
Handwritten Devanagari Script Segmentation using
Support Vector Machines

Gaurav Agrawal, Kshitij, Amitabha Mukerjee
Department of Computer Science & Engineering

Indian Institute of Technology
Kanpur, INDIA 208016

E-mail: gauagr, kshit, amit@iitk.ac.in

Nimit Kumar
Department of Electrical Engineering

Indian Institute of Technology
Kanpur, INDIA 208016

E-mail: nimitk@iitk.ac.in

Abstract— In this paper a novel method for Devanagari hand-
writing segmentation using Support Vector Machines is proposed.
Given a handwritten Devanagari script, the purpose is to segment
is and recognize the characters .This uses to large extent the
knowledge of what the character is, the system can be easily
extended into a handwriting recognizer. We use several pre-
processing algorithms to refine the search method. All text lines
are extracted with the shirorekha removed and then broken into
constituting words using a simple connectivity test algorithm. The
characters within a word are identified and segmented using
a polynomial kernel based Support Vector Machines. Further
heuristics are used to recheck the segments obtained.

I. I NTRODUCTION

Machine recognition of handwritten documents has a variety
of commercial and practical applications in reading forms,
manuscripts, their archival etc. A direct application is in mak-
ing the railway reservation procedure completely automated
by processing the forms filled by the intended passengers. It
is a great help to visually handicapped and illiterate people
when integrated with voice synthesizer. Although a number
of commercial systems are available for reading English texts
such systems for Devanagari script are still in research and
development stage as they pose difficulties unaccounted in
their roman counterpart.

Most of the earlier research in this problem focused only on
either segmentation or recognition. They were considered to
be two well separated problems with segmentation being the
pre-requisite of the recognition phase. But we identified that
these two problems were actually integrated & inter-dependent
problems. To segment into constituting characters correctly,
one has to have some knowledge of the class to which the
input belongs & hence this requires recognition at a low level.
Similarly, for recognition at a high level, segmentation at a
lower level is essential followed by using semantics & low
level recognition information. For recognition conventional
techniques used are matching certain properties like curvature,
template match etc. But all these have various limitations.
Hence Support Vector Machines were identified as a potential
solution for low level recognition.

First step towards recognition of a handwritten sample is
the extraction of text zone. Further processing of the extracted
text zone is then done. This processed output is sent for
segmentation through which each line will be segmented

into words and then each word to its constituting characters.
At this level one is able to predict a class to which the
character extracted belongs. This information can be used in
final recognition of the sample.

In this paper we present some of the major aspects of the
design of a Devanagari manuscript segmentor with a view
to recognise the text after segmenting it into constituting
characters. The objective of the design is to develop a uniform
methodology by which any handwritten sample can be tackled.
Further, after segmenting a sample we also wish to extract
enough information about the class to which the character
belongs so as to provide a firm base for our next level
of recognition. Unlike simple juxtaposition of characters in
roman script and idiographic scripts like Chinese, Japanese
and Korean, Devanagari is an alphabetic script with a complex
composition of constituent symbols. Treating the word or even
a composed unit as an atom for recognition purpose will be
an unnatural way of dealing with the script.

II. SUPPORTVECTORMACHINES

A support vector machine (SVM) [1] maps the input vectors
of a sample space into the higher dimensional feature space
through a nonlinear mapping so that an optimal separating
hyperplane can be constructed. In this sense the SVM works
in the same spirit as the Rosenblatt’s perceptron introduced by
Frank Rosenblatt [2]. However, the success of the SVM lies in
the selection of the aforementioned nonlinear mapping func-
tion, which must be selected prior to the optimization involved
in the SVM method. To avoid this explicit dependence over
the nonlinear mapping function, the idea of the kernel function
was proposed inspired from the Hilbert-Schmidt theory. The
kernel function here defines an inner product on a Hilbert
space.

Given a set of N training samples,(x1, y1), . . . , (xN , yN ),
the generalized SVM solves the dual quadratic optimization
problem as in Equation 1 and determines an optimal separating
hyperplane.Solution to Equation 1 based on the conditions in
Equation 2 and 3 leads to the maximization of the margin of
two classes and minimization of the training error simultane-
ously. This is made possible because of the Structural Risk
Minimization Principle [3].



Fig. 1. Some typical Devanagari characters.

MAX αW (α) =
N∑

j=1

αj −
1
2

N∑
i,j=1

yiyjαijαjK(xi, xj) (1)

subject to 0 ≤ αi ≤ C, i = 1, . . . , N (2)

and
N∑

i=1

yiαi (3)

The SVM constructs hyperplanes determined by Equation 4,
wherezj is the Support Vector belonging to classyj with the
Lagrange multiplier being equal toαj . K(x, zj) is the kernel
function which introduces the implicit mapping between the
input space and feature space.

f(x) =
s∑

j=1

yjαjK(x, zj) + b (4)

The choice of the Kernel Function is based on cross-validation
methods and in this work a polynomial kernel of degree two
is chosen.

In this work, we use SVM as a multiclass-classifier system
which is trained on the different possible characters in Devana-
gari script. The Segmentation thus is a supervised classifier
which classifies the input into one of the many classes. A
scanning window is passed over the handwritten script and
the resulting SVM output is obtained. The system, thus not
only segments the handwritten script, it also can be used as a
text recognition system.

III. I SSUES INDEVANAGARI SCRIPT SEGMENTATION

Devanagari script is an alphabetic script and has 11 vowels
and 33 consonants along with 12 modifier symbols. It has
its own specified composition rules for combining vowels,
consonants and modifiers. A new modifier can be composed
with the help of existing modifiers using the specified rules. An
individual modifier and a composed modifier can be attached
to a vowel or a consonant. The consonants and vowels can be
written as an individual symbol in the word whereas a modifier
has to be attached to a vowel or a consonant. The modifier
symbols, known asmatras are placed either on the top, at
the bottom, to the left, to the right or a combination of these.
The consonants may also have a half form. Devanagari script
also has some characters which take the next character in their
shadow because of their shape. Segmentation and Recognition
in OCR Systems [4], though involved, is a much simpler job as
compared to that in handwritten samples. Handwritten samples
are much more complicated due to different personal styles of
writing, which causes occluded characters and distorted rep-
resentations. Figure 2 shows an OCR script and a handwritten
script.

It is observed that a word can be broken into 3 stripes-
a core strip, a bottom & a top strip. The top and bottom

Fig. 2. OCR Devanagari Script and Handwritten Devanagari Script (with
shirorekharemoved). Note the variabilities in the Handwritten samples.

strips have only the modifiers whereas the core strip has
composite characters comprising of half characters, characters
and modifiers. A composite character may just be a character
as well. The top and bottom strips may be empty for a word;
just the top strip may be present or just the bottom. The top
strip is separated from the core usually by theshirorekha- a
horizontal line while the lower strip is below the core, though
no regular feature separates the two. Thus it can be easily seen
that a character can take the form of a composite character in
many ways. These lead to a large number of character fusions
(conjuncts) and character overlaps (either due to shape or due
to modifiers). Even line segmentation is not an easy task as the
lower strip of a line may overlap with the top strip of the other
line. The characters are of varying heights and widths which
make it inadequate to identify the composite characters based
on their heights and widths alone. These issues are handled by
a soft segmentation method using the standard BFS algorithm.

IV. SEGMENTING HANDWRITTEN DEVANAGARI SCRIPT

USING SVM

In this work, segmentation & recognition are considered
as inter-dependent problems, which can be efficiently handled
using a robust classifier such as SVM. Handwriting recognition
is conventionally handled using techniques of matching certain
properties like curvature and template match. Support Vector
Machines is an efficient classifier which transforms the prob-
lem into a higher-dimensional, so that the a linearly separable
problem may be constructed. A multi-class SVM is used as
implemented in Libsvm [6].

A. Preprocessing

Before the actual segmentation and recognition step, a num-
ber of preprocessing operations are carried out. Devanagari
words usually have ashirorekha- a header line on the top of
the core strip which separates it from the top strip. To segment
a word into its constituting characters, theshirorekhahas to
be removed first. This is done by the following approaches:

1) The Image is filtered using various filtering algorithms.
2) The Text area is extracted from the document.
3) The general tilt in the text area is determined & taken

care of by re-orienting the script.
4) Each individual line is separated. This is done by taking

a side histogram of the area. The minima in the his-
togram marks the separation of lines as this region is
devoid of any characters.

5) A side histogram of the line is then taken. The global
peak in the top one-third portion is then taken to be
the general position of the header line, and the portion
above it is then cut off.



After the pre-processing steps, the input is free of the
shirorekha. This was essential for the next step which identifies
the broad clusters by doing a simple connectivity search.

B. Simple Connectivity Search

The input obtained for this step is a line free from
shirorekha. A simple BFS is run on the input to find 8-
connectivity in it. This utilizes the natural tendency of people
to write two words separated by some gap. Further, if within
a word two characters are separated by some space they are
segmented in this step itself. It is to be noted that a vertical
scan could not be made to obtain horizontal separation as it
would lead to incorrect results in the case when the lower part
of the left character is extended to the right so much that a
part or whole of the right character lies over this extended
portion of the left character.

For example, in the characterra followed by a vertical bar,
the lower curve ofra may extend all the way below the vertical
bar. Hence on a simple vertical scanning it would be identified
as a single token. But through the 8-connectivity search, they
are obtained as two separate tokens. Each token thus obtained
is passed to the SVM-based classifier.

The BFS algorithm contains a parameter ignore-gap which
specifies the gap to be ignored while doing the connectivity
search. This eliminates the errors that may creep in if the
writer has accidentally put some gap in a single character.
Note that this gap will be small compared to the gap between
two words in general. The tokens thus obtained are passed
on to the second part where they are further segmented into
individual characters using SVM.

C. Machine Training on the Dataset and Segmentation using
SVM

A large dataset of Hindi characters (nearly 3000 at present)
is used as training set for the SVM. Though there are forty-
four characters in Hindi but based on frequency of occurrence
& resemblance to some other more commonly used characters,
6 of them were discarded. Thus a total of 38 characters
were there from which an input had to be identified. These
different characters can be viewed as different classes. Thus
38 different classes were identified. Each image in dataset
was mapped as a vector to a 1024 (32x32) dimensional space.
The actual character was centralized in the image and proper
padding was provided to standardize comparison. A vector-
space was created comprising of these standard vectors. Each
such vectors were obtained and a dataset of possible characters
was obtained. This was then used to train the SVM with
second-degree polynomial kernel.

D. Classification of Inputs into Classes

Each input token was scanned from right to left. The input
tokens have been taken from right to left since in devanagri
scipt, as there are some characters whose left parts match, for
instance, inka andwa, but there are no two characters whose
rightmost parts match closely except from the vertical line.
But even if the vertical line is common in the two characters,

it’s width is fairly small and if the character resembles the
other for a fairly large number of scans then we can say with
a high probability that the two characters are the same. A
window scanner was created which took the snapshot of the
area of the image it was placed upon. The snapshot obtained is
processed to centralise the image in it. Each snapshot was then
scaled and mapped as a vector to the 1024 dimension vector-
space. Each vector is submitted to theSupport Vector Machine
which classifies it into a class in the vector-space. The class
thus identified is then used to match standard data with the
input. Thus aminimum distanceis calculated in the vector-
space. It is to be noted that the width of this window scanner
has to be varied to identify a single character i.e. multiple
snapshots of even a single character have to be taken.

This is done for the following reasons:

• The characters in hindi do not have a standard width,
i.e., even in standard fonts the characters have different
dimensions.

• At this moment(while taking snapshots), it is not known
which class the current snapshot contains.

• If the width of the scan is fixed then it could result into
following situations:

– The width is more & the scan contains more than
one (and may be a part of second) character.

– The width is less & the scan contains only a part of
a character.

Both these situations lead to problems.

Hence a fixed width scanner would not work. So certain
minimum and maximum character width - to - height ratios
were identified based on a study of characters on the dataset
(which is quite large and collected randomly & hence quite
reliable). Typical ratios reached upon were 0.4 as minimum &
1.75 as maximum. It was observed that these ratios cover all
the characters written normally by any normal person. Each of
these varying width snapshots was taken keeping the right end
of the window at same position and varying the width in the
left direction. Next text area is again scanned with the same
scanner but this time the scan is shifted a small distance to the
left that is, compared to the previous scan the starting point
of the scan this time is at a small distance to the left. This
can be attributed to the fact that there is a notion ofmatra
in Hindi. A character can have a vertical line at its right end
signifying a matra. As we do not know beforehand whether
the rightmost character is a pure Devanagari character or one
with a matraon its right. So to account for the vertical line on
the right of the character, we shift the scan a small distance to
the left. We get snapshots in the same manner this time again.

For each snapshot of a particular width, a class was obtained
from SVM and nearest distance by matching it against the
standard images of that class. Thus there is an array of
snapshots which contains at least one character. And for each
snapshot, information obtained so far is its class number &
minimum distance from the class.

The two important criteria for deciding the final character
are:



Fig. 3. Segmentation Results: The first image is the input to the BFS
algorithm and the second image which is partially segmented is input to the
SVM-based classifier which results in the third image.

• The number of points belonging to a particular class.
More the number of points in a class more the probability
of it being the correct character.

• The minimum distance from a class. It represents the de-
gree to which a particular snapshot resembles a character.
Less is the distance more the probability of it containing
the correct character.

Proper weights are assigned to the number of points as well
as to the minimum distance. But in order to assign the weights,
the number of points in a class as well as the minimum
distance has to be reduced to order 1. For the number of
points belonging to a class this is done by finding the global
maximum number & then dividing each number by this global
maximum. To reduce the minimum distance to order 1 divide
by the maximum distance of the minimums.

To each factor certain weights are assigned and the final
weight of the particular snapshot is calculated. The snapshot
which has the maximum weight is the correct character. The
segmentation point is put just to the left of this image. The left
end of the scanner window is placed on this newly segmented
edge & the process is repeated. There are a number of times
when a segmented token is obtained whose height or even
width is far too less in comparison to the other characters of
the handwritten text. Thus, if a segmented token is obtained
whose width or height is less than the permissible threshold,
it is merged with the token immediately to its right or left
depending on which resulting token gives the best match with
the standard dataset.

V. RESULTS AND DISCUSSIONS

The handwriting segmentation system was run on many
samples all gathered from different people selected randomly.
Two typical sample inputs are shown in Figure 3 and 4. The
Figures show input obtained after the pre-processing step &
hence is free ofshirorekha. The input for testing as it contains
the cases where two different characters within a word are
linked together, a single character is split in two, two different
characters written so closely together that with a little less
distance they might actually be read as a single character &
so on.

VI. CONCLUSIONS

Handwriting recognition is a challenging field in the ma-
chine learning and this work identifies Support Vector Ma-
chines as a potential solution. In languages that do not have a

Fig. 4. Segmentation Results on another handwritten script.

very well defined writing pattern, as in the case of devanagri
script, one cannot make use of the standard topology of the
text. Results obtained using SVMs for recognition were more
than 80% accurate and the inaccuracy that was there can be
rectified by improving the database on which the machine was
trained, by incorporating some more characters and by using
some better heuristics for removing the headerline. The infor-
mation from the segmentation part can be used to obtain better
algorithms which can even serve to recognize the handwritten
sample. As mentioned earlier, the segmentation method tells
the class of each segment. We use a new conceptconfusion
distancein further recognition. Theconfusion distancegives
a measure of the physical similarity between two standard
characters. For example, theka & pha in devanagri script look
pretty similar & hence the probability of a segment classified
as ka actually being apha will be more than the probability
of its being ama. Further, incorporating dictionary knowledge
would further improve the recognition.

ACKNOWLEDGMENT

The authors would like to thank Mr. Abhaya Agarwal for
his help in providing access to part of the Devanagari script
database.

REFERENCES

[1] N. Cristianini and J. Shawe-Taylor,An Introduction to Support Vector
Machines and Other Kernel-Based Learning Methods, Cambridge: Cam-
bridge University Press, 2000.

[2] F. Rosenblatt, “The perceptron: a probabilistic model for information
storage and organization in the brain”,Psychological Reviewvol. 65,
pp. 386–408, 1958.

[3] V.N. Vapnik, Statistical Learning Theory, New York: John Wiley & Sons,
1998.

[4] V. Bansal and R. M. K. Sinha, “Integrating Knowledge Sources in
Devanagri Text Recognition System,”IEEE Trans. Systems, Man, and
Cybernetics- Part A, vol. 30, pp. 500–505,2000.

[5] R.M.K. Sinha and V. Bansal, “On Devanagari Document Processing”,
IEEE International Conference on Systems, Man and Cybernetics, vol. 2,
pp. 1621–1626, 1995

[6] C.C. Chang and C.J. Lin , “LIBSVM: a library for support vector
machines”, 2001


