentials,
and federated devices credentials. This document contains some cleartext parts, some
encrypted parts, and an additional section to distribute symmetric keys for the encrypted
sections. The receiving device will be able to show the encrypted parts if it can retrieve
the corresponding key.

Using XSLT, XML documents could be directly transformed into a proper format for
visualization, depending on the device.

C.3 Platform

In the time frame of this project, no device offering all required features was available.
The following hardware was expected:

1. Short range point to point wireless communication (preferably Bluetooth).

2. Global communication (cellular network: GSM, GPRS, or UMTS; or wireless LAN).

3. Smart card reader (preferably integrated SIM card reader).

4. Sufficient computational power and memory for applications and cryptography.

The following software requirements were also expected:

5. Support for high-level and full featured programming language.

6. Access to the Bluetooth stack from this programming environment.

7. Full access to the SIM card from this programming environment.

C.4. Result: Secure Federation 157

Both prototypes developed at Eurecom have been defined for iPaqs that were the most
appropriated devices at this time. Other prototypes and student projects requiring less
cryptography were implemented on standard cell-phones supporting J2ME.

C.3.1 Software Environment.

The Pocket PC operating system was chosen because of its wide use in corporate envi-
ronments. This choice had a strong impact on the Java virtual machines supported and
Bluetooth profiles available. Indeed, only Personal Java (Jeode) offers Java Native Inter-
faces for the Pocket PC at the time of this development. JNI is a mandatory feature to
be able to access Bluetooth from Java without a JSR-82 implementation [JSRa], none of
which existed when the development was started. Personal Java is a lightweight Java for
PDAs that offers an extension of JDK1.1.8 with Java 2 security. Those restrictions limit
the libraries available to parse and transform XML data. For application level security,
the Bouncy Castle cryptographic [BC] library was chosen. It provides a Java Crypto-
graphic Extension (JCE) that runs in JDK1.1.8 and offers all the required cryptographic
tools.

C.3.2 PAN Communications.

Federations require local communications and discovery mechanisms to work with sur-
rounding devices. Bluetooth is appropriate to implement those concepts and widely avail-
able on mobile devices (including cell-phones). The prototype is based on Bluetooth but
the architecture is flexible enough to easily replace this local communication media by
another one (e.g. WLAN). Bluetooth stack access from Java has been specified [JSRa]
but there is no implementation for Pocket PC available at the time of this writing. A
dynamic link library (DLL) has thus been implemented to connect devices through the
Bluetooth serial profile. Bluetooth connections can be driven from applications thanks to
the Java Native Interface (JNI).

C.4 Result: Secure Federation

Figure C.2 gives an overview of the architecture. A Web-mail interface was adopted
that makes it easy to integrate XML transformations. On each device, a local HTTP
server acts as a proxy when accessing the corporate intranet. This proxy is in charge of
transforming XML into HTML, decrypting encrypted parts when the key is available or
encapsulating them in applets when the key is unknown, and pushing data to the browser.
It has been chosen to use a browser for the graphical user interface because such tools are
standardized and available on all considered platforms. The browser loads some applets

158 C. Demonstrator 1: Device Certification

Figure C.2: Prototype architecture

that communicate with the proxy so that pages can be pushed from browsers of other
devices. Moreover, a toolbar allows to select discovered devices and to push pages or URL
to them (i.e. delegate access right).

Untrusted
(Public terminal)

Trusted
(Corporate PDA)

1 2

4

Airport Public Terminal
This terminal is XXX enabled and can be used by any traveler

Subject : Boeing Contract
From : �Vincent� <vincent@zzz.com>

To : �Bob� <bob@yyy.com>
Date : Wed, 19 Feb 2003 14:42:32

Status : Confidential, Secret Parts

3

Figure C.3: example of trust-based distribution

Figure C.3 shows some snapshots of the prototype. The Web browser, which runs on
a public terminal in an airport, displays a welcome message (see Label 1). When the
pervasive salesman is close enough, the terminal is discovered and appears in a toolbar
of his PDA browser. He can select a link to an e-mail and delegate it to the discovered
terminal (see Label 2). When a part of the document cannot be decrypted by a terminal
that is not trusted enough, this part is replaced by an applet displaying a button (see
Label 3). Here, the negotiated price of a contract is tagged as confidential and cannot
appear on a public terminal: security policies enforcement ensures that a public terminal
is not able do decrypt confidential data. The user can press the button to find a member of
the federation that is trusted enough. For instance, the confidential part of the document
will appear on his PDA (see Label 4). When the same operation is done on a corporate
terminal, the whole e-mail (including confidential data) appears.

C.4. Result: Secure Federation 159

This approach offers a simple mechanism to adapt a content to the security level.
User-friendliness is not sacrificed for security: the salesman does not have to care when
delegating the presentation of information to another device because the mandatory se-
curity model of his corporation ensures that classified data will never be delivered to an
entity distrusted by his company.

160 C. Demonstrator 1: Device Certification

161

Appendix D

Demonstrator 2: Context-Based
Trust Establishment

This appendix illustrates the interest of a standardized framework and infrastructure as
provided by the WiTness project to build critical business software based on federations.
A business application based on a wireless collaborative meeting serves as the demonstra-
tor showing how to secure federations with WiTness tools.

D.1 Application Description

A meeting management application is proposed to demonstrate the capabilities of the
WiTness framework to secure federation-based business applications. Meetings are events
at which users are typically within a short range. This second demonstrator makes it
possible for employees to prepare an agenda and collaborate during a meeting using their
devices federated over a wireless network.

The application prototyped provides a complete environment for meeting participants
to interact together and proceed along a meeting agenda. Each company taking part
in the meeting has at least one designated participant. The application starts with the
reception of a meeting agenda by each of these participants. At this stage, each of these
participants can delegate one or several of his roles to other employees of his company.
This part of the application handles management delegation using WiTness certificates.

When the meeting starts, employees dynamically join a federation made up of their
WiTness-enabled personal digital assistants that constitute their digital representation,
in particular because it is the device that will perform digital signatures on their behalf.
In the demonstrator, the federation is dynamically built upon Bluetooth piconets, but it
might also be built using other wireless technologies, in particular WiFi; another alter-

162 D. Demonstrator 2: Context-Based Trust Establishment

native for users unable to attend the meeting would be to be connected using GPRS or
UMTS and still participate to the meeting and take parts to the votes for instance.

The agenda consists of several items that can be simple discussion item or important
decisions that must be ratified by all organizations. The demonstrator makes it possible
to keep track of these decisions and to prove, in particular, that a participant did vote
for one choice as proven by the signature of his personal device that acts as a personal
token. The decisions taken during the meeting can thus be reviewed afterwards and may
not be legally challenged. For instance, only employees that receive a manager role, either
directly from their company or from a manager, can take part in votes for the orientation
of a project. Collaboration during the meeting is also enabled by the ability to share
documents, or more precisely grant access rights to other employees for the duration of
the meeting for instance. Keeping track of these access rights is again enabled by the use
of WiTness certificates.

D.2 Security Requirements

The use of federations for business applications makes it necessary to prevent both exter-
nal parties from attacking the collaborating partners and one of the users from performing
illicit operations or deny having performed an operation. Securing federative business ap-
plications thus requires the use of several mechanisms powered by the WiTness framework.
Encryption mechanisms are helpful for preserving the confidentiality of communications,
essentially from devices outside the federation or from users without eligible roles. En-
cryption here aims at preventing any leakage outside the trusted machines and devices
of the federation, as defined by system administrators of the companies involved in the
federation set-up. Meetings generate a need for protecting the information exchanged,
for instance against intruders that might be standing outside the meeting room or by the
meeting building, especially because of the use of wireless technology.

Signature mechanisms are helpful for providing non-repudiation properties to an op-
eration and thus for tracking operations in an unforgeable manner that stand legally
speaking. These mechanisms are binding for the end-users and aim at providing an ac-
countable log of the operations critical to the business application.

Displaying vote information is a particularly critical part of the vote process during a
meeting. The important feature of the collaborative meeting application demonstrated is
that employees only sign what they see on their personal devices. PDAs have been chosen
because they are easy to carry and are thus at least easy to protect against any physical
attacks since employees can take them everywhere and at any time. Doing so is even
quite critical as an employee’s PDA is his digital representation as well as his company’s,
at least within the roles he was granted.

D.3. Demonstrator Federative Network Architecture 163

D.3 Demonstrator Federative Network Architecture

The federation architecture is very much dependent on the underlying wireless technolo-
gies. The WiTness framework libraries provide an abstract layer enabling an easier devel-
opment of mobile business applications. These libraries provide Bluetooth support and
the demonstrator was thus developed around this technology. However, working with
different implementations of Bluetooth is very difficult as outlined below.

D.3.1 Bluetooth implementations issues: lessons learnt

Bluetooth makes it possible to build a network called a piconet in Bluetooth terminology.
Communications in such networks are quite different from what is common in 802.11.
In particular, communications are deployed in a master/slave fashion, and there is a
restriction on the size of the piconet that is a maximum of seven slaves. It is very
apparent that these restrictions, which were not very important when Bluetooth was only
touted as a replacement technology for cables now represents an important limitation
to the construction of wider federations. The concept of scatternet has been developed
to alleviate this restriction. The idea to increase the size of a Bluetooth piconet is to
chain several piconets, one of the slaves in a piconet being the master of another piconet.
However, to date, this concept has received little, if any support.

The Bluetooth technology has also been deployed in a very diverse way among all the
devices that claim to be Bluetooth enabled. The specification of the Bluetooth standard
defined several layers and associated protocols, as well as several ”profiles” that are made
of slices of several of the specified protocols. For instance, the serial profile emulates a
physical serial profile as defined in every device it is implemented in; the LAN access
profile makes it possible to communicate using TCP/IP on top of Bluetooth. The most
promising profile defined for Bluetooth in relation with federations is the PAN profile.
Unfortunately, because the specifications for these profiles were elaborated after many
Bluetooth enabled devices shipped, most profiles are unavailable or poorly implemented
as we found for instance with iPaq Pocket PCs and the LAN access profile. This renders
the development of an application, especially if it runs on top of several different devices,
quite difficult to achieve.

The serial profile seems to be the most commonly found of these profiles in all devices.
However, dealing with serial ports is not simple in every architecture as we experienced
with Personal Java on iPaqs. To make matters worse, the decision about who becomes the
master is only based on which device speaks first in a piconet. This raises a problem with
iPaqs again for these devices may only be connected to one device at the same time and
provide no support for scatternet. This means that an iPaq PDA cannot be the master
of a full-fledge piconet.

164 D. Demonstrator 2: Context-Based Trust Establishment

D.3.2 Architecture of the demonstrator

For the implementation of the meeting part of our collaborative agenda demonstrator,
we thus decided to use a laptop acting as the master of the piconet federation in order
to overcome the limitations of the Bluetooth implementations on PDAs. The role of
this laptop (that can be easily taken to a meeting room) is only that of a gateway that
relays Bluetooth traffic to and from PDAs. Our demonstrator proves that even with the
restrictions of the existent technology, implementing a working federation is possible. Of
course, WiFi implementations of federations would be free of such limitations. Finally,
the recent adoption of a new standard for Bluetooth, Bluetooth Core specification V1.2,
may speed up Bluetooth device replacement and thus address these issues.

Laptop + video projector:
(Bluetooth piconet master)

iPaq PDAs
(up to 7 Bluetooth slaves)

Figure D.1: Federative groupware

Figure D.1 presents the demonstrator: the meeting leader uses a video projector to
show the agenda and proposes to vote an item. Each person present can vote thanks to
his/her laptops or PDAs. A secure file sharing is also established. Trust is based on the
context, i.e. Bluetooth ensures that members of the group are present in the meeting
room, and attribute certificates that define roles and rights.

165

Appendix E

Mobile Code Protection Can Rely
on Trust

This appendix shows how trust can be a pragmatic way to implement security features
that are difficult to achieve. For instance, the Platform for Privacy Preferences Project
(P3P) offers a pragmatic way to protects users’ privacy that does not rely on cryptographic
assumptions but on whether the server is trusted. We propose a similar pragmatic ap-
proach to deal with two well-known security problems: how to protect the integrity and
confidentiality of execution of a piece of code executed by a potentially malicious host
and how to protect hosts’ integrity from potentially malicious pieces of code.

E.1 Problem Statement

In chapter 6 we have shown that trust evaluation is necessary for defining access control
in a federation. In this appendix we extend the notion of trust to control the execution of
applications in federations in term of protection of the application and protection of the
environment.

Computer users are becoming more and more mobile thanks to the deployment of wire-
less technologies and to the increasing availability of mobile personal devices. Nomadic
computing makes it possible for users to take advantage not only of his handheld or even
wearable devices, but also of the appliances in his immediate vicinity, even if they do not
belong to him. Enabling an application in such a system means accessing global and lo-
cal communication infrastructures. For instance, UMTS can be used for communications
with remote servers while Bluetooth will enable a pocket device to access surrounding
appliances (e.g. printers, screens, sensors).

Nomadic application thus range from over the air access to a classical distributed

166 E. Mobile Code Protection Can Rely on Trust

service provided by a remote server to a set of mobile codes dispersed over close commu-
nicating devices, which is generally called a federation of devices. The latter organization
helps alleviate the limitations of on-site available communication channels (i.e. restricted
bandwidth, long round-trip time, or expensive cost) or the limitations of mobile devices
(i.e. lack of computational power, screen size). For instance, a user traveling with a
cell-phone will much more efficiently edit a document with a local public terminal than
on the keyboard and screen of his phone.

Nomadic or pervasive computing is especially interesting for a mobile corporate work-
force, like salesmen visiting their customers. In this context, security becomes a major
concern. First, access to the corporate resources and data must be controlled. Second,
the safety of the operations performed by a user depends in fact directly on the integrity
of execution of a program on devices that will not, for most of them, be owned by the
employee or his company, and that may potentially be malicious. This is for instance
what happens when a public terminal is used to edit a document that is subsequently
signed with the employee’s cell-phone (assuming the employee’s private key is held by
his SIM card). To ensure the what you see is what you sign principle, it is necessary to
verify the integrity of execution of the editor. Finally, it is necessary to protect public
appliances offering some service from hostile users uploading some malicious mobile code
in order to attack the environment hosting it. If not enforced, such appliances might be
good candidates as Trojan horses of a new kind, unbeknownst to their owner.

Application protection and devices protection have often been discussed in the liter-
ature about mobile code security and have proven quite difficult to tackle [ST98, BV99,
LBR02, NL98]. In contrast with these works, this appendix suggests that both issues be
seen in terms of trust relationships:

• Can the terminal trust this piece of code and give it access to resources?

• Can the user trust this terminal to run some part of an application?

We propose a pragmatic way to evaluate the security-level of pieces of code and devices
in the very specific context of business-to-employee (B2E) and business-to-business (B2B)
nomadic applications. Access control as well as host and code protection can thus be
defined jointly.

E.2 Approaches to Protect Environment and Code

Pervasive computing requires distributing data and pieces of code in a federation of devices
that are not always controlled by the user. The problem addressed in this appendix is
twofold: on one hand, attacks may be performed by mobile programs against the execution

E.2. Approaches to Protect Environment and Code 167

environment and its resources; on the other hand, mobile code and data may be subverted
by a malicious execution environment. Here we present mechanisms dedicated to the
former issue, which has been widely addressed [LMR00], mechanisms to deal with the
latter issue, and some more global approaches.

E.2.1 Protecting Execution Environments

Protecting vital resources against potentially malicious pieces of code has been widely
addressed in operating systems and virtual machines. This section lists several approaches
and their relevance for securing nomadic B2E or B2B applications.

VM approaches

These approaches address the protection of the environment through the isolation of the
potentially malicious code.

Sandbox: The sandbox model is the original security model provided by Java. It offers
a severely restricted environment (the sandbox) in which untrusted pieces of code are
executed. Local code is trusted and has access to resources (e.g. file system, network)
while downloaded code is untrusted and cannot leave the sandbox. This initial mechanism
is still widely deployed: it is the default behavior of browsers (i.e. without java plug-in),
it is also used in lightweight environments such as J2ME and Personal Java that run on
cell-phones and PDAs. Finally, the applet firewall mechanism of Java cards has similar
properties. This mechanism has now been superseded by the Java 2 security model.

Java 2 Security Model: The sandbox model has been enhanced with new security
features [GMPS97]. There is no more built-in concept defining that local code is trusted
and remote code untrusted but each piece of code receives different rights depending on
its origin (i.e. URL), on the signature, and recently on the entity who runs the code. The
access control to resources is fine-grained and easy to configure. Permissions allow the
definition of rights and programmer can define application specific permissions (accessing
a smart card, etc.). Security Policies are used to associate permissions to pieces of code.
The work described in this appendix and in [BR04] uses and extends those mechanisms.

JavaSeal: JavaSeal [BV99] proposes a security framework to ensure strong security
between mobile agents. Confinement mechanism avoids covert channels between agents.
Mediation ensures that security controls can be added between pieces of code. Finally,
local denial of services attacks are avoided by finely controlling the resources (i.e. memory,
computational power) used by agents. This offers interesting security properties that
are out of our initial scope. However, JavaSeal could be combined with the approach
proposed in this paper to offer a full featured platform for securing mobile code in pervasive
computing.

168 E. Mobile Code Protection Can Rely on Trust

Proof-carrying code

An approach to host protection is to statically type-check the mobile code; the code is
then run without any expensive runtime checks. Promising results were obtained in this
area by the proof-carrying code work [NL98]. In proof-carrying code, the host first asks
for proof that the code respects his security policy before he actually agrees to run it.
The code owner sends the program and an accompanying proof, using a set of axioms
and rewriting rules. After receiving the code, the host can then check the program with
the guidance of the proof. This can be seen as a form of type checking of the program,
since the proof is directly derived from it. In proof-carrying code, checking the proof is
relatively simple compared to constructing it, thus this technique does not impose much
computational burden on the execution environment. However, automating the proof
generation is still an open problem.

Two security requirements specific to nomadic systems are not fulfilled by those ap-
proaches: a way to define rights of a piece of code in a distributed way that should make
possible the delegation of rights between entities in charge of certifying pieces of code;
and a mechanism to dynamically change the rights of an application is also necessary.

E.2.2 Protecting Mobile Codes

Protecting nomadic applications often requires protecting the mobile code parts that make
it up. Protecting a mobile code against the environment that executes it is notoriously
difficult. Verifying the environment trustworthiness is possible with some computer ar-
chitectures. Other architectures in which this verification is impossible make it necessary
to resort to techniques that render the understanding of the behavior of a piece of code
extremely difficult in order to ensure its integrity or confidentiality of execution.

Protecting code with trusted platforms

When the device that evaluates a piece of code is trustworthy, integrity and confidentiality
of execution are ensured. Two approaches have been undertaken.

Neutral Tamper-Resistant Platform: A straightforward way to ensure that a device can
be trusted is proposed by the Trusted Computing Group (TCG) [TCG]. The hardware
is tamper-resistant and certified. This hardware can verify whether a certified kernel is
running on top of it. This kernel controls the OS, which can check applications. This
architecture makes it possible to prove that a given environment is running. As long
as all layers are trustworthy (i.e. certified and without implementation errors), it is
possible to trust the environment. In other words, an application with some integrity
or confidentiality requirements can be executed by any TCG public terminal with the

E.2. Approaches to Protect Environment and Code 169

guarantee that the host will not misbehave. For instance, it is possible to ensure that
some confidential data will be erased when the user leaves the terminal.

Trusted Tamper-Resistant Module: It is also possible to provide a trusted tamper-
resistant hardware that will be in charge of executing applications. For instance telecom-
munication operators provide SIM cards to their customers in order to have a piece of
hardware that is totally under control. For obvious cost reasons, this approach suffers
from limited performances. Moreover, it is not realistic to embed a personal hardware
in all surrounding devices that can be involved. Finally, this approach only protects the
execution of some program but does not protect inputs and outputs, e.g. keyboard and
display of the cell-phone bearing the SIM card are still used.

Securing functions in malicious environments

Protecting the evaluation of a mathematical function on a potentially malicious host is a
first step towards application protection.

Secure function evaluation has been addressed by many researchers. Sander and
Tschudin [ST98] defined a function hiding scheme and focused on non-interactive pro-
tocols. In their framework, the confidentiality of function y = f(x) is assured by an
encrypting transformation. The authors illustrated the concept with a method that al-
lows computing with encrypted polynomials. The potentially malicious host evaluates
the encrypted function and returns an encrypted result. [SYY99] and [LBR02] present
non-interactive solutions for secure evaluation of Boolean circuits. Securing a program
based on secure functions is not straightforward however, and may again require the use
of a personal tamper-proof hardware.

Securing applications in malicious environments

Securing the integrity and confidentiality of a whole application is difficult.

Integrity of Software Execution: Integrity of execution is the possibility for the program
owner to verify the correctness of the execution. This problem has been extensively studied
for achieving reliability (see for example [WB97] for a survey) but security requirements
taking into account possible malicious behavior from the execution environment were
not considered. Yee [Yee99] suggested the use of proof based techniques, in which the
untrusted host has to forward a proof of the correctness of the execution together with the
result. It requires checking only a subset of the proofs in order to assure the correctness
of a statement.

Confidentiality of Software Execution: Malicious reverse engineering is an important
problem. For instance, Java byte code can easily be decompiled because it retains a large

170 E. Mobile Code Protection Can Rely on Trust

part of the original information and because applications based on powerful libraries are
small. Obfuscation aims at transforming an application into one that is functionally
identical to the original but that is much more difficult to understand. It is an empiri-
cal and mathematically unfounded solution (see [CTL96] for a catalogue of obfuscating
transformations).

To summarize, on one hand, hardware solutions to protect pieces of code are difficult
to deploy and expensive. Tamper-resistant modules are necessary to protect private keys
but it is not always affordable to have a secure hardware that protects the execution of
a whole application. Moreover, the process for certifying hardware is complex. On the
other hand, there is no software solution to fully ensure integrity and/or confidentiality
protection of a piece of code running on a malicious host. Indeed, all approaches presented
in this section are restricted to a set of functions, are computationally expensive, and/or
cannot be proven secure.

E.2.3 Trust-Based Application Protection

Rather than focusing on mechanisms to tackle either the mobile code side or the environ-
ment side, this appendix proposes a system wide and pragmatic mechanism common to
both the protection of code and environment. Environment and code protection can be
based on trust, i.e. authorizations and/or roles of application developers and security-level
of runtime environments.

Approaches based on distributed policies for managing trust [KFP01, BFK99] do not
take into account the security-level of execution environments. It is assumed that policies
are always enforced and it is not possible to recognize an untrusted device from a trusted
one. Policies are thus not sufficient for enforcing the protection of applications. We how-
ever envision policies to offer a flexible and high level specification of trust management.

In the business context described in this appendix, trust is based on a priori knowledge.
Recommendations, results of previous interactions, or even contextual information might
further be used to extend this knowledge.

E.3 Pragmatic Approach

We propose a framework for protecting the pieces of code, i.e. verifying the security-level
of environment before allowing distribution, and protecting the environment, i.e. verifying
that pieces of code are authorized to access resources, be they a database or a network
connection. More details on this approach, which was developed within student projects,
can be found in [BR04].

E.3. Pragmatic Approach 171

E.3.1 Nomadic System Organization

Figure E.1 shows how code distribution is done: different parts of an application are
tagged according to the security requirements and the security-level (SL) of each device is
evaluated. For instance, the signature related operation of an application has to be done
in a trusted-enough environment. Each piece of code receives short-term authorization
to access resources. For instance, a word processor can call the signature function but a
game cannot.

GUIverif Sign

GUI

verif

Sign

Keys

Certified Device

Certified piece of code Resource

Method call

My smart card, SL = high

My cell-phone,
SL = medium

A public terminal,
SL = low

Figure E.1: General overview: certified pieces of code within certified devices

Devices, which are not managed by the user and whose trustworthiness may be ques-
tioned, may anyway have to deal with confidential data. Moreover, in order to enable
flexible services, it is necessary to let users upload pieces of code (or applets) to sur-
rounding devices. Using trust information when deploying the application implies new
constraints when distributing data and code. We focus on the implications of this en-
vironment for satisfying to data integrity, data confidentiality, integrity of execution and
confidentiality of execution. In this model, integrity of execution means that servers do
not alter the execution of the application and surreptitiously modify its results. Confi-
dentiality of execution aims at preventing the disclosure of program semantics.

E.3.2 Defining Trust Relationships

WiTness attribute certificates have been chosen to formally define relationships and au-
thorizations between the involved parties. Rights can be delegated if the certificate allows
so and delegation can be performed in a local way without the need to connect to a
centralized authority: each user behaves as a local authority for attribute certificates.
Delegated credentials have a short lifetime, thus rendering the use of centralized revo-
cation lists unnecessary, and permitting a local validation of the certificate chain. For

172 E. Mobile Code Protection Can Rely on Trust

long-lasting capabilities, revocation lists are envisaged. Attribute certificates are used to
store a different type of information: for an employee, it can consist of his role or personal
rights; for a device, information about its security-level and the company it belongs to
may be provided.

Environment Protection: The Java 2 security model relies on signed pieces of code
and thus is identity based. Only mechanisms similar to access control list are available
to protect resources. [MR00] suggests that instead of signing pieces of code and associ-
ating permissions with signers, manipulating capabilities such as chain of authorization
certificates associated with pieces of code is required to handle multiple domains in a man-
ageable manner. We use WiTness certificates associated to pieces of code. A meta-object
protocol (MOP) [KdRB91] is used to intercept all method calls done by this piece of code.
Like this, it is easy to dynamically modify the authorizations when a new certificate chain
is available.

Code Protection: We propose to distribute data and code according to the security-
level of federated devices. Securing federations thus becomes evaluating the security-level
of each platform that takes part in the federation. The evaluation is not easy to achieve
in general: if a person makes use of a terminal in a public place, it is impossible to assume
that the terminal is trusted in any way without some additional information that makes
up the trust model. In general, there is no relation that can be exploited between the user
or his company and the owner of the terminal. B2E and B2B assumptions provide a clear
trust model and allow validating whether a given device is trustworthy (e.g. managed by
a partner company, patches are regularly applied). This information is used to distribute
code and data according to the security-level of each federated device. Security-levels are
defined by a chain of certificates. It is possible to increase the granularity of security-levels
by defining new semantics taking into account project names, groups, etc.

173

Bibliography

[AH00] T. Austin and D. Huaman. PKI. John Wiley and Sons, 2000.

[ake] Akenti: a security model and architecture to provide scalable security ser-
vices in highly distributed network environments http://www-itg.lbl.

gov/Akenti/.

[And01] Ross Anderson. Security Engineering: A Guide to Building Dependable dis-
tributed Systems. John Wiley and Sons, 2001.

[AS02] A. Alkassar and C. Stuble. Towards secure iff: preventing mafia fraud at-
tacks, [pdf]. In Proceedings of MILCOM 2002, volume 2, pages 1139–1144,
October 2002.

[AT99] G. Ateniese and G. Tsudik. Some open issues and new directions in group
signatures, [pdf]. In Proceedings of Financial Cryptography’99, volume 1648
of LNCS, pages 196–211. Springer-Verlag, 1999.

[BB03] K. Bicakci and N. Baykal. Saots: A new efficient server assisted signature
schema for pervasive computing. In proceedings of Security in Pervasive
Computing SPC’03, March 2003.

[BB04a] A. Beaufour and P. Bonnet. Personal servers as digital keys, [pdf]. In the Sec-
ond IEEE Annual Conference on Pervasive Computing and Communications
(PerCom’04), pages 319–328, 2004.

[BB04b] L. Bussard and W. Bagga. Distance-bounding proof of knowledge protocols
to avoid terrorist fraud attacks, [pdf]. Technical Report RR-04-109, May 2004.

[BBD+91] S. Bengio, G. Brassard, Y. Desmedt, C. Goutier, and J.J. Quisquater. Secure
implementation of identification systems. Journal of Cryptology, 4(3):175–
183, 1991.

[BC] Legion of Bouncy Castle, Java Crypto APIs (JCA), http://www.

bouncycastle.org/.

[BC93] S. Brands and D. Chaum. Distance-bounding protocols (extended abstract),
[pdf]. In Proceedings of EUROCRYPT 93, volume 765 of LNCS, pages 23–27.
Springer-Verlag, May 1993.

http://www-itg.lbl.gov/Akenti/
http://www-itg.lbl.gov/Akenti/
http://www.bouncycastle.org/
http://www.bouncycastle.org/

174 BIBLIOGRAPHY

[BCC+04] L. Bussard, J. Claessens, S. Crosta, Y. Roudier, and A. Zugenmaier. Can we
take this off-line? how to deal with credentials in federations without global
connectivity, [pdf]. Technical Report RR-04-105, May 2004.

[BFI99] M. Blaze, J. Feigenbaum, and J. Ioannidis. The keynote trust-management
system version 2, [pdf]. Technical Report Request for Comments: 2704, Net-
work Working Group, 1999.

[BFK99] Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis. The role of trust
management in distributed systems security, [pdf]. In Secure Internet Pro-
gramming, pages 185–210, 1999.

[BFL96] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust manage-
ment, [pdf]. In Proceedings 1996 IEEE Symposium on Security and Privacy,
number 164–173, May 1996.

[BHE00] N. Bulusu, J. Heidemann, and D. Estrin. Gps-less low-cost outdoor localiza-
tion for very small devices, [pdf]. IEEE Personal Communications, 7(5):28–34,
2000.

[BHKK+04] L. Bussard, J. Haller, R. Kilian-Kehr, J. Posegga, P. Robinson, Y. Roudier,
and T. Walter. Secure mobile business applications – framework, architecture
and implementation. Submitted for publication in a journal, 2004.

[BK] J. Barton and T. Kindberg. The challenges and opportunities of integrating
the physical world and networked systems, [pdf]. Technical report.

[Bla96] Matt Blaze. High-bandwidth encryption with low-bandwidth smartcards,
[pdf]. In Fast Software Encryption, volume 1039 of LNCS, pages 33–40, 1996.

[BM04a] L. Bussard and R. Molva. Establishing trust with privacy, [pdf], April 2004.
To appear in proceedings of the twelve international workshop on security
protocols.

[BM04b] L. Bussard and R. Molva. One-time capabilities for authorizations with-
out trust, [pdf]. In Proceedings of the second IEEE conference on Pervasive
Computing and Communications (PerCom’04), pages 351–355, March 2004.

[BMR04a] L. Bussard, R. Molva, and Y. Roudier. Combining history-based trust es-
tablishment with distance-bounding protocols, [pdf]. Technical Report RR-
04-100, April 2004.

[BMR04b] L. Bussard, R. Molva, and Y. Roudier. History-based signature or how to
trust anonymous documents, [pdf]. In Proceedings of the Second Conference
on Trust Management (iTrust’2004), volume 2995 of LNCS, pages 78–92.
Springer, March 2004.

[Bor00] Gaetano Borriello. The challenges to invisible computing, [pdf]. IEEE Com-
puter, 33(11):123–125, November 2000.

BIBLIOGRAPHY 175

[BP00] P. Bahl and V.N. Padmanabhan. Radar: An in-building rf-based user lo-
cation and tracking system, [pdf]. In INFOCOM, volume 2, pages 775–784,
2000.

[BQ95] P. Bégiun and J.J. Quisquater. Fast server-aided rsa signatures secure against
active attacks, [pdf]. In proceedings of CRYPTO’95, pages 57–69, 1995.

[BR02] L. Bussard and Y. Roudier. Authentication in ubiquitous computing, [pdf],
2002. Workshop on Security in Ubiquitous Computing at UBICOMP’2002.

[BR03a] L. Bussard and Y. Roudier. Background signature for sensor networks, [pdf].
Technical Report RR-03-076, June 2003.

[BR03b] L. Bussard and Y. Roudier. Embedding distance-bounding protocols within
intuitive interactions, [pdf]. In Proceedings of Conference on Security in
Pervasive Computing (SPC’2003), volume 2802 of LNCS, pages 143–156.
Springer, March 2003.

[BR04] L. Bussard and Y. Roudier. Protecting applications and devices in nomadic
business environments, [pdf]. In Proceedings of 3rd Conference on Security
and Network Architectures (SAR’04), pages 243–252, June 2004.

[Bra93] Stefan Brands. An efficient off-line electronic cash system based on the
representation problem., [pdf]. Technical report, 1993.

[Bra00] Stefan A. Brands. Rethinking public key infrastructures and digital certifi-
cates: Building in privacy. MIT Press, 2000.

[Bra02] Stefan Brands. A technical overview of digital credentials, [pdf]. Technical
report, Credentica, 2002.

[Bri03] R. Bridgelall. Enabling mobile commerce through pervasive communications
with ubiquitous rf tags, [pdf]. In Proceedings of IEEE Wireless Communica-
tions and Networking Conference (WCNC’03), volume 3, pages 2041–2046,
2003.

[BRKC03] L. Bussard, Y. Roudier, R. Kilian Kehr, and S. Crosta. Trust and autho-
rization in pervasive b2e scenarios, [pdf]. In Proceedings of the 6th Informa-
tion Security Conference (ISC’03), volume 2851 of LNCS, pages 295–309.
Springer, October 2003.

[BRM04] L. Bussard, Y. Roudier, and R. Molva. Untraceable secret credentials: Trust
establishment with privacy, [pdf]. In Proceedings of the Workshop on Perva-
sive Computing and Communications Security (PerSec’04) at PerCom’04,
pages 122–126, March 2004.

[BSSW02] D. Balfanz, D.K. Smetters, P. Stewart, and H. Chi Wong. Talking to
strangers: Authentication in adhoc wireless networks, [pdf]. In Symposium
on Network and Distributed Systems Security (NDSS ’02), February 2002.

176 BIBLIOGRAPHY

[BV99] Ciaran Bryce and Jan Vitek. The JavaSeal mobile agent kernel, [pdf].
In First International Symposium on Agent Systems and Applications
(ASA’99)/Third International Symposium on Mobile Agents (MA’99), Palm
Springs, CA, USA, 1999.

[CD00a] J. Camenisch and I.B. Damgard. Verifiable encryption, group encryption,
and their applications to group signatures and signature sharing schemes,
[pdf]. In Advances in Cryptology - Asiacrypt 2000, volume 1976 of LNCS,
pages 331–345. Springer-Verlag, 2000.

[CD00b] D. Caswell and P. Debaty. Creating web representations for places, [pdf]. In
Proceedings of Handheld and Ubiquitous Computing: Second International
Symposium, HUC 2000, volume 1927 of LNCS, page 114. Springer-Verlag,
January 2000.

[CFN89] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash (extended ab-
stract), [pdf]. In Advances in Cryptology – CRYPTO ’88 Proceedings, volume
403 of LNCS, pages 319–327. Springer-Verlag, 1989.

[CFS01] N. Courtois, M. Finiasz, and N. Sendrier. How to achieve a mceliece-based
digital signature scheme, [pdf]. In Advances in Cryptology - ASIACRYPT
2001, volume 2248 of LNCS, pages 157–174, 2001.

[CGKS95] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information
retrieval, [pdf]. In IEEE Symposium on Foundations of Computer Science,
pages 41–50, 1995.

[CGRZ03] S. Creese, M. Goldsmith, B. Roscoe, and I. Zakiuddin. Authentication for
pervasive computing, [pdf]. In Proceedings of the First International Confer-
ence on Security in Pervasive Computing, LNCS. Springer, 2003.

[CGS+03] V. Cahill, E. Gray, J.-M. Seigneur, C.D. Jensen, Yong Chen, B. Shand,
N. Dimmock, A. Twigg, J. Bacon, C. English, W. Wagealla, S. Terzis,
P. Nixon, G. Di Marzo Serugendo, C. Bryce, M. Carbone, K. Krukow, and
M. Nielson. Using trust for secure collaboration in uncertain environments,
[pdf]. IEEE Pervasive Computing, 2(3):52–61, July 2003.

[CH02] J. Camenisch and E. V. Herreweghen. Design and implementation of the
idemix anonymous credential system, [pdf]. In Proc. 9th ACM conference on
Computer and Communications Security. ACM Press, 2002.

[Cha81] David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms, [pdf]. Communications of the ACM, 4(2), February 1981.

[CL01] J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation, [pdf]. Lecture
Notes in Computer Science, 2045, 2001.

BIBLIOGRAPHY 177

[CLS+01] M.J. Covington, W. Long, S. Srinivasan, A.K. Dev, M. Ahamad, and G.D.
Abowd. Securing context-aware applications using environment roles, [pdf].
In Proceedings of the Sixth ACM Symposium on Access control models and
technologies, May 2001.

[CM98] J. Camenisch and M. Michels. A group signature scheme based on an rsa-
variant, [pdf]. Technical Report RS-98-27, BRICS, University of Aarhus, 1998.
Preliminary version in ASIACRYPT’98, volume 1514 of LNCS, pages 160–
174, Springer Verlag.

[CM04] D. Cvrc̆ek and V. Matyás̆. Pseudonymity in the light of evidence-based
trust, [pdf], April 2004. To appear in proceedings of the twelve international
workshop on security protocols.

[CMA00] M.J. Covington, M.J. Moyer, and M. Ahamad. Generalized role-based access
control for securing future applications, [pdf]. In 23rd National Information
Systems Security Conference, 2000.

[CN02] M. Corner and B. Noble. Zero-interaction authentication, [pdf]. In Proceedings
of Conference on Mobile Computing and Networking (MobiCom), September
2002.

[CR82] D. Chaum and R.L. Rivest. Blind signatures for untraceable payments, [pdf].
In Advances in Cryptology, Proceedings of Crypto 82, LNCS, pages 199–203,
1982.

[CS97] J. L. Camenisch and M. A. Stadler. Efficient group signature schemes for
large groups, [pdf]. In Advances in Cryptology – CRYPTO ’97 Proceedings,
volume 1294 of LNCS, pages 410–424. Springer-Verlag, 1997.

[CTL96] C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating trans-
formations, [pdf]. Technical Report Technical Report 148, Department of
Computer Science, University of Auckland, 1996.

[Cur98] Stephen M. Curry. An introduction to the java ring, [pdf]. Java World, 1998.

[DDLS01] N. Damianou, N. Dulay, E. Lupu, and M Sloman. The ponder specifica-
tion language, [pdf]. In Workshop on Policies for Distributed Systems and
Networks (Policy2001), 2001.

[Dem04] Robert Demolombe. Reasoning about trust: A formal logical framework.
In Proceedings of Second International Conference on Trust Management
(iTrust’04), volume 2995, pages 291–303. LNCS, 2004.

[Des88] Yvo Desmedt. Major security problems with the ‘unforgeable’ (feige)- at-
shamir proofs of identity and how to overcome them. In Proceedings of
SecuriCom ’88, 1988.

178 BIBLIOGRAPHY

[DFHM01] R. Dingledine, M.J. Freedman, D. Hopwood, and D. Molnar. A reputation
system to increase mix-net reliability, [pdf]. In Proceedings of the 4th In-
ternational Workshop on Information Hiding, volume 2137, pages 126–141.
LNCS, 2001.

[DM96] D.E. Denning and P. F. MacDoran. Location-based authentication: Ground-
ing cyberspace for better security, [pdf]. Computer Fraud and Security, Febru-
ary 1996.

[dsi] XML Digital Signature. W3C Recommendation, 12 February 2002, http:

//www.w3.org/Signature/.

[EFL+99] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen.
Rfc 2693 – spki certificate theory, [pdf], 1999.

[EGM96] Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital
signatures, [pdf]. Journal of Cryptology, 9(1):35–67, 1996.

[ENT+02] C. English, P. Nixon, S. Terzis, A. McGettrick, and H. Lowe. Dynamic
trust models for ubiquitous computing environments, [pdf]. In Workshop on
Security in Ubiquitous Computing at UBICOMP’2002, 2002.

[EWN+03] C. English, W. Wagealla, P. Nixon, S.Terzis, A. McGettrick, and H. Lowe.
Trusting collaboration in global computing, [pdf]. In Proceedings of the First
International Conference on trust management, volume 2692 of LNCS, May
2003.

[Fer94] N. Ferguson. Single term off-line coins, [pdf]. In Advances in Cryptology—
EUROCRYPT ’93, volume 765 of LNCS, pages 318–328. Springer-Verlag,
1994.

[FSLS03] D.F. Ferguson, T. Storey, B. Lovering, and J. Shewchuk. Secure, reliable,
transacted web services: Architecture and composition., [pdf]. Technical re-
port, IBM and Microsoft, September 2003.

[Gar95] Simson Garfinkel. PGP : Pretty Good Privacy. International Thomson Pub-
lishing, 1995.

[GBEE02] L. Girod, V. Bychkobskiy, J. Elson, and D. Estrin. Locating tiny sensors in
time and space: A case study, [pdf]. In Proceedings of ICCD’02, 2002.

[Ger04] Jon Gertner. The very, very personal is the political, [pdf]. The New York
Times Magazine, February 2004.

[GLHB03] D. Graumann, W. Lara, J. Hightower, and G. Borriello. Real-world imple-
mentation of the location stack: The universal location framework, [pdf]. In
Proceedings of the 5th IEEE Workshop on Mobile Computing Systems & Ap-
plications (WMCSA 2003), pages 122–128. IEEE Computer Society Press,
October 2003.

http://www.w3.org/Signature/
http://www.w3.org/Signature/

BIBLIOGRAPHY 179

[GMPS97] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers. Going beyond
the sandbox: An overview of the new security architecture in the Java De-
velopment Kit 1.2, [pdf]. In USENIX Symposium on Internet Technologies
and Systems, pages 103–112, Monterey, CA, 1997.

[GS00] Tyrone Grandison and Morris Sloman. A survey of trust in internet appli-
cations, [pdf], 2000.

[GW98] E. Gabber and A. Wool. How to prove where you are: Tracking the location
of customer equipment, [pdf]. In Proceedings of the 5th ACM Conference on
Computer and Communications Security, pages 142–149, November 1998.

[HB01] Jeffrey Hightower and Gaetano Borriello. Location systems for ubiquitous
computing, [pdf]. IEEE Computer, 2001.

[HHS+99] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster. The anatomy
of a context-aware application, [pdf]. In Mobile Computing and Networking,
pages 59–68, 1999.

[HMS+01] L.E. Holmquist, F. Mattern, B. Schiele, P. Alahuhta, M. Beigl, and H-W.
Gellersen. Smart-its friends: A technique for users to easily establish con-
nections between smart artefacts, [pdf]. In Proceedings of UbiComp 2001,
2001.

[HPJ03] Yih-Chun Hu, A. Perrig, and D.B. Johnson. Packet leashes: a defense against
wormhole attacks in wireless networks, [pdf]. In Proceedings of INFOCOM
2003. Twenty-Second Annual Joint Conference of the IEEE Computer and
Communications Societies, volume 3, pages 1976–1986, March 2003.

[ICa] ICare, Trust Infrastructure over Internet and Mobile Networks, http://www.
cert-i-care.org.

[Ing03] D. Ingram. Trust-based filtering for augmented reality, [pdf]. In Proceedings
of the First International Conference on Trust Management, volume 2692.
LNCS, May 2003.

[IT00] ITU-T. Recommendation x.509: The directory - public-key and attribute
certificate frameworks, [pdf]. Technical Report X.509, ITU-T, 2000.

[IU97] Hiroshi Ishii and Brygg Ullmer. Tangible bits: Towards seamless interfaces
between people, bits and atoms, [pdf]. In CHI, pages 234–241, 1997.

[JP04] A. Josang and S. Lo Presti. Analysing the relationship between risk and
trust, [pdf]. In Proceedings of Second International Conference on Trust Man-
agement (iTrust’04), volume 2995, pages 135–145. LNCS, 2004.

[JSRa] JSR 82 Java APIs for Bluetooth, http://www.jcp.org/en/jsr/detail?

id=82.

http://www.cert-i-care.org
http://www.cert-i-care.org
http://www.jcp.org/en/jsr/detail?id=82
http://www.jcp.org/en/jsr/detail?id=82

180 BIBLIOGRAPHY

[JSRb] JSR 177 Security and Trust Services API for J2ME, http://www.jcp.org/
en/jsr/detail?id=177.

[KdRB91] Kiczales, des Rivieres, and Bobrow. The Art of the Metaobject Protocol. MIT
Press, 1991.

[KFJ01] Lalana Kagal, Tim Finin, and Anupam Joshi. Trust-based security in per-
vasive computing environments, [pdf]. IEEE Computer, pages 154–157, De-
cember 2001.

[KFP01] L. Kagal, T. Finin, and Y. Peng. A framework for distributed trust man-
agement, [pdf]. In Workshop on Autonomy, Delegation and Control, 2001.

[KH00] Hiroaki Koshima and Joseph Hoshen. Personal locator services emerge, [pdf].
IEEE Spectrum, 2000.

[KHM+00] J. Krumm, S. Harris, B. Meyers, B. Brumitt, M. Hale, and S. Shafer. Multi-
camera multi-person tracking for easyliving, [pdf]. In IEEE Workshop on
Visual Surveillance, 2000.

[KKP99] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century challenges: Mobile
networking for ’smart dust’, [pdf]. In MOBICOM, pages 271–278, 1999.

[Kob94] Neal I. Koblitz. A Course in Number Theory and Cryptography. Springer,
1994.

[KP03] M. Kinateder and S. Pearson. A privacy-enhanced peer-to-peer reputation
system, [pdf]. In Proceedings of the 4th International Conference on Electronic
Commerce and Web Technologies (EC-Web’03), volume 2738, pages 206–
215. LNCS, 2003.

[KZ03] T. Kindberg and K. Zhang. Validating and securing spontaneous associa-
tions between wireless devices, [pdf]. In Proceedings 6th Information Security
Conference (ISC03), volume 765, pages 44–53, 2003.

[KZS02] T. Kindberg, K. Zhang, and N. Shankar. Context authentication using con-
strained channels, [pdf]. In Proceedings of the IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA), pages 14–21, June 2002.

[LBR02] S. Loureiro, L. Bussard, and Y. Roudier. Extending tamper-proof hardware
security to untrusted execution environments, [pdf]. In Proceedings of the Fifth
Smart Card Research and Advanced Application Conference (CARDIS’02) -
USENIX - IFIP working group 8.8 (smart cards), pages 111–124, November
2002.

[LMR00] S. Loureiro, R. Molva, and Y. Roudier. Mobile code security, [pdf]. In ISY-
PAR 2000, (4ème Ecole d’ Informatique des Systèmes Parallèles et Répartis),
2000.

http://www.jcp.org/en/jsr/detail?id=177
http://www.jcp.org/en/jsr/detail?id=177

BIBLIOGRAPHY 181

[LR98] A. Lysyanskaya and Z. Ramzan. Group blind digital signatures: A scalable
solution to electronic cash, [pdf]. In Financial Cryptography, pages 184–197,
1998.

[McC01] Joseph F. McCarthy. The virtual world gets physical: Perspectives on per-
sonalization, [pdf]. IEEE Internet Computing, pages 48–53, December 2001.

[McE78] R. McEliece. A public-key cryptosystem based on algebraic coding theory.
Technical Report DSN Progress Report, DIn Jet Propulsion Lab., 1978.

[Mer00] Johannes Merkle. Multi-round passive attacks on server-aided RSA proto-
cols, [pdf]. In ACM Conference on Computer and Communications Security,
pages 102–107, 2000.

[Mic96] S. Micali. Efficient certificate revocation, [pdf]. Technical Report
MIT/LCS/TM-542b, 1996.

[MM02] P. Michiardi and R. Molva. Core: A collaborative reputation mechanism
to enforce node cooperation in mobile ad hoc networks, [pdf]. In IFIP -
Communication and Multimedia Security Conference, 2002.

[MR00] R. Molva and Y. Roudier. A distributed access control model for Java, [pdf].
In 6th European Symposium on Research in Computer Security (ESORICS),
number 1895, pages 291–308, 2000.

[MRCM02] J. Al Muhtadi, A. Ranganathan, R. Campbell, and D. Mickunas. A flexi-
ble, privacy-preserving authentication framework for ubiquitous computing
environments, [pdf]. In International Workshop on Smart Appliances and
Wearable Computing (IWSAWC 2002), 2002.

[MVO96] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook
of Applied Cryptography, [pdf]. CRC Press, 1996.

[NKR+02] C. Narayanaswami, N. Kamijoh, M. Raghunath, T. Inoue, T. Cipolla, J. San-
ford, E. Schlig, S. Venkiteswaran, D. Guniguntala, V. Kulkarni, and K. Ya-
mazaki. Ibm’s linux watch, the challenge of miniaturization, [pdf]. IEEE
Computer, 35(1):33–41, January 2002.

[NL98] George C. Necula and Peter Lee. Safe, untrusted agents using proof-carrying
code, [pdf]. Lecture Notes in Computer Science, 1419, 1998.

[NMV99] K.Q. Nguyen, Yi Mu, and V.Varadharajan. Divertible zero-knowledge proof
of polynomial relations and blind group signature. In Information Security
and Privacy, Proceedings of ACISP’99, 1999.

[OA00] R.J. Orr and G.D. Abowd. The smart floor: A mechanism for natural user
identification and tracking, [pdf]. Technical Report GVU Technical Report
GIT-GVU-00-02, 2000.

182 BIBLIOGRAPHY

[OSM] K. Otani, H. Sugano, and M. Mitsuoka. Capability card: An attribute
certificate in xml, [pdf]. Expired Internet Draft, 18 Nov. 1998.

[P3P] World Wide Web Consortium, Platform for Privacy Preferences Project
(P3P), 2004, http://www.w3.org/P3P/.

[PB99] C. Pavlovski and C. Boyd. Efficient batch signature generation using tree
structures, [pdf]. In International Workshop on Cryptographic Techniques and
E-Commerce (CrypTEC’99), pages 70–77, 1999.

[PCB00] N.B. Priyantha, A. Chakraborty, and H. Balakrishnan. The cricket location-
support system, [pdf]. In Mobile Computing and Networking, pages 32–43,
2000.

[PHS03] J. Pieprzyk, T. Hardjono, and J. Seberry. Fundamentals of Computer Secu-
rity. Springer, 2003.

[PK01a] Andreas Pfitzmann and Marit Köhntopp. Anonymity, unobservability,
and pseudonymity – a proposal for terminology, [pdf]. In Designing Pri-
vacy Enhancing Technologies – International Workshop on Design Issues
in Anonymity and Unobservability 2000, volume 2009 of LNCS, pages 1–9.
Springer-Verlag, 2001. updated version in [PK01b].

[PK01b] Andreas Pfitzmann and Marit Köhntopp. Anonymity, unobservability, and
pseudonymity – a proposal for terminology v.12, [pdf]. Technical report, 2001.

[PSW+01] A. Perrig, R. Szewczyk, V. Wen, D.E. Culler, and J.D. Tygar. SPINS: secu-
rity protocols for sensor netowrks, [pdf]. In Mobile Computing and Networking,
pages 189–199, 2001.

[Ram99] Zulfikar Amin Ramzan. Group blind digital signatures: Theory and appli-
cations, [pdf], 1999.

[RBM03] A. Rezgui, A. Bouguettaya, and Z. Malik. A reputation-based approach to
preserving privacy in web services, [pdf]. In 4th VLDB Workshop on Tech-
nologies for E-Services (TES’03), pages 91–103. LNCS, 2003.

[Ric00] G.G. Richard. Service advertisement and discovery: enabling universal de-
vice cooperation, [pdf]. IEEE Internet Computing, 4(5):18–26, 2000.

[Riv98] Ronald L. Rivest. Can we eliminate certificate revocations lists?, [pdf]. In
proceedings of the Conference on Financial Cryptography, pages 178–183,
1998.

[RNP03] M. Raghunath, C. Narayanaswami, and C. Pinhanez. Fostering a symbiotic
handheld environment, [pdf]. IEEE Computer, 36(9):56–65, September 2003.

[SA99] Frank Stajano and Ross J. Anderson. The resurrecting duckling: Security
issues for ad-hoc wireless networks, [pdf]. In Security Protocols Workshop,
pages 172–194, 1999.

http://www.w3.org/P3P/

BIBLIOGRAPHY 183

[SAM] Security Assertion Markup Language (SAML 1.0). OASIS standard, 5-Nov-
2002, http://www.oasis-open.org/committees/security/.

[Sat01] M. Satyanarayanan. Pervasive computing: Vision and challenges, [pdf]. IEEE
Personal Communications, 8(4):10–17, August 2001.

[SCFY96] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role based
access control models, [pdf]. IEEE Computer, 2, February 1996.

[Sch89] C. P. Schnorr. Efficient identification and signatures for smart cards, [pdf].
In Advances in Cryptology - CRYPTO’89 Proceedings, volume 435 of LNCS,
pages 239–252. Springer-Verlag, 1989.

[SDA99] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The context toolkit:
Aiding the development of context-enabled applications, [pdf]. In CHI, pages
434–441, 1999.

[SDB03] B. Shand, N. Dimmock, and J. Bacon. Trust for ubiquitous, transparent
collaboration, [pdf]. In Proceedings of the First IEEE International Con-
ference on Pervasive Computing and Communications, (PerCom’03), pages
153–160, 2003.

[SFJ+03] J.M. Seigneur, S. Farrell, C.D. Jensen, E. Gray, and Y. Chen. End-to-end
trust starts with recognition, [pdf]. In Proceedings of Conference on Security
in Pervasive Computing (SPC’2003), March 2003.

[She00] Mostafa H. Sherif. Protocols for Secure Electronic Commerce. CRC Press,
2000.

[sim] GSM 11.11, Digital cellular telecommunications system (Phase 2+); Speci-
fication of the Subscriber Identity Module - Mobile Equipment (SIM - ME)
interface, 1999.

[Sin00] Simon Singh. The Code Book: The Science of Secrecy from Ancient Egypt
to Quantum Cryptography. Anchor, 2000.

[SSW03] N. Sastry, U. Shankar, and D. Wagner. Secure verification of location claims,
[pdf]. In Proceedings of the 2003 ACM workshop on Wireless security, 2003.

[ST98] Tomas Sander and Christian F. Tschudin. On software protection via func-
tion hiding, [pdf]. Lecture Notes in Computer Science, 1525:111–123, 1998.

[Sta00] Frank Stajano. The resurrecting duckling - what next?, [pdf]. In Security
Protocols Workshop, pages 204–214, 2000.

[Sta02] Frank Stajano. Security for Ubiquitous Computing. John Wiley and Sons,
2002.

http://www.oasis-open.org/committees/security/

184 BIBLIOGRAPHY

[Sti02] Douglas Stinson. What the heck is a zero-knowledge proof of knowledge,
anyway, and what does it mean?, [pdf]. Technical report, unpublished note,
2002.

[SYY99] T. Sander, A. Young, and M. Yung. Non-interactive cryptocomputing for
nc1, [pdf]. In 40th Annual Symposium on Foundations of Computer Science
99, pages 554–566, 1999.

[TCG] Trusted Computing Group (TCG), https://www.trustedcomputinggroup.
org/home.

[WB97] H. Wasserman and M. Blum. Software reliability via run-time result-
checking, [pdf]. Journal of the ACM, 44(6):826–849, 1997.

[WBRR04] T. Walter, L. Bussard, P. Robinson, and Y. Roudier. Security and trust issues
in ubiquitous environments - the business-to-employee dimension, [pdf], 2004.
Workshop on Ubiquitous Services and Networking in at SAINT’2004.

[WdW00] L. Willenborg and T. de Waal. Elements of Statistical Disclosure Control,
volume 155 of Lecture Notes in Statistics. Springer Verlag, 2000.

[Wei91] Mark Weiser. The computer for the twenty-first century, [pdf]. Scientific
American, pages 94–100, September 1991.

[WF] B. Waters and E. Felten. Proving the location of tamper-resistant devices,
[pdf]. Technical report.

[WHFG92] R. Want, A. Hopper, V. Falcao, and J. Gibbons. The active badge location
system, [pdf]. ACM Transactions on Information Systems, 10:91–102, 1992.

[XAC] eXtensible Access Control Markup Language (XACML 1.0). OASIS Stan-
dard, 6 Feb. 2003, http://www.oasis-open.org/committees/xacml/.

[XEn] XML Encryption. W3C Recommendation, 10 December 2002, http://www.
w3.org/Encryption/.

[Yee99] Bennet S. Yee. A sanctuary for mobile agents, [pdf]. In Secure Internet
Programming, pages 261–273, 1999.

https://www.trustedcomputinggroup.org/home
https://www.trustedcomputinggroup.org/home
http://www.oasis-open.org/committees/xacml/
http://www.w3.org/Encryption/
http://www.w3.org/Encryption/

185

Résumé

”Ma patrie, c’est la langue française.”

– Albert Camus

Ce chapitre propose une traduction en français des principaux résultats présentés dans
les chapitres précédents de ce mémoire.

Introduction

En 1991, Marc Weiser prévoyait pour le 21ème siècle la disparition des ordinateurs de
bureau. Il décrivait une extinction massive de ces dinosaures qui allaient être remplacés
par des processeurs de plus en plus petits intégrés dans la plupart des objets qui nous
entourent. Dans sa vision, les utilisateurs ne devraient plus être conscients d’interagir
avec des ordinateurs. Cette tendance est communément appelée ”informatique diffuse”
(pervasive computing), ”informatique omniprésente” (ubiquitous computing) ou ”objets
communicants” (communicating devices).

Treize ans plus tard, les premiers pas ont été franchis. En effet, les téléphones cel-
lulaires sont omniprésents et offrent de nombreux services tels que l’accès permanent
à l’Internet, la prise de photos, la localisation géographique, la découverte et l’utilisa-
tion d’autres machines se trouvant à proximité (par exemple un distributeur de boissons
ou une imprimante supportant Bluetooth). De plus, les véhicules ainsi que les appareils
ménagers commencent à être interconnectés et offrent des services de plus en plus so-
phistiqués. Finalement, de nombreux petits objets commencent à inclure des étiquettes
intelligentes (RFID tags) qui remplacent progressivement les codes barres et sont sur le
point de révolutionner le monde de la distribution. Ce dernier exemple montre clairement
que l’informatique diffuse relie directement le monde physique des objets (étiquetés) et
leurs représentations virtuelles dans des bases de données.

Ce nouveau paradigme a un impact important sur la sécurité des systèmes informa-
tiques. En effet, en plus des problèmes classiques liés à la sécurité des communications

186 Résumé

sans fil, de nouveaux défis apparaissent. Les interactions avec les utilisateurs doivent être
spontanées et transparentes. En conséquence, il n’est pas envisageable d’exiger un mot de
passe avant chaque interaction. De plus, les informations sur le contexte d’un utilisateur
ou d’un objet deviennent importantes. Par exemple, le contrôle d’accès peut être basé
sur la localisation d’un utilisateur. Une autre limitation est le manque d’infrastructure de
communication qui interdit de baser toute la sécurité sur des tiers de confiance distants. Le
nombre d’acteurs potentiels dans ce type de système étant très grand, de nombreuses in-
teractions ont lieu entre des entités qui ne se connaissent pas. L’infrastructure de confiance
étant insuffisante voire inexistante, de nouveaux mécanismes pour établir des relations de
confiance sont nécessaires. Finalement, la protection de la vie privée (privacy) est un
problème majeur dans ces environnements. En effet, la vie privée des utilisateurs est mise
en péril par le nombre croissant d’interactions pouvant potentiellement être enregistrées
et corrélées.

L’informatique diffuse pose encore de nombreux défis et une importante communauté
de chercheurs est en train d’émerger autour de ce thème pluridisciplinaire. Au moins trois
conférences internationales traitent de ce sujet : Ubicomp depuis 1999, Pervasive depuis
2002 et PerCom depuis 2003. De plus, deux journaux couvrent ce domaine : personal
and ubiquitous computing est édité conjointement par l’ACM et Springer depuis 1997
et IEEE pervasive computing (mobile and ubiquitous systems) a été démarré en 2002.
L’informatique diffuse entrâınant de nouveaux problèmes en sécurité, les workshops sur
ce sujet foisonnent dans les conférences susmentionnées et dans les conférences sur la
sécurité. En 2003, la première conférence dédiée à la sécurité de l’informatique diffuse
(international conference on security in pervasive computing) a été organisée. Finalement,
un livre traitant de ce sujet a été publié en 2002 [Sta02].

Structure de cette thèse

Ce mémoire de thèse décrit principalement un ensemble de protocoles de sécurité
permettant à une entité de prouver qu’elle a pris part à des interactions passées tout
en évitant d’être tracée (untraceability). Ces preuves sont utilisées dans le but d’établir
une relation de confiance avec une autre entité. Ainsi, une entité peut prouver qu’elle fait
partie d’un groupe, qu’elle est recommandée par un tiers de confiance ou qu’elle se trouvait
en un lieu à un moment donné. Au niveau applicatif, ces informations sont utilisées pour
décider si une entité inconnue peut accéder à un service.

La première partie de cette thèse présente deux protocoles dédiés aux environnements
sans infrastructure de confiance, c’est-à-dire sans certification des utilisateurs. Le cha-
pitre 1 présente des jetons (one-time credentials) permettant d’accéder à un service une
seule fois et révélant un chèque électronique en cas de comportement malveillant, c’est-à-
dire en cas d’usage multiple. Le chapitre 2 de ce mémoire présente un autre type de jeton
permettant à un utilisateur de prouver le résultat d’interactions passées sans que cette
preuve puisse être liée à cet utilisateur ou à une interaction.

1. Motivation : quatre nouvelles contraintes 187

La deuxième partie de ce mémoire est le cœur de cette thèse. Il présente l’architecture
développée pour créer un historique et pour révéler des éléments de cet historique à un
tiers. Le chapitre 3 présente un mécanisme de signature anonyme lié à un historique
(unlinkable credential). Ce nouveau type de signature est une extension des signatures de
groupe et permet de signer en tant que ”quelqu’un qui est recommandé par Bob”, ”une
personne qui se trouvait à Paris en janvier”, ou ”un visiteur du musée d’art moderne
de Nice” sans révéler d’information sur l’identité du signataire ni permettre de lier deux
signatures. Le chapitre 4 présente un mécanisme permettant de prouver la proximité
d’une entité connaissant un secret (distance-bounding proofs of knowledge). Le chapitre 5
combine ces deux techniques et montre comment un historique d’interactions peut être
défini et utilisé lors de l’établissement d’une relation de confiance.

La dernière partie de ce mémoire se concentre sur l’implémentation d’un sous-ensemble
des concepts présentés précédemment. Ce travail est notre contribution au projet WiT-
ness. Une bibliothèque Java permettant la création et la vérification de certificats d’at-
tribut génériques en XML ainsi que deux prototypes utilisant cette bibliothèque ont été
implémentés et permettent l’établissement de confiance au sein d’une fédération d’as-
sistants numériques (PDA) et d’ordinateurs portables reliés par des connexions sans fil
Bluetooth. Le premier prototype permet la distribution de contenu en fonction de la clas-
sification des données, des droits des utilisateurs et du niveau de confiance des différentes
machines utilisées. Le second prototype permet à un groupe de personnes en réunion
d’échanger des données de façon sécurisée, de signer un document ou de voter.

1 Motivation : quatre nouvelles contraintes

Il est important de déterminer les besoins en sécurité qui sont spécifiques à l’infor-
matique diffuse. Pour commencer, certains besoins sont hors du sujet de cette thèse : la
sécurité des communications sans fil n’est pas traitée ; la fiabilité et la sécurité au niveau
réseau des systèmes auto-organisés (réseaux ad hoc) n’est pas prise en compte ; finalement
la sécurité des réseaux de capteurs, où les limitations en termes de puissance de calcul et
de moyens de communication sont très fortes, n’est pas couverte.

Les services de sécurité nécessaires à l’informatique diffuse sont classiques : contrôle
d’accès, authentification, non-répudiation, confidentialité, intégrité, etc. Cependant, de
nouvelles contraintes imposent la redéfinition de ces services et la création de nouveaux
mécanismes. Nous nous concentrons sur les quatre contraintes principales de l’informa-
tique diffuse : le manque d’infrastructure de confiance, le manque d’infrastructure de
communication, le besoin de protéger la vie privée des utilisateurs et le besoin de prendre
en compte le contexte. Chacune de ces contraintes va être détaillée dans les paragraphes
suivants.

188 Résumé

1.1 Manque de relations de confiance

La première contrainte est le manque de relations de confiance. Quand une entité A
interagit avec une entité B, A doit pouvoir évaluer le niveau de confiance de B pour
décider si B peut être autorisé à accéder à des services offerts par A ou pour déterminer
si les services offerts par B sont fiables.

Différentes techniques existent pour déterminer le niveau de confiance d’une autre
entité (voir Figure 1). Une méthode classique pour évaluer la confiance est d’authentifier
les entités et d’utiliser une liste (par exemple une liste de contrôle d’accès) pour lier
chaque identité à une notion de confiance. Dans l’informatique diffuse, le nombre d’objets
communicants est potentiellement immense et les interactions avec des inconnus peuvent
donc être fréquentes. Dans ce cas, la notion d’identité est inutile car il n’est pas possible de
dériver une notion de confiance à partir d’un nom sans le connâıtre a priori. En utilisant
des certificats d’attribut ou d’autorisation (X.509 ou SPKI), il est possible d’obtenir des
informations certifiées par une autorité de confiance. Malheureusement, l’informatique
diffuse ne permet généralement pas de trouver un lien hiérarchique entre deux entités.
Finalement les approches basées sur l’observation des autres entités semblent appropriées.
Les recommandations permettent la distribution de ses propres observations à d’autres
parties et les systèmes de réputation se basent sur une mesure statistique des observations
de nombreuses entités.

A I
(racine)

J

B L

K

M N

A D

C

B

E

F

Hiérarchique

Web of Trust

Statistique

Certificat d�identité.

Certificat d�attribut (SPKI)

RéputationRecommandations

Fig. 1 – Différentes approches pour définir une relation de confiance

Nous proposons une extension des systèmes de recommandation en définissant la no-
tion d’historique qui permet à chaque entité de stocker l’ensemble des interactions passées
qui peuvent être prouvées. Ces données peuvent être directement liées à une notion de
confiance ou pas : un historique peut ainsi contenir une preuve de localisation, une recom-
mandation ou une carte d’identité numérique. Chacun de ces éléments peut être prouvé
lors de l’établissement d’une relation de confiance avec un inconnu.

1.2 Manque d’infrastructure de communication

Une autre contrainte importante est le manque d’infrastructure de communication.
Lorsque deux ou plusieurs objets communiquent localement au sein d’une fédération (per-

1. Motivation : quatre nouvelles contraintes 189

sonal area network), il n’est pas toujours possible d’avoir accès à un tiers de confiance
(trusted third party) distant que ce soit pour des raisons de coût, de temps de réponse ou
de manque d’infrastructure (voir figure 2).

TTP

Tiers de
confiance
distant

Fédération

Fig. 2 – Interactions déconnectées : impossibilité de joindre un tiers de confiance distant

Pour permettre à une entité de prouver son historique sans interaction avec un tiers
distant, nous proposons que chaque entité maintienne et transporte son propre historique
sous la forme d’une base de donnée locale contenant des certificats pouvant être vérifiés
sans nécessiter un tiers de confiance.

1.3 Besoin de protéger la vie privée des utilisateurs

Une autre contrainte de l’informatique diffuse est liée à son fort pouvoir d’observation
des utilisateurs. Aujourd’hui les habitudes d’achat des utilisateurs sont observées grâce
aux cartes de paiement et leur localisation est possible grâce aux téléphones cellulaires.
Sans prendre de précaution pour protéger la vie privée des utilisateurs de l’informatique
diffuse, toutes leurs interactions, de l’ouverture d’une porte à la rencontre d’une autre
personne, pourront être tracées.

Nous proposons donc un historique qui puisse être prouvé tout en choisissant de ne
révéler que les informations pertinentes. Un mécanisme de certificat non traçable est
proposé dans ce but.

1.4 Besoin de prendre en compte le contexte

Finalement, la quatrième contrainte est la prise en compte du contexte. L’informatique
diffuse propose d’associer un microprocesseur avec une puissance de calcul et des moyens
de communication à tous les objets qui nous entourent. Le résultat est un lien fort entre
une identité virtuelle (par exemple une clé publique) et un objet physique (dans lequel
est encapsulé le microprocesseur qui connâıt la clé privée correspondante). Ce lien doit
pouvoir être prouvé dans de nombreux cas :

190 Résumé

– Il peut être nécessaire de prouver le contexte physique dans lequel se trouve un
objet, par exemple la localisation de cet objet à un instant donné. Ces informations
contextuelles font partie de l’historique.

– Un autre besoin est de lier un objet physique et une donnée (voir figure 3). Par
exemple, lier une montre et un certificat signé par le fabriquant de cette montre.

– Finalement associer deux objets (device pairing) est souvent nécessaire à l’établis-
sement d’un canal sécurisé.

Certificat :
Attributs de A A

Objet
Physique

Identité
virtuelle

?

Fig. 3 – Relations entre un objet physique et son identité virtuelle

Pour lier les données aux objets, nous proposons un mécanisme de preuves de proximité
qui permet de prouver qu’un secret (une clé privée) est connu localement.

1.5 Notre approche

Pour répondre aux trois premières contraintes (manque d’infrastructure de confiance,
interactions déconnectées et protection de la vie privée), un mécanisme permettant de
prouver un historique en étant déconnecté et en restant anonyme est nécessaire. Dans ce
but, nous proposons un mécanisme de certificats non traçables. Pour traiter la quatrième
contrainte (prise en compte du contexte physique), nous proposons un autre mécanisme :
les preuves de proximité. La suite de ce résumé décrit en détail ces deux mécanismes.

2 Certificats non-traçables

Le premier mécanisme est le certificat non traçable. Son principe est décrit dans la
figure 4. Alice (A) possède différents certificats dans son historique :

– Une preuve de localisation (géodatage) prouve qu’elle était à Sophia-Antipolis le 15
octobre 2004. Ce certificat lui a été délivré par une borne interactive.

– Un certificat d’attribut prouve qu’elle est professeur à l’ENST. Ce certificat est
renouvelé chaque année par son employeur.

– Une recommandation prouve que Bob lui fait confiance. Ce certificat lui a été remis
après une interaction avec Bob et a une durée de vie limitée.

Lorsque Alice prouve son historique, elle choisit les certificats qu’elle veut révéler et la
granularité des informations présentées. Par exemple, avec un codage approprié, elle peut

2. Certificats non-traçables 191

choisir de cacher les détails concernant sa localisation et prouver qu’elle était en France
le 15 octobre. Cette preuve peut se faire interactivement lors d’un échange face à face ou
sans interaction dans le cas d’une signature.

Bob a confiance
en cette personne

Cette personne
est un professeur
de l�ENST

Cette personne
Était à Sophia le
15 Octobre 2004

Historique d�Alice

Cette personne
est professeur
à l�ENST

Cette personne
Était à Sophia le
15 Octobre 2004

Signature
(non interactive)

Cette personne
est professeur
de l�ENST

Cette personne
Était à Sophia le
15 Octobre 2004

en France

un salarié

Révélation sélective

Protocole de
défi/réponse

Cette personne
est professeur
à l�ENST

Cette personne
Était à Sophia le
15 Octobre 2004

ou

Fig. 4 – Certificats non-traçables utilisés de manière interactive ou non.

Ce mécanisme permet de signer un document en tant que ”un salarié de l’ENST qui
était en France le 15 octobre 2004” ou ”un journaliste qui était sur les lieux des faits”. La
signature ne peut être générée que par une entité ayant l’historique adéquat, c’est-à-dire,
ayant reçu les certificats nécessaires. La signature peut être vérifiée de manière déconnectée
à condition de connâıtre les clés publiques des entités ayant fourni les certificats. La
signature ne révèle aucune information sur l’identité du signataire et il n’est pas possible
de savoir si deux signatures ont été générées par la même personne.

2.1 Solutions existantes

Pour implémenter les certificats non traçables, différentes technologies peuvent être
envisagées :

– Les certificats d’attribut classiques : ils ne sont pas adaptés car la présentation ne
peut pas être sélective et ils sont traçables car la clé publique du possesseur est
visible.

– Les jetons non traçables : par exemple l’argent électronique ou les certificats proposés
par Brands [Bra02] ne sont pas traçables mais ne sont utilisables qu’une seule fois.
Il est évident qu’un historique doit pouvoir être conservé et réutilisé.

– les pseudonymes : l’approche proposée dans Idemix [CL01] correspond mieux à nos
besoins. Malheureusement les pseudonymes ne peuvent pas être utilisés pour des

192 Résumé

schémas de signature classique c’est-à-dire vérifiable par des entités qui ne sont pas
connues à l’avance.

Nous proposons donc une nouvelle approche qui est une généralisation des signatures
de groupe. Dans notre cas la signature ne se fait pas en tant qu’un membre anonyme d’un
groupe mais en tant qu’une entité anonyme avec un historique donné.

2.2 Notre solution : extension des signatures de groupe

Une version simplifiée du protocole est donnée ici. Pour plus de détails, le lecteur se
réfèrera au chapitre 3.

Chaque autorité délivrant des certificats non traçables a un modulo RSA n tel que
n = p ·q où p et q sont deux grands nombres premiers. Un ensemble de petit nombres pre-
miers e1, . . . , em est choisi tel que pour tout i ∈ {1, . . . ,m}, gcd(ei, φ(n)) = 1. Chaque ei

correspond à un attribut et sa signification est publique. Chaque autorité calcule l’en-
semble {d1, . . . , dm} tel que pour tout i ∈ {1, . . . ,m}, ei · di = 1 mod φ(n). Zn =
{0, 1, 2, . . . , n−1} est l’ensemble des entiers relatifs modulo n, Z∗

n = {i ∈ Zn | gcd(i, n) =
1} est un groupe multiplicatif et G = {1, g, g2, . . . , gn−1} est un groupe cyclique d’ordre
n dont g est un générateur. La clé publique d’une autorité est (n, e1, . . . , em, G, g, a) où
a ∈ Z∗

n. La clé privée de cette autorité est (p, q, d1, . . . , dm).

Alice possède un secret x qu’elle ne veut pas (ou ne peut pas) révéler. Un certificat
délivré par B à A a la forme suivante : (ax + 1)D mod n où D définit les attributs de A.
Ce certificat peut être obtenu par A sans révéler son secret x.

Révélation sélective

Une extension des signatures RSA est proposée pour signer un message avec un attri-
but. La signature du message m par le signataire B avec les attributs définis par l’ensemble
S est : SIGN(B,S)(m) = mD mod n où D =

∏
i∈S di. Cette signature peut être trans-

formée en une signature du message m par B avec les attributs définis par le sous-ensemble
S ′ à condition que S ′ ⊆ S. En effet :

SIGN(B,S′)(m) =
(
SIGN(B,S)(m)

)(∏
j∈{S\S′} ej)

= m(
∏

i∈S di·
∏

j∈{S\S′} ej) = m(
∏

i∈S′ di) = mD′
mod n

En d’autres termes, A peut transformer un certificat (ax + 1)D stocké dans son histo-
rique en (ax + 1)D′

avant de prouver son historique.

2. Certificats non-traçables 193

Il est nécessaire de définir un codage des attributs qui donne du sens aux transforma-
tions rendues possibles par le mécanisme de signature. Par exemple, un attribut ayant
la valeur décimale âge= 31d est représenté en binaire par 011111b. Si le code consiste à
lister les bits égaux à 1, S = {4, 3, 2, 1, 0}, les seules transformations possibles consistent
à enlever des éléments de S et donc de changer certains bits égaux à 1 en 0. Ainsi, il est
uniquement possible de réduire la valeur de l’attribut. Par exemple, D = d4d3d2d1d0 peut
être transformé en D′ = d4d1 soit âge’= 18d en utilisant e0, e2 et e3 qui sont publiques.
Ainsi, ayant reçu un certificat indiquant qu’elle a trente et un ans, Alice peut choisir de
prouver qu’elle est majeure (âge=31 ans⇒ âge≥18 ans). Des codages plus subtils peuvent
être proposés. Par exemple, Alice peut recevoir le certificat suivant :

[14|04|32, 15|10|2004, 43|62|65, 007|04|70]

prouvant qu’elle se trouvait dans les bâtiments de l’institut Eurécom à deux heures
de l’après midi le 15 octobre 2004. Ce certificat est stocké dans l’historique d’Alice.

En signant ou lors d’une preuve interactive, elle peut choisir de prouver qu’elle possède
le certificat suivant :

[14|XX|XX, XX|XX|XXXX, 43|62|65, 007|04|70]

Elle est une personne qui se trouvait à l’institut Eurécom un après-midi.

Ou, elle peut choisir de révéler :

[XX|XX|XX, 15|10|2004, 43|XX|XX, 007|XX|XX]

Elle est une personne qui était dans le sud de la France le 15 octobre 2004.

Ici le codage utilisé contient un ”checksum” par bloc qui permet de le montrer ou de
le cacher mais n’autorise pas sa modification. Le codage de la localisation peut être plus
structuré en utilisant une hiérarchie du type pays, ville, quartier, bâtiment, salle.

Preuve de la connaissance d’un certificat

Le second besoin concernant les certificats est d’éviter leur traçabilité tout en assurant
qu’ils ne puissent pas être transférés d’une personne à une autre. Pour prouver la posses-
sion d’un certificat sans le montrer, nous utilisons les ”preuves de connaissance” (proof of
knowledge) et les ”signatures basées sur des preuves de connaissance” (signature based on
a proof of knowledge).

Une preuve de connaissance (PK) est un protocole entre un vérifié (P) et un vérificateur
(V). A la fin de ce protocole, P a prouvé à V qu’il connâıt un secret x sans avoir révélé
d’information sur ce secret. Par exemple, PK[α : y = gα] est la preuve de la connaissance
du logarithme discret de y en base g.

194 Résumé

Une signature basée sur une preuve de connaissance est une version non interactive
des preuves de connaissances. Par exemple sig = SPK[α : y = gα](m) est une signature
basée sur la preuve de la connaissance du logarithme discret de y en base g. Le message
m est signé par une entité ayant cette connaissance.

Pour prouver la connaissance d’un certificat, nous utilisons une extension des signa-
tures de groupe proposées dans [CS97]. Une signature basée sur la connaissance d’un
double logarithme discret est combinée avec une signature basée sur la connaissance de
la racine E ′ième d’un logarithme discret :

sig1 = SPK[α | z̃ = g̃(aα)](m)

sig2 = SPK[β | z̃g̃ = g̃(βE′
)](m)

Dans les signatures ci-dessus, g̃ = gr et z̃ = zr, où r ∈R Zn est choisi aléatoirement
avant chaque preuve et où z = g(ax). La signature sig1 prouve la connaissance d’un secret
α. La signature sig2 prouve la connaissance de β. En combinant les deux signatures, il est

possible de montrer que β est un certificat sur α avec l’attribut D′ : g̃(βE′
) = z̃g̃ = g̃(aα+1)

et donc β = (aα + 1)D′
mod n. Le vérificateur est convaincu que le signataire connâıt un

secret et que ce secret est certifié avec l’attribut défini par D′. Cependant le secret x et
le certificat (ax + 1)D′

mod n ne sont pas montrés. Il est par conséquence impossible de
lier plusieurs utilisations d’un même certificat.

3 Preuves de proximité

Le deuxième mécanisme nécessaire à la sécurité de l’informatique diffuse est la preuve
de proximité. Il est parfois nécessaire de prouver sa localisation, de vérifier qu’un certificat
est associé à un objet ou d’associer deux objets. Dans le but de résoudre l’ensemble de
ces problématiques, nous proposons un mécanisme permettant de prouver qu’un secret tel
qu’une clé privée est connu localement. Nous nommons ce nouveau mécanisme ”preuves
de connaissance et de proximité” ou distance bounding proof of knowledge (DBPK).

3.1 Nouvelles attaques et solutions existantes

Les mécanismes utilisés pour prouver la connaissance d’une clé privée ou d’un autre
secret sont généralement basés sur le principe des protocoles de défi/réponse (challenge-
response) : un défi (c) est envoyé par le vérificateur au vérifié qui retourne une réponse
(s) dépendant du défi et du secret. Ces protocoles permettent de vérifier qu’un canal de
communication est établi avec une entité logique (par exemple le serveur d’une banque).
Cependant, dans le cadre de l’informatique diffuse, il est non seulement nécessaire de

3. Preuves de proximité 195

vérifier qu’une entité est impliquée mais il faut aussi vérifier qu’elle est physiquement
présente.

: Honnête: Malveillant : Proche : Distant

Attaque par relais
avec collusion

Vérifié
P

Relais
R

Vérificateur
V

Vérifié
P

Relais
R

Vérificateur
V

Vérifié
P

Vérificateur
V

Attaque par relais

Réponse : s

c

s

c

s

c c

s
s

?

Défi : c
Fraude sur la
distance

Fig. 5 – Trois nouvelles attaques.

Trois nouveaux types d’attaques peuvent être montés contre un protocole de défi/ré-
ponse utilisé en informatique diffuse (voir figure 5) :

– Fraudes sur la distance : un vérifié prétend être proche d’un vérificateur alors qu’il
est distant. Ce type d’attaque peut être déjoué à condition de prendre en compte
des contraintes physiques limitant la propagation du défi. Par exemple, le défi peut
être restreint à une salle de réunion en utilisant une émission infrarouge [BSSW02]
ou une onde sonore [SSW03].

– Attaques par relais : un relais malveillant est physiquement présent en face du
vérificateur. Il relaie les défis et les réponses vers un vérifié en utilisant un autre
moyen de communication. Contrairement à une attaque du type ”man in the middle”,
le relais n’agit pas au niveau du protocole cryptographique.

– Attaques par relais avec collusion : ce troisième type d’attaque implique un vérifié
malveillant, distant, collaborant avec un relais physiquement présent en face du
vérificateur. C’est une combinaison des deux attaques précédentes.

Nous nous intéressons aux attaques du troisième type qui englobent les deux autres
cas. Pour éviter les attaques par relais, il est nécessaire de prouver qu’un secret est connu
localement. Deux approches existent.

La première solution est l’isolement (voir figure 6-a) : le vérifié et le vérificateur sont
mis en relation sans moyen de communiquer avec le reste du monde pendant l’exécution
d’un protocole de défi/réponse (par exemple en utilisant une cage de Faraday). L’entité
vérifiée n’ayant aucun moyen de communication avec l’extérieur, le vérificateur a la preuve
que le vérifié est présent.

La deuxième approche est d’utiliser un mécanisme permettant de mesurer la distance
entre le vérificateur et le détenteur du secret (voir figure 6-b). Si la distance du vérifié

196 Résumé

augmente, par exemple en intercalant un relais, la vérification n’est plus valide.

Dans l’annexe A, nous proposons une autre approche basée sur la cryptographie quan-
tique qui empêche un relais de relayer les défis et les réponses en utilisant un autre média
de communication.

Vérifié
P

Vérifica
teur V

Relais
R

Vérifica
teur V

Vérifié
P

(a) Protection par isolement

Vérifié
P

Vérifica
teur V

dmax

Relais
R

Vérifica
teur V

dmax

Vérifié
P

> dmax

(b) Protection par mesure de distance

Fig. 6 – Deux principaux types de protection contre les fraudes par relais.

Dans ce travail, nous avons choisi la deuxième approche qui est beaucoup plus souple
pour répondre aux besoins de l’informatique diffuse et qui peut être implémentée simple-
ment.

3.2 Notre solution : preuves de connaissance et de proximité

La mesure de distance peut être directement liée au temps d’aller-retour d’une infor-
mation à condition de minimiser les temps de calcul et le protocole de communication.
Dans ce cas il peut être possible de détecter l’effet d’un relais qui va forcément allonger
le temps de réponse en augmentant le chemin ou en traitant les messages.

Nous proposons d’utiliser un protocole de défi/réponse minimal : un bit de défi, une
opération logique pour calculer la réponse et un bit de réponse. L’avantage de ce protocole
est que chaque exécution peut se faire en quelques nanosecondes et permet ainsi une
mesure précise de la distance. La difficulté consiste à avoir des garanties cryptographiques
tout en respectant ces contraintes fortes.

Brands et Chaum ont proposé une solution pour éviter les attaques par relais en
partant des mêmes contraintes [BC93]. Leur protocole (voir table 1) est partagé en deux
phases : premièrement, une série de défis et de réponses de un bit sont échangés rapidement

3. Preuves de proximité 197

et le temps d’aller-retour est mesuré ; deuxièmement, le vérifié signe les bits échangés. La
première partie permet de vérifier qu’une entité recevant a et connaissant b est proche.
La seconde partie permet de vérifier que P a bien reçu les bits de a et retourné les bits de
b. Cette approche fonctionne tant que P se comporte correctement. En d’autres termes,
ce protocole ne permet pas d’éviter les attaques par relais avec collusion.

vérifié (P) vérificateur (V)
KPP

, KSP
KPP

Génère b ∈R {0, 1}m Génère a ∈R {0, 1}m
Echanges rapides de bits (pour i = 0, . . . ,m− 1)

commence mesure du RTT
a[i]

�

b[i]
-

arrête mesure du RTT
Fin de l’échange rapide

vérifie les RTTs
SIGNP (a, b)

-

vérifie la signature

Tab. 1 – Principe de base du protocole proposé par Brands et Chaum

Pour éviter les attaques par relais avec collusion nous modifions le schéma pour que
les bits de réponse dépendent de la clé privée du vérifié. Notre protocole est décrit dans
la table 2. Les bits de réponse sont liés à la clé privée x du vérifié : si le ième défi a[i] est
un zéro, alors la réponse est le ième bit d’une clé à usage unique k ; sinon, la réponse est le
ième bit du chiffrement e de la clé privée x en utilisant la clé à usage unique k. Le schéma
évite la présence d’un relais car l’échange rapide nécessite la connaissance de k et de e et
donc de x. Cependant, il faut que le schéma assure que le vérificateur qui obtient la moitié
des bits de (k, e) ne puisse pas en déduire d’information sur x tout en étant capable de
vérifier que e est réellement le chiffrement de x avec la clé k.

Le mécanisme de mise en gage des bits de k et e (bit commitment) est choisi de telle
façon qu’il est possible d’en déduire une représentation de z. En d’autres termes z est liée
au déchiffrement de e avec k, c’est-à-dire x. L’échange rapide permet de vérifier qu’une
entité proche connâıt un k et un e. L’ouverture des mises en gage correspondant aux bits
révélés pendant l’échange rapide lie cet échange rapide au chiffrement de la clé privé : une
entité proche connâıt un secret lié à z. Finalement, la preuve de connaissance prouve que
ce secret est bien la clé privée correspondant à y.

Dans le chapitre 4, nous proposons une implémentation de ce concept basée sur le
logarithme discret y = gx mod p. Pour le chiffrement de la clé privée x, nous utilisons

198 Résumé

Vérifié (P) Vérificateur (V)
y = Γ(x) y

clé à usage unique k ∈R K
e = Ek(x)

mise en gage des bits de k et e
-

calcul z = Ω(x, v) à partir
des mises en gage de bits

Echanges rapides de bits (pour i = 0, . . . ,m− 1)
ai ∈R {0, 1}

�

bi = k[i] if ai = 0
bi = e[i] if ai = 1

bi ∈ {0, 1}
-

Fin échanges rapides
ouvre les mises en gage révélées

-

PK[(α, β) : z = Ω(α, β) ∧ y = Γ(α)]
� -

Tab. 2 – Vue générale des preuves de connaissance et de proximité

le schéma suivant : e = ux − k mod p − 1 où u est choisi aléatoirement et est public
(u ∈R {1, . . . , p− 2}) et où la clé à usage unique k est choisie aléatoirement k ∈R Zp−1.

Les mises en gage de bit de la clé k sont définies comme suit : c(k,i) = gk[i] ·hvk,i mod p
et les mises en gage des bit de chiffrement e, sont c(e,i) = gk[i] · hve,i mod p. A partir là,
une représentation de z est obtenue :

z =
∏m−1

i=0 (ck,i · ce,i)
2i

=
∏m−1

i=0

(
gk[i]hvk,i · ge[i]hve,i

)2i

=
∏m−1

i=0

(
gk[i]+e[i]

)2i

·
∏m−1

i=0 (hvk,i+ve,i)
2i

=
∏m−1

i=0

(
g2ik[i]+2ie[i]

)
·
∏m−1

i=0

(
h2ivk,i+2ive,i

)
= g

∑m−1
i=0 (2i·k[i]+2i·e[i]) · h

∑m−1
i=0 (2i·(vk,i+ve,i)) = gk+e · hv = gu·x · hv mod p

Finalement, une preuve de connaissance lie cette représentation de z à la clé publique
y : PK[(α, β) : z = guαhβ ∧ y = gα]

4. Historique : prouver sans être tracé 199

4 Historique : prouver sans être tracé

Dans les sections précédentes, nous avons proposé deux nouveaux mécanismes : les
certificats non traçables et les preuves de proximité. Pour combiner ces deux mécanismes,
il est important de noter que les preuves de connaissance (PK), les signatures basées sur
des preuves de connaissance (SPK) et les preuves de connaissance et de proximité (DBPK)
sont interchangeables.

Il est donc possible de remplacer la PK utilisée lors de l’obtention d’un certificat par
une DBPK. Ainsi, Alice peut prouver sa proximité lorsqu’elle demande une preuve de
localisation (géodatage). Dans un autre scénario, Alice pourrait prouver qu’elle fréquente
régulièrement un magasin et obtenir ainsi un rabais.

Lors de l’utilisation d’un certificat, il est aussi possible de remplacer l’une des SPK
par une DBPK. Alice peut donc prouver qu’une personne anonyme avec un certain his-
torique (par exemple, salarié de l’ENST) est présente. Ce mécanisme peut aussi assurer
l’authentification d’objets communicants.

Quand les certificats non traçables sont combinés avec les preuves de connaissance et
de proximité, les quatre contraintes décrites dans la section 1 sont satisfaites : les relations
de confiance peuvent être établies à partir d’un historique, cet historique peut être prouvé
sans interaction avec un tiers de confiance et n’est pas traçable. Enfin, l’historique peut
contenir des informations contextuelles. En effet, il est non seulement possible de stocker
des recommandations, des certificats d’attributs et des relations hiérarchiques mais aussi
des preuves d’interaction et des preuves de localisation. Un document peut donc être
signé par ”un journaliste qui était sur les lieux des faits” où la notion de journaliste est
un certificat d’attribut (une carte de presse numérique) et les lieux des faits sont associés
à une preuve de localisation.

4.1 Protection de la vie privée

Nous avons proposé une solution pour définir des certificats non traçables et pour per-
mettre la révélation sélective des attributs. Cependant, pour avoir une protection globale
de la vie privée, il est nécessaire de tenir compte de la non traçabilité au niveau réseau
et au niveau applicatif (voir figure 7). Au niveau réseau, il est indispensable d’avoir des
adresses MAC changeantes ou d’utiliser un réseau de ”mixes”. Au niveau applicatif, il
est nécessaire de mettre en place un système permettant de contrôler les informations
révélées.

200 Résumé

Contrôle des attributs révélés
(Statistical disclosure control)

Révélation sélective

Non traçable

Réseau anonyme
(Mixes, adresses MAC temporaires)

Protocoles de sécurité
(Certificats non traçables)

Réseau

Application

Fig. 7 – La non traçabilité est nécessaire sur trois plans

4.2 Implémentation

Dans le cadre du projet de recherche européen WiTness, nous avons pu implémenter
une première version de notre notion d’historique. Malheureusement, pour des raisons
techniques, la protection de la vie privée n’a pas pu être abordée.

Nous avons donc développé une approche pragmatique pour établir une relation de
confiance au sein d’une fédération d’objets communicants. Une bibliothèque Java per-
mettant la création, la délégation et la vérification de certificats XML a été proposée. Le
mécanisme de découverte de Bluetooth a été utilisé pour vérifier la proximité des entités.
Deux prototypes ont été implémentés pour des applications de type ”entreprise-employé”
(B2E). La carte SIM étant omniprésente, elle a été choisie comme module sécurisé pour
protéger la clé privée de chaque employé.

Ce projet nous a permis d’utiliser de nouvelles technologies : les différentes versions
de Java pour les environnements mobiles (J2ME, Personal Java), les réseaux personnels
(Bluetooth, 802.11), les cartes SIM et les environnements de développement sur assistants
numériques (iPaq). Beaucoup d’énergie a été consacrée à la mâıtrise des interfaces de
programmation qui sont en constante évolution (JSR-82, JSR-177).

Conclusions et perspectives

Nous avons défini ce concept d’historique en tant qu’extension des systèmes de recom-
mandation pour l’établissement de relations de confiance. Un historique permet de gérer
un ensemble d’assertions pouvant être prouvées. Nous avons ajouté deux contraintes :
les preuves doivent pouvoir se faire sans connexion avec un tiers de confiance et elles ne
doivent pas menacer la vie privée des utilisateurs.

Nos contributions principales sont la définition de deux types de mécanismes : les
certificats non traçables et les preuves de proximité. Premièrement, nous avons proposé

4. Historique : prouver sans être tracé 201

trois mécanismes de certificats non traçables (chapitres 1, 2 et 3) en partant d’hypothèses
différentes concernant l’infrastructure de confiance. Deuxièmement, nous avons défini le
mécanisme de preuve de connaissance et de proximité (chapitre 4) qui est la première
parade aux attaques par relais avec collusion pour l’informatique diffuse. En effet, seule
l’isolement permet une sécurité équivalente mais cette approche n’est pas suffisamment
flexible pour être employée dans l’informatique diffuse.

Dans le futur, nous envisageons de fusionner les trois types de certificats non traçables
en utilisant une technique unique, que ce soit les preuves de connaissance ou les tech-
niques liées au ”chiffrement basé sur l’identité”. Nous espérons ainsi pouvoir combiner les
différentes caractéristiques de ces approches.

Dans cette thèse, nous avons proposé des mécanismes pour construire et prouver un
historique. Cependant, il est encore nécessaire de formaliser les méthodes permettant de
sélectionner les informations à révéler et les techniques permettant d’estimer un niveau
de confiance à partir des informations prouvées.

202 Résumé

Lexique Anglais-Français

Cette liste rappelle certaines terminologies anglaises employées dans ce manuscrit et
les termes techniques correspondant que nous avons adoptés dans ce résumé en Français.

Anglais Français

Artifact / Communicating device Objet / objet communicant
Access Control List Liste de contrôle d’accès
Bit commitment Mise en gage de bit
Challenge-response protocol Protocole de défi/réponse
Context awareness Prise en compte du contexte
Distance-bounding proof of knowledge Preuve de connaissance et de proximité
Electronic cash Argent électronique
Group signature Signature de groupe
History Historique (des interactions)
Location-stamping ”Géodatage”
Mafia fraud Attaque par relais
Off-line, disconnected Déconnecté
Pervasive / ubiquitous computing Informatique diffuse / omniprésente
Privacy Protection de la vie privée
Proof of knowledge Preuve de connaissance (interactive)
Prover Vérifié
Sensor Network Réseau de capteurs
Signature based on a proof of knowledge Signature basée sur une preuve de connaissance
Terrorist Fraud Attaque par relais avec collusion
Time-stamping Horodatage
Trust Confiance
Trusted third party Tiers de confiance
Unlinkable credential Certificat non traçable
Verifier Vérificateur

203

CV and Publications

Laurent Bussard is a PhD candidate at ENST and is work-
ing in the Network Security Team at Eurecom Institute, Sophia-
Antipolis, France. He is interested in security of pervasive com-
puting environments in terms of access control, trust establish-
ment, and privacy. He received his MS in networks and dis-
tributed systems from the ESSI in 2000. From 1995 to 1999, he
worked as an engineer in software development at Siemens where
he was involved in projects related to the telecommunication man-
agement network (TMN).

The remainder of this section lists papers related to security that have been written since
the beginning of this Ph.D. thesis. Project reports and extended versions of papers have
been omitted.

International Conferences and Workshops

[BR02] Authentication in ubiquitous computing
L. Bussard and Y. Roudier. Workshop on Security in Ubiquitous Computing at UBI-
COMP’02. 2002
Preliminary work related to distance-bounding (Chapter 4).

[LBR02] Extending tamper-proof hardware security to untrusted execution environ-
ments
S. Loureiro, L. Bussard, and Y. Roudier. In Proceedings of the Fifth Smart Card Re-
search and Advanced Application Conference (CARDIS’02) - USENIX, pages 111–124.
November 2002.
Work on mobile code protection (out of the scope of this dissertation).

204 CV and Publications

[BR03b] Embedding distance-bounding protocols within intuitive interactions
L. Bussard and Y. Roudier. In Proceedings of Conference on Security in Pervasive
Computing (SPC’2003), volume 2802 of LNCS, pages 143–156. Springer, March 2003.
Work on user-friendly distance-bounding (Chapter 4 and Appendix B).

[BRKC03] Trust and authorization in pervasive B2E scenarios
L. Bussard, Y. Roudier, R. Kilian Kehr, and S. Crosta. In Proceedings of the 6th Infor-
mation Security Conference (ISC’03), volume 2851 of LNCS, pages 295–309. Springer,
October 2003.
Our contribution to the access control of WiTness project (Chapter 6).

[WBRR04] Security and trust issues in ubiquitous environments - the business-to-
employee dimension
T. Walter, L. Bussard, P. Robinson, and Y. Roudier. Workshop on Ubiquitous Services
and Networking in at SAINT’04. 2004.
Framework developped in WiTness project (Out of the scope of this dissertation).

[BM04b] One-time capabilities for authorizations without trust
L. Bussard and R. Molva. In Proceedings of the second IEEE conference on Pervasive
Computing and Communications (PerCom’04), pages 351–355, March 2004.
One-time credentials with embedded e-check (Chapter 1).

[BRM04] Untraceable secret credentials: Trust establishment with privacy
L. Bussard, Y. Roudier, and R. Molva. In Proceedings of the Workshop on Pervasive
Computing and Communications Security (PerSec’04) at PerCom’04, pages 122–126,
March 2004.
Credentials with secret attributes (Chapter 2).

[BMR04b] History-based signature or how to trust anonymous documents
L. Bussard, R. Molva, and Y. Roudier. In Proceedings of the Second Conference on
Trust Management (iTrust’2004), volume 2995 of LNCS, pages 78–92. Springer, March
2004.
Unlinkable credential scheme (Chapter 3).

[BM04a] Establishing trust with privacy
L. Bussard and R. Molva. To appear in proceedings of the twelve international workshop
on security protocols, April 2004.
Unlinkable credential scheme (Chapters 3 and 5).

[BR04] Protecting applications and devices in nomadic business environments
L. Bussard and Y. Roudier. In Proceedings of 3rd Conference on Security and Network
Architectures (SAR’04), pages 243–252, June 2004.
WiTness and student projects: pragmatic way to protect pieces of code and environm-
nents (Appendix E).

CV and Publications 205

Pending Submissions and Unpublished Reports

[BR03a] Background signature for sensor networks
L. Bussard and Y. Roudier. Technical Report RR-03-076, June 2003.
Not published, preliminary work on signature schemes (out of the scope of this
dissertation).

[BMR04a] Combining history-based trust establishment with distance-bounding proto-
cols
L. Bussard, R. Molva, and Y. Roudier. Technical Report RR-04-100, April 2004.
Not published, how to merge distance-bounding protocols and unlinkable credentials
(Chapter 5).

[BCC+04] Can we take this off-line? how to deal with credentials in federations without
global connectivity
L. Bussard, J. Claessens, S. Crosta, Y. Roudier, and A. Zugenmaier. Technical Report
RR-04-105, May 2004.
A shorter version has been submitted for publication in 2004, joint work with Microsoft
on Web Services Security (out of the scope of this dissertation).

[BHKK+04] Secure Mobile Business Applications – Framework, Architecture and Imple-
mentation
L. Bussard, J. Haller, R. Kilian-Kehr, J. Posegga, P. Robinson, Y. Roudier, and T.
Walter. Submitted for publication in a journal.
Describes the framework developped in WiTness (out of the scope of this dissertation).

[BB04b] Distance-bounding proof of knowledge protocols to avoid terrorist fraud at-
tacks
L. Bussard and W. Bagga. Technical Report RR-04-109, May 2004.
A shorter version has been submitted for publication in 2004, describes the distance-
bounding proof of knowledge scheme (Chapter 4).

	Abstract
	Résumé
	Acknowledgements
	Table of Contents
	List of Figures
	List of tables
	Acronyms and Abbreviations
	Glossary
	Introduction
	New Paradigms
	Impact on Security and Privacy
	Problem Statement
	Organization of this Thesis
	Contributions of this Thesis

	I Trust without Infrastructure
	1 Authorization without Trust
	1.1 Introduction
	1.2 Problem Statement
	1.2.1 Example
	1.2.2 State of the Art: Access Control and Penalty

	1.3 Preliminaries
	1.3.1 Blind Signature
	1.3.2 Electronic Cash

	1.4 Our Solution: One-time and Off-line Credentials
	1.5 Protocol
	1.5.1 Penalty without Hierarchical Relationships
	1.5.2 Phase 1: Credential Creation
	1.5.3 Phase 2: Service Access with One-time Credential
	1.5.4 Phase 3: Detection of Double Use and Penalty
	1.5.5 Defining Attributes

	1.6 Security Evaluation
	1.7 Conclusion

	2 Establishing Trust without Infrastructure
	2.1 Introduction
	2.2 Problem Statement
	2.2.1 Expected Features

	2.3 Preliminaries
	2.3.1 Interactive Proof of Knowledge
	2.3.2 Schnorr Digital Signature Scheme
	2.3.3 Signature Based on a Proof of Knowledge
	2.3.4 Group Signature
	2.3.5 Group Blind Signature

	2.4 Untraceable Signature of Secret
	2.4.1 Principle
	2.4.2 Restricting Possible Values of a Signed Secret
	2.4.3 Protected Keys

	2.5 Trust Establishment Protocol
	2.5.1 Protocol Description
	2.5.2 Security Evaluation

	2.6 Conclusion

	II History-Based Trust Establishment
	3 History-based Signature Scheme
	3.1 Introduction
	3.2 Principle
	3.3 State of the Art: Unlinkable Credentials
	3.4 Protocols
	3.4.1 Zero-Knowledge versus Statistical Zero-Knowledge
	3.4.2 Certification
	3.4.3 Obtaining Credentials
	3.4.4 Using History for Signing

	3.5 Encoding Attribute Values
	3.5.1 Principle
	3.5.2 Possible Codes

	3.6 Proof of Knowledge
	3.6.1 Proof of Equality of a Log and a Double Log
	3.6.2 Signature Based on a Proof of Equality of Double Log

	3.7 Security Evaluation
	3.8 Conclusion

	4 Distance-Bounding Proof of Knowledge
	4.1 Introduction
	4.2 Problem Statement: Authentication in Pervasive Computing
	4.2.1 Redefining Authentication
	4.2.2 New Attacks against Authentication
	4.2.3 Definitions
	4.2.4 Attack Examples

	4.3 State of the Art: How to Prove One's Location
	4.3.1 Location-Limited Channels
	4.3.2 Context Sharing
	4.3.3 Proximity Evaluation
	4.3.4 System Observation
	4.3.5 Certification of Fixed Location
	4.3.6 Isolation
	4.3.7 Unforgeable Channel
	4.3.8 Radio Frequency ToF

	4.4 Distance Bounding Protocol
	4.4.1 Principle
	4.4.2 Implementation Constraints

	4.5 Tackling Terrorist Frauds
	4.5.1 Description
	4.5.2 Sketch of Security Properties

	4.6 Distance-bounding Proof of Discrete Log
	4.6.1 Initialization
	4.6.2 Registration
	4.6.3 Bit Commitments
	4.6.4 Distance-Bounding
	4.6.5 Commitment Opening
	4.6.6 Proof of Knowledge

	4.7 Security Analysis
	4.7.1 Preventing Distance, Mafia, and Terrorist Frauds
	4.7.2 The Representation Problem
	4.7.3 Encryption of the Private Key

	4.8 Conclusion

	5 History-Based Trust Establishment
	5.1 Introduction
	5.2 State of the Art: How to Establish Trust
	5.2.1 Deriving Trust from a priori Relationships
	5.2.2 Trust Establishment without a priori Relationships
	5.2.3 Trust and Privacy

	5.3 Prooving Contextual Information
	5.3.1 Location- and Time-Stamper
	5.3.2 Combining DBPK and Unlinkable Credentials

	5.4 History
	5.4.1 Properties
	5.4.2 History Management
	5.4.3 Trust Establishment

	5.5 Conclusion

	III Implementing Trust Establishment
	6 Implementing Trust Mechanisms in Federations
	6.1 Introduction
	6.2 Cost of Privacy
	6.2.1 State of the Art: How to Speed up Signatures

	6.3 Pervasive B2E
	6.3.1 General Scenario
	6.3.2 Security Implications
	6.3.3 Trust Model

	6.4 Security Architecture
	6.4.1 Architecture Overview
	6.4.2 User-level Access Control Infrastructure
	6.4.3 Device-Level Access Control Infrastructure

	6.5 Structure of Certificates
	6.6 Demonstrators
	6.6.1 Federative Access to Corporate Data
	6.6.2 Pervasive Meeting

	6.7 Conclusion

	Conclusions
	Perspectives

	Appendices
	A Using Quantum Cryptography to Build Unforgeable Channels
	A.1 Principle
	A.2 Unforgeable Channels

	B Drag-and-Drop: User-friendly Distance-Bounding Protocols
	B.1 Usability of the Environment
	B.2 Security Requirements
	B.2.1 Strong Authentication in Pervasive Environments
	B.2.2 Presence of User

	B.3 Solution: Drag-and-Drop Methaphor
	B.3.1 Verifying Attributes of Artifacts

	C Demonstrator 1: Device Certification
	C.1 Prototype Scenario
	C.2 Principle
	C.2.1 Data and Key Distribution
	C.2.2 XML Documents

	C.3 Platform
	C.3.1 Software Environment.
	C.3.2 PAN Communications.

	C.4 Result: Secure Federation

	D Demonstrator 2: Context-Based Trust Establishment
	D.1 Application Description
	D.2 Security Requirements
	D.3 Demonstrator Federative Network Architecture
	D.3.1 Bluetooth implementations issues: lessons learnt
	D.3.2 Architecture of the demonstrator

	E Mobile Code Protection Can Rely on Trust
	E.1 Problem Statement
	E.2 Approaches to Protect Environment and Code
	E.2.1 Protecting Execution Environments
	E.2.2 Protecting Mobile Codes
	E.2.3 Trust-Based Application Protection

	E.3 Pragmatic Approach
	E.3.1 Nomadic System Organization
	E.3.2 Defining Trust Relationships

	Bibliography
	Résumé
	1 Motivation : quatre nouvelles contraintes
	1.1 Manque de relations de confiance
	1.2 Manque d'infrastructure de communication
	1.3 Besoin de protéger la vie privée des utilisateurs
	1.4 Besoin de prendre en compte le contexte
	1.5 Notre approche

	2 Certificats non-traçables
	2.1 Solutions existantes
	2.2 Notre solution : extension des signatures de groupe

	3 Preuves de proximité
	3.1 Nouvelles attaques et solutions existantes
	3.2 Notre solution : preuves de connaissance et de proximité

	4 Historique : prouver sans être tracé
	4.1 Protection de la vie privée
	4.2 Implémentation

	CV and Publications

