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Abstract. This paper tackles the following problem: how to decide
whether data are trustworthy when their originator wants to remain
anonymous? More and more documents are available digitally and it is
necessary to have information about their author in order to evaluate
the accuracy of those data. Digital signatures and identity certificates
are generally used for this purpose. However, trust is not always about
identity. In addition authors often want to remain anonymous in order to
protect their privacy. This makes common signature schemes unsuitable.
We suggest an extension of group signatures where some anonymous per-
son can sign a document as a friend of Alice, as a French citizen, or as
someone that was in Paris in December, without revealing any identity.
We refer to such scheme as history-based signatures.

1 Introduction

Verifying the reliability of a piece of information without revealing the identity
of its source is becoming an important privacy requirement. Anybody can easily
broadcast inaccurate or even deliberately deceptive information like in the case
of what is referred as urban legends or hoaxes. Author authentication thanks to
the signature of that very document seems a natural way to check whether the
author can be trusted and thus to determine whether the document is accurate
or misleading. Furthermore, protecting the privacy of signers is necessary. When
people are exchanging ideas in a public forum, anonymity may be a require-
ment in order to be able to state some disturbing fact or even simply not to be
traced based on their opinions. When users have a way to attach comments to
surrounding physical objects [10] (e.g. painting in a museum) the chance that
statistics be made on their interests might simply refrain them from commenting
at all.
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There are number of cases like pervasive computing or ad-hoc networks in
which infrastructure is lacking: neither a public key infrastructure nor a web
of trust is available which renders identity-based authentication impossible [13].
Even with an infrastructure, authenticating the author is often not sufficient and
more information on the context, in which the document was created, is required.
For instance, beginning of this year the mass media announced that a senior
radio reporter in Swaziland pretending to be reporting live from the war front in
Iraq had never left his country and was broadcasting from a broom closet. This
case shows that the context (being in some place) is sometimes more important
than the role or the identity of the author (being who he pretends to be). Group
signature schemes [5] make one step forward towards such new requirements
by assuring the anonymity of the signer when revealing some information on
his relationships, i.e. group membership. This paper extends this concept using
attributes embedded within each signature in order to enable the evaluation of
trust information on any signed document without revealing the identity of the
author.

Various attributes can be relevant to evaluate trust. When some clear hier-
archy exists among entities, a public key infrastructure [8] is sufficient to define
trust relationships. A web of trust [9] allows non-hierarchical trust relations sim-
ilar to those formed in human communities. However, using a model based on
human notions of trust is not straightforward. Three main sources of information
are generally proposed to evaluate trust [7]: personal observations of the entity’s
behavior, recommendations from trusted third parties, and reputation of an en-
tity. However, other sources of information exist: sometimes, the physical context
is also taken into account in the trust evaluation [14, 11]. In a simple example,
any person present in a room can be authorized to turn on the light. In this
paper, we add the notion of proof of context, which certifies that some entity
has been to some location at some time. It provides evidence for trustworthiness
based on contextual parameters such as location and history.

This paper suggests a new signature scheme that takes those sources of trust
into account. The scheme ensures anonymity and untraceability of signers. When
signing, authors choose which part of their history will be shown to readers. For
instance, a report relating some event can be signed by an employee who was
there when this event occurred ; an e-mail can be signed by an inhabitant of a
given district of a town; or an article could be signed by a member of a trade
union who attended a given demonstration. Like this, the signature is not based
anymore on the identity of the signer but rather on his history. Such a history is
defined as a set of the context (time and location), group memberships (reporter,
trade unionist), and recommendations (defined by Bob as a trusted party). The
signer chooses the degree of accuracy of the details he wants to disclose, e.g.
someone that can prove that he was in Paris on the 15th of January could
choose to sign a document as someone who was in France in January.

The remaining of the paper is organized as follows: section 2 presents the
requirements and some related work. Section 3 describes the group signature
scheme that is modified in Section 4 to define a history-based signature scheme.



Section 5 introduces a mechanism to code context and relation so that these can
only be modified in a controlled way. Finally, Section 6 evaluates the security of
this scheme.

2 Problem Statement

This section gives an overview of the interactions necessary to build a provable
history and to use this for history-based signatures. Related work is discussed
with respect to the feasibility of a provable history scheme.

2.1 Principle

Users anonymously collect evidence of their activity and store it as a provable
history. In Figure 1, a user gets a proof that he has been at a location. To ensure
non-transferability of evidences, they are implemented as credentials attached to
a valuable secret. Credentials can define group membership, location-and-time
stamps, recommendations, etc.

?
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Holder was in place x at time t.

Holder is 
known by CA 

Fig. 1. Getting history items

When signing a document, the author chooses some credentials in his history,
modifies them, and signs the document with those credentials. In Figure 2, a user
is able to prove that he was at a location x at time t, that he is said reliable by
some entity Z, that he is a member of group G, and that he has a given name
and address (electronic id card). He chooses to sign the document as someone
that was at location x at time t. The signature does not reveal more information
on the signer and it is even not possible to link two signatures of the same signer.
To ensure untraceability, it is necessary to avoid being too precise: it is indeed
easier to identify a person that signed as having been in a given room at a precise
time than to recognize this person based on the knowledge that he was in the
building at some time.

Credentials have to fulfill the following requirements to build a provable yet
anonymous history:



?History  
- was in place x at time t
- is said �reliable� by Z
- is member of group G
- Id card 
- etc. 

History-based signature 
Sign document as �someone 
that was in place x at time t�.

Fig. 2. History-based signature

– Non-transferability : credentials can only be used by the owner of some valu-
able secret (equivalent to the private key in public key infrastructures). This
secret is critical and thus will not be transferred to another entity. As a
result, credentials cannot be transferred.

– Anonymity : use of history-based credentials should not reveal the identity
of the author.

– Untraceability : it is not possible to link different documents signed by a same
person even when the same credential is used.

2.2 Related Work

Some existing work [4, 2] already allow for privacy-preserving attribute verifica-
tion. However, the target of those works is anonymous attribute certificates and
untraceable access control. Credentials defined in [4] rely on pseudonyms and
thus it is necessary to know the verifier before starting the challenge-response
protocol. Credentials defined in [2] do not ensure non-transferability and have
to be used only once to ensure untraceability. The one-time property of these
credentials also does not suit multiple interactions as required by our scenario.

Using information on the user’s context to evaluate trust or define rights is
not new: [6] proposes a generalization of the role-based access control paradigm
taking into account contextual information. Location verification techniques
range from ultrasound-based challenge response [14] to distance bounding pro-
tocols [3], which forbid Mafia fraud attacks and thus defeat collusion of insiders.
In this paper we assume that the location stamper implements one of those
techniques to verify the presence of entities before delivering a proof of location.

3 Basic Mechanisms

This section presents the first group signature of Camenisch [5] that will be
modified in the sequel of this paper in order to define a history-based signature
scheme.

We define the following elements: n = pq where p and q are two large primes;
Zn = {0, 1, 2, . . . , n−1} is a ring of integers modulo n; Z∗

n = {i ∈ Zn | gcd(i, n) =
1} is a multiplicative group; G = {1, g, g2, . . . , gn−1} is a cyclic group of order
n; g is a generator of this group G; a ∈ Z∗

n is an element of the multiplicative
group; and λ is a security parameter (see [5] for more details).



3.1 Interactive Proof of Knowledge

A proof of knowledge (PK) allows an entity to prove the knowledge of some
secret without revealing this secret. For instance, the prover P claims to know
the double discrete logarithm of y to the bases g and a. The verifier V tests if
P indeed knows x. This is denoted PK[α | y = g(aα)].

P sends a witness to V : w = g(ar) where r is a random value and V returns
a random challenge bit c ∈R {0, 1}. Finally P sends a response s = r (if c = 0)
or s = r − x (if c = 1). The verifier checks that

c = 0 : w
?= g(as) = g(ar)

c = 1 : w
?= y(as) =

(
g(ax)

)(as)
= g(ax+s) = g(ar)

This protocol has to be run l times where l is a security parameter.

3.2 Signature based on a Proof of Knowledge

A signature based on a proof of knowledge (or signature of knowledge) of a
double discrete logarithm of z to the bases g and a, on message m, with security
parameter l is denoted SPKl[α | z = g(aα)](m). It is a non-interactive version of
the protocol depicted in Section 3.1. The signature is an l+1 tuple (c, s1, . . . , sl)
satisfying the equation:

c = Hl(m ‖ z ‖ g ‖ a ‖ P1 ‖ . . . ‖ Pl) where Pi =
{

g(asi ) if c[i] = 0
z(asi ) otherwise

It is computed as following:

1. For 1 ≤ i ≤ l, generate random ri.
2. Set Pi = g(ari ) and compute c = Hl(m ‖ z ‖ g ‖ a ‖ P1 ‖ . . . ‖ Pl).

3. Set si =
{

ri if c[i] = 0
ri − x otherwise

3.3 Camenisch’s Group Signature

The group signature scheme in [5] is based on two signatures of knowledge:
one that proves the signer knows some secret and another one that proves this
secret is certified by the group manager. The scheme relies on the hardness
of computing discrete logarithm, double discrete logarithm and eth root of the
discrete logarithm.

The public key of a group is (n, e, G, g, a, λ) where e is chosen so that
gcd(e, φ(n)) = 1 where n = pq. The private key of the manager is (p, q, d)
where de = 1 mod φ(n). When Alice joins the group, i.e. becomes a member,
she uses her secret x to compute a membership key (y, z) where y = ax mod n
and z = gy. A sends (y, z) to the group manager, proves that she knows x and
receives a group certificate (y+1)d mod n corresponding to her secret x. In order



to sign a message m, A chooses r ∈R Zn and computes g̃ = gr, z̃ = g̃y (= zr),
and two signatures:

V1 = SPK[α | z̃ = g̃(aα)](m)
V2 = SPK[β | z̃g̃ = g̃(βe)](m)

V1 is a signature of knowledge of a double discrete logarithm that can be
computed when knowing some secret x. Similarly, V2 is a signature of knowledge
of an eth root of the discrete logarithm that can be computed using the certificate
(y + 1)d mod n. The group signature of message m is (g̃, z̃, V1, V2).

The verifier checks that V1 and V2 are valid signatures of m. Both signatures
together mean that g̃(βe) = z̃g̃ = g̃(aα+1) and thus β = (aα + 1)d mod n. The
verifier knows that the signer holds a certified secret x. However, the verifier
cannot get any information on x. In other words, the identity of the signer is
preserved: this is a group signature.

4 Solution: History-Based Signature Scheme

History-based signature is an extension of the group signature scheme described
in Section 3. Alice (A) is the signer. She collects some credentials to subsequently
prove some history. For instance, A holds credentials to prove that she has been
in some place. When A is traveling or visiting partners, she collects location
stamps. A has credentials to prove some membership, e.g. employee of a company,
member of ieee computer society, partner of some project, member of a golf club,
citizen of some state, client of some bank, customer of some airline. A can show
some recommendations: when she collaborates with other entities, she receives
credentials. All those credentials define her provable history. Each credential can
be used as a proof during a challenge-response protocol or as an attribute of a
signature.

4.1 Certification by a CA or Group Manager

To initiate the system, each entity has to get some certificate proving that he/she
has a valid secret, i.e. a secret linked to his/her identity. This part is similar to
the join protocol of the Camenisch’s scheme. However, we use a modified version
because a coalition attack exists against the initial scheme [1, 12].

In Table 1, A generates some secret x with the help of a CA or group manager
B. Moreover, A receives a certificate on this secret x: cert1b = (ax

b +1)db mod nb.
Now, A is certified and can act anonymously as a member of group or as an entity
certified by a given CA in order to get credentials and build a provable history.

4.2 Obtaining Context Proofs or Recommendations

Once certified, A can visit different entities that will provide proofs of location,
proofs of interaction, recommendations, etc. A provable history is a set of such



A B
private: pb, qb, db

public: nb, eb, Gb, gb, ab, λb

1.1) chooses random secret x′

x′ ∈R {0, 1, ..2λb − 1}

-
1.2) y′ = ax′

b mod nb

�
1.3) ξ ∈R {0, 1, .., 2λb − 1}

1.4) computes x = x′ + ξ
y = ax

b mod nb

commits to z = gy
b

-
1.5) y, z

-�
1.6) PK[α | y = gα

b ]

1.7) verifies y
?
= y′ · aξ

b

�
1.8) cert1b = (y + 1)db mod nb

Table 1. Creation and first certification of A’s secret x

proofs. Table 2 shows how A can get a credential from C. The identity of A
is not known but C verifies that this entity is certified by some known CA
or Group manager. It is always necessary to have some trust relationship with
previous signers when providing credentials or when verifying history. In this
example, C has to trust B otherwise the previous protocol has to be done once
more. However, when an entity D needs to verify the signature of A on some
document, D only has to know C.

Two proofs of knowledge are done in step 2.3). The first one proves that y2

is based on some secret. The second shows that this secret has been certified by
B. Indeed, z̃g̃b = g̃b

(βeb ) = g̃b
(aα

b )g̃b = g̃b
(1+aα

b ) and thus 1 + aα
b = βeb . It means

that A knows β = (1+aα
b )db that is a certification of α, which is also the discrete

logarithm of y2 to the base ac. In other words, y2 has been computed from the
same secret x.

In step 2.4) A receives a new credential cert2c = (ax
c + bt

c)
dh mod nc from C

that will be used to prove some history. bc as well as ac are elements of Z∗
nc

, x
prevents the transferability of credentials, and t is different for each credential to
forbid a user from combining multiple credentials (see Section 6). The attribute
value, be it a location or a recommendation, is defined using a technique that
comes from electronic cash: dh =

∏
i∈S dci

where S is a set that defines the
amount or any attribute. Construction of dh is given in Section 5. Two other
credentials can be provided: cert1c = (ax

c + 1)dc mod nc is a certification of the
secret that can replace cert1b. To avoid a potential attack (see Section 6), we
add cert3c = (bt

c + 1)dc mod nc.



A C

private: x, (ax
b + 1)db private: pc, qc, dc, dc1 , . . . dck

public: nc, ec, ec1 , . . . eck ,
Gc, gc, ac, bc, λc

2.1) y2 = ax
c mod nc

g̃b = gr
b for r ∈R Znb

z̃ = g̃b
y (i.e. z̃ = zr)

-
2.2) y2

2.3) pk2: PK[α | y2 = aα
c ∧ z̃ = g̃b

(aα
b )]

-�
pk3: PK[β | z̃g̃b = g̃b

(βeb )]

2.4) t ∈R {0, 1, . . . , 2λ − 1}
cert1c = (ax

c + 1)dc

cert2c = (ax
c + bt

c)
dh

cert3c = (bt
c + 1)dc

where dh =
∏

i∈S di

�
2.5) t, cert1c, cert2c, cert3c, S

Table 2. Obtaining some credential to build history

4.3 Using History for Signing

This section shows how Alice can sign a document as the holder of a set of
credentials. A knows a secret x, the certification of this secret (cert1c), and
some credential that is part of her history (cert2c). Using these credentials, she
can compute a signature on some message m. A generates a random number
r1 ∈R Znc

and computes:

ĝc = gr1
c , ẑ2 = ĝc

y2 , and ẑ3 = ĝc
(bt

c)

spk1 = SPK[α | ẑ2 = ĝc
(aα

c )](m)
spk2 = SPK[β | ẑ2ĝc = ĝc

(βec )](m)
spk3 = SPK[δ | ẑ3 = ĝc

(bδ
c)](m)

spk4 = SPK[γ | ẑ2ẑ3 = ĝc
(γe

h′ )](m) where eh′ =
∏

i∈S′ ei and S′ ⊆ S

spk5 = SPK[ε | ẑ3ĝc = ĝc
(εec )](m)

The signature of message m is {spk1, spk2, spk3, spk4, spk5, ĝc, ẑ2, ẑ3, S
′}. The

signatures of knowledge spk1 and spk2 prove that the signer knows cert1c: β =
(1 + aα

c )dc mod nc. The signatures of knowledge spk1, spk3 and spk4 prove that
the signer knows cert′2c: γ = (aα

c +bδ
c)

dh′ mod nc. To avoid some potential attack
(see Section 6), we added spk5 to prove the knowledge of cert3c. spk3 and spk5

prove that t was generated by C: ε = (1 + bδ
c)

dc mod nc.
When credentials from different entities (e.g. B and C) have to be

used together, it is necessary that A generate a random number r2 ∈R Znb



and compute ĝb = gr2
b and ẑ = ĝb

y (= zr2). spk1 and spk2 are modified as follows:

spk′1 = SPK[α | ẑ2 = ĝc
(aα

c ) ∧ ẑ = ĝb
(aα

b )](m)
spk′2 = SPK[β | ẑĝb = ĝb

(βeb )](m)

spk′1 and spk′2 prove that the signer knows cert1b: β = (aα
b + 1)db mod nb

and spk′1 proves that cert1b and cert2c are linked to the same secret
x. spk′1 is a signature based on a proof of equality of two double dis-
crete logarithms (see Appendix A). The new signature of message m is
{spk′1, spk′2, spk3, spk4, spk5, ĝb, ẑ, ĝc, ẑ2, ẑ3, S

′}.

5 Encoding Attribute Values

In Section 4, the user receives cert2c and signs with cert′2c to hide part of the
attributes when signing. This section presents a flexible mechanism for atteibute
encoding that allows the user to choose the granularity of attributes.

A straightforward solution to define attributes with various levels of granu-
larity would be based on multiple credentials. For instance, a location stamper
would provide credentials defining room, building, quarter, town, state, etc. The
holder would thus be able to choose the granularity of the proof of location. Un-
fortunately, this requires too much credentials when transversal attributes have
different granularities (longitude, latitude, time, etc.).

5.1 Principle

Each authority that delivers certificates (time stamper, location stamper, group
manager, etc.) has a public key: a RSA modulo (n), and a set of small primes
e1, . . . , em where ∀i ∈ {1, . . . ,m} | gcd(ei, φ(n)) = 1. The meaning of each ei

is public as well. Each authority also has a private key: p, q, and {d1, . . . , dm}
where pq = n and ∀i ∈ {1, . . . ,m} | ei · di = 1 mod φ(n).

A signature SIGN(S,n)(m) = mdh mod n, where S is a set and dh =
∏

i∈S di,
can then be transformed into a signature SIGN(S′,n)(m) = mdh′ mod n, where
S′ is a subset of S and dh′ =

∏
i∈S′ di. The the attribute value is coded as a set

S corresponding to its bits equal to one. This signature based on set S can be
reduced to any subset S′ ⊆ S:

SIGN(S′,n)(m) =
(
SIGN(S,n)(m)

)(∏
i∈{S\S′} ei) = m(∏

i∈S′ di mod φ(n)) mod n

Thus, an entity that received some credential cert2c is able to compute cert′2c
and to sign a document with this new credential.

cert′2c = (cert2c)
∏

j∈{S\S′} ej =
((

ax
c + bt

c

)∏
i∈S di

)∏
j∈{S\S′} ej

=
(
ax

c + bt
c

)∏
i∈S′ di

This technique ensures that part of the signed attributes can be modified.
For instance, the attribute value v = 13d is equivalent to the binary string



01101b and can be encoded as S = {4, 3, 1}, i.e. 4th, 3rd, and 1st bits set to
one. dh = d4 · d3 · d1 mod φ(n). Knowing {ei | i ∈ S}, the following transfor-
mations are possible: S′ ∈ {{4, 3, 1}; {3, 1}; {4, 3}; {4, 1}; {4}; {3}; {1}} and thus
v′ ∈ {13, 5, 12, 9, 8, 4, 1}. Any bit i equal to one can be replaced by a zero (by
using ei) but any bit j equal to zero cannot be replaced by a one (because dj is
private).

5.2 Possible Codes

Choosing different ways to encode data enables to define which transformations
of the attribute values are authorized:

– more-or-equal : values are encoded so that they can only be reduced. For
instance, v = 13d → 01101b → S = {1, 3, 4}. Because bits equal to one can
be replaced by zeros, it can be transformed into v′ ∈ {13, 12, 9, 8, 5, 4, 1}.

– less-or-equal : values are encoded so that they can only be increased. For
instance, v = 13d → 10010b → S = {2, 5}. It can be transformed into
v′ ∈ {13, 15, 29, 31}.

– unary more-or-equal : the problem with binary encoding is that they cannot
be reduced to any value. For instance, 7d = 111b can be shown as 7, 6, 5, 4, 3,
2, 1, or 0 but 6d = 110b can only be shown as 6, 4, 2, or 0. This limitation can
be solved by using a binary representation of unary: v = 6d = 111111u →
0111111b → S = {1, 2, 3, 4, 5, 6} can be shown as v′ ∈ {6, 5, 4, 3, 2, 1, 0}. The
overhead is important (l bits data is encoded with 2l bits) and thus unary
has to be restricted to small values.

– unary less-or-equal : unary representation a similar approach can be used for
less-or-equal too: v = 2d → 1111100b → S = {3, 4, 5, 6, 7} can be trans-
formed in v′ ∈ {2, 3, 4, 5, 6, 7}.

– frozen: values are encoded so that they cannot be changed. In this case, the
number of bits have to be larger: l bits becomes l + blog2(l)c + 1 bits. For
instance, 13d → 0001101b, c = 100b → 0001101|100b → S = {7, 6, 4, 3}. The
checksum c represents the number of bits equal to zero, any modification
of the value increase the number of zero but the checksum can only be
decreased. It is not possible to change frozen values.

– blocks: data are cut into blocks. Each block is encoded with one of the pre-
vious schemes.

5.3 Example: Location-and-Time Stamper

This section describes how the previous encoding schemes can be used. Let us
define a location and time stamper (LTS) that certifies that some entity has
been in a given place at a given time. The proof can be provided by a cell-
phone operator that locates subscribers, by a beacon in a building, or even by
using some distance bounding protocol. A LTS can define logical location (e.g.
continent, country, department, town, quarter, building, room) or geographic



location (longitude, latitude). We only focus on the latter case because it does
not require the definition of a complex data structure.

A location-and-time stamper company can deploy a network of public ter-
minals and sensors. When Alice plugs her smart card in a terminal or when
she passes a wireless sensor, she receives a location-and-time stamp with the
following attributes: time (UTC, date) and location (latitude, longitude). Table
3 shows an example of the attributes that could be delivered by some LTS in
Eurecom Institute.

Value Meaning

180432 UTC in hhmmss format (18 hours, 4 minutes and 32 seconds)
24112003 Date in ddmmyyyy format (November 24, 2003)
43.6265 Geographic latitude in dd.dddd format (43.6265 degrees)
N Direction of latitude (N - North, S - South)
007.0470 Geographic longitude in ddd.dddd format (7.047 degrees)
E Direction of longitude (E - East, W - West)

Table 3. Context data: location and time

It can be represented by four attributes [180432, 24112003, 436265,
-0070470] that can be divided into frozen blocks: [18|04|32, 24|11|2003,
43|62|65, -007|04|70] the meaning of each block is publicly known: LTS de-
fines his public key as n and a set of e. For instance, e1 is the least significant bit
of the time in seconds (0-59 : 6 bits), e6 is the most significant bit of the time
in seconds, e7 is the LSB of checksum of time in seconds, etc. If a location and
time stamper provides the following credential to Alice:
[18|04|32, 24|11|2003, 43|62|65, -007|04|70], she can sign a document
with a subset of this credential.
[18|XX|XX, XX|XX|XXXX, 43|62|65, -007|04|70], i.e. the document is
signed by someone that was in the building someday around six o’clock. Or
[XX|XX|XX, 24|11|2003, 43|XX|XX, -007|XX|XX], i.e. someone who was in
the South of France the 24th of November.

Hidden attributes are different than zero values (XXX 6= 000). Indeed, XXX is
represented as 000|00 and is not equal to 000 that is defined as 000|11. Thus
it is not possible to convert 09:08:30 into 09:00:30. The only way to suppress
minutes is to remove seconds as well: 09:XX:XX. This value does not mean that
some action occurred at nine o’clock but that it occurred between nine and ten
o’clock.

Similarly, a company can qualify customers as Platinum, Gold, or Silver ; a
state can provide digital Id cards to citizen to certify gender, name; a company
can provide credentials that define role, access rights; and a partner can define
recommendations. In all those cases, the ability of selecting which attribute is
displayed is very important to protect privacy when enabling trust evaluation.



6 Security Evaluation

The security of the scheme is based on the assumptions that the discrete loga-
rithm, the double discrete logarithm and the roots of discrete logarithm problems
are hard. In addition it is based on the security of Schnorr and RSA signature
schemes and on the additional assumption of [5] that computing membership
certificates is hard.

Our proposal is based on the group signature scheme of [5], whose join pro-
tocol is subject to a collusion attack [1]. Modifications suggested in [12] and
that prevent this attack have been taken into account (see Table 1). Even with
this modification, there is no proof that the scheme is secure. The security does,
however, rest on a well-defined number-theoretic conjecture.

6.1 Unforgeability of Signature

The signature produced by the above protocol is not forgeable. Specifically, only
an entity having received a given credential could have issued this signature.
This holds because, in the random oracle model, spk1 proves that the signer
knows his secret, spk3 proves that the signer knows a credential’s secret, and
spk4 proves that the signer knows a credential corresponding to both secrets.
That is, spk1 and spk3 respectively show that

ẑ2 = ĝ(aα) and ẑ3 = ĝ(bδ)

and therefore:

ẑ2ẑ3 = ĝ(aα+bδ)

Whereby integers α and δ are known by the signer. On the other hand, spk4

proves that

(aα + bδ) = γeh′

for some γ that the signer knows. Under the hardness assumption on the unforge-
ability of credentials, this can only happen if the signer received a credential.

6.2 Unforgeability and Integrity of Credentials

In order to code attribute values, a set of different ei and di are used with
the same modulo n. However, the common modulus attack does not apply here
because each di is kept secret and each modulo n is known by a single entity
as with the standard RSA. Because there are multiple valid signatures for a
given message, this scheme seems to make easier brute force attacks that aim at
creating a valid signature for a given message: an attacker can choose a message
m and a random dR ∈R Zn and compute a signature md′ mod n. If ei and di

are defined for i ∈ {1, . . . , k}, there are 2k valid d =
∏

i∈S′⊆S di. The probability



that a random dR be acceptable is 2k times higher than with standard RSA
where k = 1. However, even if the number of possible signatures for a given
message increases, it is necessary to find out the set S corresponding to the
randomly chosen signature. In other words, the attacker has to test whether
∀S′ ⊆ S | m

?= (md′)
∏

i∈S′ ei mod n. There are 2k possible sets S′ to check and
thus the security of this scheme is equivalent to RSA.

In some cases, the signature scheme can allow combining attributes of two
credentials in order to create a new one: naive credentials (ax + 1)dh1 and (ax +
1)dh2 could be used to create (ax + 1)dh′ where S′ ⊆ S1 ∪ S2. If h1 states that
Alice was present from 8 a.m. to 10 a.m. and h2 states that she was present from
4 p.m. to 6 p.m., it is necessary to forbid that Alice could create a h′ stating
that she was present from 8 a.m. to 6 p.m. To avoid this attack, a unique secret
t is associated to each credential. Hence (ax + bt1)dh1 cannot be combined with
(ax + bt2)dh2 .

6.3 Non-Transferability of History

Even when the signature of a message cannot be forged, a desirable goal is
to be able to assure that it is not possible to find another message with the
same signature. Violation of this property with our protocol would require the
generation of two pairs (x, t) and (x′, t′) so that ax + bt = ax′ + bt′ . In order
to prevent transferability based on such generation of equivalent pairs, cert3c
and spk5 were included in the protocol. Computing (x′, t′) from a credential
based on (x, t) would thus require computing x′ = loga(ax + bt − bt′) which is
equivalent to solving the discrete logarithm problem. Our protocol thus assures
that the credential received as a proof of context or as a recommendation cannot
be transferred. A proof that the generation of equivalent pairs is equivalent to a
difficult problem (e.g. the discrete logarithm problem) would allow for important
simplifications of the history-based signature scheme.

7 Conclusions and Future Work

This paper introduces a history-based signature scheme that makes it possible
to sign data with one’s history. In this scheme, signers collect credentials (proof
of location, recommendation, etc.) in order to build a provable history. This
scheme preserves the privacy of authors and makes a large variety of attributes
possible for defining trust: recommendations, contextual proofs, reputation, and
even hierarchical relationships.

This scheme can be useful in different situations. For instance, any visitor
of a pervasive computing museum could be allowed to attach digital comments
to painting and to read comments of previous visitors. Notes could be signed
by an art critic that visited the museum one week ago. In this example, we
assume that the critic received some credential to prove that he is an expert
(e.g. electronic diploma when completing study) and that he can prove that he
visited the gallery. Each visitor will filter the numerous notes according to some



parameters defining trustworthiness, i.e. art critic, location, or recommended by
the museum. The authors of note have a guarantee that they cannot be traced.
In another situation, the signature of an article written by a journalist could
require one credential to prove that the author was where the event occurred
and another credential to prove that he is a reporter.

There are two main limitations to this scheme. First, it is well-known that
signatures based on the proof of knowledge of a double discrete logarithm are
not efficient in terms of computational complexity. It could be interesting to
study other approaches to define more efficient history-based signatures. Second,
the deployment of the scheme is easy when some authorities (CA, TTP, group
manager, LTS, etc.) provide proofs of context and recommendations and some
users collect those credentials in order to sign. Peer-to-peer frameworks where
each entity acts as a signer and as a credential provider would require the binding
of members’ secrets with the group manager’s keys.
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A Signature Based on a Proof of Equality of Double
Discrete Logarithms

Section 4.3 uses a signature based on a proof of equality of two double discrete
logarithms (SPKEQLOGLOG).

SPKl[α | y1 = g
(aα

1 )
1 ∧ · · · ∧ yk = g

(aα
k )

k ](m)

where l is a security parameter. The signature is an l + 1 tuple (c, s1, . . . , sl)
satisfying the equation

c = H (m‖k‖{y1 . . . yk}‖{g1 . . . gk}‖{a1 . . . ak}‖{P1,1 . . . P1,l}‖ · · · ‖{Pk,1 . . . Pk,l})

where Pi,j =

{
g
(a

sj
i )

i if c[j] = 0

y
(a

sj
i )

i otherwise
The signature can be computed as following:

1. For 1 ≤ j ≤ l, generate random rj where rj ≥ x.

2. For 1 ≤ i ≤ k, for 1 ≤ j ≤ l, set Pi,j = g
(a

rj
i )

i

3. Compute c = H (m‖k‖{y1 . . . yk}‖{g1 . . . gk}‖{a1 . . . ak}‖{P1,1 . . . P1,l}‖ · · ·)

4. Set sj =
{

rj if c[j] = 0
rj − x otherwise

The verification works as following:

if c[j] = 0: Pi,j = g
(a

rj
i )

i = g
(a

sj
i )

i

if c[j] = 1: Pi,j = g
(a

rj
i )

i =
(

y
(a−x

i )
i

)(
a

sj+x

i

)
= y

(
a−x

i a
sj+x

i

)
i = y

(a
sj
i )

i

It is not possible to reduce sj modulo because the order of a1 ∈ Z∗
n1

is
different than the order of a2 ∈ Z∗

n2
.


