
KALYPSO: Software for Simulation of Atomic Collisions at
Surfaces

Version 2.1 User Guide

Marcus Karolewski

Department of Chemistry, University of Brunei Darussalam, Brunei, Borneo

Revision: 3 December, 2005

 Author e-mail addresses: mkarol@fos.ubd.edu.bn (current) or karolewski@alum.mit.edu
(forwarding service if first address is down). Reproduction and redistribution is permitted.
Kalypso is distributed from URL: http://www.geocities.com/karolewski.

2

CONTENTS
1. INTRODUCTION ..5

1.1. PREFACE..5
1.1.1 (a) Version 2.1 ...5
1.1.1 (b) Version 2.00 ...5

1.2. KALYPSO FUNCTIONALITY..6
1.3. PACKAGE COMPONENTS..9
1.4. COMPUTATION TIME ...9
1.5. KALYPSO OUTPUT...10
REFERENCES FOR CHAPTER 1 ...11

2. INTERATOMIC POTENTIALS..13

2.1. THE COMPOSITE POTENTIAL ..13
2.2. CUT-OFF DISTANCE..13
2.3. SCREENED COULOMBIC POTENTIAL...14
2.4. TIGHT-BINDING (TB) POTENTIALS FOR METALS..15
2.5. TIGHT BINDING POTENTIALS FOR BIMETALLIC SYSTEMS..19
2.6. THE SWITCHING FUNCTIONS ..20
2.7. CALCULATIONS WITH TIGHT-BINDING POTENTIALS ...26

2.7.1. Cohesive energy ..26
2.7.2. Other properties..28

2.8. SIMULATIONS WITH TIGHT-BINDING POTENTIALS ..28
2.9. INTEGRATION METHOD ..30
2.10. MORSE POTENTIAL ..31
ANNEXE. DATABASE OF SURFACE SEGREGATION ENERGIES [25]. ..32
REFERENCES FOR CHAPTER 2 ...33

3. TARGET FILES AND PROJECTILE FILES ..35

3.1. FUNCTION OF THE TARGET FILE...35
3.2. COORDINATE SYSTEM..35
3.3. ANCHOR ATOM ..36
3.4. TARGET FILE FORMAT..36
3.4. OPTIONS FLAGS ...38

3.4.1. Flags used by Kalypso ..38
3.4.2. Flag: ofUseImagePotential...39
3.4.3. Flag: ofNoCool ...39
3.4.4. Flag: ofSprungAtom..39
3.4.5. Flag: ofFixedAtom ..39
3.4.6. Flag: ofEdgeAtom...39
3.4.7. Flag: ofRecorded ..39
3.4.8. Flag: ofPreImplant ...40
3.4.9. Other flags ..40

3.5. EXERCISE: GENERATING A NI(100) LATTICE...40
3.6. EXERCISE: TARGET FILE FOR (1×1) METAL MONOLAYER SYSTEM ...41
3.7. ORIENTING TARGETS ...42
3.8. CHOOSING THE TARGET SIZE ...43
3.9 PROJECTILE FILES ...43

4. THE RUN FILE..45

4.1. FUNCTION OF THE RUN FILE ..45
4.2. RUN FILE OPTIONS ...45

4.2.1. General specifications...45
4.2.2. Periodic boundaries..47
4.2.3. Projectile initialisation ...47
4.2.4. Termination criteria..48
4.2.5. Output ...49
4.2.6. Thermal vibrations..51
4.2.7. Neighbour lists and timestep...53
4.2.7. Multiple impact (MI) simulations (notes)..56

3

4.2.8. Periodic boundary conditions (notes) ...57
REFERENCES FOR CHAPTER 4 ...58

5. THE MODEL FILE ...59

5.1. FUNCTION OF THE MODEL FILE..59
5.2. MODEL FILE OPTIONS ..60

5.2.1. Screened Coulombic potentials...60
5.2.2. Tight-binding potentials..61
5.2.3. Switching functions ...62

5.3. MODEL FILES FOR ION-SCATTERING SPECTROSCOPY (ISS) SIMULATIONS....................................63

6. THE IMPACT FILE ..64

6.1. FUNCTION OF THE IMPACT FILE ...64
6.2. IMPINGING MODE...65
6.3. RECOILING MODE ..65
6.4. MIXED MODE...66
6.5. IMPACT FILE FORMAT ..66
6.6. CREATING IMPACT FILES ...66
6.7. IMPACT FILE EXAMPLES...70

6.7.1. Normal projectile incidence on Cu(110) surface ..70
6.7.2. Non-normal projectile incidence on Cu(100) surface: φ =<001>72
6.7.3. Impact file for fcc (111) surface, normal incidence ..73
6.7.4. Impact files for multiple impact simulations ...75

REFERENCES AND NOTES FOR CHAPTER 6 ..75

7. THE INELASTIC FILE ..76

7.1. INTRODUCTION..76
7.2. LINDHARD-SCHIOTT-SCHARFF (LSS) MODEL ...77
7.2.1. THEORY..77
7.2.2. LSS PARAMETERS ..78
7.3. OEN-ROBINSON (OR) MODEL ...78
7.3.1. THEORY..78
7.3.2. OR PARAMETERS..79
7.4. SHAPIRO-TOMBRELLO (ST) MODEL...80
7.4.1. THEORY..80
7.4.2. ST PARAMETERS...82
7.5. TEMPERATURE CONTROL...82
7.6. IMAGE POTENTIAL EFFECTS ...83
7.7. LATTICE SITE SPRINGS ...83
7.8. COMPUTE K(LSS), K(OR) TOOL...83
7.9. INELASTIC DATA FILE ..84
REFERENCES FOR CHAPTER 7 ...85

8. KALYPSO ..86

8.1. INTRODUCTION..86
8.2. SIMULATION OPTIONS..86
8.3. RUNNING A SIMULATION PROJECT ...88

8.3.1. Single simulation project ..88
8.3.2. Batch simulation project ...88
8.3.3. Kalypso screen output...89
8.3.4. Kalypso user interface ..90
8.3.5. Implementation notes ..91

9. WINNOW...92

9.1. INTRODUCTION..92
9.2. QUERY LANGUAGE ..93

9.2.1. Introduction ..93
9.2.2. Syntax..93
9.2.3. Predefined identifiers (floating point variables) ...94
9.2.4. Integer variables (rw, rn, ui, fl) ..95

4

9.2.5. Constants ..95
9.2.6. Arithmetic Operators and Arithmetic Expressions ...95
9.2.7. Functions ..96
9.2.8. Conditional expressions and filtering ...96
9.2.9. Logical and relational operators ..97
9.2.10. Numeric types..98
9.2.11. Parser errors...99

9.3. FILTERING DATA..99
9.4. AVERAGING DATA ...100
9.5. COLLATING DATA..101
9.6. FORMAT COLUMNS OPERATION ...102

9.6.1. Summary ...102
9.6.2. Example: Create a Target file based on a dynamics (*.snk) file.......................................102

9.7. CONVERTING DATA ...103
9.8. CONSTRUCTING DATA SPECTRA (HISTOGRAMS)...104
9.9 MERGING AND RE-MERGING DYNAMICS FILES ..105
9.10. FIND SPUTTERED CLUSTERS...105
9.11. SPUTTERING STATISTICS..106
9.12. DISPLACEMENTS OPERATION...107
9.13. CROSS-REFERENCE OPERATION...108
9.14 SCATTERING RELATIONS...109
9.15. CONVERT SNK TO POV..109
9.16. CONVERT TRG TO SNK..111
9.17. REFORMAT MI DATA...111
9.20. NEIGHBOUR COUNT ...112
ANNEXE: QUERY EXPRESSION EXAMPLES ...112
FUNCTION (EXPRESSION) SPECIFICATIONS..112
CONDITIONAL EXPRESSIONS...113
REFERENCES FOR CHAPTER 9 ...114

APPENDIX 1: KALYPSO ERRORS AND WARNINGS..115

ERROR MESSAGES...115
WARNING MESSAGES..117

APPENDIX 2: FUNDAMENTAL PHYSICAL CONSTANTS..117

1. INTRODUCTION

1.1. Preface

1.1.1 (a) Version 2.1
 This release of the Kalypso package fixes a few problems that were found in the
version 2.0 (programs, documentation, example projects), but contains few new
simulation capabilities. The root directory of the installation package contains a file
(revisions.txt) that summarises the changes made to the programs. As always, I
am grateful to users who took the trouble to write to me.

1.1.1 (b) Version 2.00
 Several years have passed since I released version 1 of Kalypso, and only now do I
find myself again in surroundings (the island of Borneo) that are conducive to the
further development of the program. The Kalypso package has been largely rewritten
for the version 2 release, a task that has consumed the entire autumn and winter of
2003-2004. The goals of this effort have been to extend the utilitarian value of the
package, and to make it easier to use. Another design objective was to make the
program easier to maintain and develop as time goes on. Kalypso remains free
because it is a by-product of my own research interests. However, for the same
reason, its capabilities will only evolve slowly as I find time to work on it.
 In general, I welcome feedback from users about the package (contact information
is given on the front page), and I am grateful to the many people who wrote to me
about version 1 of the package.
 This version (version 2) of the package has been tested over several months by the
author and by others prior to its formal release. All bugs known to me have been
fixed, but others will surely come to light eventually. The program appears to be
stable over time in the sense that it does not crash during normal operation. For
example, I have carried out very demanding batch projects that involve multiple
impact (> 200 impacts) simulations over periods of ~3 months using 105 atom targets
without any hint of a problem.
 If you have a bug to report, please attach a set of input files, and make sure to state
the program version (see the Help|About box) and operating system that you are
using. Otherwise, my reply will most likely start with the phrase: “Can you attach a
set of input files?”. If you want to know how to do something, be specific about what
it is, and what the bombardment conditions are. Otherwise, my reply will most likely
start with the phrase: “Can you be more specific...?”.
 The literature citation for Kalypso 2 is in ref. [1] (a preprint copy can be found in
the /docs/papers directory of the Kalypso distribution).
 The User Guide is the principal help document for Kalypso. A tutorial that
describes the construction and analysis of a simple simulation project (sputtering of
Cu(100) is also provided. In the /examples/project directory of the Kalypso
distribution, you can find input files for number of complete simulation projects, each
of which is accompanied by documentation (readme files) that describes the
simulation strategy and the data analysis procedure for that project. These projects
illustrate how to set up the non-standard features of the package such as multiple
impact simulations, periodic boundary conditions and angular scans. Context-
sensitive online Help files are also provided. Most topics in the latter are abbreviated

Introduction 6

versions of this User Guide, but the online Help files also contain information about
utility functions that is not found in the User Guide.

1.2. Kalypso functionality

 Kalypso, which comprises a program of the same name, and various utilities, is a
Windows software package for molecular dynamics (MD) (also known as classical
dynamics, CD) simulations of atomic collisions in (primarily) metallic and bimetallic
crystals. Kalypso uses centrosymmetric many-body tight-binding (or Gupta)
potentials which can describe the material and cohesive properties of (in order of
decreasing accuracy): fcc metals, hcp metals, bcc metals. Please note that these
potentials are not particularly suitable for modelling the cohesive and material
properties of semiconductors like Si or GaAs, or ionic materials such as MgO.
However, the short-range repulsive potentials for any binary compound material can
be correctly simulated by Kalypso, which means that Kalypso can also be used for
energetic ion scattering simulations that are determined by hard collisions of a
homonuclear projectile species on any binary compound material (e.g. Ar → KBr, O2

→ KBr). Please note the following limitation: if the projectile is a heteronuclear
species (e.g. CuNi), the target must be comprised of one or both of the same types of
atoms; thus, CuNi → Cu(100) or CuNi → Ni/Cu(100) is acceptable, but CuNi →
Ag(100) is not acceptable. This restriction is enforced by Kalypso.
 The many-body potentials used by Kalypso are described in Chapter 2. The systems
that can be simulated consist of metallic atoms (up to two types) plus optionally a
noble (inert) gas atom. Some examples of processes that could be studied with
Kalypso are: relaxation of a Cu(100) surface; sputtering of Ni/Cu(111) by Ar
projectiles; sputtering of Cu(100) by O2

+ projectiles; diffusion of Pb adatoms on
Cu(100), γ-ray induced recoils in Ni, ion scattering from Ag(110). At present,
Kalypso does not include any algorithms that can be used to simulate ion
neutralisation processes as the program runs. The main reason for this omission is
disagreement among researchers in the field about the applicable theory: I welcome
correspondence about suitable algorithms.
 Table 1 (below) summarises the main features of the program. Typically, energy is
imparted to the system by one or more primary projectiles such as an inert gas atom or
a metal atom or cluster, or by temperature ramping.
 The range of particle energies that can be treated by Kalypso is roughly 0.1 eV to 10
keV. The lower energy limit is imposed by quantum effects, while the upper limit is
determined by the treatment used for modelling inelastic effects, and by the practical
difficulty of containing fast projectiles in small targets. This energy range covers, for
example, deposition of metals by evaporation, sputtering and ion scattering
phenomena, and numerous less familiar phenomena such as gamma-ray induced
Doppler broadening.
 Most Kalypso simulations will involve the calculation of the average effects of N
projectile impacts at a statistical sample of different surface impact points. Kalypso
can simulate these projectile impacts on a virgin surface (‘zero-fluence’ simulation) or
on a surface which accumulates the damage from prior projectile impacts (‘multiple
impact’ simulation).

Introduction 7

Table 1. System requirements and simulation capabilities of Kalypso, version 2.

Property Capability
Platform 32-bit Windows environments (95/98/Me/2000/NT/XP etc.)
Hardware (preferred) IBM-type PC: 3GHz CPU, 1 GB RAM
Hardware (minimum) IBM-type PC: 500 MHz CPU, 128 MB RAM
Projectile (optional) Inert gas atom, metal atom or metal cluster e.g. Ar, Cu, CuNi
Target Elemental metal or bimetallic crystal, with or without periodic (x, y) boundary

conditions e.g. Cu(100), Ni/Cu(100), NixCu1-x(100). Also, for ion scattering > 50
eV: any binary compound material.

Maximum practical
system size

104-105 atoms (depends on RAM, CPU speed and simulation goal)

Maximum allowed size 106 atoms
Energy range 10-1 to 104 eV
Interatomic potentials Composite screened Coulombic potentials + Tight-binding potentials (with

switching functions in the cut-off region)
Inelastic effects etc. Local and non-local electronic stopping (LSS, Oen-Robinson, Shapiro-

Tombrello models); thermostat; image potential; lattice site ‘springs’
Typical time frame 101-105 fs

 Computer simulations allow us to predict the consequences of theoretical models.
They are not particularly useful when we wish to understand an entirely new
phenomenon, unless it depends on physics which is already inherent in the model.
The most convincing atomistic simulations use parameters which are derived
objectively, and which are independent of the phenomenon being modelled.
Realistically, there are times when some parameters in the model will have to be
chosen heuristically for optimum fit to the experimental data (e.g. screening lengths),
but this should not be overdone if the purpose of the simulation is to demonstrate a
connection with the accepted body of theory.
 Molecular dynamics is a theory-neutral simulation technique. By this I mean that
you can use molecular dynamics to implement the latest theory, or an incorrect
theory. The essential goal of molecular dynamics is to provide particle trajectories.
Data processing is a necessary operation that follows any atomistic simulation, but the
data processing stage is not unique to molecular dynamics simulation.
 If you need to model absolute quantities, such as sputter yields, you may be
disappointed by the performance of molecular dynamics simulation programs. This is
because absolute quantities are quite sensitive to the input parameters (e.g. potential
screening length), which may be difficult to choose optimally. The most interesting
use of simulations is to study the relative sensitivity of an experimental quantity to a
particular system parameter, e.g. the variation of sputter yields with ion energy or
target orientation, or the angular distribution of ejected particles.
 I envisage that Kalypso will be mainly of interest for people who are in the business
of doing experiments with ions (e.g. ion bombardment, sputtering, ion scattering) that
require interpretation in terms of an atomistic model. Kalypso can also be used to
carry out theoretical enquiries of a more general nature that have no connection to
particular experiments, e.g. how do sputtering at glancing and normal projectile
incidence differ?
 Kalypso permits the evolution of a system (defined by certain initial conditions and
an interaction model) to be monitored over a period of time. The simulation of events
following each incident projectile trajectory is described as a 'run'. For example, a
sputtering simulation might consist of 1000 runs, each lasting for 2000 fs. The initial

Introduction 8

conditions at the start of each run will be quite similar, except for the starting position
(impact parameter) of the projectile, which will sample different impact points within
the surface unit cell. The program uses the Verlet integration algorithm with an
adaptive timestep to integrate the classical equations of motion for a system of
interacting particles. The output from the simulation is set of particle coordinates and
velocities at one or more specified sampling intervals which are stored in the
‘dynamics’ (or ‘trajectory’) file.
 Kalypso is not designed to simulate specific experiments, so it is up to the user to
manipulate the output trajectory data in a way that can be compared with
experimental data (if that is the purpose of the simulation). It is quite easy to generate
simulation data, but it is usually more difficult to extract meaningful output in the
form of scattering profiles, spectra and so forth. Winnow can be used for many
common tasks, but on occasions you might have to write your own programs to
process the output *.snk files.
 The best way to start learning about the package is to run the program Kalypso
using the tutorial and example projects provided. The projects can be run immediately
by loading the input files into Kalypso. A number of references to the primary and
review literature are supplied in context and may be found at the end of each chapter
of this guide. For absolute beginners, I suggest the online MD primer by Ercolessi [2]
and an online course on computational materials science by Zhigilei [3]. There are
several texts and review papers that should be mentioned as general references. These
are by: Smith et al.[4], Eckstein [5], Mashkova and Molchanov [6], Harrison [7],
Smith and Harrison [8], Robinson [9], Niehus et al. [10], Rabalais et al. [11] and
Nastasi et al. [12]. The reader should get hold of as many of these key references as
possible (the first two are especially valuable), since they cover practical and
theoretical issues that are neglected in this user guide, and give leads to the early
literature of this field, which remains remarkably relevant and valuable today.
 Simulation programs should not be treated as black boxes. Background reading is
especially important for those who are new to simulation, since this will give an
appreciation of not only what Kalypso is doing, but why it is done in a certain way and
what is being neglected in the model. My Webb pages (see cover page for root URL)
provide hyperlinks to literally hundreds of articles by researchers in the field of
projectile-surface interactions and their simulation. If you plan to publish your results,
I suggest you use papers by simulation researchers as a guide to what information
should be provided in your description of the simulation. From correspondence
arising from the previous version of the program, I anticipate that Kalypso will be
more useful for experienced researchers than for students who are still finding their
way around the literature.
 For simulation projects that do not involve inelastic scattering, the key test of
program correctness is the conservation of energy. In a simulation, the system moves
from a point A to a point B in phase space over a time interval ∆t. The system
evolution is effected by using an integration algorithm that depends on forces
computed at every timestep. We know from Newtonian mechanics that if this
integration is carried out correctly, the energy of the system (which can be calculated
from analytic formulae) should be conserved in a purely elastic model. Users of
Kalypso should therefore always pay attention to energy conservation since this is the
best guarantee that the program is working correctly. Energy leakages of >0.5%
observed for purely elastic scattering phenomena are indications that something is
wrong in the simulation. If you cannot resolve energy discrepancies by modifying

Introduction 9

your simulation parameters (normally the timestep) you should contact the author for
advice.

1.3. Package Components

 The Kalypso package consists of several integrated programs, whose relationships
are indicated in the flow chart below.

 The main programs in the Kalypso package are: Spider (Simulation Program Input
Data Editor), Kalypso (the simulation engine), and Winnow. Spider is a utility
program whose function is to design and generate the input data files (*.trg, *.prj,
*.run, *.mdl, *.imp, *.inl) used by Kalypso. These files are discussed in various
chapters of this User Guide. All simulation projects begin with Spider, and this is the
most important program to master. Winnow is a program that processes the output
data created by Kalypso, and transforms this data into scientifically useful information
(sputter yields, energy spectra etc.). It may be helpful to new users of Kalypso to
regard the output files produced by Kalypso as database files: the purpose of Winnow
is to process user-defined queries to this database, and to present the information in a
modified form. Users of the Kalypso package will undoubtedly have to learn how to
use both Spider and Kalypso. Winnow can be ignored (except as a file conversion
utility) if the user is sophisticated enough to prefer his own tools (spreadsheet,
statistical package, or database) for analysis of the dynamics file data. The programs
should first be studied by running them on the tutorial and demonstration projects.
 Another program supplied with the package is Cone. This program, which was
written by Mr Tan Hean Seng (formerly of the National University of Singapore), is
extremely useful for quick calculations of shadow-cone radii in ion scattering
experiments [13]. For this release, I have added a graphical user interface to the
program.

1.4. Computation Time

 With a 2.4 GHz CPU, a single sputtering run can be carried out in about 1 min for
an 8000 atom target, while 1.5×104 ion scattering runs (two dimensional, periodic
target based on the binary collision approximation) can be carried out in the same
time. Although individual simulations run quite quickly, the time problem arises
because of the need to gather adequate statistics. Sputtering simulations require
several hundreds of runs, while ion scattering (ISS) simulations need hundreds of
thousands or millions of runs. Serious simulations of atomic collision phenomena
therefore make heavy demands on current-day personal computers, and running
simulations on fast computers can have a big impact on productivity. Setting up the
parameters of a simulation is an iterative process. Much time can be saved if you

Introduction 10

avoid doing computations that will subsequently be discarded because an error came
to light.
 If you plan to buy a computer for running simulations, try to test its performance
beforehand. In the author’s experience, the CPU speed alone is not a good guide to
performance, and you may lose up to ~30% of the processing potential due to a bad
memory or chipset configuration. Make sure you have at least 1 GB of memory and
100 GB of disk space to satisfy invariably increasing ambitions.
 Frequently, one runs a variety of similar simulations while varying one system
parameter (e.g. the angle of projectile incidence). The total simulation time required
for a parameter-variation simulation of this kind is often on the order of days for
publication quality data (i.e. good statistics). Even survey scans may consume a
morning or afternoon (although here you do have the choice of concentrating only on
the main features at the survey stage). The simulation engine, Kalypso, can coexist
happily with other (well-behaved) Windows programs.1 The best time-management
strategy is to run long simulation projects as background batch jobs. You can even
pause or stop them for temporarily CPU-intensive work with other programs, or the
program interfaces can be 'minimised' and put out of sight while the computer is used
for other work. Except for multiple-impact simulations, Kalypso jobs can also be
stopped completely then restarted later if necessary.2
 Long calculations can be ‘parallelised’ by running parts of them on different
machines. For example, in a 1000-run simulation, runs 1-500 can be executed on
machine #1, and runs 501-1000 can be executed on machine #2. The resulting output
data (1.snk, 2.snk dynamics files) can be combined using the Windows command line
binary file copy command:

copy /b 1.snk + 2.snk combined.snk.

Kalypso includes an option to start the calculations from the middle of the Impact file,
so you should not edit the Impact file by hand when restarting a simulation.

1.5. Kalypso output

 The output from a successful simulation is the dynamics file (*.SNK), which
consists of a sequence of binary records. Each record is associated with a specific
particle at a certain time during the simulation (often, but not necessarily, at the end of
the simulation). The user can specify the conditions under which output data will be
produced.
 Each record stored in the dynamics file includes the following variables (see section
9.2 for detailed explanations of the fields):

ti, time elapsed since the start of the simulation run (units: s);
rw (row number), a particle index that is based upon the position of the
particle in the projectile or Target files;
rn (run number), a run index indicating to which run the data refer;
ui (unique identifier), another index that is incremented whenever the output
routine of the program is called; if you are combining data from different
simulations, you should initialise it manually so that values don’t overlap
(Kalypso options);

1 Certain Webb browsers and firewalls are not well-behaved, in the sense that they can deplete system
resources if used continuously, leading eventually to a ‘hung’ system.
2 See section 9.6 for a description of the procedure involved in restarting a multiple-impact simulation.

Introduction 11

rx, ry, rz, vx, vy, vz: particle position (units: m) and velocity (units: m s-1)
components;
ms: particle mass (units: kg);
fl: particle options variable (flags) at time of output;
bx, by: these ‘variant’ fields store either the projectile impact parameter, or the
projectile incident angles, or other variables, depending on options selected by
the user (in the Run file: see Chapter 4 of the User Guide). Units of these
fields depend on the type of output selected. New options will be added over
time.

 The program Winnow can manipulate these variables directly in order to produce
meaningful information (e.g. energy spectra) that is customised to the user’s
requirements. Alternatively, for users who have specialised needs, the output file data
can be dumped to a text file for reading and processing with other software.
 The dynamics file consists of ‘TSnkRec’ binary records (56 bytes = 10×4 + 4×4 per
record) whose Pascal/Delphi definitions are:

 TSnkRec = record
 rx,ry,rz,vx,vy,vz,ms,ti,bx,by: single; // 4 byte
 rw,rn,fl,ui: integer; // 4 byte
 end;

 An equivalent structure declaration in C would be:

typedef struct
 {
 float rx,ry,rz,vx,vy,vz,ms,ti,bx,by; // 4 byte
 long rw,rn,fl,ui; // 4 byte
 } TSnkRec;

 You can quickly count the number of records in a dynamics file by dividing the file
size in bytes by 56. 1 Dynamics files originating from different simulations can be
combined using DOS binary file copy commands such as:

copy/b dv1.snk+dv2.snk+dv3.snk combined.snk

 This appends dv3.snk and dv2.snk to dv1.snk in a new file called combined.snk.
This operation is useful if, for some reason, you had to run the simulation in more
than one piece.

References for Chapter 1

[1] M.A. Karolewski, Kalypso: A Software Package for Molecular Dynamics
Simulation of Atomic Collisions at Surfaces, Nucl. Instr. Meth. B 230 (2005) 402.
[2] F. Ercolessi, A Molecular Dynamics Primer, URL: http://www.fisica.uniud.it/
~ercolessi/md/

1 I have recently discovered by chance that the maximum size allowed in WinXP for a SNK file is
about 6 GB (gigabytes). After this, no more output is stored, although the simulation continues to run.
This seems to be due to an integer overflow error in the compiler or (Windows) operating system
which cannot be fixed at this time.

Introduction 12

[3] Modelling in Materials Science, L.V. Zhigilei, http:///www.people.virginia.edu/
~lz2n/mse524.
[4] R. Smith, M. Jakas. D. Ashworth, B. Oven, M. Bowyer, I. Chakarov and R. Webb,
Atomic and Ion Collisions in Solids and at Surfaces, Cambridge University Press,
1997.
[5] Wolfgang Eckstein, Computer Simulation of Ion-Solid Interactions, Springer-
Verlag, Berlin, 1991.
[6] E.S. Mashkova and V.A. Molchanov, Medium-Energy Ion Reflection from Solids,
North-Holland, Amsterdam, 1985.
[7] D.E. Harrison Jr., Sputtering Models - A Synoptic Review, Radiation Effects, 70
(1983) 1-64.
[8] R. Smith and D.E. Harrison Jr., Algorithms for Molecular Dynamics Simulations
of keV Particle Bombardment, Computers in Physics, 3 (1989) 68-73.
[9] M.T. Robinson, Theoretical Aspects of Monocrystal Sputtering, in Sputtering by
Particle Bombardment I, (pp. 73-144) , R. Behrisch ed. (Springer-Verlag, Berlin,
1981).
[10] H. Niehus, W. Heiland and E. Taglauer, Low-energy Ion Scattering at Surfaces,
Surface Science Reports 17 (1993) 213-303.
[11] J.W. Rabalais (ed.), Low-Energy Ion-Surface Interactions, (Wiley, Chichester,
1994).
[12] M. Nastasi, J.W. Mayer, J.K. Hirvonen, Ion-Solid Interactions: Fundamentals
and Applications, (Cambridge Univ. Press, Cambridge 1996).
[13] H.S. Tan, M.A. Karolewski, Determination of Shadow Cone Dimensions for 0.5-
5 keV Ar, Kr and Xe Projectiles, Nucl. Instr.Meth. B 73 (1993) 163.

2. INTERATOMIC POTENTIALS

2.1. The composite potential

 The atomic interactions modelled by Kalypso are described by means of composite
potentials. These potentials consist of a repulsive screened Coulombic potential (Vc)
at short internuclear distances, which is joined to an attractive many-body tight-
binding (TB) potential (Va) at internuclear distances that are comparable to chemical
bond lengths.
 The scheme that is used for constructing composite potentials in Kalypso 2 is
different from that used in Kalypso 1. In Kalypso 1, an interpolation function was
fitted between the ZBL potential and a pair potential that represented the effective
two-body potential in the bulk environment. One difficulty with this approach is that
it produces a small energy leakage that conflicts with the energy book-keeping
scheme. In order to track energy accurately, a different method of joining the core and
attractive potentials has been implemented for Kalypso 2.
 In Kalypso 2, the repulsive and attractive potentials are joined smoothly at short
distances by means of a switching (i.e. interpolation) function called here the core
switching function. The attractive TB potential is also terminated smoothly at the
cut-off distance by means of another function, the cut-off switching function. The
potentials and the switching functions are described in detail in later sections of this
chapter.

2.2. Cut-off distance

 For reasons of computational economy, the terms in the potentials are evaluated
only up to the cut-off distance (rc). However, it is not correct to say that the range of
influence of the potential is rc. For a many-body potential, the force acting on an atom
i depends on the number of atoms that coordinate both i and its neighbours. Any atom
that interacts with a neighbour of i can thus affect the force acting upon i. Thus the
range of influence of the potential is 2rc.
 For example, consider an atom i that is located in the 3rd layer of a fcc (100) surface.
If rc = a (the fcc lattice constant), the coordination shell of atom i is bulk-like (i.e. 12
nearest neighbours and 6 next-nearest neighbours). However, the coordination shells
of the neighbours of i that lie between i and the surface are not bulk-like. Therefore, a
net force is exerted on i if the atoms are arranged in the ideal fcc lattice configuration.
For Cu, the magnitude of this force is about 0.02 eV Å-1.
 Baskes et al. have determined the range of forces in fcc and bcc Al using ab initio
calculations [1]. Most of the force (~80%) on atoms adjacent to monovacancy defect
sites comes from nearest neighbours.
 It is important to appreciate that the parameters of an attractive interatomic potential
are fitted on the assumption of a specific cut-off distance. For example, a potential
might be fitted using a cut-off distance that excludes the third and higher coordination
shells. In that case, any simulation that uses the potential should also have a cut-off
distance that excludes the third and higher coordination shells. In other words, rc
should lie somewhere between the second and third coordination shells. You have
some freedom to choose exactly where, since this choice will not affect the material
parameters of the ideal crystal. Some authors will place rc in the middle of the shells,
but for reasons discussed in Sect. 2.6, a better choice for fcc metals is to place rc

Interatomic Potentials 14

about 0.1 Å below the third coordination shell. If rc exactly coincides with the third
coordination shell, some atoms from that shell will lie within the range of influence of
the potential at finite temperature due to thermal displacements (~0.1 Å), and surface
relaxation parameters might also be affected. For bcc metals, placing rc in the middle
of the shells may improve target stability (e.g to avoid bcc→fcc recrystallisation in
the target during the course of the simulation). The optimum choice of rc may require
careful thought for a bimetallic system involving metals that have different lattice
constants or different lattice structures in their elemental states (no general solution to
this dilemma can be offered - let trial and error be your guide).

2.3. Screened Coulombic potential

 The short range potential used by Kalypso is classified as a screened Coulombic
potential. There are several variants in common use, which are named after their
developers: the (Ziegler-Biersack-Littmark) ZBL or ‘Universal’ potential [2], the
Molière potential [3] and the Bohr potential [4]. The analytic forms of these screened
Coulombic potentials for interacting atoms of atomic number Z1, Z2, respectively, can
be expressed as:

V r
Z Z e

r
c b r aij

ij
k k ij

k

N

() exp(/)= −
=

∑1 2
2

0 14πε
, (2.1)

where the number of terms, N, is 3 for Molière potential, 4 for the ZBL potential, and
1 for the Bohr potential. The parameters ck, bk and a (the screening length) are defined
differently for the various potentials, while rij is the internuclear separation of atoms i
and j.
 The Molière potential has two variants (Molière-Firsov potential, the Molière-
Lindhard potential), according to the way in which the screening length (a, in Å) is
chosen:

a = 0.4685/(Z1
0.5 + Z2

0.5)2/3 (Firsov form) (2.2a)

a = 0.4685/(Z1
2/3 + Z2

2/3)0.5 (Lindhard form) (2.2b)

In practice this distinction is irrelevant since (judging from the literature) every user
of this potential seemingly adds his or her own screening length correction. The
screening length correction is used to scale the screening length parameter in screened
Coulombic potentials (normally by a factor < 1.0), particularly the Molière potential.
A typical value would be 0.80±0.05 (usually chosen by fits to experimental data, e.g.
impact collision ion scattering spectroscopy).
 The screening length (a, in A) for the ZBL potential is defined as:

a = 0.4685/(Z1
0.23 + Z2

0.23) (2.2c)

For the ZBL potential, a value of 1.0 is normally used for the screening length
correction, unless there is reason to do otherwise (see below). The standard Molière
and ZBL screening lengths can be calculated automatically using Spider.
 Which screened Coulombic potential is best? This question cannot be answered
with rigour. However, if you are not going to search for an optimum screening length
correction, the ZBL potential is probably the easiest choice because it is normally

Interatomic Potentials 15

used in 'unadjusted form', i.e. with a screening length correction of 1.0 [5]. Critical
evaluation of the ZBL potential (see below) suggests that it is too hard (too repulsive).
You should be wary of changing screening lengths arbitrarily, because unrealistic
values could conceivably undermine the credibility of the simulations. Correction
factors have an enormous effect on the potential, because they involve exponentiation.
In fact, the effect of the corrections may be more significant than some of the terms in
the original potential! The fixed form of the ZBL screening length may be regarded as
an advantage or a disadvantage, depending on how highly you rate the potential.
 For the Ar-Cu system the ZBL potential fits closely the ab initio ArCu+ potential
calculated by Broomfield et al. [6] (the optimum screening length correction over the
range r = 0.44-1.40 Å is 0.999, and over the range r = 0.6-1.44 Å is 0.959). Kawata et
al. [7] compared the ZBL potential to density functional theory (DFT) potentials and
also found good agreement for Ar-Cu but quite poor agreement (~50% error) for Ar-
Al. Nordlund et al. [8] compared the ZBL potential for C-C, Si-Si, N-Si and H-Si with
Hartree-Fock (HF) potentials; they found agreement typically to within ~ 3% for V(r)
< 5 keV, and ~5% for V(r) < 10 keV. The worst agreement was for the C-C system
(~5% at 3 keV). The author has recently used density functional theory to calculate
repulsive potentials for NeCu, ArCu, KrCu, Cu2, Ni2, CuNi, ArNi [9]. For energies
below 5-10 keV, the ZBL potential is invariably found to be too repulsive. This
impacts sputter yield predictions, for example, at the 10% level.
 Gamma-ray induced Doppler broadening (GRID) data obtained for Ni-Ni, Fe-Fe
and Cr-Cr collisions have been used to fit the exponent in the screening length
definition for the ZBL potential (keeping other parameters fixed at the standard
values) [10]. This exponent is normally assigned the value 0.23, as in Eq. 4.2(c). The
fitted values were 0.26 for Fe and Ni, and 0.31 for Cr. These figures imply screening
length correction factors of about 0.907 (Fe-Fe), 0.905 (Ni-Ni) and 0.776 (Cr-Cr),
which represent significant corrections to the ZBL potential. The Ni-Ni data agree
quite well with the ab initio predictions in ref. [9].
 The conclusion must be that in any serious study of ion-surface collisions one
should consider experimenting a little with the standard ZBL potential, to see what
effect a softer potential has on the simulation predictions. However, due to time
constraints this is rarely done.
 The screened Coulombic potential is used by Kalypso for all projectile-target atom
separations when the projectile is an ‘inert’ species (such as Ar). In this case, no
switching function is used to truncate the potential at the cut-off distance (rc). Instead,
the entire potential is shifted downwards by an amount V(rc), so that the discontinuity
in the potential function at rc is removed; that is, the screened Coulombic potential
function V(r) is replaced by V(r) - V(rc). The primary purpose of the adjustment is to
facilitate energy book-keeping. No adjustment to the discontinuity in the derivative of
the potential at rc is made. The adjustments involved are typically small. For the Ar-
Cu system, with rc = 4 Å, V(rc) < 0.01 eV, with rc = 2.56 Å, V(rc) < 0.3 eV. Small
values of the cut-off distance might be used for an ISS simulation. With rc = 1.8 Å,
V(rc) = 6.9 eV for Ar-Cu and V(rc) = 1.7 eV for He-Cu.

2.4. Tight-Binding (TB) potentials for metals

 The attractive potentials used by Kalypso are tight-binding (TB) potentials based
on exponential functions [11] (also known as Gupta potentials [12]). These potentials
can be regarded as particular examples of Finnis-Sinclair (FS) potentials [13], and are
closely related to the embedded atom method (EAM) potentials [14] which have their

Interatomic Potentials 16

conceptual roots in effective medium theory [15]. The potentials are many-body
potentials in the sense that the energy of a system cannot be decomposed into pairwise
contributions. The potentials are used with a cut-off distance (typically above the
second coordination shell for fcc metals). Functionally, the TB potentials are closely
related to the Morse pair potential [16]. The attractive part of the TB potential is a
non-linear (square root) function of a sum of pairwise Morse-like terms. What this
means is that cohesive energy is a non-linear function of the coordination number for
a TB potential.
 The TB potentials are expected to work best for fcc transition metals with filled or
nearly filled d-bands. However, they have also been used for other kinds of metals,
although they may not predict the correct relative stabilities of different crystal
structures. This is not necessarily a critical problem for sputtering simulations, since
the different phases (e.g. fcc versus bcc) are typically of similar energy, and in any
event, there are considerable energy barriers hindering spontaneous conversion on the
simulation time scale of ~1 ps. However, you may need to increase the size of your
target, since it will invariably 'reconstruct' from its edges inwards as the simulation
progresses. For (s, p)-bonded metals there is no strong theoretical motivation for
representing the band energy part of the potential by a square-root term. However,
this functional form can be rationalised as an empirical representation of the volume-
dependent term required by the electron gas model of simple metals.
 The author has fitted TB potentials for 26 elemental fcc and bcc metals in ref. [17].
The potential parameters based on that paper are collated in Tables 2.1 and 2.2 of this
document respectively. In the same paper (paper 1 in the /docs/papers directory of
the Kalypso distribution) you can find a discussion of the properties of these
potentials which will not be repeated here. The fcc potentials were fitted using the
first and second neighbour interactions, while for the bcc potentials the third
neighbour interactions were also included. The following remarks are taken from ref.
[17].
 The assumptions underlying the tight-binding model of metallic cohesion in the
second-moment approximation are reviewed by Clari and Rosato [18]. Within this
approximation, the band energy of the system is proportional to the square root of the
second moment of the density of states. In Kalypso, the system potential energy for an
element, US, is expressed in the following form, where R

iE and B
iE represent

respectively a repulsive core interaction and the band energy associated with the ith
atom:

()R B
S i i

i
U E E= +∑ , (2.3)

where R
iE is a repulsive pair potential:

½ ()R
i ij ij

j i

E U r
≠

= ∑ , (2.4)

0() exp((/ 1))ij ij ijU r A p r r′= − − ,1 (2.5)

1 Kalypso actually permits a more general form for the repulsive potential:

{ }0 0() exp((/ 1)) exp(2 (/ 1))ij ij ij ijU r A p r r b q r r= − − − − − .

If b < 0 and ξ = 0, a Morse-like potential results (see Section 2.10) . However, most users will set b =
0.0, leading to Eq. 2.5. If you have reason to do otherwise, note the following. If b ≠ 0 for the

Interatomic Potentials 17

and B
iE represents the cohesive band energy term:

1/ 2

()B
i ij

j i

E rφ
≠

= −

∑ , (2.6)

2
0() exp(2 (/ 1))ij ijr q r rφ ξ= − − . (2.7)

 In Eqs. 2.3-2.7, ijr is the separation between atoms i and j, and 0, , , ,A p q rξ′ are
adjustable parameters governing the interaction between those atoms. Instead of Eq.
2.4, most TB potentials reported in the literature use a non-intuitive double
summation convention for the repulsive functions, which differs from that used for
other potentials: 1

()R
i ij ij

j i

E U r
≠

= ∑ ; 0() exp((/ 1))ij ij ijU r A p r r= − − (2.4b)

 In order to reduce (increase?) confusion between these two conventions, Kalypso
labels the parameters using the literature TB convention (Eq. 2.4b) but requires as
inputs not the value A given in Eq. 2.4b but 2A (= A’ in Eq. 2.5). For example, Cleri
and Rosato [18] find A = 0.0855 eV for Cu (5th neighbour cut-off). To use their
potential in Kalypso, enter the parameter 2A = 0.17100 eV. The parameter q is also
input as 2q.
 The length scale parameter, 0r , in Eq. 1 can be set without loss of generality to the
lattice nearest neighbour distance. The remaining parameters (, , ,A p qξ) of the TB
potentials are then fitted for each element using the lattice constant, cohesive energy
(Ec), elastic constants (C11, C12, C44) and vacancy formation energy (Ev). The
uncertainties in experimental values of elastic constants and vacancy formation
energies are typically on the order of 10-20%. The lattice constant and cohesive
energy were fitted exactly (in practice, to about 0.02%, once the coefficients have
been rounded off), while the remaining properties were fitted using equal weights.
Fitting was carried out using a combination of genetic algorithm and downhill
simplex methods. The cut off distance (cutr) used for the fitting procedure was chosen
to lie between the second and third neighbour distances for the fcc elements, and
between the third and fourth neighbour distances for the bcc elements. For those
metals whose elastic constants approximate the Cauchy relation (C12 = C44) - for
example Rh, Ir, Th, Ca and Sr - the vacancy formation energy is the only property in
the fitting set which strongly manifests many-body behaviour. The inclusion of
vacancy formation energies in the fitting procedure should thus be particularly
important for fixing the parameters of the potential for these metals. Unfortunately,
reliable experimental measurements of Ev are not available for Ca, Rh or Th, so Ev
was estimated in these cases as Ec/3.

heteronuclear (i, j) interaction, Kalypso assumes that the value of q for the same interaction is
symmetric with respect to both species, i.e.: qij = qji.
1 Kalypso conforms with the summation convention used by other potential types, including EAM
potentials. Unfortunately, TB potentials (a special class of EAM potential) do not follow the same
convention.

Interatomic Potentials 18

 TB potentials for a number of fcc (Ni, Cu, Rh, Pd, Ag, Ir, Pt, Au, Al, Pb), bcc (V)
and hcp metals (Ti, Zr, Co, Cd, Zn, Mg) and fcc alloys (Cu3Au, Ni3Al) have also been
fitted by Cleri and Rosato (CR) [18]. These potentials are fitted using a cut-off above
the fifth coordination shell, which will cause simulations to run much more slowly
than those based on second-neighbour cut-offs. The CR paper (recommended reading)
also has references to earlier parameterisations with a cut-off above the first shell. A
set of TB potentials was fitted up to the fifth coordination shell for Cu, Ag and Au by
Kallinteris et al. [19]. A paper by Paidar et al. gives an excellent analysis of the solid
state properties and relationships predicted by fcc TB potentials fitted up to the
second neighbour distance [20]. López and Jellinek give a thorough discussion of the
issues involved in fitting TB (Gupta-type) potentials [21]. Apart from the above
compilations, there are several other TB potentials in the solid-state and surface
literature (do a search through Phys. Rev. B, for example at URL:
http://prola.aps.org). However, most of these potentials have ranges that are too
long to be ideal for sputtering simulations (in the sense that they require longer
simulation times).

Table 2.1. Parameters of tight-binding potentials for fcc metals [17]. The potentials
should be cut off somewhere between the second and third neighbour distances
(0 02 3cr R r< <). The parameter b = 0.0 for all of these potentials.

Z Element 2A (eV) r0 (Å) p 2q ξ (eV)
13 Al 0.320456 2.8634 7.568129 5.491184 1.507384
20 Ca 0.098483 3.9471 11.21150 5.368150 0.684202
30 Sr 0.051467 4.3027 12.34058 3.620951 0.555708
28 Ni 0.112995 2.4918 14.08666 3.587386 1.400543
29 Cu 0.156525 2.5560 11.18320 4.639412 1.235524
45 Rh 0.217164 2.6901 14.13154 5.110908 1.977562
46 Ag 0.162518 2.889 11.55970 5.663298 1.108113
79 Au 0.386964 2.8838 10.43418 7.894370 1.758066
77 Ir 0.428119 2.7145 12.89860 6.908174 2.708201
82 Pb 0.170293 3.5003 10.06662 6.712517 0.869929
78 Pt 0.581228 2.7746 10.14231 7.575668 2.671486
46 Pd 0.244689 2.7511 11.32250 6.139402 1.519346
90 Th 0.239961 3.5951 9.834413 3.594461 2.093744

Table 2.2. Parameters of tight-binding potentials for bcc metals [17]. The potentials
should be cut off somewhere between the third and fourth neighbour distances
(0 08 / 3 11/ 3cr R r< <).The parameter b = 0.0 for all of these potentials.

Z Element 2A (eV) r0 (Å) p 2q ξ (eV)
3 Li 0.097512 3.0391 6.367465 2.793757 0.572925
11 Na 0.070641 3.7158 7.853638 3.495437 0.408306
19 K 0.046017 4.6073 9.309300 3.228612 0.316985
37 Rb 0.058311 4.9363 8.153151 3.846991 0.323340
55 Cs 0.053956 5.3174 8.411957 3.886624 0.303616
56 Ba 0.079934 4.3466 10.18347 3.013993 0.616739
23 V 0.514348 2.6223 6.854340 4.377272 2.312561
41 Nb 0.909163 2.6033 5.270157 4.110446 3.630224
73 Ta 0.656266 2.8601 8.276389 4.474236 3.300764
24 Cr 0.081360 2.4981 13.18516 1.798556 1.101227
42 Mo 0.408696 2.7253 10.01545 4.102271 2.509715
74 W 0.498072 2.741 10.37148 3.983120 3.205477
26 Fe 0.236898 2.4824 10.76133 4.075708 1.541808

Interatomic Potentials 19

2.5. Tight binding potentials for bimetallic systems

 The TB potential formalism can be extended to describe bimetallic systems [18].
Strictly, the fitting parameters for a bimetallic system cannot be deduced from those
of the pure elements alone. However, an approximate combination rule [22] that has
been used for Finnis-Sinclair potentials may be useful in the absence of specific
parameterisations. This entails choosing the potential parameters in such a way that
the heteronuclear interaction terms (AB, for interactions between elements A and B)
correspond to the geometric means of the respective elemental terms (AA, BB):

1/ 2

1/ 2

() [() ()] ,

[() ()]

AB AA BB
ij ij ij

AB AA BB
ij ij

r r r

U U r U r

φ φ φ=

=
. (2.8)

 The accuracy of this approximation needs to be evaluated on a case-by-case basis
using suitable thermodynamic measures, and corrections may be required. The author
has used the following (approximate) geometric mean scheme to obtain parameters
for bimetallic systems:

0 0 0 0 0

; ;
() / 2; () / 2

2 (2) /(/ /) (2) /(/ /)

AB BA AA BB AB BA AA BB

AB BA AA BB AB BA AA BB

AB AB AA AA BB BB AB AA AA BB BB

A A A A
p p p p q q q q
r p p r p r q q r q r

ξ ξ ξ ξ= = = =

= = + = = +
= + + +

 (2.9)

 The expression for r0AB is complex (probably unnecessarily complex in view of the
approximations involved) because there is no unique way to assign a value for this
parameter. An average of two methods has been used in Eqs. 2.9, but other methods
could be devised. For an ordered or substitutional alloy, the lattice constant may be
known (or Vegard’s rule, which suggests that alloy properties such as lattice constant
can be estimated by linear interpolation of composition, can be assumed). Then it
becomes possible to choose r0AB to reproduce the desired lattice constant.1
 TB potentials have been fitted for a number of bimetallic systems in the literature,
but these often have a fairly long range. A literature search (especially in Phys. Rev.
B, NIM B, and Surf. Sci.) on Gupta potential(s), or tight-binding potential(s) is the
best way to locate previously fitted potentials for bimetallic systems. For example,
Rohart et al. give parameters for CoAu [23], while Mottet et al. give parameters for
PdCu [24].
 The scheme shown in Eqs. 2.9 is based on the assumption that A-B interactions are
energetically intermediate between A-A and B-B interactions. There are many
examples in the literature of TB potentials which use this assumption for bimetallic
systems, as well as examples of more rigorous fitting procedures. The geometric
means assumption works best for systems in which the heat of solution of dilute A in
bulk B has a similar magnitude, but opposite sign, to the heat of solution of dilute B in
bulk A. There are, however, cases where it breaks down completely. In such cases, a
potential has to be derived by fitting to a representative database of structural and
energetic data (typically obtained from ab initio calculations). A useful database of
surface segregation energies for transition metal impurites in transition metal hosts is

1 This entails calculating system energy as a function of lattice parameter, and locating the minimum.

Interatomic Potentials 20

found in ref. [25] and Annexe of this chapter. These data can be used to test the
performance of potentials in bimetallic systems. Alternatively they can be tested using
thermodynamic enthalpies of solution data [26]. The same data can also be used to fit
potentials. Potential fitting is a specialised and tedious research activity which the
casual user of Kalypso will want to avoid.1
 The TB potentials used in Kalypso are more flexible than those used in the literature
because the conditions AB BAq q= and AB BAξ ξ= are not enforced (that is, the
parameters that define the attractive part of the potential do not have to be symmetric
with respect to the interchange of the atoms).2 Due to this flexibility (which can
improve the accuracy and/or transferability of potentials in bimetallic systems),
Kalypso’s TB potentials can also be described as EAM potentials [14] that have a
square root embedding function. For reasons of computational efficiency, the pairwise
potential parameters (2A, p) are required (by Kalypso) to be symmetric. It can be
shown that this does not lead to any loss in the generality of the potentials (in the
language of potential theory, this condition is equivalent to imposing a gauge
transformation).

2.6. The switching functions

 The switching functions, S(r), used by Kalypso have the following properties:
() ()1 11, 0S r S r′= = and () ()2 20, 0S r S r′= = . Two parameters r1 and r2 (where r2 >

r1) define the region of application of the switching functions. The values of r1 and r2
are chosen in a way that will not affect the material properties (e.g. cohesive energy)
of the equilibrium solid. This requires that no atoms in the equilibrium target lattice
should be located in a region of the potential that is modified by the switching
function.
 The core and cut-off switching functions have similar functional forms, with one
adjustable scale parameter (a) that can be modified by the user (in order to improve
the smoothness of the composite potential. In the core switching function region the
total potential (V) is expressed as:

() () () () ()()1c aV r V r S r V r S r= + − (2.9)

The corresponding force function is:

() () () () () () ()() () ()1c c a aF r V r S r V r S r V r S r V r S r′ ′′ ′− = + + − − (2.10)

 In the cut-off switching function region:

() () ()aV r V r S r= (2.11)

() () () () ()a aF r V r S r V r S r′ ′− = + (2.12)

1 A Webb search for the words or phrase fitting interatomic potentials will provide many links.
2 Exception: if b ≠ 0.0 (rare), the q cross-terms must be symmetric, i.e. AB BAq q= . This restriction
arises because of the way the potential calculations are implemented in Kalypso.

Interatomic Potentials 21

 For the core switching function, r2 must have a value smaller than the lattice nearest
neighbour distance, while r1 is chosen to optimise the fit with the screened Coulombic
potential. For the cut-off switching function, r2 must be equal to the cut-off distance,
while r1 must have a value greater than the outer coordination shell radius. The core
switching function region and the cut-off switching function region must not overlap
(Kalypso will flag error #E026 if this condition is violated). Apart from these
restrictions, the switching function regions are chosen heuristically by the user.
 For example, consider a Cu lattice with lattice parameter a = 3.615 Å and a TB
potential with cut-off between the second and third coordination shells (which
requires a choice for rc that satisfies: 3.615 Å < rc < 4.427) Å. In the Cu lattice, the
nearest neighbour distance is 2.556 Å. The core switching function will have r2 <
2.556 Å, while the cut-off switching function will have r1 > 3.615 Å and r2 = rc.
 Ideally, the lengths of the regions over which the switching functions are applied,
r2-r1, should be made as small as possible. However, if the length of the cut-off
switching function region is too short, this will cause the potential to change rapidly,
and may give rise to the appearance of an unphysical minimum in the force function,
which is to be avoided wherever possible.
 The force function should preferably not have a minimum in the switching function
region (it should be smoothly inflected) but for third neighbour cut-off distances this
can rarely be achieved using the TB potential functional form. Note that the force
function should not oscillate to the point of changing sign, since this indicates the
presence of a spurious potential well that can trap a moving particle permanently.
 The switching function used by Kalypso is similar to one that was proposed by
Bazant [27], apart from an adjustable scaling parameter, a:

() ()()13exp 1S r a x
−−= − with () ()1 2 1 2 1;x r r r r r r= − − > . (2.13)

Unlike polynomial switching functions, Bazant’s switching function does not produce
spurious maxima and minima. It has two continuous derivatives at the inner cut-off
(r1), and is smooth at the outer cut-off:

() () () ()()2 14 3 3
2 13 1 exp 1S r dS dr ax x r r a x

− −− − −′ = = − − − − . (2.14)

Fig. 2.1 plots the switching function for various values of a. Fig. 2.2 shows the
composite potential and force functions for the Cu-Cu interaction in the attractive
region of the potential. The potential was fitted to the first two coordination shells of
the Cu lattice, which means that the cut-off switching function must be applied after
the second shell, while the cut-off distance must be placed before the 3rd shell (about
0.1 Å before the shell would be optimal, in order to eliminates interactions with the
3rd shell that could arise from vibrational displacements and surface relaxation
effects).

Interatomic Potentials 22

0 0.2 0.4 0.6 0.8 1
x

0

0.4

0.8

1.2

S(
x)

0.5124

Switching function

S(x) = exp[a(1 - x-3)-1]

8a:

Fig. 2.1. Plots of the switching function, using different values of the scaling
parameter a.

 The imposition of a cut-off just before the 3rd coordination shell produces a large
‘bulge’ in the force function in the switching potential region. The cause of this
‘bulge’ can be understood when it is noted that any cut-off procedure must conserve
the area under the force curve (this area represents the work involved in moving from
the zero potential configuration to the configuration at r1). Therefore, the shorter the
switching function region, the more distinct will be the ‘bulge’ in the curve. Note the
smooth, symmetric shape of the ‘bulge’ region in Fig. 2.2. A poorly shaped switching
function (e.g. a polynomial) will produce much sharper changes of gradient (and
possibly oscillations). Such behaviour is to be avoided.
 The amplitude of the ‘bulge’ represents the accelerating force.1 As Fig. 2.2 shows,
the use of a switching function produces a large force just inside the cut-off boundary,
which in principle is an undesirable artefact. The ‘bulge’ cannot be eliminated by a
change of switching function, although its shape can be modified (the ‘bulge’ shown
in the figure represents a nearly optimal adjustment of the switching function
parameter, a). The use of a potential with a larger cut-off distance will reduce the
‘bulge’, but this is normally not convenient for reasons of computational efficiency.
 Fig. 2.3 shows the force function in the core switching function region of the Cu-Cu
potential. In this example the force curve exhibits a ‘bulge’ that produces an inflection
rather than an extremum in the curve. There is more freedom in fitting the switching
function in this region than in the cut-off region (the constraints were discussed
above). By increasing the width of the region over which the switching function is
applied, the ‘bulge’ could be reduced to any desired level. It is difficult to give
guidelines as to the optimum procedure for setting up the switching function in this

1 If this puzzles you, consider a gravitational analogy: one approaching particle drops from a cliff,
while another rolls the same vertical distance down a slope.

Interatomic Potentials 23

region. It is probably a good idea to avoid applying the switching function in the
attractive part of the TB potential (V < 0), where the screened Coulombic potential is
known to be incorrect. Typically, one would aim to eliminate the maximum or
minimum in the ‘bulge’ in favour of an inflection or smooth change of gradient, while
keeping the switching function region width at a reasonable size. (In other words,
merge the screened Coulombic and many-body potentials only to the extent that is
necessary to achieve a chemically and aesthetically agreeable result.)

1 2 3 4 5
r (Å)

-4

0

4

8

V
(r)

, e
V

r1 r2 = rc

-4

0

4

8

-d
V

/d
r,

eV
 Å

-1

r1 r2 = rc

Cu-Cu ZBL-TB
composite potential

Fig. 2.2. Composite ZBL-TB potential that represents the interaction between two Cu
atoms in the attractive region. The cut-off switching function region (between r1 and
r2, or 3.62 - 4.39 Å) is indicated (a = 4 in this example).

Interatomic Potentials 24

1 1.2 1.4 1.6 1.8 2
r (Å)

0

40

80

120

V
(r)

, e
V

r1 r2

Cu-Cu ZBL-TB
composite potential

0

200

400

-d
V

/d
r,

eV
 Å

-1

r1 r2

Fig. 2.3. Composite ZBL-TB potential that represents the interaction between two Cu
atoms in the repulsive region. The core switching function region (between r1 and r2,
or 1.32 – 1.75 Å) is indicated (a = 3 in this example).

Interatomic Potentials 25

1 2 3 4 5
r (Å)

-4

0

4

8

V
(r)

, e
V

r1 r2 = rc

-4

0

4

8

-d
V

/d
r,

eV
 Å

-1

r1 r2 = rc

Cu-Cu(100) interaction
On-top site

Fig. 2.4. Attractive region of composite ZBL-TB potential for the interaction of a Cu
atom with a Cu(100) surface as it approaches an on-top site. Note: r represents the
vertical distance of the Cu atom from the Cu(100) surface layer.

Figs. 2.4 and 2.5 show the potential and force functions for a Cu atom approaching a
Cu(100) surface. In these figures the potential wells are shallower than for the
diatomic case because the surface atom bonds are already highly coordinated. The
force curves have a ‘lumpy’ appearance that is due to simultaneous interactions with
two coordination shells (each contributing one of the ‘bulges’).
 The current practice throughout the literature is to set up the interpolating functions
using potential curves for diatomic molecules. This has the virtue of simplicity, but it
is clear from Figs. 2.4. and 2.5 that the shapes of the resulting force functions may
look quite different when the potential is applied to a solid state environment: (a)
because of cut-off effects; (b) because of the inherent environmental dependence of
many body potentials. As a rule, the greater the bond order (N) of any atom, the
weaker its interaction with any specific atom. This is because the repulsive pairwise

Interatomic Potentials 26

part of the potential increases in proportion to N, while the attractive many-body part
increases (more slowly) in proportion to N ½ .

0 1 2 3 4 5
r (Å)

-4

0

4

8

V
(r)

, e
V

r1 r2 = rc

-4

0

4

8
-d

V
/d

r,
eV

 Å
-1

r1 r2 = rc

Cu-Cu(100) interaction
Hollow site

Fig. 2.5. Attractive region of composite ZBL-TB potential for the interaction of a Cu
atom with a Cu(100) surface as it approaches a hollow site. Note: r represents the
vertical distance of the Cu atom from the Cu(100) surface layer (the lattice atom is
located ~1.81 Å below the surface)..

2.7. Calculations with tight-binding potentials

2.7.1. Cohesive energy
 A calculation of the cohesive energy is a useful check of the parameters of a TB
potential. From the parameters given in Table 2.1, we will calculate the predicted
cohesive energy (Ec) of Ag.
 Note that a fcc metal has 12 neighbours at a distance r0, and 6 neighbours at a
distance √2r0 (see Table 2.3). Since the potential is cut off before the third neighbour
shell, no other interactions need to be considered. The cohesive energy is the same for
all bulk atoms in the lattice.

Interatomic Potentials 27

 From Eqs. 2.4, 2.5, the repulsive part of the potential energy of the i th bulk atom
is:

 0½ () exp((/ 1)) 12 6exp((2 1))R
i ij ij ij

j i j i

E U r A p r r A p
≠ ≠

 = = − − = + − − ∑ ∑ (2.15)

From Eqs. 10.14 and 10.15, the band energy of the i th atom is:

()

1/ 2 1/ 2

0

1/ 2

() exp(2 [/ 1])

12 exp(2 [2 1])

B
i ij ij

j i j i

E r q r r

q

φ ξ

ξ

≠ ≠

= − = − − −

= − + − −

∑ ∑
 (2.16)

 You should obtain: R
iE = 0.9785, B

iE = -3.9294, Ec = -2.9509 (remember that Table
2.1 tabulates 2A and 2q, not A and q). The Ec value used for the fit was 2.95 eV; the
difference, 0.0009 eV, represents the fitting and round-off error.
 Whenever you use a new potential, you should check its properties using this type
of calculation. Bear in mind that published potential parameters (e.g. Tables 2.1 and
2.2) are normally only quoted to 4 or 5 significant figures in the literature, and that the
fitting data are subject to experimental uncertainty (elastic constants, vacancy
formation energies: 10%; cohesive energies: 0.5%).
 Table 2.4 compares calculated values of Ec for the fcc metals with the experimental
values. The two sets of values agree to within 1 meV or better. The calculated
cohesive energy of -3.48956 eV for Cu in Table 2.4 can be compared to the value of
3.49009 eV that is obtained when the potential parameters are not rounded off. The
equilibrium lattice parameter for Cu is changed by less than 10-5 Å after rounding off
the parameters.

Table 2.3. List of coordination shell radii for a fcc crystal (expressed in terms of the
lattice parameter, a).

Shell (s) Shell radius (Rs) No. of atoms
1 2a 12

2 a 6
3 1.5a 24
4 2a 12
5 2.5a 24

Interatomic Potentials 28

Table 2.4. Comparison of experimental (expt.) cohesive energies for fcc metals with
those calculated (calc.) using the (rounded-off) TB potential parameters listed in
Table 2.1.

Ec (expt.) Ec (calc.) Ec (expt.) Ec (calc.) Ec (expt.) Ec (calc.)
Al -3.39 -3.39014 Rh -5.75 -5.74871 Au -3.81 -3.81042
Ca -1.84 -1.84018 Pd -3.89 -3.89113 Pb -2.03 -2.03069
Ni -4.44 -4.43959 Ag -2.95 -2.95095 Th -6.20 -6.19872
Cu -3.49 -3.48956 Ir -6.94 -6.93931
Sr -1.72 -1.72023 Pt -5.84 -5.84084

2.7.2. Other properties
 Simple formulae for the elastic constants and vacancy formation energy (for fcc
metals only) have been catalogued by Paidar et al. [20] for TB potentials that are cut
off above the second neighbour distance. If you want to use these formulae with
Kalypso’s input parameters, you must replace the parameter A in the Paidar et al.
formulae by A/2, as discussed in section 2.6.
 The condition for lattice stability is that the derivative of the lattice energy must be
zero for the equilibrium value of the lattice parameter. This produces the following
formula [20], which applies to fcc TB potentials fitted to the first two coordination
shells:

()()1 22 12 6ARp q Qξ = + (2.17)

where:

()()exp 2 1P p= − − , ()()exp 2 2 1Q q= − − , and () ()2 2R P Q= + + (2.18)

Eq. 2.17 provides a simple check that the potential parameters are consistent with the
lattice parameter. Table 2.5 applies it to the TB potentials listed in Table 2.1. The
values agree to the round-off precision of the potential parameters, i.e. to 4 significant
figures.

Table 2.5. Comparison of fitted (fit) values of the TB potential parameter ξ for fcc
metals with the ξ values calculated using Eq. 2.17 (test).

ξ (eV) (fit) ξ (eV) (test) ξ (eV) (fit) ξ (eV) (test)
Al 1.5074 1.507175 Ag 1.1081 1.107414
Ca 0.6842 0.683572 Ir 2.7082 2.708866
Ni 1.4005 1.400908 Pt 2.6715 2.671474
Cu 1.2355 1.236041 Au 1.7581 1.758203
Sr 0.5557 0.55494 Pb 0.8699 0.869481
Rh 1.9776 1.977997 Th 2.0937 2.094313
Pd 1.5193 1.518974

2.8. Simulations with tight-binding potentials

 The centrosymmetric functional form of TB potentials (i.e. absence of explicit
angular dependent terms) favours the formation of close-packed structures (fcc. hcp).

Interatomic Potentials 29

This is not absolutely guaranteed, because it is possible to choose the cut-off distance
in a manner that favours other structures (e.g. bcc). The switching function
complicates analysis of the general case.
 Practical experience suggests that crystallites of all structural types have a tendency
to reconstruct at the edges on a timescale of about 1 ps, especially when disturbed. An
extreme case would be the bcc to fcc transition of a Mo crystallite, which is clearly
unrealistic. Close-packed crystals may reconstruct at edge faces or crystallite corners,
but the bulk crystal should remain stable almost indefinitely.
 Bulk recrystallisation can be identified by visual inspection of the simulation as it
runs. Recrystallisation commences at the target edges and moves towards the centre
of the target. Various strategies are possible for dealing with recrystallisation:
increasing the size of the target; reducing the drifting tendencies of edge atoms (by
holding them to their lattice sites with harmonic forces, or by increasing their masses).
The key point is that the timescale of the process that you are studying (e.g.
sputtering, ~1 ps or ion scattering, ~20 fs) should be less than the time required for
significant structural transformation.
 Surface relaxation is invariably observed if simulation targets are based upon ideal
(bulk) lattice structures. For many problems this small relaxation, ∆d, is
inconsequential (the 1st-2nd layer distance relaxation ∆d12 < 0.05 Å), but you may
want to characterise it (by plotting potential energy versus surface plane position) and
make adjustments to your target accordingly. Normally only the first one or two layer
positions on the active (bombarded) crystallite face need adjustment (the other
exposed faces will adjust quickly as the simulation proceeds). A compilation of
experimental and predicted surface relaxations (for Cu, Ag, Au, Ni, Pd, Pt, Al and Pb)
may be found in ref. [28].

-0.1 -0.08 -0.06 -0.04 -0.02 0
∆z (Å)

-6

-4

-2

0

2

E
ne

rg
y

pe
r a

to
m

 (m
eV

) Surface layer relaxation
Cu(100)

Fig. 2.6. Energetics of surface relaxation for Cu(100).

 In Fig. 2.6, which refers to Cu(100), the potential energy per surface atom (relative
to the unrelaxed system) is plotted as a function of the displacement (∆z) of the
surface layer from its ideal location (z = 0.0000 Å). For the calculation shown in Fig.
2.6, the second layer of the crystal has already been placed at its relaxed position (for
which ∆d23 = -0.013 Å). The location of the energy minimum at a first layer
displacement ∆z = -0.051 Å thus implies ∆d12 = -0.038±0.001 Å (referenced to the

Interatomic Potentials 30

ideal lattice). In the ideal lattice, the first and second Cu layers are located at 0.0000
and -1.8074 Å. After relaxation, these values are changed to –0.038 and –1.8204 Å
respectively. Experimental estimates place ∆d12 in the range –(0.02-0.04) Å [28]. The
relaxations predicted by TB (and EAM potentials) potentials for ∆d12 are typically
quite accurate, but predictions for ∆d23 and deeper layers normally have the wrong
sign. This reflects a fundamental limitation of the TB functional form. Calculations of
equilibrium interlayer spacings using large slabs can be influenced by edge effects,
which tend to draw the slabs closer together. Unless this artefact is taken into account,
the predicted equilibrium interlayer spacings are probably not accurate to more than
0.01 Å. For examples, the figures given above for Cu(100) correspond to calculations
on a large, non-periodic slab. For a periodic (i.e. infinite) slab the predicted distances
are –0.029 and –1.8034 Å respectively. The change in ∆d23 is quite significant

2.9. Integration method

 The classical equations of motion are integrated by Kalypso using the finite
difference ‘velocity Verlet’ integration algorithm [29]:

2
1 ½ /n n n nt t m+ = + ∆ + ∆r r v F (2.19)

1 1½[] /n n n n t m+ += + + ∆v v F F (2.20)

 The meanings of the symbols are: rn, vn, Fn: position, velocity, total force vectors at
nth timestep; ∆t: size of the current timestep. The best guarantee of the accuracy of
the integration algorithm is the accuracy of energy conservation, and this is how the
user should evaluate them. The accuracy of the integration depends on the timestep
specified by the user in the Run file of a simulation project (Chapter 4).
 The total system energy, as the sum of potential energy (PE) and kinetic energy
(KE), can be calculated at any instant from the current particle positions (using the
analytic potentials) and velocities. This can be compared with the energy calculated at
the start of the simulation, which yields the energy error ∆E. Kalypso uses the formula
∆E/(KE + |PE|) (as a percentage, %) to report energy conservation. Apart from
integration errors, small energy discrepancies can arise because Kalypso may fail to
track inelastic energy losses with sufficient precision. (To isolate these, run the
simulation with all inelastic options switched off.)
 The forces appearing in Eqs. 2.19 and 2.20 are not necessarily calculated directly
from the analytic potential functions. In Kalypso, forces that involve the attractive
potential are calculated from a look-up table (essentially by indexing the inter-particle
separation, r, into an array of pre-calculated values, with interpolation as necessary).
The majority of particles in the system interact at any instant via long-range forces, so
the use of a look-up table speeds the force calculations significantly. However, the
system energy is calculated analytically.
 Another device which improves the speed of calculations is the use of neighbour
lists. A particle’s neighbour list is a list of those other particles in the system with
which it may interact in the period before the next list update (normally carried out
every ~10 timesteps). The neighbour lists are built up by taking into account the
potential cut-off distance and the velocity of the fastest particle in the system, which
determines the width of the sheath that has to be examined for potential collision
partners (this is reported as the range parameter in the Log file produced by Kalypso).

Interatomic Potentials 31

The ‘Number of Partners’ parameter which is specified in the Run file defines the
maximum allowed size of the neighbour list (i.e. the memory allocation for the list).
This parameter is typically set conservatively at ~100, although no more than 60-80
partners are needed in most simulations. Depending on selections made by the user,
the neighbour lists for targets with free boundaries are constructed either by a brute
force (naive search) method or by the linked-cell method [30]. For periodic
boundaries, only the brute force method has been implemented at the time of writing.

2.10. Morse potential

 When ξ = 0.0, the potential used by Kalypso reduces to a pairwise potential having
the form:

{ }0 0() exp((/ 1)) exp(2 (/ 1))ij ij ij ijU r A p r r b q r r= − − − − − (2.21)

This class of potentials includes the Morse potential [16]:

() (){ }0 0() exp 2 2expij ij ij ijU r D r r r rα α = − − − − − (2.22)

where D is the well-depth, and r0 is the interatomic distance. The range of the
potential is determined by the value of α. Eqs, 2.21 and 2.22 are functionally
equivalent.
 To set up a Morse potential as written in Eq. 2.22 for use in Kalypso, the following
data should be entered into the Model file dialog box: 2A = D, b = 2, p = 2q = 02 rα ,
ξ = 0. The Morse potential is not suitable for describing the material properties of
metals, but it may find a use in certain kinds of simulation.

Interatomic Potentials 32

Annexe. Database of surface segregation energies [25].

Interatomic Potentials 33

References for Chapter 2

[1] M.I. Baskes, M. Asta, S.G. Srinivasan, Phil. Mag. A 81 (2001) 991.
[2] J.F. Ziegler, J.P. Biersack, U. Littmark, J.F. Ziegler (Ed.), The Stopping and
Range of Ions in Solids, Vol 1: The Stopping and Range of Ions in Matter Pergamon,
New York, 1985.
[3] G. Molière, Z. Naturforsch. 2a (1947) 133.
[4] M. Born, J.E. Mayer, Z. Phys. 75 (1932) 1.
[5] Th. Fauster, D. Hartwig, H. Dürr, Appl. Phys. A45 (1988) 63.
[6] K. Broomfield, R.A. Stansfield and D.C. Clary, Surface Sci. 202 (1988) 320.
[7] K. Kawata, R.I. Erickson, J.R. Doyle, Nucl. Meth. B 201 (2003) 566.
[8] K. Nordlund, N. Runeberg and D. Sundholm, Nuclear Instr. Meth. 132 (1997) 45.
[9] M.A. Karolewski, Nuclear Instr. Meth. B (2006) (in press: a preprint can be found
in the /docs/papers directory of the Kalypso distribution).
[10] N. Stritt, J. Jolie, M. Jentschel, H.G. Börner, C. Doll, J. Res. Natl. Inst. Stand.
Technol. 105 (2000) 71 (available online at the NIST Web site, URL:
http://www.nist.gov).
[11] D. Tomanek, A.A. Aligia and C.A. Balseiro, Phys. Rev. B 32 (1985) 5051.
[12] R.P. Gupta, Phys. Rev. B 23 (1981) 6265.
[13] M.W. Finnis and J.F. Sinclair. Phil. Mag. A 50 (1984) 45.
[14] M.S. Daw, S.M. Foiles, M.I. Baskes, Mater. Sci. Rep. 9 (1993) 251; S.M. Foiles,
M.I. Baskes, M.S. Daw, Phys. Rev. B 33 (1986) 7983; M.S. Daw, M.I. Baskes, Phys.
Rev. B 29 (1984) 6443.
[15] H. Häkkinen, M. Manninen, Physica Scripta T33 (1990) 210. Online at URL:
http://www.physica.org/secure/archive/T33a00210.pdf.
[16] P.M. Morse, Phys. Rev. 34 (1929) 57.
[17] M.A. Karolewski, Radiation Effects and Defects in Solids, 153 (2001) 239-255.
[Note that the parameters given in the paper for Th (thorium) are incorrect, due to
fitting with incorrect elastic constants. The parameters given in this document have
been corrected.]
[18] F. Cleri and V. Rosato, Phys. Rev. B 48 (1993) 22.
[19] G.C. Kallinteris, N.I. Papanicolaaou, G.A. Evangelakis and D.A. Papaconstanto-
poulos, Phys. Rev. B 55 (1997) 2150-2156.
[20] V. Paidar, A. Larere and L. Priester, Modelling. Simul. Mater. Sci. Eng. 5 (381)
1997.
[21] M.J. López, J. Jellinek, J. Chem. Phys. 110 (1999) 8899.
[22] H. Rafii-Tabar, A.P. Sutton, Phil .Mag. Lett. 63 (1991) 217.
[23] S.Rohart et al., Surf. Sci. 559 (2004) 47.
[24] C. Mottet, G. Tréglia, B. Legrand, Phys. Rev. B 66 (2002) 045413.
[25] A.V. Ruban, H.L. Skriver, K. Nørskov, Phys. Rev. B 59 (1999) 15990.
[26] F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen,
Cohesion in Metals, North-Holland, Amsterdam, 1988.
[27] M.Z. Bazant, Interatomic Forces in Covalent Solids, PhD Thesis, Harvard
University (1997), Chapt. 5, p.117. Available online at URL:
 http://www.math.mit.edu/~bazant/thesis/index.html.
[28] J. Wan, Y.L. Fan, D.W. Gong, S.G. Shen, X.Q. Fan, Modelling Simul. Mater.
Sci. Eng. 7 (1999) 189.
[29] R. Smith and D.E. Harrison Jr., Comp. Phys, 3 (1989) 68.

Interatomic Potentials 34

[30] R. Smith, M. Jakas. D. Ashworth, B. Oven, M. Bowyer, I. Chakarov and R.
Webb, Atomic and Ion Collisions in Solids and at Surfaces, Cambridge University
Press, 1997.

3. TARGET FILES AND PROJECTILE FILES

3.1. Function of the Target file

 Target files, which have the extension .TRG, store information about the target
lattice. To generate a target lattice within Spider, select Target|New1 then (for
example) Face-centred cubic|(100) surface. This selection will allow you to generate a
fcc target whose xy surfaces have a (100) orientation. Once you understand the file
format (section 3.4), you can also generate your own TRG files (via a spreadsheet,
computer program etc.). Other programs that can be used to generate lattice atom
coordinates for inclusion in Target files include the Makextal utility in the Camelion
package (http://www.tm.tudelft.nl/secties/fcm/matphy/software/software.htm)
and the Atoms utility (http://feff.phys.washington.edu /~ravel/software/exafs/).

3.2. Coordinate system

Coordinates in a TRG file are expressed in Ångstroms. The z-direction corresponds to
the surface normal. By default, the surface plane coincides with z = 0.0, although this
is not mandatory. The positive z-direction is directed away from the target surface,
while the negative z-direction is directed into the surface (Fig. 3.1).
 The coordinates in a TRG file refer to the atomic positions of target atoms in the
laboratory system of coordinates. Apart from thermal vibrational effects, target atoms
are stationary at the start of a simulation.
 Most simulations include one or more moving atoms that are designated as
projectiles. In many cases, the projectile is a single atom, but Kalypso also allows the
use of clusters of atoms.
 The projectile initial position and velocity depend on the Projectile file (*.PRJ), on
the projectile incident angles (ϕ, φ) specified in the Run file, on the ‘projectile mode’
parameter, which is also set in the Run file (see Chapter 4), and finally on the impact
parameter (specified in the Impact file).
 In most cases, the projectile mode will be that of an impinging atom (or cluster).
This mode applies to sputtering, ion scattering and any other type of projectile
bombardment simulation. An impinging projectile approaches the target surface from
above, travelling in the negative z direction (and if the angle of incidence is non-
normal, in the negative x or y directions), as shown in Fig. 3.1.
 For an impinging projectile mode, the velocity initialisations are carried out as
follows:

0

0

0

/ 2 cos cos

/ 2 cos sin

/ 2 sin

x

y

z

v E m

v E m

v E m

ϕ φ

ϕ φ

ϕ

= −

= −

= −

 (3.1)

 The altitudinal angle of approach (ϕ = 0-90°) is defined in the RUN file. The angle
ϕ is a polar-type angle defined relative to the surface. Normal incidence corresponds
to ϕ = 90°. The direction of approach in the xy plane can be specified by choosing the

1 The expression 'select Target|New' means 'select menu command Target, then sub-menu command
New'.

Target and Projectile Files 36

azimuthal (φ) angle in the range 0-360° (also specified in the RUN file), although it is
generally much easier to choose φ = 0° (which aligns the projectile with the x-axis)
and to rotate the target as needed. Further discussion on projectile velocity
initialisation is given in Chapter 4.

3.3. Anchor atom

 The first atom specified in the TRG file is known as the anchor atom. Spider's
lattice generation options will assign this target atom to the position (0,0,0) by default,
but any other location is allowed. When you later define the starting coordinates of
the impinging projectile (in the Impact file), these will be expressed relative to the
position of the anchor atom, for example:

Anchor atom: (0.0, 0.0, 0.0)
Impact file: (0.0, 0.0, 3.0)
Projectile initial position (normal incidence): (0.0, 0.0, 3.0)

Anchor atom: (0.0, 2.5, 3.2)
Impact file: (0.0, 0.0, 3.0)
Projectile initial position (normal incidence): (0.0, 2.5, 6.2)

3.4. Target file format

 Target files can contain references to one or two distinct types of atoms, but not
more. Atomic type is defined by the atomic number, Z (different isotopes of the same
atomic type may be included). The following excerpt from a Target file illustrates the
format:

0.00000 0.00000 0.0000 19 39.10000 0 K
7.38238 -0.00000 0.5000 35 79.91000 0 Br
7.38238 -0.00000 -3.30150 19 39.10000 0 Br

Columns 1-3: (x, y, z) coordinates in Å (real numbers)
Column 4: Atomic number, Z (integer)
Column 5: Atomic mass in amu (real number)
Column 6: Options flags variable (integer)
Column 7: Label (e.g. chemical symbol); this is ignored by Kalypso

 All numeric data are space-delimited (i.e. the columns must be separated by one or
more blank/tab spaces, but they do not have to be aligned - this is known as 'free-
formatting'). Real numbers can be entered in a variety of formats (32.0, 32, 3.2E1,
3.2e1 etc.).

Target and Projectile Files 37

+y

+x
φ

+y

+x
φ

IMPINGING

RECOILING

xy plane

+z

ϕ

IMPINGING

xy plane

+z

ϕ
RECOILING

Target

Target

+y

+x
φ

MIXED

xy

+z

ϕ

MIXED

Target

φ φ
φ

ϕ

ϕ

ϕ

Fig. 3.1. Configurations of projectile and target for ‘impinging’ (top), ‘recoiling’
(centre) and ‘mixed’ (bottom) projectile modes respectively. In the ‘mixed’ mode, the
projectile direction of motion is randomly chosen from several possibilities as shown
(for explanation, refer to section 4.2.3).

Target and Projectile Files 38

 Target files can be modified in any text editor. The only thing to be careful about is
the end-of-file position: if you create Target files yourself using a text editor make
sure that the cursor is flush with the left-most margin of the last (empty) row when
you save the file (i.e. no blank spaces after the last linefeed character). If not, you will
probably get an error message E023 (see Appendix for explanation). If in doubt,
check that Kalypso reports the expected number of target atoms. Except for the
anchor atom, the order of the atoms in the Target file does not matter. Labels in
Column 7 are included only for the user's information - they are ignored by Kalypso.

3.4. Options flags

3.4.1. Flags used by Kalypso
 Kalypso uses an array of 32-bit integers to store information relating to individual
particles (up to 32 properties per particle can be stored). This type of variable is
known as a bitmapped field, and the technique of mapping bits will be familiar to
anyone with programming experience. The specific bits of each options flags variable
(array element) contain information about different properties (or options) for the
corresponding particle.
 The individual bits in the options variable are known as flags. In Kalypso, these
options flags are designated by names of the form ofXXX, and they can either be set
(flag = 1) or cleared (flag = 0). The flags defined in version 2 of Kalypso and their
values are listed in Table 3.1.

Table 3.1. Options flags (ofXXXX) used by Kalypso and their values. Flags indicated
in bold face can be modified by the user.

Flag name Decimal value Binary value Remarks
ofUseImagePotential 1 00000001 All particles
ofNoCool 2 00000010 All particles
ofSprungAtom 4 00000010 Target particles
ofFixedAtom 8 00000100 All particles
ofEdgeAtom 16 00001000 All particles
ofRecorded 32 00010000 All particles
ofType1Atom 64 00100000 [Do not modify]
ofProjectile 128 01000000 [Do not modify]
ofPreImplant 256 10000000 Projectiles
ofReserved 512-2048 - May be used in future

 The options flags variables are read (as integers) from the Target and Projectile files
of a simulation project. The default value for all flags is zero. Many users of Kalypso
will have no reason to change this default behaviour. The functions of the various
flags are explained in the following sections.
 If you wish to incorporate one or more of the flags-related features into your
simulation, you need to set the corresponding bit in the Target file and/or Projectile
file of your simulation project. To set individual bits, you must total up the respective
numbers in the Decimal Value column of Table 3.1. Thus an options flags variable of
3 indicates that the ofImagePotential and ofNoCool bits have both been set (1+2 = 3).
If you are in doubt about how to add bits, ask a computer programmer for advice.
 Spider provides two methods for modifying the flags settings in Target files: (a) the
Target file Visualiser, which allows flags to be updated for spatially localised sets of

Target and Projectile Files 39

atoms; (b) the Edit Flags dialog box on the Target menu, which permits flag updates
for specified atoms. Flags in both Target and Projectile files can be modified by
hand using a text editor.
 There may be some situations in which you choose to set new flags for your own
purposes (see section 3.4.5). In this case, you are advised not to use the (currently
unused) flags in the numeric range 256-2048, because they may acquire a specific
meaning in future releases of Kalypso. Suitable values are 4096, 8192, ... etc.

3.4.2. Flag: ofUseImagePotential
 If you plan to include image potential effects in your simulation, you must set this
flag for each (projectile or target) atom to which the image potential applies. Image
potential effects will be ignored for any atoms which do not have this flag set.
Example: if you only want to apply the image potential to the projectile species, just
set the projectile flags parameter to 1.

3.4.3. Flag: ofNoCool
 Atoms which have this flag set are ignored for purposes of calculating and
correcting the target temperature. The flag has no effect unless the temperature
control feature (Inelastic file) is included in the simulation. Typically the flag is set
for atoms in the upper layers of a target (no cooling applied), while cooling effects are
applied to the lower layers of the target.

3.4.4. Flag: ofSprungAtom
 This flag has no effect unless the lattice site springs feature is used by the
simulation (Inelastic file). Lattice site springs are then applied to any atoms that have
this flag set but not to other atoms. Typically, lattice site springs are only ever used
for atoms at the edges of a target with free boundaries (in order to stabilise the
structure).

3.4.5. Flag: ofFixedAtom
 When set, this (rarely useful) flag prevents updates of the velocity and position of
the associated particle (similar to the behaviour of a particle of infinite mass). The
particle continues to interact with nearby particles as usual.

3.4.6. Flag: ofEdgeAtom
 This flag has no effect on the simulation. It is only used for marking atoms at the
edge the Target file, so that later they can easily be filtered out using Winnow. The
significance of this flag (and any flag whose value is undefined in Table 3.1) is only
determined by the interpretation that the user puts upon it. For example, it is possible
to set the ofEdgeAtom flag for atoms in the second atomic layer of the target, instead
of for those at the edge of the target.

3.4.7. Flag: ofRecorded
 This flag is set after the coordinates of a particle have been written to a disk output
file. The flag is only used by Kalypso if the Run file option: 'Do not write more than
one record per run' has been selected. Under these circumstances, a set flag will
suppress output for the atom in question. If you set the flag manually for a particle in
the Target or Projectile file, it will prevent any output being written to disk for that
particle during the simulation.

Target and Projectile Files 40

3.4.8. Flag: ofPreImplant
 This flag is used only if you want to run a simulation of a target that includes
implanted inert gas atoms. It identifies the (implanted) projectile atoms that are
located in the target at the start of the simulation. The flag also affects how the
positions and velocities of the atoms are initialised.
 For any projectile atoms that have the flag set, the (x, y, z) coordinates will be
initialised to the values read from the projectile file (in Å), and the velocities will be
initialised to zero.
 For example, the following Projectile file input is appropriate for a target which has
a stationary Ar atom implanted at (0, 0, -2.2556) [Å] (line 2) and is bombarded by a
single 2 keV Ar (98290 m s-1) projectile (line 1) :

 0.0 0.0 0.0 18 39.948 0 98290.86202 Ar
 0.0 0.0 -2.556 18 39.948 256 0.0 Ar

 Note in particular that the coordinates of the atom referenced in line 2 are
completely unaffected by the data in the Impact file, unlike the ‘normal’ projectile
atom referenced in line 1.
 The ofPreImplant flag cannot be used in a multiple impact simulation (an error
condition will be raised).

3.4.9. Other flags
 The ofType1Atom and ofProjectile flags are used internally by Kalypso. The user
should take care not to modify them.

3.5. Exercise: Generating a Ni(100) lattice

Select from the menu Target|New|Face-centred cubic|(100) surface. From the drop-
down symbol box select 'Ni'. The data shown in the table below come up in the dialog
box. All data input fields (including the symbol) can also be edited manually.

Fig. 3.2. Target file dialog box, showing settings that are appropriate for a small
Ni(100) target.

Target and Projectile Files 41

 Click SaveAs to generate the lattice, and save it in a file which you specify (e.g.
'Ni100.trg'). Examine the file in a text editor (e.g. the Editor|Open option in Spider).
There are 121 atoms per layer in this Target file. The first line is the anchor atom,
followed by other atoms in the outermost layer of the lattice (z = 0):

 0.00000 0.00000 0.00000 28 58.71000 0 Ni fcc
 12.45922 12.45922 0.00000 28 58.71000 0 Ni fcc
 12.45922 9.96738 0.00000 28 58.71000 0 Ni fcc

 The second layer, identified by its z value (-1.762 Å), begins at line 122:

13.70514 13.70514 -1.76200 28 58.71000 0 Ni fcc

 If you examine the Target file further, you will notice that the atomic positions in
each layer (except for the anchor atom) are sorted systematically according to their x
values.
 Suppose you wanted to apply an inward relaxation of 0.1 Å on the outermost layer
of the Ni target (relative to the ideal positions). One way to achieve this is to enter the
value ‘–0.1’ for the layer relaxation parameter edit box (in Fig. 3.2). Alternatively,
you can modify a previously generated Target file using the search-and-replace
capabilities of a text editor:

REPLACE: '0.00000 28 58.71000' WITH: '-0.10000 28 58.71000'
 This operation will only modify the z values of the first layer. If you did a search-
and-replace on the string '0.00000' by itself (wrong!), you would also modify any x or
y coordinate with the same value.

3.6. Exercise: Target file for (1×1) metal monolayer system

 The simplest type of metal monolayer is the pseudomorphic (1×1) type, e.g.
Cu/Ni(100), where to a first approximation the Cu overlayer simply replaces Ni atoms
in the surface layer. To create such a target, we begin by creating a Target file 'Cu.trg'
that consists of a single (100) layer of Cu atoms based on the Ni lattice constant
(Table 3.2).

Table 3.2. Target file input data for a (100) layer of Cu on Ni(100).

Symbol Cu Lattice const. 3.524
Atomic No. 29 Atomic mass 63.54

X-width 4 X-origin 0
Y-width 4 Y-origin 0
Z-depth 1 Z-origin 0

Relaxations 0, 0, 0

 We then create a second Target file 'Ni.trg' that consists of a Ni(100) crystallite as
described in the previous section. Open this file in a text editor, and cut out all
references to atoms in the first layer of Ni atoms. Now load Cu.trg in a text editor,
then copy and paste the entire file at the top of the modified file Ni.trg, saving the
result. This produces a Target file for Cu/Ni(100) with the Cu atoms in registry with

Target and Projectile Files 42

Ni atoms in the second layer. In most cases, a vertical relaxation would be applied to
the Cu layer.
 Other types of target can be quite difficult to create using Spider. A knowledge of
basic surface crystallography and some ingenuity is necessary. The example of a
c(2x2) structure on a (100) fcc surface is dealt with in the next section.

3.7. Orienting targets

 The Target|New command generates a lattice with a specified surface orientation in
the z-direction. Often, however, you may have to modify the orientation of the lattice
in the (x, y) plane. Table 3.3 summarises the default orientations generated by Spider's
Target|New… option.

Table 3.3. Target lattice orientations in (x, y) plane generated by Spider.

Lattice type Orientation y x
fcc (100) [011] [01-1] b

fcc (110) [-110] [001]
fcc (111) [-1-12] a [-110]

bcc (100) [-100] [010]
bcc (110) [001] [-110]

diamond &
ZnS

(100) [011] [01-1]

diamond &
ZnS

(110) [-110] [001]

diamond (111) [-1-12] a [-110]

hcp (0001) [-1010] [-12-10]

a The edges of these lattices lie at 60º to the x-axis, not parallel to the y-axis, and they are also <110>
type edges.

b The notation [01-1] is used in this document to mean [011]
−

.

 The orientation of a Target file can be modified using the Target|Visualiser menu
command. This brings up a dialog box with a display of your lattice. The detailed
instructions for using this utility are found in the online help, which is context
sensitive. Some of the main features are:

1. There are options for displaying Target files, and for re-orienting them.
2. The orientation options can be tested without committing changes to disk.
3. Orientation options include the ability to rotate, clip (cut edges off) and translate

lattices.
4. Display options allow you to view the lattice from different directions, zoom

in/out, translate and rotate.
5. There is an option to superimpose coordinates from another Target file or an

Impact file on the current display. This allows you to check, for example, that the
Impact file correctly reflects surface structure and symmetry.

Target and Projectile Files 43

 A very frequent, operation is to create a fcc(100) target with <001> edges: this
example is discussed in the online Help, and involves applying a rotation of 45° in the
(x, y) plane to the <011> terminated default lattice, followed by a trimming operation
that reveals the <001> edges. You can also write a computer or spreadsheet program
that achieves the same goal. More complex operations can be envisaged (e.g. creating
a Cu lattice which exposes the (210) surface), but in practice these will rarely be used.
 It is a good idea to start off with large Target files, then trim them down to your
requirements when all operations have been completed. Otherwise, you may find that
the rotated overlayer does not cover the corners of your substrate lattice, and you will
have to start all over again.
 Section 3.6 described how to create the Target file for a (1×1) metal overlayer
system. On occasion you may have to work with a more complex system, for
example, a c(2×2) overlayer on a (100) fcc surface, more properly known as a
(√2×√2)R45° overlayer. The latter is equivalent to a fcc (100) layer which is rotated
by 45° with respect to the substrate, and which has a lattice constant expanded by a
factor √2 relative to that of the substrate (a). Thus, one way of creating such an
overlayer is as follows:
1. Create a Target file with 1 atomic layer, and a lattice constant √2a.
2. Use the Visualiser utility to rotate this layer by 45° with respect to the substrate.
3. Translate the x and y coordinates by an amount a/2√2, to place the overlayer

atoms in registry with (i.e. above) the substrate hollow sites.
4. Combine the rotated Target file with that for the substrate, as in section 3.6.
5. Use the Visualiser utility to trim unwanted edges from the composite target.
 This example illustrates the importance of understanding the surface crystallography
of your simulation problem.

3.8. Choosing the target size

 For a keV sputtering simulation you will need a target with at least 1500 atoms. A
more typical number these days would be 5000-10,000 atoms. In small targets, the
failure to contain collision cascades laterally may introduce errors in the sputter yield
and other predicted properties.
 For an ion scattering spectroscopy (ISS) simulation, the 'lattice' will consist of 2-20
atoms typically, or as few as is required to illustrate the physics of the problem. One
reason for this is that ISS simulations run for about 10 fs, which means that
interactions between target atoms can be neglected. Furthermore, ISS data require
only realistic modelling of the hard, short-range interactions experienced by the
projectile in the topmost 1-3 target layers.
 The CPU time required for simulation is roughly a linear function of target size. For
ISS simulations, a careful choice of the termination time can also reduce the CPU
time. However, in a sputtering simulation there is little to gain from reducing the
termination time from (say) 2000 fs to 1000 fs because the timestep becomes quite
large near the end of the simulation.

3.9 Projectile files

 The Projectile file (extension PRJ) contains the projectile characteristics: symbol,
atomic number and mass, velocity (in m s-1) and the projectile flags (see section 3.4).
For most purposes you can ignore the projectile flags (but if you apply a thermostat to
the target you will probably want to disable cooling effects for the projectile).

Target and Projectile Files 44

 The Projectile file also contains a set of positional coordinates (xp, yp, zp) for each
projectile atom (the order in which atoms are specified is unimportant). By default,
the coordinates are written as (0, 0, 0) for every projectile atom. These coordinates are
used to define the relative locations of atoms in a cluster projectile, and for a cluster
projectile they must be edited appropriately in a text editor (see also section 6.2). For
an atomic projectile, the coordinates should normally be left at the default value of (0,
0, 0).
 The Projectile file data is thus very simple, and little further explanation is required.
Just click Projectile|New in Spider and enter the projectile characteristics (Fig. 3.3).
 If your simulation involves a cluster projectile, you should enter the number of
atoms in the cluster into the dialog box (e.g. 3 for the Cu3 cluster projectile). The
coordinates in the Projectile file that is generated must be modified by hand to reflect
the cluster structure(the default values will cause Kalypso to crash). It is a good idea,
but not mandatory, to express the cluster coordinates relative to the cluster centre of
mass.
 Note that several simulation parameters defined in other files depend on the
projectile's atomic attributes. These dependencies are listed in Table 3.4 for reference.
As a result, changing the projectile atomic species for a new simulation (e.g. from Ar+

to He+) is not as trivial as it may seem, because parameters must be updated in several
files, as Table 3.4 shows.

Fig. 3.3. Projectile file dialog box.

Table 3.4. Input file dependencies on projectile type.

Simulation parameter(s) File Remarks
Projectile mass, atomic number, energy Projectile
Projectile-target potential Model Depends on projectile Z
Timestep Run Depends on projectile

velocity
Inelastic energy loss models Inelastic Depend on projectile mass,

atomic number

4. THE RUN FILE

4.1. Function of the Run file

 The Run input file (*.RUN) is the repository for miscellaneous input data that do
not involve particle coordinates, potentials, or inelastic energy losses. Some, but not
all, of the Run file parameters control the manner in which the simulation runs and
terminates. The Run file input dialog box presented by Spider consists of two pages,
shown in Fig. 4.1. The simulation choices available to the user in this dialog box will
now be explained.

4.2. Run file options

4.2.1. General specifications
Random number seed: this (positive integer) value is used to initialise the random

number generator at the start of the first run in a simulation. Any value ≠ 0 will
give a reproducible sequence of random numbers for each simulation. A value = 0
will seed the random number generator using the system clock, thereby generating
a different, non-reproducible random number sequence for each simulation.

Ignore interactions between target atoms: if this option is checked (), the
simulation takes into account projectile-target interactions, but ignores all target-
target interactions. Target atoms only accelerate due to interactions with the
projectile. This speeds up simulations of repulsive projectile-surface interactions
(e.g. for ISS simulations) but should not be used in situations where attractive
interactions in the target are important (e.g. sputtering). Typically, this option is
used in conjunction with a very short potential cut-off (less than the nearest
neighbour distance), in order to reduce calculation time. This option cannot be used
in conjunction with item 3 (MI simulation).

Multiple-impact simulation: if this option is checked (), a multiple-impact
simulation is executed (see also item 4). This means that the target atom positions
are not refreshed at the end of each run. Instead, the new projectile species (atom
or cluster) is directed at the target that existed at the end of the previous run. The
projectile species in a MI simulation may be an inert atom or cluster, or a metallic
atom or cluster, but not a mixture of the two (Ar, Ar2, Cu2, CuNi are acceptable,
but ArCu is not acceptable). See section 4.2.7 for further information about
running multiple impact simulations.

No. of replica atoms: this input item value is only required for a multiple-impact
simulation (see item 3). At the end of each run in a multiple impact simulation, the
properties of the current projectile atoms (position, velocity, flags etc.) are copied
into replica atoms, before being reinitialised in preparation for the next projectile
impact. As a result, the number of atoms in the system increases after completion
by each run by and amount Np, the number of atoms in the projectile species. The
use of replica atoms means that the atomic indices used to label atoms (i.e. the row
number or rw parameters) are manipulated dynamically as the simulation runs. The
manner in which this is done depends on whether the projectile consists of inert or
metallic atoms.

Run Files 46

Fig. 4.1. Run file input dialog box (showing both pages).

Run Files 47

4.2.2. Periodic boundaries
1. Use periodic (x, y) boundaries: if this option is checked (), periodic boundary

conditions (minimum image convention) will be applied to the simulation system
in the x and y dimensions (i.e. parallel to the target surface). Otherwise, the target
is assumed to have free boundaries. There is no provision in Kalypso for periodic
conditions in the z dimension. See also item 2 and section 4.2.8.

2. Period Lx (Ly): these values specify the lengths of the periodic cells in the x and y
dimensions in Å. The periodic cells run from –Lx/2 to +Lx/2, and from –Ly/2 to
+Ly/2, respectively. The lengths of the cells should be greater than twice the cut-
off distance for the potential, i.e. Lx > 2Rc.

4.2.3. Projectile initialisation
3. Altitudinal angle (ϕ): this parameter determines the altitudinal angle of approach

of the projectile at the start of the simulation. If the value specified for ϕ is in the
range 0 to 90 (°), the value will be applied directly in the simulation. If a negative
value is specified for ϕ in the range –90° to –0.001°, a random value in the range
between |ϕ| and 90° will be applied in the simulation. See also item 3 and the
discussion below item 4 for further information about the interpretation of this
parameter. If ϕ = 90°, the projectile approaches the target from the +z (normal)
direction, while grazing incidence corresponds to ϕ → 0°.

4. Azimuthal angle (φ): this parameter determines the azimuthal angle of approach
of the projectile at the start of the simulation. If the value specified for φ is in the
range 0 to 360 (°), the value will be applied directly in the simulation. If a
negative value is specified for φ in the range –360° to –0.001°, a random value in
the range between 0° and |φ| will be applied in the simulation. If φ = 0°, the
projectile approaches the target from the +x direction. If φ = 90°, the projectile
approaches the target from the +y direction.

5. Projectile mode: this option determines how the projectile position and velocity
are initialised at the start of each run. For sputtering, ion scattering and thin film
growth simulations select the impinging mode. For simulating particle ejection
from a lattice site towards the surface, select the recoiling mode (e.g. FAN-type
ion backscattering/shadowing simulations). For simulating particle recoils in
random directions from a lattice site (e.g. a GRID simulation) selected the mixed
mode. For further discussion, see below item 4.

6. Randomly rotate projectile: (applies only to polyatomic or cluster projectiles) if
this option is checked (), the projectile cluster is randomly rotated (polar and
azimuthal rotations) around its centre of mass prior to each run in the simulation.

 Refer to Fig. 3.1 for a summary of the various incident projectile geometries. The
pseudo-code shown in Fig. 4.2 demonstrates how the projectile velocity components
are initialised for the various projectile modes (vin is the projectile speed, sin_alt =
sin ϕ, cos_phi = cos φ etc.). The difference in the velocity initialisation between
impinging mode and recoiling mode is that the Cartesian velocity components have
their signs reversed. The difference in the velocity initialisation between impinging
mode and mixed mode is that the Cartesian velocity components randomly switch
signs. Fig. 3.1 shows the significance of the projectile altitudinal angle parameter in
impinging and recoiling mode respectively. Consider a projectile whose (ϕ, φ) values
are (45, 0), such that it travels from the north-east direction parallel to the x-axis in
impinging mode. In recoiling mode, a projectile with the same parameters would

Run Files 48

travel towards the north-east (i.e. from the south-west). In mixed mode, a projectile
with the same parameters would travel randomly towards either the north-east, north-
west, south-east or south-west.

Fig. 4.2. Pseudo-code that illustrates the initialisation of the projectile velocity
components for different projectile modes (vin is the incident velocity).

 In recoiling and mixed mode, the projectile initial position coordinates do not
depend on the direction of motion, i.e. on (ϕ, φ). This is in contrast to impinging
mode. The details of position initialisation in impinging mode are discussed in
Chapter 6.

4.2.4. Termination criteria
 The termination criteria determine how and when each run in the simulation will
end.
7. Termination times: the values given here determine the minimum and maximum

times before termination of a run. The run will not terminate before the minimum
time (items 2-4 will be ignored), and it will terminate shortly after the maximum
time (on the next neighbour update).

8. Termination energy: the simulation will terminate if the kinetic energy of all
particles in the system falls below this value. The energy test can be restricted to
the projectile only if desired (see item 3).

9. Perform energy tests on projectile only: if this option is checked (), the
termination tests in item 2 will be applied to the projectile only. This parameter
has no effect if it is set to zero (0.0).

10. Projectile z(min), z(max): the run will terminate if the z-coordinate of the
projectile falls below the minimum value specified here, or if it exceeds the
maximum value specified. These parameters have no effect if they are set to zero
(0.0). This condition is useful for speeding up ISS simulations.

 The termination criteria can be applied simultaneously, so that a given run may
terminate for a different reason from the previous run. The termination criteria should

 if PrjMode = IMPINGING then
 begin
 vz[n] := -sin_alt*vin;
 vx[n] := -cos_alt*cos_phi*vin;
 vy[n] := -cos_alt*sin_phi*vin;
 end
 else if PrjMode = RECOILING then
 begin
 vz[n] := sin_alt*vin;
 vx[n] := cos_alt*cos_phi*vin;
 vy[n] := cos_alt*sin_phi*vin;
 end
 else if PrjMode = MIXED then
 begin // sign = ±1.0 (randomly)
 vz[n] := sign*sin_alt*vin;
 vx[n] := sign*cos_alt*cos_phi*vin;
 vy[n] := sign*cos_alt*sin_phi*vin;
 end

Run Files 49

be optimised with a view to avoiding wasteful calculation. For example, in ion
scattering simulations the zmin and zmax criteria should reflect the dimensions of the
ion-surface interaction region. There is no point in tracking the scattered projectile
when it is far away from the scattering region.

4.2.5. Output
 The main output from Kalypso is the dynamics file (*.SNK). There are two aspects
to defining the output characteristics: what output to write, and when to write it.
 Typically, for sputtering or ion scattering simulations we only write output data at
the termination (end) of each run. There may be situations, however, when you need
to record output at the start of a run (t = 0), or periodically during a run (if you want
to examine the development of a collision cascade, for example). Any or all of these
options may be selected. In the latter case, you must also specify the period (in
timesteps) between write operations in the Period (timesteps) box of the Run file
dialog.
 Do not write more than one record...: this (rarely-used) option allows you to
restrict the output associated with any one atom to one record per run (e.g. when a
specified property of the atom crosses attains some threshold value).
 Output log of inelastic events: another rarely-used option: if your simulation
project incorporates LSS, ST or OR inelastic effects, you can dump some information
about inelastic losses to a log file (the name of the file is specified in Kalypso). The
file can also be used to generate a list of the binary collisions that occurred during the
simulation. See section 7.9 for more information about this file.
 Output data written to the dynamics file consists of dynamical variables information
for some or all particles in the system. The data are written to disk in the form of a
record that contains the following information (one record per particle recorded):

ti, time elapsed since the start of the simulation run;
rw (row number), a particle index that is based upon the position of the
particle in the projectile and Target files;
rn (run number), a run index indicating to which run (i.e. impact file line) the
data refer;
ui (unique identifier), another index that is incremented whenever the output
routine of the program is called - ui uniquely labels a block of output data that
are written at the same time; ui is often, but not necessarily, equal to rn; ui is
used internally for various tasks by Winnow, but users of Winnow can
generally ignore it.
rx, ry, rz, vx, vy, vz: particle position and velocity components;
ms: particle mass;
fl: particle options variable (flags) at time of output;
bx, by: these ‘tag fields’ contain either the projectile impact parameter, or the
projectile incident angles (see discussion below).

 These records are stored are stored in a binary file with extension SNK (called by
default dynvars.snk). All dynamical variables in the SNK file records are stored
as SI units (kg m s). The \src directory of the Kalypso package contains small
programs (with source code) that show how to read these files.

 The user must specify the particles for which data should be captured by the
simulation. There are several standard choices, that can be selected by clicking the
appropriate radio-button item [] in the dialog box:

Run Files 50

1. All atoms in the system;
2. Projectile atom #1 only (if there is no projectile in the simulation, this choice

writes data for target atom #1);
3. All particles with kinetic energy above 10 eV;
4. All ejected atoms with rz > 5 Å with rz > 5 Å;
5. Ejected projectile atom #1 with with rz > 5 Å.

 The difference between these choices is that they record the information for a subset
of particles whose momentary dynamical characteristics satisfy certain conditions.
The purpose of having these choices is to avoid recording data that are irrelevant to
the purpose of the user. For example, if the purpose of the simulation is to calculate
sputtering coefficients, you can simply record data for ejected particles. If your
simulation is modelling ion scattering processes you can record data for the projectile
only. Be careful not to throw away data that you might need.

 The final output specification item is:

6. Atoms that satisfy the (user-programmed) output condition.

 User-programmed output conditions allow the user to specify a condition that must
be fulfilled by a particle's dynamical (and other) variables before its data are recorded.
The conditional expression specified by the user will be interpreted by Kalypso at run-
time. The language in which conditional expressions are framed is similar to the query
language used by Winnow.
 As a simple example, the following expression will achieve the recording of data
only for particles which leave the surface (arbitrarily bounded at 5 Å):

[rz > 5.0e-10] & [vz > 0.0]

Here rz represents the particle's z-coordinate, while vz represents the z-component of
its velocity vector. The '&' symbol is the logical AND operator. In pseudo-code this
specification is programmed as follows:

 Similarly, the expression: [ke > 100.0] is satisfied if a particle's kinetic energy
(ke) is greater than 100 eV. Therefore the expression specifies that data are only to be
recorded for those particles with more than 100 eV kinetic energy.
 User-programmed expressions may be up to 255 characters in length, but long
expressions should be avoided. Where possible, use the standard choices since they
are more efficiently coded and do not require parsing. Note that comments bracketed
within curly braces {like this} will be ignored by the expression parser, and they
can be used as required to improve readibility. Please note that the validity of the
syntax of any user-programmed option is not checked by Spider. Instead, syntax

for n = 1 to NATOMS do
 begin
 if (rz[n] > 5.0e-11) AND (vz[n] > 0.0) then
 WriteToFile(rx,ry,rz,vx,vy,vz...)
 end;

Run Files 51

checking is carried out by Kalypso at run-time, and you will be informed if an error is
found.
 The output records produced by Kalypso include two ‘tag fields’ designated as bx
and by. Depending on options selected by the user, the tag fields can store a variety of
information, which may be useful for users who wish to access this information via
Winnow.

1. The information content of these fields by default (normal case) is as follows: (a)
if the atom is a projectile, bx = ϕ and by = φ (both expressed in °); (b) if the
particle is not a projectile atom, bx and by represent the (x, y) coordinates (in
metres) of the currently specified projectile impact point (as read from columns 1
and 2 of the Impact file).

2. The default option can be inverted by selecting the second radio-button item []
in the box labelled Meaning of tag fields.... In this case, (a) if the atom is a target
atom, bx = ϕ and by = φ (both expressed in °); (b) if the particle is a projectile
atom, bx and by represent the (x, y) coordinates (in metres) of the currently
specified projectile impact point.

3. Caloric data can be written to the tag fields if the third radio-button item is
selected. In this case, bx contains the current system temperature, while by
contains the total system energy (i.e., the internal energy, U(T)).

4. Custom data: (a) if the atom is a target atom, the x and y coordinates of the atom
in the Target file are recorded, i.e. bx = x0 and by = y0 (both expressed in metres);
(b) if the particle is a projectile atom, bx and by represent the (x, y) coordinates (in
metres) of the currently specified projectile impact point.

4.2.6. Thermal vibrations
 Atoms in real lattices are displaced from their ideal lattice positions as a result of
thermal vibrations. It is often desirable to include atomic vibrational displacements
of this kind in a simulation. Less commonly, it may be necessary to take into account
the kinetic energy associated with thermal vibrations (thermal velocities) at some
specified temperature.
 Vibrational displacements and thermal velocities are handled separately by Kalypso.
To include these effects in a simulation, select the appropriate check-box [] in the
Run file dialog box.
 The lattice vibrational temperature parameter determines the thermal velocities
that will be applied (to target atoms only), according to the relationship:

21 2
2 xmv kT= (4.1)

(with a similar relationship for the y and z dimensions). The thermal velocities are
applied in such a way that the net momentum of the target is zero in any direction.
 In order to apply lattice vibrational displacements, the user must specify appropriate
values for the mean square vibrational displacements, 2σ< > for each type of target
atom. These can be entered directly (e.g. literature values), or they can be calculated
from Debye temperature data by clicking the Calculate button.
 According to the Debye theory, the isotropic mean square thermal vibration
amplitude, <r2>, of atoms in a monatomic solid is given by the following expression:

Run Files 52

2 2 29 /().[(/) / 4]D D Dr T Mk T Tφ< > = Θ Θ + Θ (4.2)

where ΘD is the Debye temperature, k is Boltzmann’s constant, T is the absolute
temperature and M is the mass of atoms in the solid. φ(x) is the following function,
where x = ΘD/T :

φ() (/)
()

x x
ydy

e y

x

= ⋅
−∫1

10
 (4.3)

 Eq. 4.3 refers to the mean square amplitude of an isotropic oscillator. For
vibrations in a specific direction (x, y or z), the right hand side of Eq. 4.2 must be
divided by 3:

2 2 2 2 23 /().[(/) / 4]D D Dx y z T Mk T Tφ< > =< >=< > = Θ Θ + Θ (4.4)

 These Cartesian amplitudes are the quantities that are calculated by Spider and
used by Kalypso. If we substitute for the physical constants, interpret M as the mass in
atomic mass units (amu), and make the substitution (x = ΘD/T) then Eq. 4.4 simplifies
to:

2 2145.53/().[() 1/ 4] ÅDx M x xφ< > = Θ + (4.5)

using = 1.054572×10-34 J s; k = 1.380650×10-23 J K-1 ; 1 amu = 1.660539×10-27 kg.
 There is some confusion in the equations published in the literature, in that Eq. 4.4
is sometimes associated with the isotropic vibrations (more properly described by Eq.
4.2). Despite this, and other discrepancies, most authors seem to broadly agree on the
constant pre-factor 145.5 in Eq. 7.4 (although physicists tend to calculate the pre-
factor using nuclear rather than atomic masses, giving a value of 146.0). The reader is
urged to be cautious when reading the literature on this subject (including this user
guide!).
 Spider uses equation 4.5 to calculate <x2> for bulk and surface atoms, based on the
values for T and ΘD specified by the user, and the approximations to φ(x) discussed
below. These unidirectional <x2> values are read by Kalypso from the Model file.
 The vibrational displacements that are added to each lattice atom x, y and z
coordinate are drawn (using the Box-Müller method) from a random distribution
having Gaussian deviates characterised by a variance <x2>. Bulk, surface parallel and
surface perpendicular displacements respectively can be drawn from distributions
with different standard deviations. However, a requirement imposed on the
displacements calculated by Kalypso is that they shall not exceed 2.5 standard
deviations (to prevent highly improbable events).
 For purposes of the vibrational correction, a target atom is classified as a ‘surface
atom’ if its Target file z-coordinate, z[n], places it above the location of the
surface/bulk boundary that the user specifies in the Run file dialog box.
 The method for calculation of the Debye function φ(x) in equation 7.4 is now
explained.
 The function φ(x) that appears in Eqs. 4.2-4.5 can be calculated by numerical
integration of Eq. 7.2. Eckstein [1] provides the following approximation:

Run Files 53

φ() (/)
()

/ ...x x
ydy

e
x

x x
y

x

= ⋅
−

= − + − +∫1
1

1 4
36 36000

2 4

 (4.6)

 The same approximation is used by Kalypso for x in the range 0 to 3.0, i.e. in the
range T = 0.33ΘD to “infinity”. Recall that x = ΘD/T. For T = 0.33ΘD, φ(x) = 0.48. For
“infinite” T, φ(x) = 1.0. As T → 0, so too φ(x) → 0. For values of x > 3.0 the following
(low-temperature) approximation is used:

φ(x) = [π2 /6 - (x + 1).exp(-x) - (x/2 +1/4).exp(-2x) - ...]/x (4.7)

For x >> 1, φ(x)/x becomes small in comparison to the ¼ term in Eq.7.4, and the
lattice vibrations approach their zero-point levels.

4.2.7. Neighbour lists and timestep
1. Range search method: For targets with free boundaries Kalypso offers two range

search methods, that differ only in their speed of execution (see Fig. 4.3 for a
comparison). The brute force method (a naive search of the entire target) may be
slightly faster for small simulation systems (< 1000 atoms, e.g. for ion scattering
simulations). For targets with more than 1000 atoms the cell-index method should
normally be used. With either method, the simulation results should be identical.
At the time of writing, only the brute force method had been implemented for
periodic systems, and this case is handled automatically by Kalypso.

2. Cell-index search cell size: this is a parameter used by the cell-index search. Its
value is not critical, but sub-optimal values may have an impact on the execution
speed. The aim is to choose a cell size that contains an atom plus all of the
neighbouring atoms that might interact with it before the next update of the
neighbour lists. If in doubt, experiment and/or set the value too large rather than
too small. An optimum cell size (x) can be computed using the formula:

[]()0 01.05 1c Tx R v t R N= + − , where Rc is the potential cut-off distance, v0 is the
incident projectile speed (written to the Projectile file), t0 is the initial timestep
(see item 8 below), RT is the range test constant (see item 3 below) and N is the
neighbour update period (number of timesteps between updates, see item 5
below).

3. Range test constant: this parameter (RT) should be set somewhere between 0.7-
2.0. The quantity []1Tr vtR N∆ = − represents an estimate of the distance that an
atom with velocity v can travel after [N-1] timesteps (t). This estimate is used by
Kalypso to determine which neighbouring atoms should be included in the
neighbour list. Kalypso bases v on the fastest atom in the system. A relatively safe
estimate is RT = 2, which assumes that the central atom moves towards its
neighbour in a straight line with velocity v, and that the neighbour does likewise.
In practice, however, smaller values of RT can be used without any impact on
accuracy (i.e. energy conservation) because (a) most atoms have velocities much
smaller than v, and (b) because centre-to-centre collisions are infrequent events.

4. Maximum number of partners: this parameter determines how much memory is
allocated for the neighbour lists. The number of partners specified has no impact
on execution speed. If the value is too small, your simulation will terminate with
error #E017, so if in doubt, set a value that is too large. This parameter represents
(approximately) the number of atoms that may be compressed into a cubic region

Run Files 54

with edge lengths x, as defined in item 1. For most problems, 100 atoms is
sufficient (this number will increase rapidly if you use a potential with a large cut-
off distance), so use this value if your computer has plenty of memory. For few-
atom problems, such as ion scattering simulations, you can reduce the value to
match the number of atoms in the system if you wish.

5. Neighbour update period: this parameter determines how often the neighbour
lists are refreshed. Typical values are 8-12 (timesteps). Sub-optimal settings may
impact the speed of the simulation, but they will not affect its accuracy.

6. Time to start timestep updates: most Kalypso simulations employ an adaptive
timestep logic (the timestep increases as atom speeds decrease); the initial
timestep is set by trial and error in order to ensure energy conservation.
Experience suggests that better results are obtained if the adaptive timestep logic
is turned on after the first hard projectile-surface collision has taken place. A value
of about 10 fs is suggested.

7. Fixed Timestep: if this check-box is checked [], the timestep will not be
adjusted as the simulation runs. This will slow down the simulation, possibly by
1-2 orders of magnitude in the case of a long sputtering simulation. However, this
option is necessary if you want to obtain an ion scattering trajectory that is
sampled at constant time intervals.

8. Initial timestep: this sets the timestep used initially by the simulation. The
timestep adapts automatically as the simulation runs between the value specified
here and (if necessary) a maximum value of 10 fs. If the timestep is fixed (see
item 7) adaptation does not take place and the maximum limit does not apply
(however, you are unlikely to need to exceed 10 fs). The timestep should be
chosen by trial and error, in order to produce satisfactory energy conservation
(e.g. better than 0.5%). The Velocity Calculator tool provided in Spider can help
you to set the timestep. As a rule-of-thumb, the timestep is set to be approximately
equal to the time required for the projectile to travel 0.05-0.1 Å. If in doubt, set the
timestep smaller rather than larger (but not too small, since this will slow the
simulation). Energy leakages due to timestep errors can take place both at the
start of a simulation (when the projectile is moving quickly) and at the end of a
simulation (when the timestep is large). If you run the simulation using Kalypso’s
verbose output mode, a plot of total energy against time or timestep will indicate
where or why energy leakage is taking place (Fig. 4.4).

 Notes on timestep adaption: During the simulation, the timestep (∆t) will adapt
gradually on the basis of the speed of the fastest atom in the simulation system
volume according to the prescription: ∆t(new) = (1/3)∆t(ideal) + (2/3)∆t(old), where
∆t(ideal) represents the goal timestep that will produce the desired displacement. The
simulation system volume is a Cartesian box that contains the target and projectile
atoms at the start of the simulation run (and includes a boundary region equal to the
cut-off distance). Atoms that move outside this box during the course of the
simulation will not be used for making decisions about the timestep size. In a multiple
impact simulation (section 4.2.7) the box is defined by the positions of the current
projectile for that run, plus the lattice coordinates in the first run. These choices
ensure that the speed of simulations will not be unduly influenced by atoms that have
travelled away from the lattice. If the target has periodic boundaries, the simulation
may slow down because atoms fast and slow are constrained to remain in the lattice
region in the two periodic dimensions. However, they may escape the box in the z-

Run Files 55

dimension, in which case they will no longer influence the development of the
timestep.

0 2000 4000 6000 8000
No. of particles

0

20

40

60

80

100

C
P

U
 ti

m
e

(s
) Cell-index

Brute force

Fig. 4.3. Relative execution speeds of sputtering simulations that use the cell-index
and brute-force neighbour search algorithms respectively, as a function of the number
of particles (N) in the system. For N < 2000, the performance of both algorithms is
similar. For N ~ 8000, the brute force algorithm is 75% slower than the cell-index
algorithm. For N < 1000, the brute force method may be slightly faster than the cell-
index method.

0 10 20 30 40
Elapsed time (fs)

-20310

-20300

-20290

-20280

S
ys

te
m

 e
ne

rg
y

(e
V

)

Fig. 4.4. Variation of system energy with elapsed time (5 keV Ar-Cu(111) system,
with 0.04 fs initial timestep). The net energy leakage was about 3 eV, but the
instantaneous energy leakage during hard collisions (indicated by energy spikes) near
the start of the simulation (for t < 15 fs) was almost 40 eV. Energy leakage after 15 fs
was negligible.

Run Files 56

4.2.7. Multiple impact (MI) simulations (notes)
 In MI simulations, the atomic positions and velocities are not re-initialised prior to
the start of successive runs. Thus structural damage caused by prior ion bombardment
accumulates over time and its effects can be included in simulations.
 In a MI simulation, the current projectile variables (position, velocity etc.) always
occupy the same space in memory. The variables associated with previous projectiles
(scattered, or embedded in the target) are copied into new memory locations at the
end of each run and define so-called replica atoms. The original memory locations
are then reinitialised.
 The number of replica atoms required is obtained as the product: (number of atoms
in the Impact file)×(number of atoms in the projectile species). If the number of
replica atoms is underestimated, the simulation will terminate prematurely (when all
available replica atoms have been consumed). There is no harm in setting the value
too high.
 The manner in which the replication is carried out depends on the type of projectile
involved (inert atoms or metallic atoms). This complication reflects a limitation in the
logic used by Kalypso, not an intentional design goal. There are two schemes.

1. For metallic atom projectiles (e.g. Cu, Cu4, NiCu) the row number index(es) (rw)
of the replica atom(s) succeed those of the last atom in the Target file. Example:
consider a MI simulation involving Ni bombardment of a 1000-atom Cu target. At
the start of run 1, rw = 1 for the projectile, and rw = 2-1001 for the target atoms.
At the start of run 2, rw = 1 for the new projectile, and rw = 2-1002 for the target
atoms, which now include the embedded projectile from run 1 at rw = 1002.
Likewise, at the start of run 3, rw = 2-1003 for the target, with rw = 1003 being
associated with the projectile from run 2.

2. For inert atom projectiles (e.g. Ar) the replica atoms succeed those of the last
projectile atom. Example: consider a MI simulation of a 1000-atom Cu target
with an Ar projectile. At the start of run 1, rw = 1 for the projectile, and rw = 2-
1001 for the target atoms. At the start of run 2, rw = 1 for the new projectile, rw =
2 for the old projectile, and rw = 3-1002 for the target atoms.

 Figs. 4.5 and 4.6 illustrate the relationships associated with each indexing scheme.

rw = 1 2 3 4 5 6 7 8 ... N+1 N+2 N+3
run 1 P1 T1 T2 T3 T4 T5 T6 T7 ... TN
run 2 P2 T1 T2 T3 T4 T5 T6 T7 ... TN P1
run 3 P3 T1 T2 T3 T4 T5 T6 T7 ... TN P1 P2

Fig. 4.5. Row number (rw) indexing scheme for a multiple impact simulation in which
the projectile species consists of a metal atom (e.g. Cu). Replica atoms are indicated
in bold font. PN (TN) refers to the Nth projectile (target) atom.

Run Files 57

rw = 1 2 3 4 5 6 7 ... N+1 N+2 N+3
run 1 P1 T1 T2 T3 T4 T5 T6 ... TN
run 2 P2 P1 T1 T2 T3 T4 T5 ... T(N-1) TN
run 3 P3 P2 P1 T1 T2 T3 T4 ... T(N-2) T(N-1) TN

 Fig. 4.6. Row number (rw) indexing scheme for a multiple impact simulation in
which the projectile species consists of an inert atom (e.g. Ar). Replica atoms are
indicated in bold font. PN (TN) refers to the Nth projectile (target) atom.

 The indexing schemes must be properly understood when using Winnow to carry
out data analysis. In the second scheme (inert projectile), the identity of an atom
depends on both its row number (rw) and the run number (rn) (see Chapter 9 for an
explanation of these terms). With reference to Fig. 4.6, the target atoms are now
identified by the filter condition: [rw-rn >= 1], instead of the condition: [rn >= 2]
as in Fig. 4.5. Alternatively, in scheme 2, you can use a filter condition based on mass
to distinguish between projectile and target atoms. Another workaround to the
indexing problem for inert projectile atoms is discussed in section 9.17 of Chapter 9.
 In a multiple impact simulation, the validity of the initial position of the projectile
with respect to gas phase atoms produced in a previous impact (e.g. sputtered species)
is not checked. It is possible that the point at which the fresh projectile will ‘appear’ is
already occupied (or very close to) the point occupied by a sputtered atom ejected by
a preceding impact event. This accidental situation will give rise typically to a mutual
repulsion and a very large energy leak in the range 1 keV- 1 MeV. A program crash,
with errors E003 or E004 may also be reported. Since the error is due to wrong
positioning of the projectile, the only remedy is to change this aspect of the
simulation. The problem is more likely to arise when the projectile starts near the
surface, or when many projectile impacts are involved. It is important to detect
artefacts of this type, so it is recommended that you always monitor energy
conservation when carrying out a multiple impact simulation. This monitoring should
be done even if you are applying a thermostat to the target: in this case, you can check
that energy leakage due to cooling in each run does not exceed (on average) the
energy input by the projectile. Do not expect exact agreement, due to lattice
relaxation, as well as integration errors. Anomalous events will show up as much
larger leakages.
 Momentum imparted to the target during MI simulations causes it to drift noticeably
over time in the direction of projectile approach (the amount of drift depends on the
nature of the projectile-target collision). This can only be remedied by anchoring the
target atoms in the bottom 1-2 layers of the target (e.g. assign a very large mass, or set
the ofFixedAtom flag: see section 3.4 of the User Guide).

4.2.8. Periodic boundary conditions (notes)
 Setting up the Target file for a simulation with periodic boundary conditions
requires some care. Several of the example projects that accompany the Kalypso
package use periodic boundaries. You can study their documentation and Target files
for further information and hints. The following discussion refers to a one-
dimensional problem, but the generalisation to two dimensions is not difficult.
 Consider a target crystallite that consists (typically) of atomic rows with atoms at x-
axis locations: ..., –3d, -2d, -d, 0, d, 2d, 3d, ... (layers 1, 3, 5, ...) and ..., -3d/2, -d/2,
d/2, 3d/2,... (layers 2, 4, 6, ...) where d is the row interatomic spacing.

Run Files 58

 For a periodic simulation, one could specify (in the Run file) Lx = 2d, 4d, 6d etc.
depending on the type of simulation. Suppose, for example, that you choose to use Lx
= 6d. Then the periodic cell would run from x = -3d to x = 3d, and so the points x = -
3d and x = 3d would represent the same location in the x-dimension. It is therefore
necessary to specify only the following atomic coordinates in the Target file: -2d, -d,
0, d, 2d, 3d, (layers 1, 3, 5, ...) and -5/2d, -3d/2, -d/2, d/2, 3d/2, 5/2d (layers 2, 4, 6,
...). Note that the coordinates x = -5/2d and x = 5/2d do not represent the same point in
the periodic target (both points lie inside the boundaries), so atoms with both
coordinates should be included in the Target file.
 To check that the periodic boundaries have been set up correctly (i.e. that the raw
Target file has been trimmed at the correct places), use Kalypso to check the binding
energy of atoms at one or more lattice sites located at the Target file boundaries (see
footnote to section 8.2 of the User Guide). You should obtain the same value as for
atoms in equivalent sites that are not at the boundaries.
 The basic rules for creating a Target file for use with boundary conditions are (for
the x and y axes):
1. Create a Target file that is symmetric about the axis origin.
2. Place the periodic boundaries equidistant from the axis origin (but on opposite

sides of it) in a position such that the atomic locations in an infinite lattice would
be symmetric on either side of the boundary (i.e. at lattice sites, or between lattice
sites, or both).

3. If the boundaries cut through any lattice sites (they normally do, if the Target has
more than one atomic layer), then remove the atoms that lie at the boundary on
one side of the origin only.

 Failure to set the periodic boundaries correctly may result in Kalypso crashing, since
two atoms can then appear at the same location in the lattice (or close together, if
vibrational effects are included), which results in a very large mutual repulsion. A
typical error is to confuse Lx, the length of the periodic lattice, with Lx/2, the distance
that the lattice extends on either side of the origin.
 Periodic boundaries in one, rather than two, dimensions can be achieved by setting a
very large value for one of the periods. This will effectively produce a target with one
periodic boundary dimension.

References for Chapter 4

[1] W. Eckstein, Computer Simulation of Ion-Solid Interactions, Springer-Verlag,
Berlin, 1991.

5. THE MODEL FILE

5.1. Function of the Model file

 The Model input file (*.MDL) stores the input data that specify the interatomic
potentials used for the simulations. Kalypso simulations involve targets of (at most)
two metallic elemental types (designated as M (either element) or M(0) and M(1)
respectively in Spider and in this chapter), and a projectile species that may be
comprised of one (or both) of these two elements, or an inert gas element designated
I. These possibilities give rise to several parameters associated with the various
permutations of interacting atom pairs I-I, I-M(0), M(0)-M(0) and so on.
 The Model file input dialog box presented by Spider consists of three pages, shown
in Figs. 5.1-5.3. The data input required on each page will be described in the
following sections. Chapter 2 discusses the interatomic potentials used by Kalypso in
detail.

Fig. 5.1. Model file input dialog box (page 1 of 3: Screened Coulombic Potentials).

Model Files 60

Fig. 5.2. Model file input dialog box (page 2 of 3: Tight-Binding Potentials).

Fig. 5.3. Model file input dialog box (page 3 of 3: Switching Functions).

5.2. Model file options

5.2.1. Screened Coulombic potentials
 The functional form of the screened Coulombic potential was discussed in section
2.3 of Chapter 2:

Model Files 61

V r
Z Z e

r
c b r aij

ij
k k ij

k

N

() exp(/)= −
=

∑1 2
2

0 14πε
 (2.3)

1. Set system type: this setting will enable/disable input items in the Model file
input dialog box according to the requirements of the simulation type that you
select. Examples of the different system types are: (a) Mono-metallic with inert
atoms [Ar → Cu(100)]; (b) Mono-metallic without inert atoms [Cu → Cu(100)];
(c) bi-metallic with inert atoms [Ar → Cu/Ni(100)]; bi-metallic without inert
atoms [Ni → Cu(100)]. Parameters in edit boxes that are ‘greyed out’ (disabled)
will have no effect on your simulation, so their values are unimportant.

2. Constants (b, c) for I-M and M-M potential: these constants refer to the terms bi
and ci that appear in Eq. 2.3. These terms take standard values for the ZBL and
Molière potentials respectively. If required, two different types of screened
Coulombic potential may be used for the I-M and M-M interactions respectively.
However, all M-M interactions must use the same type of potential (e.g. ZBL
potential). This does not present a significant restriction. Values for the potentials
can be entered by selecting the appropriate radio-buttons in the box labelled Set
[]. For other potentials (e.g. Bohr potential) you must enter the values for each
term by hand (enter 0.0 for any terms that are unallocated in your potential).

3. Screening lengths (a) for I-M and M-M interactions: these constants refer to
the screening length term a that appears in Eq. 2.3. The screening length depends
on the atomic numbers (Z) of the interacting atoms, which must be specified for
the I, M(0) and M(1) species, as applicable. For example, I = 18 (Ar), M(0) = 29
(Cu) and M(1) = 28 (Ni) would be appropriate for the Ar → Cu/Ni system. Atom
types are identified on the basis of their atomic numbers in Spider and Kalypso,
so: do not duplicate atomic numbers (the programs will ignore the parameters
associated with the second duplicated atom). Standard choices for the screening
lengths can be obtained by selecting the appropriate radio-buttons in the box
labelled Set Screening Length [] (note: when you open a previously created
Model file, the 'no action' radio-button is selected). The standard screening
lengths are often modified by scaling with a correction factor that has a value
typically in the range 0.7-1.0. If you wish to use such a screening length
correction, enter the scaling factor in the appropriate edit box in the column
designated Correction.

 When a previously created Model file is reopened, the radio button items on page 1
of the Model file dialog box switch (Fig. 5.1, bottom left) to the no action setting.
Manual selection of any other setting, ZBL or Molière, will cause the updating of the
associated dialog boxes (e.g. any parameters that have been edited by hand will be
modified).

5.2.2. Tight-binding potentials
 The functional form of the tight-binding potentials was given in section 2.5 of
Chapter 2. The potential parameters are 0, , , ,A p q rξ , as defined in Eqs. 2.4b and 2.7
of the same chapter:

0() exp((/ 1))ij ij ijU r A p r r= − − (2.4b)
2

0() exp(2 (/ 1))ij ijr q r rφ ξ= − − (2.7)

Model Files 62

 The inputs required for the Model file dialog box are 02 , , , 2 ,A p q rξ (the
parameter b that also appears in the dialog box should be set to 0.0, since standard
tight-binding potentials do not use it).
 One set of parameters is required for each distinct interaction type (e.g. Cu-Cu, Cu-
Ni, Ni-Cu, Ni-Ni). The heteronuclear interaction parameters 2q and ξ that appear in
the attractive part of the potential, Eq. 2.7, do not have to be symmetric with respect
to interchange of the atomic indices.1 However, in most potentials found in the
literature they are symmetric. The author has found that lifting this restriction may
improve the transferability of the potentials. The repulsive (pairwise) parts of the
potentials are always symmetric with respect to interchange of the atomic indices, and
this requirement is enforced by Spider (by disabling incompatible input). The
labelling convention used by Spider is similar to the used for the embedded atom
method potentials: the parameter ()0,1ξ is used to compute the interaction term

01()rφ for a central atom of type 0 when it is in proximity to a neighbouring atom of
type 1.
 To reduce labour, you can store potential parameters that you use frequently in a
text file, and load them into the dialog box by clicking the button labelled File. One
such file, potentials.dat, is supplied with the Kalypso distribution (in the \bin
directory).

5.2.3. Switching functions
 Switching functions are discussed in section 2.6 of Chapter 2. The parameters that
the user must specify are: the upper and lower bounds to the core switching function
(R1, R2), and the upper and lower bounds to the cut-off switching function (RS, RC -
where RC is the potential cut-off). Each switching function includes a scale factor that
can be adjusted as necessary in order to improve the smoothness of the composite
potential.
 Choosing the optimum values is largely a matter of trial and error. The potential and
force functions may be viewed immediately in the graphs provided in the dialog box
(click the Update button). To do this efficiently: click the edit box whose value you
wish to adjust, then press the arrow up ↑ or arrow down ↓ keys: this will step through
a range of values, and will update the graphs automatically.

1. Active pair: the radio-button selection [] in this box determines what potential
and force functions are displayed on the Model file dialog box graphs, but it has
no effect on the simulation.

2. Core switching function (SF): (R1, R2) and the switching function scale are
specified in this box for each type of interaction term that applies to your
simulation. Terms that so not apply to your simulation are geyed out (disabled).
Make sure that R1 < R2.

3. Cut-off switching function (SF): (R1, R2) and the switching function scale are
specified in this box. Make sure that RS < RC and that R2 < RS.

 The graphs in the Model file dialog box display, by default, the total potential and
force functions for an interacting pair of atoms, (n, m), based on the parameters that
are currently entered in the Model file dialog box, where n and m represent the atom

1 Exception: Kalypso does require that the heteronuclear interaction parameters be symmetric if b ≠ 0.0.

Model Files 63

types specified in the Model file (= 0 or 1). The variable z in this case refers to the
separation between the atoms. Spider uses all of the parameters currently specified in
the Model file to do this calculation. For a heteronuclear pair of atoms (A ≠ B), the
calculations involve two tight-binding and switching function parameter sets [(0,1)
and (1,0)].
 In order to do the potential and forces calculations, Spider builds a minimal
simulation project using atom A as the projectile and atom B as target, and runs it
quietly (using the Kalypso simulation engine code). The scratch files used for this
purpose can be found in the \bin\temp directory of the Kalypso distribution (it is safe
to delete these files). If you wish, you can substitute your own Target file in place of
atom B. For example, instead of an atom-atom interaction, you might wish to
examine the potential associated with the interaction of atom A with a lattice
composed of B atoms (i.e. an atom-lattice interaction). The Target file that defines
the lattice of interest can be specified via the Set-Up button (the file into which the
potential data are dumped can also be specified).

5.3. Model files for ion-scattering spectroscopy (ISS) simulations

 Molecular dynamics (MD) is not the most efficient method for doing ISS
simulations, but because of increased hardware speed, MD is now feasible. There may
even be some advantages in using MD for this purpose when scattering cannot be
described by binary collision processes, or when the surface has a complex structure.
 Most ISS simulations do not require modelling of an attractive potential between the
projectile and the target, or between target atoms. It is therefore recommended to
reduce the cut-off distance to very small values (less than the nearest-neighbour
distance of the lattice) which will speed up the simulation. In this type of simulation,
it is normal to ignore all target-target interactions (the option for this is found in the
General Specifications section of the Run file dialog box). This means that the
parameters specified for the tight-binding attractive potential and the associated
switching functions in the Model file are irrelevant because they will never be used
(a) because of the short cut-off distance (below the range that is relevant for the tight-
binding potential), (b) because all target-target interactions are ignored. It may be
helpful to emphasise this by setting the tight-binding potential parameters 2A = ξ = b
= 0.
 To give a specific example: for the He-Cu scattering system, you can set for the Cu-
Cu interaction 2A = ξ = b = 0, R1, R2 (core switching function range) = 1.2-1.7 Å, and
Rs, Rc (cut-off switching function range) = 1.8-2.0 Å (the nearest neighbour distance
in Cu is 2.56 Å). The 2.0 Å cut-off specified here will also apply to the He-Cu
interaction, and is the only parameter that has any effect. The other parameters are
chosen arbitrarily. They have no effect if the target-target interactions have been
disabled (in the Run file). Although the parameters 2A, b, ξ, R1, R2 Rs are arbitrary,
you should choose reasonable values that will not cause problems in the interpolation
routines. For example, do not set R1 = 1.0 Å, R2 = 1.000001 Å.
 The example projects supplied with the Kalypso package include a number of ISS
simulations. You should study these example input files before attempting your own
simulations.

6. THE IMPACT FILE

6.1. Function of the Impact file

 The Impact file consists of rows of Cartesian coordinates (bx, by, bz, expressed in
Å). The z coordinates, (bz) in the Impact file always refer to the vertical starting
position of the projectile relative to the z coordinate of the anchor atom (row #1) of
the Target file. The significance of the x and y coordinates (bx, by) depends on the
projectile mode parameter that is specified in the Run file (section 4.2.3 of Chapter
4).

1. In impinging mode (the most common case) (bx, by) represent the (x, y) impact
parameters of the projectile, expressed relative to the coordinates of the anchor
atom.

2. In recoiling and mixed mode, (bx, by) are the starting (x, y) coordinates of the
projectile, expressed relative to the (x, y) coordinates of the anchor atom.

 The coordinates used for the anchor atom are based on those written in the Target
file. Fig. 6.1 illustrates these distinctions, which are further discussed in sections 6.2-
6.4.

xy plane

+z

ϕ

IMPINGING

xy plane

+z

ϕ

RECOILING,
MIXED

Target

Target

bz

bx

bxbz

Fig. 6.1. Significance of the Impact file parameters for impinging, recoiling and
mixed projectile modes. Symbols: = anchor atom, = projectile atom.

Impact Files 65

6.2. Impinging mode

 The impinging projectile mode is used for projectiles that approach the target from
outside the target, e.g. simulations of sputtering, ion scattering, or thin-film
deposition. If the simulation Run file specifies an azimuthal angle φ and the altitudinal
angle ϕ , the projectile starting position in laboratory coordinates 0 0 0(, ,)x y z is
expressed relative to the coordinates of the anchor atom 1 1 1(, ,)x y z as follows:

0 1

0 1

0 1

cos / tan
sin / tan

z x

z y

z

x x b b
y y b b
z z b

φ ϕ
φ ϕ

= + +
= + +

= +

 (6.1)

 Eqs. 6.1 assume that the projectile positional coordinates (xp, yp, zp) defined in the
Projectile file (section 3.9) are (0, 0, 0) (default values). If this is not the case (e.g. for
a cluster projectile) then 0 1 cos / tanz x px x b b xφ ϕ= + + + and so on, i.e. the projectile
atom starting position is displaced according to the coordinates read from the
Projectile file.
 For the special case of normal projectile incidence (90)ϕ = the relationship (6.1)
becomes:

0 1

0 1

0 1

x

y

z

x x b
y y b
z z b

= +
= +

= +

 (6.2)

 It is important to grasp that the coordinates listed in the Impact file refer to a
projectile position relative to the location of the anchor atom. This is not usually
obvious from inspection of the Impact file, since the anchor atom is typically placed
at (0, 0, 0) by default.
 For completeness, the initial values of the projectile velocity components (Chapter
4, Fig. 4.2) are repeated here (vin is the projectile incident velocity):

0

0

0

cos cos
cos sin
sin

x in

y in

z in

v v
v v
v v

ϕ φ
ϕ φ

ϕ

= −
= −

= −

 (6.3)

6.3. Recoiling mode

 The recoiling projectile mode is used for projectiles that originate from within the
target and travel in the +z direction, e.g. simulations of a ‘fan’ of backscattered
projectiles, or desorption processes. The projectile starting position 0 0 0(, ,)x y z does
not depend on the azimuthal angle φ and the altitudinal angle ϕ specified in the Run
file, but is expressed relative to the coordinates of the anchor atom 1 1 1(, ,)x y z as
follows (cf. Eq. 6.1):

Impact Files 66

0 1

0 1

0 1

x

y

z

x x b
y y b
z z b

= +
= +

= +

 (6.4)

 However, the initial values of the projectile velocity components do depend on the
azimuthal angle φ, and an altitudinal angle ϕ specified in the Run file:

0

0

0

cos cos
cos sin
sin

x in

y in

z in

v v
v v
v v

ϕ φ
ϕ φ

ϕ

=
=

=

 (6.5)

6.4. Mixed mode

 The mixed projectile mode is used for projectiles that originate from within the
target and travel in a variety of directions, e.g. simulations of Doppler-induced
gamma ray recoils. The projectile starting position 0 0 0(, ,)x y z in the mixed mode is
identical to that for the recoiling mode (Eq. 6.4). The initial values of the projectile
velocity components depend on the azimuthal angle φ and the altitudinal angle ϕ
specified in the Run file:

0

0

0

cos cos
cos sin
sin

x in

y in

z in

v v
v v
v v

ϕ φ
ϕ φ

ϕ

= ±
= ±

= ±

 (6.6)

(The ± signs in Eq. 6.6 are selected randomly for each direction of motion.)

6.5. Impact file format

The first line of a .IMP file is formatted as follows:

0.000 0.000 4.5000 0.0000 2.5560 0.0000 1.2778 90.0 13 8 4.50
bx by bz x1 x2 y1 y2 angle Nx Ny bz

 The first three numbers represent (bx, by, bz) (in Å). The next five numbers are the
inputs from the dialog box which are required for reading an Impact file from disk.
The last three numbers (Nx, Ny, bz) are used internally by Spider. In order to run a
simulation, only the first three numbers are required, as found on subsequent lines of
the Impact file.
 The numbers in the Impact file must be delimited by one or more space characters,
and may be written in a variety of conventional floating point formats (1.04, 1.04e0,
1.04E0 and so on). The format is very simple, and if you prefer, you could create your
own Impact files without the help of Spider. (It is not necessary to include the extra
inputs, cols. 4-11, on the first line in this case.)

6.6. Creating Impact files

 The creation of Impact files is one of the most difficult aspects of a simulation
project. The statistics of sampling is something which an experimenter never has to

Impact Files 67

think about, but it is important to get this right in a simulation model. The
determination of the shape and size of the sampling area based on surface symmetry
requires a familiarity with surface structure. This knowledge is assumed in the
following sections. There is usually more than one way to generate a Target file and
Impact file combination, so the procedures outlined here should be regarded as
descriptive rather than prescriptive.
 The Impact file must define a set of statistically representative points on the target
surface. These represent a sample of points within a zone of irreducible symmetry,
which will be called the primary impact zone (PIZ) here. The PIZ depends on both
surface symmetry, and collision geometry (see Harrison et al.[1] for a discussion).

Fig. 6.2(a). Primary impact zones for the fcc (100) surface (normal and oblique
incidence). Arrows (→) indicate projectile direction of incidence. = surface layer
atoms; = 2nd layer atoms.

 Fig. 6.2(a) illustrates the surface of a fcc (100) target as generated by Spider. On the
left of the figure, the PIZ for a normally incident projectile (90ϕ =) is represented
by the small triangle, while the square region (bottom left) represents one face of the
bulk crystallographic unit cell. For off-normal projectile incidence, the PIZ shape
depends on the azimuthal angle, φ. The right panel of Fig. 6.2(a) compares the PIZ
shapes for for normal, <011> and <001> directions of incidence. The area of the PIZ
is the same in the last two cases, but the shapes are different.
 For an arbitrary azimuthal angle with no special symmetry properties, the PIZ is
equivalent to the area occupied by a face of the bulk unit cell. The unit cell could, in
fact, be used for the other cases, but this is normally avoided because it is regarded as
being statistically inefficient. Likewise, any integral multiple of the true PIZ is
acceptable, if inefficient.
 Spider generates impact points on a grid contained within the PIZ. Another
approach (not available via Spider) would be to generate a set of points randomly
within the PIZ.
 There are two stages to the creation of an Impact file. First, you must identify the
PIZ for your experimental system and configuration. Second, you must decide how to
represent this PIZ using Spider.
 Tables 6.1-6.6 summarise the procedures for creating some common PIZs for cubic
(100) and (110) surfaces for non-normal and normal projectile incidence.1 These are
the easiest cases: (111) surfaces require a more complicated procedure (section 6.4.3).
The tables employ the following abbreviations:

1 Some serious errors discovered in these tables for bcc targets have been corrected in this version of
the User Guide (Dec. 2005).

Impact Files 68

• N/A: Not applicable (parameter is irrelevant)
• a: bulk unit cell lattice parameter
• d0, d: See definitions in footnotes to individual tables.
• φ: Projectile azimuthal direction of incidence.
• Rxy column [with values R45, R00 etc.]: The azimuthal rotation (°) which must be

applied to the Target file as generated by Spider in order to align φ with the
specified axial direction. (R00 means no rotation is required.) Use the Visualiser
tool in Spider to apply these rotations. The tables assume that the projectile
azimuthal angle of incidence specified in the Run file is zero (0.0°).

• bx(min) etc.: refer to values entered for the corresponding fields in the Impact file
dialog box.

• (x, y) angle: another field in the Impact file dialog box.
• Normal incidence means ϕ = 90°; Non-normal incidence means ϕ ≠ 90°

Table 6.1. Fcc and diamond lattices: Non-normal projectile incidence.a

Surface φ Rxy bx(min) bx(max) by(min) by(max) (x, y) angle

(100) <110> R00 0.0 d0 0.0 d0/2.0 90
(100) <100> R45 0.0 a/2.0 0.0 a/2.0 90
(110) <100> R00 0.0 a 0.0 d0/2.0 90
(110) <110> R90 0.0 d0 0.0 a/2.0 90

a a is the fcc or diamond unit cell parameter, while 0 2d a= .

Fig. 6.2(b). Primary impact zones for the fcc (110) surface (normal and oblique
incidence). Arrows (→) indicate projectile direction of incidence. = surface layer
atoms; = 2nd layer atoms.

Impact Files 69

Table 6.2. Fcc and diamond lattices: Normal projectile incidence.a

Surface φ Rxy bx(min) bx(max) by(min) by(max) (x, y) angle

(100) N/A R00 0.0 d0/2.0 0.0 d0/2.0 45
(110) N/A R00 0.0 a/2.0 0.0 d0 35.2644

a a is the fcc or diamond unit cell parameter, while 0 2d a= .

Fig. 6.2(b). Primary impact zones for the bcc (100) surface (normal and oblique
incidence). The bulk bcc unit cell is also indicated. Arrows (→) indicate projectile
direction of incidence. = surface layer atoms; = 2nd layer atoms.

Fig. 6.2(c). Primary impact zones for the bcc (110) surface (normal and oblique
incidence). Arrows (→) indicate projectile direction of incidence. = surface layer
atoms; = 2nd layer atoms.

Impact Files 70

Table 6.3. Bcc lattice: Non-normal projectile incidence.a

Surface φ Rxy bx(min) bx(max) by(min) by(max) (x, y) angle

(100) <100> R00 0.0 a 0.0 0.5a 90
(100) <110> R45 0.0 √2×a 0.0 a/(2√2) 90
(110) <110> R00 0.0 a/√2 0.0 0.5a 90
(110) <100> R90 0.0 0.5a 0.0 a/√2 90

a a is the bcc unit cell parameter.

Table 6.4. Bcc lattice: Normal projectile incidence.a

Surface φ Rxy bx(min) bx(max) by(min) by(max) (x, y) angle

(100) N/A R00 0.0 a/2.0 0.0 a/2.0 45
(110) N/A R00 0.0 a/(2√2) 0.0 a/2.0 90

a a is the bcc unit cell parameter.

Table 6.5 Rocksalt lattice: Non-normal projectile incidencea

Surface φ Rxy bx(min) bx(max) by(min) by(max) (x, y) angle

(100) <100> R00 0.0 a 0.0 a/4.0 90
(100) <110> R45 0.0 a/√2 0.0 a/(2√2) 90

a a is the rocksalt unit cell parameter.

Table 6.6 Rocksalt lattice: Normal projectile incidencea

Surface φ Rxy bx(min) bx(max) by(min) by(max) (x, y) angle

(100) N/A R45 0.0 d/2.0 0.0 d/2.0 45

a a is the rocksalt unit cell parameter, while 2d a= .

6.7. Impact file examples

6.7.1. Normal projectile incidence on Cu(110) surface
 An Impact file that covers the PIZ for normal incidence on a cubic lattice (100) or
(110) surface can be generated relatively easily. For fcc, bcc and diamond lattices, the

Impact Files 71

PIZ can be used immediately with the corresponding Target file generated by Spider;
in other words, no azimuthal rotation of the target is required (Rxy = 0.0, represented
as R00 in Tables 6.4 and 6.5).
 Before you begin, you must know the lattice parameter (a) for Cu (= 3.6147 Å) and
compute the parameter d0 defined in Table 6.4 as √a (i.e. d0 = 2.55598 Å). Select the
Impact|New menu item in Spider. A dialog box comes up. With reference to Table
6.4, enter the values shown in Fig. 6.3, then click the Refresh button to see the PIZ
points represented in the Impact file (you should see a triangular region, as in the
figure).

Fig. 6.3. Impact file dialog box that defines the PIZ for for normal projectile incidence
on Cu(110).

Note the following points:

• The No. Impacts ("Number of Impacts") values determine the mesh widths of the
impact points in the x- and y-directions respectively. In this case, the values reflect
the ratio bx(max): by(max). The number of impact points required in the Impact
file depends on the goal of the simulation. For a sputtering simulation, 500-1000
impact points would be typical, whereas for an angle-resolved ion scattering
spectrum simulation, you might need 105 impact points if backscattering is weak.

• The Projectile z0 parameter indicates the starting projectile z-coordinate relative to
the anchor atom. in this case, the projectile z-coordinate will be initialised as zanchor

atom + 4.5 Å.
• Since bx(min) and by(min) are both zero, the first projectile trajectory will start off

directly above the anchor atom (see Eq. 6.2).
• The (x, y) angle parameter refers to the bottom, left angle of the triangle (dotted

region).

Impact Files 72

 Click the OK button and save the file as 'cu110.imp'. It is always wise to check the
dimensions of the PIZ.

• To do this, go to Target|New|Face-centred cubic, and generate a 2-layer Cu(110)
lattice.

• Examine this Target file with the Visualiser tool that is located on the Target
menu.

• Next, select New Imposition File on the menu associated with the Visualiser
window, and load the load the Impact file ‘cu110.imp’ for display.

• You should now see the relationship between the surface symmetry and the PIZ
which you generated, as in Fig. 6.4 (click Zoom + Impose to expand the
Visualiser display).

Fig. 6.4. Primary impact zone (PIZ) for normal projectile incidence on a Cu(110)
surface.

6.7.2. Non-normal projectile incidence on Cu(100) surface: φ =<001>
 If you refer to Table 6.1, you will see that this configuration requires a Target file
which is rotated azimuthally by 45° (Rxy = R45). The reason for this is that the
Cu(100) Target file is created, by default, with <011> edges parallel to the x- and y-
directions. However, we need to match the Target file with a PIZ which has edges
parallel to <001>. [2] We will thus first create the Impact file, then briefly show how
to rotate the Target file.

Fig. 6.4. Impact file dialog box that defines the PIZ for for <001> azimuthal
projectile incidence on Cu(100).

Impact Files 73

The Impact file is created using the inputs shown in Fig. 6.4 (with reference to Table
6.1, using values of a and d0 appropriate to Cu from the previous example).
 The PIZ is a square region. Next use the Target|New|Fcc|(100) command to
generate a Cu(100) Target file, and save it as cu100a.trg. The coordinates in this
Target file must be rotated azimuthally by 45° before the file can be used in
conjunction with the Impact file.
• The first step is to display cu100a.trg using the Target|Visualiser command.
• Enter 45 into the z-axis rotation field in this dialog box (top right – see Fig. 6.5)

and click the following buttons in this order: Test, Reload, Apply. The last
command will allow you to save the rotated file to disk (e.g. as cu100b.trg).

• Before doing so, you may wish to superimpose the PIZ defined in your Impact
file, as explained in the preceding section. If so, click Commands|New Imposition
file file, and select cu100.imp.

• Click the Impose button whenever you need to refresh the display of the PIZ. You
will see that the PIZ reflects the symmetry of the rotated file (i.e. after you click
Test), but not that of the original file (cu100a.trg).

Fig. 6.5. Target file azimuthal rotation specification in the Visualiser tool.

6.7.3. Impact file for fcc (111) surface, normal incidence
 In this case, it is necessary to trim the default PIZ generated by the Impact|New
command to the desired shape (equilateral triangle) using the Visualiser tool. The
difficulty in generating Impact files for the more unfamilar cases is not in using the
tools, but in knowing the crystallography of your surface. It is easy to make mistakes,
so you should always check that the final results are reasonable using Spider's
graphical tools, and by any other means available to you.
 Fig. 6.6 illustrates the goal of the procedure: i.e. a suitable distribution of impact
points for normal projectile incidence on a (111) surface. The surface atoms of
Al(111) form equilateral triangles. In a simulation we direct projectiles into a
symmetry-reduced triangular area. The apexes of this triangle are located at the
positions of atoms in 3 different layers of the (111) surface. Spider does not generate
the symmetry-reduced Impact file directly: it has to be trimmed and aligned according
to the procedures now described.

Impact Files 74

 Fig. 6.6. Shape of the PIZ for a fcc(111) surface. Atoms from the 1st, 2nd and 3rd
layers are represented by white, grey and black symbols respectively.

• Use the following data for Al: lattice const. (a) = 4.0495 Å, nearest neighbour
distance (dNN) = 2.8634 Å.

• Select New on the Impact menu. Name the file (*.IMP) as you like.
• Enter the data shown in Fig. 6.7 into the Impact file dialog box (replace 1.653184

by 3NNd for other fcc crystals).

Fig. 6.7. Impact file dialog box used as first step in construction of the PIZ for for
normal azimuthal projectile incidence on Al(111).

• The number of impact points this data generates is 476. Some of these will be
trimmed off later. You may of course select any number other than 26, according
to your preferences. Choose the same number for both x and y dimensions to
ensure a uniform distribution of points (advisable rather than mandatory).

• Now select the Impact|Visualiser menu command and load the Impact file you
created in the previous steps. You need to reorient and cut the mesh of points in
this file so that they match the dimensions of the PIZ. This involves two
operations.

• Enter 60 for the z-axis rotation (°), and 1.4317 (or dNN/2 for other fcc crystals) for
the maximum y-axis limit. Leave the other limits at their default values. Click the
Test button. This will rotate the displayed mesh by 60 degrees, and clip its edge
above y = 1.4317.

• The Impact file resulting from this operation has 306 impact point coordinates
(compared with 476 originally). If you are satisfied with the test, you can then
click the Reload button, followed by the Apply button, to carry out the same
operation and save the resulting data to disk under a new name.

• Close the Visualiser, then open it again, now loading the new Impact file.
• Enter -30 (minus 30) for the z-axis rotation, and reset the maximum y-axis value

to its default value (1000 Å). Click Test. This will rotate the mesh into the final

Impact Files 75

alignment shown in Fig. 6.6. Finally, click Reload then Apply to save the oriented
Impact file to disk.

• The PIZ covered in the above exercise is only valid for normal primary ion
incidence on a (111) surface. For oblique angles of incidence on a you will need to
use a larger zone, whose dimensions depend on the primary ion azimuthal
direction.

6.7.4. Impact files for multiple impact simulations
 The coordinates in the Impact file are generated systematically, which is generally
not suitable for simulating random projectile impacts in a multiple impact simulation.
For this purpose, Spider provides the Impact|Randomise order menu command
which will randomly re-order the coordinates in an Impact file. You can also change
the order of an Impact file by loading it into a spreadsheet, adding a column of
random numbers, and performing a sort operation using the random numbers as keys.

References and notes for Chapter 6

[1] D.E. Harrison, C.E. Carlston, G.D. Magnuson, Phys. Rev. 139 (1965) A737.
[2] Of course, it is also possible to rotate the PIZ instead of the target, but we choose
not to for this example.

7. THE INELASTIC FILE

7.1. Introduction

 Energetic particles can lose energy through excitation of valence or core electrons,
or lattice vibrations. These energy losses are termed inelastic losses [1]. The term
electronic stopping is also used to describe this type of energy loss. The parameters
for loss processes of this type are specified in the Inelastic file. The Inelastic file is an
optional part of a simulation project, in the sense that you only have to include it if
you plan to include non-elastic effects in your simulation. A number of other non-
elastic energy transfer effects can also be introduced into the simulation via
parameters that are set in the Inelastic file: temperature control (heating and
cooling), image potential effects, and lattice site ‘springs’.

Fig. 7.1. Inelastic file input dialog box (page 1 of 2).

 Kalypso permits the modelling of electronic stopping effects via a combination of
three distinct models: (a) the Lindhard-Schiott-Scharff (LSS) model; (b) the Oen-
Robinson (OR) model; (c) the Shapiro-Tombrello (ST) model. The parameters for
these effects are specified in the Inelastic file. These energy transfer models can be
included singly, not at all, or in any weighted combination according to the preference
of the user. The simulation of inelastic effects at keV energies usually has to be done
on an ad hoc basis because of the general theoretical uncertainty surrounding the
mechanisms of inelastic loss. For example, an equipartition (0.5:0.5 weighting) of
LSS and OR losses is often used. Eckstein’s book [2] gives a good introduction to the
LSS and OR models.
 Fig. 7.1 shows the first of two pages of the Inelastic file dialog box in Spider that is
used to input the parameters for the electronic stopping models. The LSS model
requires the specification of a set of parameters for every kind of atom (i.e. of distinct

Inelastic Files 77

atomic number, Z1) for which inelastic losses are to be tracked. For instance, 2 sets of
parameters are required for the Ar → Cu(100) system (for Ar and Cu particles
respectively). The OR and ST models require a set of parameters for each pair of
collision partners. For example, 2 sets of parameters are required for the Ar →
Cu(100) system, representing the pairs Ar-Cu and Cu-Cu respectively. For all models,
incomplete sets of parameters are allowed, but this will lead to neglect of the
corresponding energy loss channel (for example, if you omit parameters for the Cu-
Cu interaction).
 The implementation of each of the electronic stopping models in Kalypso takes into
account the fact that different individual or pairs of atoms are associated with
different inelastic loss parameters. This is achieved by ‘tagging’ each set of
parameters with a number, which is used like an index or hashing function at runtime
to look up the appropriate set of parameters.
 For the LSS model, which represents electronic stopping of an atom by a continuum
target material, the tag is the atomic number of the atom which is being stopped.
 For the OR and ST models, which predict the inelastic energy loss in a binary
collision event, the tag is the product of the atomic numbers of the participating
atoms, i.e. 1 2Z Z . The tag for an Ar-Ar collision event is thus 324, while for an Ar-Cu
event it is 522. Up to 10 different tags may be placed in the same Inelastic file.
 For two-dimensional ISS simulations, the only electronic stopping model than can
be used is the LSS model (the OR and ST models will produce three-dimensional
motion). (Cooling effects can also be applied, but these are not likely to be useful.)

7.2. Lindhard-Schiott-Scharff (LSS) model

7.2.1. Theory

 The LSS model asserts that the electronic energy loss (dE) associated with the
movement dx of a particle (atomic number Z1) in a medium (atomic number Z2) is
proportional to the particle velocity (v) [3,4]:

7 / 62
1 2

2 / 3 2 / 3 3 / 2
0 1 2

8 (). /
4 ()

Z ZdE eN a v vB Bdx Z Z
π

πε
− =

+
 (7.1)

where N is the atomic density of the medium (atoms m -3), aB is the Bohr radius, and
vB is the Bohr velocity (= c/137). Equation 8.1 can be written as:

 − =
dE
dx

K LSS v(). (7.2)

where K(LSS) (eV fs Å-2) is a constant that depends on Z1 and Z2. The LSS model
thus views the target as a viscous medium, and describes a continuous, friction-like,
electronic energy loss process that arises from passage through this medium. The LSS
energy loss algorithm does not conserve linear or angular momentum.
 To illustrate a rough calculation based on the LSS model: consider an Ar atom with
energy 5 keV (velocity v ~ 1.6 Å fs-1) moving a distance ∆l = 1 Å in a target that is
characterised by a K(LSS) value of ~10 eV fs Å-2 (typical). Then the average inelastic
energy loss is predicted to be ∆E ~ K(LSS)×∆l×v = 16 eV.

Inelastic Files 78

 Spider allows the definition of K(LSS) given in Eqs. 7.1 and 7.2. to be scaled by an
arbitrary factor (e.g. a factor of 0.5 is appropriate if you plan to use an equipartition of
inelastic losses between the LSS and OR models). dE is calculated at each timestep,
once an atom's displacement, dx, has been computed for that timestep.
 For a mixed target material (e.g., a Cu-Ni alloy), the correct choice of the Z2
parameter in Eq. 7.1 requires some careful thought, that will be guided by the user's
physical intuition about the correct 'effective' atomic number of the target. For
example, use Z2 = 28 if it is a Ni0.95Cu0.05 alloy.

7.2.2. LSS parameters

 For each atom type that will be affected by LSS energy losses in your simulation,
you must specify a set of the following parameters (use the Add Atom and Clear
Atom buttons to add/remove items from the input list):

1. Z1: the atomic number of the moving projectile or target atom which is being
stopped by your target (this value is used as a tag only).

2. K(LSS): a coefficient (units: eV fs Å-2) which reflects the stopping power of the
target matter for an atom with atomic number Z1. K depends on several other
parameters, and can be computed most easily by using the Compute K(LSS),
K(OR) gadget in the input dialog box.

3. Scale: this is a value by which K(LSS) is scaled at runtime in the simulation (if
this value of zero, .

4. Velocity threshold: this parameter sets a velocity threshold (in m s-1) for the
stopped particle below which LSS energy losses are ignored, i.e. losses are not
calculated for slowly moving lattice atoms.

5. Location of surface: LSS losses will be applied to a particle only if its z-
coordinate is below the value specified here (which should reflect the location of
the boundary between the surface electron density and the vacuum, not the nuclear
locations - i.e. about half of an interlayer distance). This parameter should be less
than the cut-off distance.

7.3. Oen-Robinson (OR) Model

7.3.1. Theory

 The OR model estimates the energy loss (∆E) arising from a single isolated binary
atomic collision in which the distance of closest approach (apsidal distance) is R0

 [5]:

0

7 / 62 2
(/)1 2

0 2 / 3 2 / 3 3 / 2
0 1 2

(/)8 (). /
4 2()

c a R
B

Z Ze c aE a v v e
Z Z

π
πε π

−−∆ =
+

 (7.3)

 In Eq. 7.3, c is a constant term (normally c = 0.3, but this can be specified arbitrarily
in Spider), and a is the uncorrected Moliere-Lindhard screening length. Z1 is the
atomic number of the 'projectile' species, while Z2 is the atomic number of the 'target'
atom species. (The roles of the two atoms involved in the collision can be
symmetrized in Spider, if the user so desires.) As implemented in Kalypso, the term v
in Eq. 8.3 represents the relative velocity (|v1 - v2|) of the collision partners at 'infinite
separation', which is computed as follows:

Inelastic Files 79

v v t V r t= +
1
2

2µ. () (()) (7.4)

where v(t) and V(r(t)) respectively represent the magnitude of the relative velocity at
some time t, and the potential energy at the same time (the t used by Kalypso
corresponds to the apsidal point); µ is the reduced mass of the system.
 The OR model postulates the occurrence of one (large) energy loss event per close
encounter, in contrast to the LSS model which involves (small) energy losses on each
timestep for each atom. The connection between Eqs. 7.1 and 7.3 is brought out if the
latter is written in the form:

7 / 62
1 2

2 / 3 2 / 3 3 / 2
0 1 2

8 () . . /
4 ()OR B OR B

Z ZeE a F v v
Z Z

π
πε

−∆ =
+

 (7.5)

(). .OR ORE K OR F v−∆ = (7.6)

where FOR is the 'Oen-Robinson factor' used by Spider and K(OR) is a constant for a
given collision pair. Note the absence of any atomic density (N) term in equations 7.3
and 7.5. K(OR) has different physical dimensions from K(LSS) defined in the
preceding section. A scale factor may optionally be specified in Spider to adjust the
magnitude of the energy loss described by Eqs. 7.3, 7.5 and 7.6.
 In contrast to the LSS model, the OR model has the character of a discrete energy
loss, because it associates a single loss event with each close encounter. One problem
with implementing the OR model is in finding a technique to deal with collision
events that cannot be approximated as binary encounters. Kalypso circumvents this
problem, perhaps inelegantly, by requiring the user to impose (heuristically) an upper
limit RMAX on R0 (the distance of closest approach). Thus, the OR energy loss is not
computed unless the colliding atoms approach within a distance RMAX. Typically,
RMAX would be on the order of 1-2 Å. (The author normally sets RMAX to about half
the lattice nearest-neighbour distance.) The OR energy loss algorithm conserves linear
momentum, but not angular momentum.
 The manner in which the computed OR energy loss (∆E) is implemented in Kalypso
is similar to the method used for the ST model described in the next section.

7.3.2. OR parameters

The following parameters must be entered for each atomic collision pair that will be
affected by OR energy losses in your simulation (use the Add Pair and Clear Pair
buttons to add/remove items from the input list):

1. Z1*Z2: this number is the product of the atomic numbers of the pair of atoms
which are involved in a binary collision (this value is used as a tag only).

2. K(OR): a coefficient (units: eV Å2) that reflects the energy loss or electronic
stopping effect of the binary collision (see previous section). K depends on several
other parameters, and can be computed most easily by using the Compute
K(LSS), K(OR) gadget in the input dialog box.

3. Maximum apsidal distance: this parameter (maximum value 3 Å) sets a
maximum apsidal distance (distance of closest approach) above which OR energy

Inelastic Files 80

losses are ignored, i.e. losses will only be calculated for 'collisions' which involve
encounters closer than this value. The parameter should be chosen such that
F(OR), when evaluated at this separation, makes a negligible contribution to the
total stopping electronic stopping. The best way to set the parameter is by trial and
error (observing the reported OR loss from trial simulations). For 5 keV Ar-Cu, a
= 0.116 A, Rmin at zero impact parameter is 0.36 A, so with c = 0.3, the
exponential term in F(OR) is 0.39. For Rmin = 1.0 A, the same term decreases to
0.08, and for Rmin = 1.3, it has a value of 0.03. The latter is not negligible, because
the elementary losses have to be weighted by cross-section factors which vary
roughly as (Rmin)2. In general, Rmin should be chosen to be as small as possible,
because large values may impact on the speed of the calculations.

7.4. Shapiro-Tombrello (ST) model

7.4.1. Theory

 The ST model attempts to incorporate collision-induced core electron promotion
effects into a classical dynamical scattering model. The main drawback of the model
is the uncertainty surrounding the correct choice of parameters (p, RC, ∆E: see below).
A brief summary of the model as implemented in Kalypso will now be given. For a
deeper review of the physics involved, the reader is referred to the original literature
[6].
 The idea underlying the ST model is that an inelastic (inner-shell electron
promotion) transition can occur if a colliding pair of atoms approaches closer than
some critical distance (RC). This energy loss may involve up to NMAX electrons from
the inner shell. For each electron promoted, an amount of inelastic energy ∆E is lost
(the maximum loss possible is thus ∆E*NMAX). The number of electrons considered
for promotion (N) depends on the relative radial kinetic energy (KR = ½µvR

2)
available to the collision pair at the moment when RC is passed; i.e., N must be
consistent with the condition: KR ≥ N∆E. Finally, for each of the N electrons, a
probability factor (p) is compared with a random number to determine whether or not
that electron is actually promoted (for instance, if p = 0.5, only ~N/2 electrons will be
promoted on average).
 From the foregoing, we see that the total energy loss (∆ET) computed for a
particular collision configuration satisfies the conditions:

(with = 1, 2, 3, ...)
T

T

E N E
E k E k N

∆ ≤ ∆
∆ = ∆

 (7.7)

(the equality applies if p = 1, in which case ∆ET = N∆E), while the average energy
loss over many such collision configurations is:

TE Np E∆ = ∆ (7.8).

Inelastic Files 81

 The inelastic energy loss corrections for both the ST and OR models are applied at
the apsis of the collision.1 At the apsis, the radial kinetic energy is zero. The energy
loss correction (∆ET) is applied by reducing the potential energy of the interacting
atoms: this entails translating them instantaneously along the line joining their centres
by a distance ∆r, which changes the potential energy by an amount ∆V, such that ∆V
=∆ET. The translation distance ∆r was originally estimated by ST via the relation: ∆r
= ∆V/F(r), where F(r) is the force at the apsidal point. This estimate would be exact if
the potential declined linearly with separation (r).

Fig. 7.2. Inelastic file input dialog box (page 2 of 2).

 Kalypso uses a similar procedure, but applies it twice (both at the apsidal point, and
at the first estimated displacement). In addition, the first application of the formula
uses a heuristic correction factor of 1.2 to compensate for the rapid decline of the
force as r is increased. The procedure used by Kalypso typically computes the correct
displacement ∆r to within ~10-4 Å or better, but such is the nature of the repulsive
potential that errors of this magnitude do lead to errors at the ~1 eV level in the
energy book-keeping routines. For this reason, it is important that you initially test the
parameters of your simulation (in particular, the timestep) with the ST and OR loss
effects disabled. This will give a true estimate of the integration error. Subsequent
errors in energy conservation can then be attributed to inelastic loss book-keeping
errors. The ST energy loss algorithm conserves linear momentum, but not angular
momentum.

1 In practice, at the first timestep after the apsis. It could be argued that the ST correction should be
applied at the moment that RC is crossed, rather than at the apsis. However, this correction would make
very little difference to the collision dynamics (and no difference at all for direct impact collisions).

Inelastic Files 82

7.4.2. ST parameters

 The following parameters must be entered for each atomic collision pair that will be
affected by ST energy losses in your simulation (use the Add Pair and Clear Pair
buttons to add/remove items from the input list):

1. Z1*Z2: this number is the product of the atomic numbers of the pair of atoms
which is involved in a binary collision (this value is used as a tag only).

2. Rcrit: the critical distance (in Å) for excitation of the level-crossing transition.
3. dE: this is the inelastic energy loss (in eV) resulting from the transition (∆E in Eq.

7.8).
4. Prob: the probability of the transition (p in eq. 7.8).
5. Nmax: the maximum number of electrons which can be promoted in the transition.

7.5. Temperature control

 Kalypso allows the target to be cooled or heated towards, or maintained at, a
specified temperature (T). This capability may be useful for certain kinds of
simulations, especially those involving low-energy bombardment. The user is
required to specify the desired temperature (T0), the cooling or heating period (i.e. a
time constant) (τ), and the time interval (start and end) of the period during which the
temperature corrections are to be applied. These data are entered in the Inelastic file
dialog box shown in Fig. 7.2. The equation of motion of each particle affected by the
temperature correction is written as [7]:

m
d
dt

F
m

T T
d
dt

2

2 02
1

r
r

r
= − −() (/)

τ
 (7.9)

where m is the mass of the particle, and F(r) is the usual force due to the potential. For
T > T0, kinetic energy is removed from the system, and vice versa. The instantaneous
temperature is computed from the mean particle kinetic energies via: <KE> = 3/2kT.
 If the instantaneous lattice temperature is absolute zero (T = 0), Eq. (7.9) cannot be
applied, and the correction is skipped for that timestep. (This situation may arise, for
example, during the first iteration of a simulation based on a static lattice.) You will
therefore never see the current temperature reported as 0 K.
 If you want to apply cooling or heating effects only to a subset of the atoms in the
target (e.g. a basal layer with constant temperature that acts as a thermal sink), you
can set the ofNoCool option flag (see section 3.4 in Chapter 3) for the particles which
are to be ignored (a) when calculating the current temperature, and (b) when applying
the temperature correction, as in Eq. 7.9. Regardless of their flag settings, only
particles in the lattice region are considered when evaluating the temperature and
applying the correction. Other particles (those that have left the target) are ignored.
 The temperature control algorithm, Eq. 7.9, does not conserve energy or
momentum. It will not perform well if a large amount of energy is leaving the system
through sputtering or if hard energetic collisions are taking place, since these tend to
absorb and release kinetic energy sporadically. In cases such as these, you can expect
temperature overshooting and oscillations. However, for an isolated system near
equilibrium, the temperature fluctuation is on the order of 1 K.

Inelastic Files 83

7.6. Image potential effects

 The model implemented in Kalypso for the image potential, V(z), is one of several
found in the literature [8]:

 (7.10)

(see [9] for a variation on this equation). The parameters z0 and Vmin are specified by
the user. The image potential is only applied to particles that have the
ofUseImagePotential flag (= 1) set (see section 3.4 in Chapter 3). If you forget to
set this flag, a warning message will be issued.
 The most likely reason for using an image potential is to modify the projectile
motion. In this case, you should open up the Projectile file and add 1 to the flags field,
as shown below:

0.0 0.0 0.0 2 4.0026 0 98195.04398 He
[200 eV He Projectile file as generated by Spider]

0.0 0.0 0.0 2 4.0026 1 98195.04398 He
[200 eV He Projectile file with image potential flag set]

 See the \examples\projects\iss\200 eV He-Cu(110)-image potl example in
the Kalypso distribution for a complete project that employs the image potential.

7.7. Lattice site springs

 In this model a target atom is attached to its lattice site by a ‘spring’ whose force
constant is specified by the user [10]. Thus, the atom will tend to return to its lattice
site if it suffers a displacement. In order to be affected by this option, the particle must
have its ofSpungAtom flag set (section 3.4 of Chapter 3). The object of using such a
spring is to improve the stability of a target lattice at its edges, e.g. to prevent
reconstruction.
 An option is provided to ‘snap’ (disable) the springs for atoms while the following
condition is fulfilled for any Cartesian dimension (x, y, or z axis): the lattice site is
located between the atom’s current position and the Target file origin, and the
atom is moving back towards the lattice site with a speed that exceeds the
specified threshold value (e.g. based on lattice temperature). For example, suppose
the lattice site was located at z = 20 Å, and the atom was located at z = 21 Å. Then if
vz was negative with a magnitude above the threshold value, the spring would be
snapped (but not otherwise). This prevents a fast atom slamming into the lattice under
the pull of its spring. Energy is not conserved when a spring is snapped.

7.8. Compute K(LSS), K(OR) tool

 This tool, which is illustrated in Fig. 7.1 (bottom left), computes the ’K’ parameters
that are needed as inputs to the LSS and OR inelastic loss models. The two models
require different input parameters, with different physical dimensions. In particular,

Inelastic Files 84

the LSS model treats the target as an homogenous medium, so you may have to define
the target atomic number, Z2, as some effective or non-integral average value if your
target is inhomogenous (e.g. an alloy).
 The formulae used to calculate the LSS and OR parameters respectively are
discussed in preceding sections (7.2, 7.3). The term F(OR) represents the ‘Oen-
Robinson factor’, which is a decaying exponential function of Rmin, the collision
distance of closest approach (apsidal distance).
 The LSS asymmetry between (moving) projectile and (stationary) target atom is
also reflected in the original formulation of the OR model, where the Z1 and Z2 terms
appear raised to different powers. The implementation used here allows you to
optionally "permute" Z1 and Z2, and thereby remove the asymmetry (an average value
of K is then computed by swapping the roles of Z1 and Z2).
 To use the tool, select an energy loss model (LSS or OR), then click on the
Evaluate button to compute a K(LSS) or K(OR) value for your simulation. This value
is shown in the grey edit box. It can be copied (Ctrl-C) and pasted (Ctrl-V) directly
into one of the input cells on the relevant (LSS or OR) tab sheet.

7.9. Inelastic data file

 An output option (selected in pane 1 of the Run file dialog box: ‘Output log of
inelastic events’) in Kalypso is to produce the so-called inelastic data file (*.dat). This
file records information about inelastic energy losses associated with the LSS, OR and
ST models, including discrete energy loss events for the OR and ST models. Most
users will not be interested in this file, so you can usually omit this option.
 The inelastic (output) data file is ascii file consisting of 1 line per recorded OR or
ST inelastic event with the following format (integer fields in bold font):

RN, i, j, dE, rlast, rcurr, zapsis, ti, Erel, alt, phi, bx, by, mod, Ne

where:
1. RN = run number (rn) (1, 2, 3 ...): the simulation run in which the event occurred
2. i, j = the row numbers (rw) which label the atoms involved (rw = 1 for a single

projectile atom, and 2, 3... for target atoms)
3. dE = inelastic energy loss (eV)
4. rlast = separation of atoms i and j before the inelastic algorithm was applied (in

Å); this is an estimate of the distance of closest approach in the collision (apsidal
distance)

5. rcurr = separation of atoms i and j after the inelastic algorithm was applied (in Å);
the physical meaning is not well-defined – see above for explanation, or read the
literature on the ST algorithm.

6. zapsis = the z-coordinate (i.e. depth) at which the inelastic event took place (in Å)
7. ti: time elapsed at the moment of the inelastic event (fs)
8. Erel = relative energy of the collision responsible for the inelastic event (eV) (i.e.

energy of the two-particle system, not including the kinetic energy associated with
the motion of the centre-of-mass; see a mechanics textbook for explanation.

9. alt, phi = altitudinal (ϕ) and azimuthal (φ) angles of incidence (º) for the current
run

10. bx, by = impact file (x, y) coordinates for the current run
11. mod = a label that specifies the inelastic model (= 0 for Oen-Robinson, = 1 for

Shapiro-Tombrello)

Inelastic Files 85

12. Ne = Number of electrons promoted (only Shapiro-Tombrello model has non-zero
values)

 No special support is provided for further analysis of inelastic data files. If you need
to analyse them, you will have to write your own computer routines. A non-standard
application of this file is to generate a list of binary collisions that took place during
the simulation, even when inelastic effects are not incorporated in the simulation. To
do this, specify the use of the OR model, but set a very small (but non-zero) number
for the OR k parameter (e.g. k = 10-12 eV Å2) in the Inelastic file. This will result in
negligible inelastic losses1, but will still lead to the generation of the required
information for any binary collsion whose apsidal distance falls below the maximum
value specified for application of the OR model. See the example project: ion-
scattering/4 keV F-NaCl(100).

References for Chapter 7

[1] M. Aono and R, Souda, Nucl. Instr. Meth. B27 (1987) 55-64.
[2] Wolfgang Eckstein, Computer Simulation of Ion-Solid Interactions, Springer-
Verlag, Berlin, 1991.
[3] J. Lindhard, M. Scharff and H.E. Schiøtt, K. Dan. Vidensk. Selsk. Mat. Fys.
Medd. 33, 14 (1966); J. Lindhard and M. Scharff, Phys. Rev. 124, 128 (1961).
[4] I.S. Tilinin, Phys. Rev. A 51 (1995) 3058.
[5] O.S. Oen and M.T. Robinson, Nucl. Instr. and Meth. 132 (1976) 647.
[6] M.H. Shapiro and T.A. Tombrello, Nuclear Instr. Meth. B 90 (1990) 473; M.H.
Shapiro and T.A. Tombrello, Nuclear Instr. Meth. B 94 (1994) 186; M.H. Shapiro and
T.A. Tombrello, Nuclear Instr. Meth. B 102 (1995) 277.
[7] R. Smith, M. Jakas. D. Ashworth, B. Oven, M. Bowyer, I. Chakarov and R. Webb,
Atomic and Ion Collisions in Solids and at Surfaces, Cambridge University Press,
1997.
[8] B.H. Cooper, C.A. DiRubio, G.A. Kimmel, R.L. McEachern, Nucl. Instr. Meth. B
64 (1992) 49.
[9] Z. Mišković, J. Vukani, T.E. Madey, Surf. Sci. 141 (1984) 285.
[10] This idea was borrowed from the Camelion simulation package, which can be
obtained from:
http://www.tm.tudelft.nl/secties/fcm/matphy/software/software.htm.

1 In practice, a particle position error of ~10-4 Å arises from this method of tracking apsidal distances.

8. KALYPSO

8.1. Introduction

 Kalypso is the simulation engine of the Kalypso package. The program takes its
instructions from the project files created using Spider, as described in previous
chapters. Fig. 8.1 shows the appearance of the main window of Kalypso, and indicates
the toolbar speed-button functions.

Fig. 8.1. Screenshot of Kalypso main window, showing a loaded project in the Project
Files pane.

8.2. Simulation options

 Before attempting to run a simulation, you should always check that the program
options meet your needs. Click the Options command on the File menu. The dialog
box shown in Fig. 8.2 comes up. Novices can use the settings shown in Fig. 8.2,
except for item 4 below, which can be chosen according to need.

1. Resume a previous simulation project: the dynamics file (*.snk) specified in the
project files dialog box (see later) must exist in order to use this option. The
simulation project will be resumed at the start of the run prior to the final run
listed in that file. For example, if the last output written to the file was at run 100,
the project will resume at the start of run 100 (i.e. previous results for run 100 are
discarded, and run 100 is re-executed). This option cannot be used for a
multiple-impact simulation. If your dynamics file is huge (~6 GB), this option
may not work (see footnote to section 1.5 for explanation), in which case you have
to split up your project..

Using Kalypso 87

2. Append output to log file: output will be appended to an existing log file, rather
than overwriting it. (The Log file is a copy of the screen output.)

Fig. 8.2. Simulation options dialog box for Kalypso.

3. Enable run skipping button: the button so enabled will enable you to abort runs
manually without aborting the entire simulation (useful for debugging).

4. Screen reporting: screen reporting and/or energy calculations can slow down
some kinds of simulations. Various levels of verbosity can be set, ranging from no
output to step-by-step output. At any level of verbosity, you can check progress of
the simulation (number of runs executed, elapsed time) by clicking the Pause
button on the Kalypso main window. Use the Silent setting for running fast
simulations (i.e. those that involve few particles), and Minimal or Moderate for
slower simulations (e.g. sputtering simulations). The Verbose setting is slow, and
should only be used for debugging.

5. Start at Impact file line no. #: This has value 1 by default, meaning that the first
run of the simulation will be based on line 1 of the Impact file. This option allows
you to skip a number of lines at the top of the Impact file. If you are resuming a
simulation, the Impact file line number will automatically be set to the correct
value.

6. Unique ID: the ui field of the output (dynamics) file will be iterated from the
starting value entered here (leave the value at 1 unless you have reason to do
otherwise). If you are resuming a simulation, the ui field will automatically be
set to the value following that in the current output file.

7. Lattice atom: if = 0, this field has no effect. Otherwise, energy information will
be returned for the specified lattice (target) atom (useful for debugging).1 The
index entered refers to the row that the atom’s coordinates occupy in the Target
file (if = 1, it refers to the anchor atom).

1 The energy information is illustrated by the following output: “Atom[n] = 2: E[n](eV) = -3.0892;

|F[n]|(eV/Å) = 0.1419; (x, y, z) Å = (0, 0, 0)”. The binding energy of atom #2 in the system is –3.089 eV
while the magnitude of the force experienced by the atom is 0.142 eV Å-1. In this system, the projectile
consists of 1 Ar atom, so atom #2, located at the origin, is the first target atom. This atom is a surface
atom, so its binding energy E[n] differs from the value for an atom in the bulk (i.e. the cohesive
energy). The atom is also unrelaxed, so the force acting on it is significant.

Using Kalypso 88

8. Load these options on start-up: the options are stored in the file Kalypso.cfg
and can be loaded automatically when you start Kalypso, if you wish.

8.3. Running a simulation project

8.3.1. Single simulation project
 In order to run a simulation project, select the menu command File|Simulation
Project. this brings up the simulation project files dialog box shown in Fig. 8.3. You
must specify the names of the (existing) input files that your project will use, and the
names of output files that will be created (or overwritten). Then click Run to start the
simulation, or Cancel to close the dialog box.
 When the simulation is running you can pause it temporarily, or abort it
prematurely, using the speed-buttons illustrated in Fig. 8.1. If you abort a batch
project, you will be asked whether you wish to continue with the next batch job or
abort all jobs. The step button aborts the current run of a simulation project, and
moves to the next run. This is useful mainly for debugging, so the button is disabled
by default (you can enable it in the simulation options dialog box, Fig. 8.2).

8.3.2. Batch simulation project
 In order to run a batch simulation project, select the menu command
File|BatchProject. this brings up a file input dialog box in which you can select the
batch definition file for your batch project. Click Open to start the processing of the
batch job.

Fig. 8.3. Kalypso simulation project files dialog box. The input file names shown here
have similar stems, but this is not required. For some projects, certain input files may
not be required and can be omitted (this should be indicated by checking the
appropriate box(es). The Inelastic events file is almost never required. No Inelastic
file is required if the project does not include inelastic effects, and no Projectile or
Impact files are required if the project does not include a projectile.

Using Kalypso 89

8.3.3. Kalypso screen output
 The output shown on screen in the Log pane is the same as that saved to the Log
file. The following project, which involves Ni atoms recoiling in a Ni matrix, serves
as an example (comments are indicated after the // symbols):

KALYPSO 2.0
 3/6/2004 10:07:35 PM.
 Single impact simulation with FREE boundaries. // type of simulation
 C:_Kalypso package\examples\projects\grid\Ni(100).prj
 C:_Kalypso package\examples\projects\grid\Ni(100).trg
 C:_Kalypso package\examples\projects\grid\Ni(100).run
 C:_Kalypso package\examples\projects\grid\Ni(100).mdl
 C:_Kalypso package\examples\projects\grid\Ni(100).imp
 // no Inelastic file in project
 C:_Kalypso package\examples\projects\grid\dynamics.snk
 Output: projectile atom #1 only. // type of output chosen

 No. of projectile atoms: 1.
 No. of projectile atom types: 1.
 Atomic No: (0)28 // Atom type 0 [Ni] has atomic number 28
 Mass: (0)58.934351 // Atom type 0 has mass 58.934351
 Projectile mode: mixed (impinging/recoiling atom). // projectile mode
 Altitudinal angle = -0.001°. [Random values from 0.001 to 90°.]
 Azimuthal angle = -360°. [Random values from 0.0 to 360°.]
 E(in) = 215.799999942939 eV [projectile 1]. // i.e. E = 215.8 eV

 No. of target atoms: 1330.
 No. of target atom types: 1.
 Atomic No: (0)28
 Mass: (0)58.71
 Target at 0 K. // specified target vibrational temperature

 Projectile-target potential: TB.
 Attractive potential: TB.

 Timestep = 0.22 fs (fixed).
 Termination: 0 fs (minimum) to 70 fs (maximum).
 Z(min) = -17.5 Å.
 Z(max) = 0.2 Å.
 Neighbour search method: linked cell (cell = 5 Å).
 R(switch) = 3.53 Å.
 R(cut-off) = 4.3 Å.

// Energy information for the 10th atom in the Target file (or atom with rw =11 in the
// simulation); E is the cohesive energy, F is the net force on the atom located at //
// (x, y, z) [calculations are only meaningful if the atom is in a bulk lattice site]

Atom[n] = 11: E[n](eV) = -3.51332415448804; |F[n]|(eV/Å) = 0.151398876981056; (x, y,
z) Å = (12.45922, -2.49184, 0).

Run 1 begins...
 Energy = -5274.74521454 eV. // total system energy

// the following items are output at the start and end of the simulation when it is
run with Moderate verbosity

// run number, current step, time elapsed, timestep and system energy
run step time(fs) timestep(fs) energy(eV)
1 0 0.000E+0000 2.200E-0001 -5.2747452E+0003 // total energy at start of run 1
1 319 7.018E+0001 2.200E-0001 -5.2747471E+0003 // total energy at end of run 1

// KE = kinetic energy, PE = potential energy, KE(fastest) = KE of fastest atom
KE(eV) PE(eV) KE(fastest)(eV) fastest
2.1580000E+0002 -5.4905452E+0003 2.1580000E+0002 1 // atom #1 is fastest
1.4004116E+0002 -5.4147883E+0003 5.7970996E-0001 1

// range refers to the neighbour list range, Px, Py, Pz to momentum components
range(A) np Px(kgm/s) Py(kgm/s) Pz(kgm/s)
 4.826E+0000 41 6.1840748E-0022 -2.3542854E-0021 -9.1766920E-0022
 4.826E+0000 43 6.1840748E-0022 -2.3542854E-0021 -9.1766920E-0022

Using Kalypso 90

// angular momentum components in units of
Jx(hbar) Jy(hbar) Jz(hbar)
-1.4650177E+0004 -3.0488148E+0003 -2.0508471E+0003
-1.4650177E+0004 -3.0488148E+0003 -2.0508471E+0003

Run 1 ends.
 Energy = -5274.74711796 eV. // system energy at termination

 // energy conservation error (leak), with average and maximum values over N runs
 Energy leak =-0.00190342 eV (average = 0.001903 eV [3.42E-0005%], max.= 0.001903 eV).
 3/6/2004 10:07:38 PM.
 Execution time = 3 s.
 Status: OK.

 Some points to bear in mind are:

1. Energy conservation should first be checked with all inelastic effects disabled (i.e.
omit the Inelastic file from your project).

2. Kalypso attempts to track inelastic losses associated with the LSS, OR, ST and
lattice springs models (and is reasonably successful for the LSS and lattice springs
models). Nevertheless, both ST and OR models produce significant energy
leakages (a few eV). These arise when the atoms are shifted by an amount dr at
the apsis of the collision. The calculations take into account the potential energy
change due to this shift for the ZBL potential in the binary collision, but not the
potential energy change due to interactions with other atoms in the system. The
problem increases as Rc (critical distance) increases. Note: if spring-snapping is
enabled, the energy loss tracking logic will no longer work and item 3 below will
apply to this model.

3. Kalypso does not attempt to track energy losses associated with the temperature
control or image potential models. Energy lost through these processes will show
up as (usually large) energy leaks (i.e. inelastic energy losses). This is nothing to
be concerned about. The purpose of cooling, in particular, is to extract energy
from the system.

4. The verbose screen reporting mode reports the energy etc. after every timestep,
while at the other extreme, the silent mode never calculates or reports it. Do not
use the verbose mode for serious simulations (it is too slow, and is useful mainly
for debugging).

5. The OR and ST inelastic energy loss algorithms are quite time consuming and can
increase running time by 5-10%. Use the faster LSS algorithm whenever possible
for electronic stopping.

8.3.4. Kalypso user interface
 As shown in Fig. 8.1, the Kalypso main window has speed-buttons that allow a
running simulation to be paused, aborted or stepped. Another speed-button on the
same toolbar opens the Visualiser window (Fig. 8.4). This displays the running
simulation in a variety of views and formats.
 Visualisation of the simulation is a slow process, so be sure to close the window
during serious calculations (when the window is closed, the visualisation
computations are not performed). Information about the visualisation options are
available from hints that appear when the mouse cursor hovers over a button, edit box
or other user input screen object.

Using Kalypso 91

Fig. 8.4. Kalypso Visualiser window showing a Ni lattice that is disrupted by a fast
recoiling Ni atom. Left: side view of lattice. Right: view from above lattice.

8.3.5. Implementation notes
 Kalypso writes its output in buffered chunks that consist (in version 2) of 20,000
records (1.12 MB). The purpose of buffering is to avoid possible wear and tear on the
hard disk. If a simulation fails suddenly (e.g. power cut) you will lose all data that are
currently stored in the buffer. Dynamics file data that have already been written to
disk will be retained, but almost certainly data from the most recent run will be
incomplete, so you should filter it out using Winnow, before attempting to restart the
simulation. If you get an error message when filtering such a file with Winnow, it
means that the last record written to disk is corrupt. However, the filtered data (that
exclude this record) should be useable.
 Floating point output data are stored as single precision numbers, but calculations
are carried out using double precision (to reduce disk storage).
 If a run is skipped, or a simulation is aborted, the corresponding output data will still
be written to disk (as if the run or simulation had terminated normally), the only
difference being that the data are written at a premature time. The program logic for
each run is:

Repeat

 DoNextTimestep

Until (Termination or aborted)

WriteOutput

9. WINNOW

9.1. Introduction

 The Winnow program is used to process the output dynamics files (*.SNK) produced
by Kalypso. Processing might typically involve extracting average values for state
variables over a number of collision configurations (e.g. sputter coefficients,
scattering cross-sections), or it might involve creating trajectory plots destined for
graphical representation. This chapter describes the data processing capabilities of
Winnow.
 Dynamical variables information characterising your system was written to a
dynamics file when you ran Kalypso. The dynamics file captures the following
dynamical variables and other information (section 4.2.5):

ti, time elapsed since the start of the simulation run;
rw (row number), a particle index that is based upon the position of the
particle in the projectile and Target files;
rn (run number), a run index indicating to which run the data refer;
ui (unique identifier), another index that is incremented whenever the output
routine of the program is called;
rx, ry, rz, vx, vy, vz: particle position and velocity components;
ms: particle mass;
fl: particle options variable (flags) at time of output;
bx, by: these ‘tag fields’ contain either the projectile impact parameter, or the
projectile incident angles (see discussion below).

 A dynamics file will generally contain information from more than one run
(typically 102-106 runs). The structure of the file is represented in the following
diagram (where each line represents one dynamical variables record; the meaning of
the rn and rw parameters is also illustrated:

 ------ atom 1, run 1 (projectile: rw = 1)
 ------ atom 2, run 1 (1st target atom: rw = 2)
 ------ atom 3, run 1 (2nd target atom: rw = 3)

 ------ atom N, run 1 (last target atom: rw = N)
 ------ atom 1, run 2
 ------ atom 2, run 2

 ------ atom N, run 2
 ------ atom 1, run 3
 ------ atom 2, run 3

 [.. and so on, down to the last atom of the last run]

 Information from this file can now be extracted by Winnow according to your
requirements. There are two steps to this process:

1. Filter out all of the irrelevant records from your dynamics file. For example, you
might only be interested in sputtered particles, or fast-moving particles, or you

 rn = 2

 rn = 1

Using Winnow 93

might only be interested in the projectile trajectory. This operation is conceptually
similar to the filtering of records in a relational database.

2. Convert your informational requirements into data-processing directives. For
example, you may wish to query the mean energy of sputtered particles, or
determine the average polar emission angle, or find the projectile range.

 Before trying to carry out these operations, you should familiarise yourself with the
symbols in Winnow’s query language (rx, vx, ke, alt, phi and so on). Winnow
also provides “Genius” functions that enable you make up queries and expressions,
even if you do not know the language.
 It should be mentioned that Winnow offers the option of dumping all of the data in a
dynamics file into a file of text format. Such text files can then be loaded directly into
spreadsheet programs (e.g. Excel), database programs (e.g. dBase) or statistical
programs (like SPSS). If you find Winnow’s query language confusing, this would be
an alternative way of processing your simulation data.
 The most important Winnow commands are found on the Process (data-processing)
menu. To some extent this menu has become a repository for small algorithms that I
have found necessary for my own work over the years. All users of Winnow should
attempt to master the Filter and Spectrum commands, which are very useful for data
analysis. Some of the remaining items can simply be ignored by users, particularly
those with simple needs (such as sputter yields or energy spectra).
 Please note that the file access modes used by many Winnow routines do not
operate correctly if the dynamics file (*.snk) has read-only attributes (an error will be
reported). Winnow never makes changes to the input data file, but this file must still
be accessible to the program with both read and write permissions. You should be
aware that read-only permissions may be acquired automatically by files if they are
copied to/from CD storage.

9.2. Query language

9.2.1. Introduction
 This section describes the query language used by Winnow.

1. Predefined identifiers allow you to access the values of the variables (and certain
functions of the variables) contained in the records of a dynamics file. They are
also used to store constants such as the atomic mass unit.

2. Winnow’s query language allows you to customise output as required for your
particular application. To do this, you need to specify what functions of dynamical
variables (in terms of rx,ry,rz,vx...) you wish Winnow to produce.

3. Conditional expressions required by the Filter operation are likewise specified by
combining query expressions with relational operators (=, >, >=, etc) .

 The query language will be quite transparent to anyone with elementary
programming or database experience . Most variables of interest can be accessed via
predefined identifiers. For example: use ‘rx*py - ry*px’ to represent the z-
component of the angular momentum.

9.2.2. Syntax
1. Case is ignored. UPPER, lower or MiXeD case letters may be used for any input

line symbol (px or Px or PX).

Using Winnow 94

2. Blank characters between valid symbols are ignored (px*px or px * px). The
maximum length of the input line is 255 characters.

3. Comments may be nested between curly braces {like this}. Comments are
useful as mnemonics in case you want to re-load the expression from a dialog box
history list on a future occasion. Also, the comment will be printed in the output
file if you use Winnow’s Averages or Collate options. Like blank characters,
comments are ignored by the parser: px*px {Here’s a comment}

9.2.3. Predefined identifiers (floating point variables)
 The following predefined identifiers denote (x, y, z) components of vector
dynamical variables (always expressed in SI units, unless stated otherwise):
1. rx, ry, rz = position (m);
2. vx, vy, vz = velocity (m s-1);
3. px, py, pz = momentum (kg m s-1)
4. bx, by = tag fields (the meaning of these variables is explained in section 4.2.5 of

Chapter 4).

 The tag fields in item 4 (bx, by) are expressed either in metres (when they refer to
coordinate data) or in degrees (when they refer to angular data). Other predefined
identifiers (all in SI units) are:

5. ti = time elapsed (s; ti = 0.0 at the start of a simulated trajectory);
6. ms = mass (kg);
7. ke = kinetic energy (expressed in eV);
8. phi, alt, phi, ph2, ph4, ph8 = azimuthal and polar angles expressed in

degrees (see notes below);
9. rw, rn, ui, fl: row number, run number, unique identifier, flags (see notes

below).

 The variables in item 9 take (dimensionless) integer values. The other variables
take floating point (real) values.
 Predefined angular variables (degrees) are: phi, alt, phi, ph2, ph4, ph8.
 The symbol phi represents the particle's azimuthal direction of motion (φ), defined
by:

phi = arctan(vy/vx)

 The range of phi is 0-360˚ (unlike the "atan" function, which maps to a value in the
range -90 to +90˚, the angle phi is assigned to the correct quadrant, even if vx = 0).
Several other azimuthal angle identifiers are defined. All are expressed in degrees.
The identifier ph4 maps the phi values to the first quadrant only (0-90°), and is
defined as:

ph4 = arctan(abs(vy/vx))

 For example, the angles 100˚, 260˚ and 280˚ are replaced by 80˚; the angles 170˚,
190˚ and 350˚ are replaced by 10˚. The ph4 variable is useful if you want to count a
scattering/emission yield which has 4 fold symmetry around the z axis (in order to
improve statistics).

Using Winnow 95

 The ph8 identifier is similar to ph4. However, it maps azimuthal angles > 45° to the
range 0- 45° using the following algorithm:

angle = arctan(abs(vy/vx));
if angle > 45.0, then angle = 90.0 - angle;
ph8 = angle;

 This is a useful way to exploit symmetry if the emission process has 2 sets of 4-fold
axes (e.g. sputtering of a (100) cubic lattice by a normally incident projectile).
 Finally, ph2 maps azimuthal angles > 180° into the range 0-180°. This is useful if
the simulation problem has 2-fold symmetry.
 The symbol "alt" (altitude) represents the particle's altitudinal direction of motion
(ϕ), defined by:

alt = arctan(vz/√(vx²+vy²))

 The range of alt is from -90° to +90°. If (vx²+vy²) = 0, then alt = -90° or +90°
(motion parallel to z-axis). If vz is negative, then alt is also negative.

9.2.4. Integer variables (rw, rn, ui, fl)
 The following variables take integer values:
• rw (‘row number’) is the index used by Kalypso to label the atoms in the

simulation. It starts from value 1 (which is assigned to the first projectile atom, if
any). Subsequent projectile atoms are labelled with indices 2, 3, ...Np, where Np is
the number of projectile atoms (usually Np = 1). The remaining atoms in the
system (target atoms) are labelled by indexes Np+1, Np+2, etc. In multiple-impact
simulations, the indexes of replica atoms succeed those of the target atoms;

• rn (‘run number’) references a row in the Impact file (rn = 1 for the run that
used the 1st line of this file to define the impact parameter, and so on);

• ui references the ‘unique identifier’ variable (section 4.2.5 of Chapter 4);
• fl references the flags variable (section 3.4.1 of Chapter 3).

Comment: for the common case of an monatomic projectile, the row number assigned
to a target atom differs by 1 from its line number in the Target file. Thus, the atom at
the top of the Target file is assigned rw = 2, while the atom on line 10 of the Target
file is assigned rw = 11. Understanding this relationship is critical for constructing
filters (see section 9.3. Filtering data).

9.2.5. Constants
 Constants that can be accessed as predefined identifiers are:
• pi = π
• ep = e, the proton charge (1.602176462×10-19 C)
• au = 1 amu, the atomic mass unit (1.66053873×10-27 kg)

 These constants are expressed in SI units. For example, to express an atom’s atomic
mass in amu, use the expression 'ms/au'.

9.2.6. Arithmetic Operators and Arithmetic Expressions
 The predefined identifiers (see above) may be combined in expressions with
decimal numbers in integer or floating point notations (i.e. 35, 35.0, 3.5e10), bracket

Using Winnow 96

symbols (), and the usual arithmetic operators (* / + -). The syntax rules for
forming expressions conform with those used in many programming languages:

• The elementary arithmetic operators are supported: + - * / ()
• Exponentiation is carried out using the caret (^) symbol e.g. px*px*px = px^3
• Blank spaces are ignored
• The setting of one of the options flags flag can be tested (in filtering operations

only) using the tilde (~) operator: the conditional expression [fl ~ 16] is TRUE
if the flag 00010000 (24 or 16 decimal) is set.

• Mixed expressions are typecast to real number results.
• Division of an integer by another integer typecasts the result of the operation to

real.

Here are some examples of valid arithmetic expressions:

 ke {kinetic energy in eV }
 px*px+py*py+pz*pz)/(2*ms) { kinetic energy in SI units }
 2.3*(rx*rx+2*ry*ry)/(1.3+6.5){arbitrary numerical expression}
 rw + 1 { an integer expression; see sect. 2.8 }

9.2.7. Functions
 Functions are supported, via a Pascal-style syntax: ‘function(arg)’, where the
argument in brackets (arg) must resolve to a real number expression. For example:
‘exp(-rx/2E-10)’. Integer expressions can be typecast, if necessary, by multiplying
by 1.0. All trigonometric functions use degrees for angular units. As usual, blank
spaces will be ignored, and can be used to improve readability.
 The following functions are available:

• sin = sine of angle e.g. ‘sin (phi)’
• cos = cosine
• tan = tangent
• atan = arctangent (inverse tangent)
• exp = exponential e.g. ‘exp(-rx/300)’
• ln = logarithm to base e
• lg = logarithm to base 10
• abs = absolute value (modulus) e.g. ‘abs(lx)’
• sqrt = square root e.g. ‘sqrt(rx*rx+ry*ry+rz*rz)’
• tr = truncate (returns integer value), e.g. ‘tr(2.8)‘(return value = 2)

 The following examples are physically meaningless, but illustrate how the real
number syntax works for rw (or rn):

• sin(3*rw): invalid - integer argument
• sin(1.0*3*rw): valid - argument is ‘typecast’ to real expression
• sqrt(rx + 1) : valid - mixed expression (‘1’ is integer, rx is real) is typecast to

real
9.2.8. Conditional expressions and filtering
 Conditional expressions arise only in connection with the Filter operation. As with
arithmetic expressions, blank spaces are ignored in conditional expressions and may

Using Winnow 97

be used to improve readability. All conditional expressions must be enclosed in
square brackets [] (which may be nested to any depth, as needed).
 Conditional expressions involve comparisons (“relations”) between two arguments
A and B, which may be any valid arithmetic expression involving any of the
predefined identifiers listed in section 2.3 (rx, ry, rz etc.). Depending on the values
of the compared items A and B, and the nature of the comparison, any given
conditional expression will resolve to one of two values, either TRUE or FALSE.
 A simple example would be the following expression: [rz > 0.0]. Here, rz is
compared with zero: only when the expression is evaluated to a TRUE value (i.e.
when rz is greater than zero) does the Filter option initiate action (write data to disk).
In this example, data are only stored for those particles which are above the target
surface (defined by z = 0.0). To express this idea in database terminology: the
expression enclosed by square brackets [...] constitutes a relation or condition
which must be satisfied by any record which is written to the output file. What the
preceding example has achieved is to filter out (isolate) data for ejected particles from
the dynamics file and store it in a new dynamics file. This filtered data can then be
processed further, e.g. to generate an energy spectrum of ejected particles.

9.2.9. Logical and relational operators
 The relational operators =, <, >, >=, <=, <> are recognised, with the following
meanings:

• [A = B] TRUE if (expression) A is equal to (expression) B
• [A > B] TRUE if A is greater than B
• [A < B] TRUE if A is less than B
• [A >= B] TRUE if A is greater than or equal to B
• [A <= B] TRUE if A is less than or equal to B
• [A <> B] TRUE if A is not equal to B

 The arithmetic expressions involved in the comparison must either be both real or
both integer expressions (see section 2.8). Conditional expressions may be combined
using the ‘&’ (logical AND) and ‘|’ (logical OR) operators. The following examples
illustrate the syntax, but it would not be sensible to use these expressions for filtering
because they always resolve to the same value:

[1=1] & [2=2] {TRUE}
[1=1] & [px > px] {FALSE}
[1=1]|[2=3] {TRUE}
[1=2]| [2=3] {FALSE}
[1=2] | [px = px] {TRUE}

A realistic example of filtering is the following:

[ke > 10.0] { particle KE > 10 eV }.

An example of a meaningless comparison with invalid syntax is:

[ke > rw] { ERROR: rw is an integer! }.

Any conditional expression may be negated using the ‘!’ (NOT) operator:

Using Winnow 98

[1=1] {TRUE}
![1 = 2] {also TRUE}

 Again, it is stressed that blank spaces are ignored by the parser. The ‘=’ sign or
some other relational operator must be present inside the brackets, as the conditional
expression always involves a comparison.
 Here are more examples of valid conditional expression syntax:

[pz*pz/(2*ms) > 10*ep] & [[rz > 0.0] | [vz > 0.0]]

 The above expression is TRUE if the kinetic energy associated with motion normal
to surface is > 10 eV and the particle is either outside the surface (z > 0) or is
travelling away from the surface (in a positive z direction). Note the way brackets are
used to nest sub-expressions.

[atan(pz/sqrt(py*py+px*px)) > 50*pi/180] & [rz > 0.0]

 The above expression is TRUE if the particle has left the surface and is travelling at
an of-surface angle of > 50°. This example shows a typical use of the arctangent
function. A better way to express this is:

[alt > 50.0] & [rz > 0.0]

The Annexe contains more examples of Filter expressions.

9.2.10. Numeric types
 Two numeric types are recognised: ‘integer’ and ‘real’ (floating point) types.
Enforcing type distinctions in syntax helps to avoid certain kinds of semantic and
physical errors which might otherwise go unnoticed. The conventions outlined below
are similar to those found in most programming languages.

• The predefined identifiers rw, rn and all numbers written in integer format (0, 1, -
1..) are treated as integer-type numbers.

• All other numbers, variables and constants are of real-type.
• Mixed integer-real expressions (2*pz, 1+1.0 etc.) are automatically cast to real-

type.
• Arguments passed to functions must be in real format (this can always be enforced

by typecasting: multiplying by 1.0):
 exp(10) {invalid}
 exp(1.0*10)valid}

• Both sides of a conditional expression must be of identical type:
 [3 > 2] {TRUE}
 [3.0 > 2] {syntax error: can’t compare real with integer}
 [3.0 > 2.0] {TRUE}
 [3*1.0 > 2.0] {TRUE - left hand side is typecast to real }

• Otherwise the type identity of expressions is the same as that of the constituents,
except for integer division (which always results in a real number).

 rw*2 + 1 {integer}
 2*pz + 3 {real}
 rw*2 + 1.0 {real}
 rw/2 + 1 {real - integer division}

Using Winnow 99

9.2.11. Parser errors
 The most common parser errors are syntax errors and arithmetic errors (divide by
zero etc.). The parser error message will indicate the point (^) in the input expression
at which it detected an error. E.g., for the Filter option input:

Example 1:
[px > 0]
 ^
The pointer indicates character #8 reading from the left. The parser expected a
floating point number (such as 0.0) rather than an integer, but only detected an error
when it encountered the ‘]’ character. Solution: change ‘0’ to ‘0.0’.

Example 2:
2.0*px > 3e-20]
 ^
 The parser evaluates both the missing ‘[’ and the real number ‘2.0’ as atomic tokens.
It expects to find the pattern BRACKET REAL, rather than REAL, and indicates an
error at the end of the illegal REAL token. Solution: add the missing ‘[’ before ‘2.0’.
 To get a feel for the error-response of the parser, you could try feeding it some
deliberate errors (e.g. ‘px*px + px**px’).
 Common syntax errors include:

• using x,y,z instead of rx,ry,rz;
• opening parentheses ‘(‘ ‘[’ without later closing them;
• using integers in places where real numbers are expected.

 If the cause of the error is not obvious, try simplifying the expression until it parses
correctly. Remember that no program can protect you against logical errors. A typical
non-syntactical error in this category is forgetting to couch the expression in SI
units.

9.3. Filtering data

 The key to getting at the information contained in dynamics files is the Filter option,
which discards unwanted data from your raw dynamics file. Put simply, you select
the data that you want to examine further, and store it in a new file. At the same time,
Winnow reports how many records are stored in the new file. This information can be
used to calculate quantities such as sputter yields or projectile reflection coefficients.
 There are three filtering commands provided in Winnow: Filter, Batch Filter,
Predefined Filters. Functionally, they are similar, but they have different degrees of
automation. The Batch Filter is useful for applying the same filter operation to a
number of files. The Predefined Filters simplify the construction of some standard
filters (for novices).
 For example, suppose you are interested in the fraction of sputtered atoms that has
energy above 1 eV; let us suppose that a sputtered atom is defined as one that is
moving away from the surface [vz > 0.0] and is above the surface beyond
interaction range (e.g. 6 Å) [rz > 6.0e-10]. These conditions, plus the 1 eV energy
condition [ke > 1.0], can be expressed in the query language as the following
conditional expression:

Using Winnow 100

 [rz > 4.0e-10] & [vz > 0.0] & [ke > 1.0]

 This expression is translated by the parser into computational directives. The output
is sent to a new dynamics file. If you feed the above expression to any of the Filter
commands, it will filter out the data that do not satisfy the condition. You can then,
for example, proceed to Average or Collate the data written to the new file, or Filter it
again according to some other criteria. Note that filtering a large file (>106 records)
can be quite a slow operation, even on a fast computer.
 Here are some further examples of the use of conditional expressions (note the
nesting of brackets in the composite expressions C and D):

A. Filter out (discard) projectile data (assuming a single-atom projectile):
Use filter condition: ‘[rw > 1]’.

B. Filter out atoms (discard) with less than 10 eV kinetic energy:
Use filter condition: ‘[ke >= 10.0]’.

C. Keep data for ejected atoms (z > 0) with ke > 0.5 eV only.
Use filter condition: ‘[vz > 0.0] & [rz > 0.0] & [ke > 0.5]’.

D. Combine Filter with Collate to determine origins of ejected atoms (z > 0) :
(1) Filter with condition: ‘[vz > 0.0] & [rz > 0.0]’.
(2) Subsequently, a ‘Collate’ operation on the atom-by-atom basis gives the
total number of ‘hits’ satisfying this condition. In other words, we obtain a
breakdown of the ejected atom population by ‘row number’ (the parameter rw,
which identifies the atom with reference to its position in the Target file: see
section 1). The collation function used in this case is irrelevant, because we
are simply counting atoms.

 9.4. Averaging data

 The Averages operation calculates statistical information based on the entire
dynamics input file. The user defines some function (let’s call it q) of the system
dynamical variables, expressed in terms of the predefined identifiers listed in section
2.3. The Averages operation writes a line of output based on this function, which
consists of the mean value (<q>), root mean square (rms) value (√<q²>), and the
standard deviation (σq) of q respectively:

 <q> √<q²> σq.

 Up to 7 such functions can be specified in one averaging operation. The output is
written to a file with .TXT extension, e.g. DYNVARS.SNK → DYNVARS.TXT.
 For example, you might wish to calculate the mean x-velocity component of in a
SNK file filled with records of sputtered atoms: simply enter ‘vx’ on the input line.
Then for this case <q> = <vx>, while √<q²> corresponds to the rms x velocity
component.
 If a .TXT file of the same name already exists, the output is appended to the existing
file. This is in contrast to the over-write behaviour of the Collate operation (see next

Using Winnow 101

section). Normally the averaging would be carried out after the .SNK file has been
filtered (see section 3) to remove unwanted data.

9.5. Collating data

 The Collate operation calculates statistical averages on an atom-by-atom, run-by-
run, or output-by-output basis, according to the user’s specifications. To use it, you
need to understand the information content of the dynamics file.

1. In the atom-by-atom case, the output data is collated according to the ‘row
number’ (rw) index. This represents an average over particles.

2. In the run-by-run case, the ‘run number’ index (rn) from the Impact file is used as
the collation key. This represents an ensemble (configuration) average.

3. In the output-by-output case, the unique identifier (ui) associated with the output
event is used as the collation key. Thus, the average is carried out over all
particles that were recorded during the same output ‘event’. This option allows
averaging operations at different times within the same simulation run.

 The collated averages <..> are output to an ascii file with a columnar lay-out which
is similar to that of an ‘Average’file (see previous section):

 <q> √<q²> σq key hits

where:

• q represents the expression input by the user
• σq = standard. deviation of q,
• key = rw or rn (row number or run number, as selected by user)
• hits = number of data used for averages

 In addition, for the output-by-output collation option, the time elapsed in the
simulation is displayed (in fs):

<q> √<q²> σq key hits time (in fs)

 Collated output overwrites the contents of any appropriately named .DAT file that
may exist. E.g. collating DYNVARS.SNK sends output by default to DYNVARS.DAT; if the
latter already exists, it is overwritten.
 The atom-by-atom average could be used to determine (for example) which atoms
were sputtered most frequently in a real-life experiment (which is averaged over all
impact parameters).
 The run-by-run average may be useful in establishing how individual configurations
contribute to the overall behaviour. If the dynamics file only contains data from a
single run then the run-by-run average is equivalent to the Averages option. (In fact,
the Averages option is equivalent to collating by both rw and rn simultaneously.)
 You may specify what function of dynamical variables gets written to the collated
file using the query language expressions. For example, ‘px*px’ represents the
square of the x-momentum component.

Using Winnow 102

9.6. Format columns operation

9.6.1. Summary
 This command performs a simple conversion based on data in a binary dynamics
file (*.snk) to an ascii format (*.dat), laid out in up to 10 columns listing variables
or functions specified by the user. In the simplest case, you can use this option to
dump your output data to an ascii file for transfer to a spreadsheet program.
 You enter the functions you want to dump using the query language. A formatted
file can be read by spreadsheet and other data analysis programs, but cannot be
processed further by Winnow. For example, if you wish to plot particle kinetic
energies versus their distance from the (0, 0, 0) point, use the following inputs:

Column 1: sqrt(rx*rx + ry*ry + rz*rz) {distance}
Column 2: ke {kinetic energy in eV}

This procedure will yield a two-column ascii output file (*.dat) suitable for use by any
graphing program.

9.6.2. Example: Create a Target file based on a dynamics (*.snk) file.
 It is possible to use the dynamics file (*.snk) output by one simulation to obtain
target input data for another simulation (e.g. to restart a multiple impact simulation).
This is achieved with the Format Columns command, plus some manual editing, as
will now be described.
 Consider a simulation involving a CuNi target. Suppose you want to start a new
simulation using the output data for run 10 of the simulation (the data for a specific
run can be isolated by filtering, e.g. with the expression [rn = 10]; see section 9.3).
First, invoke the Format Columns command with the input functions shown in Fig.
9.1. This will produce a 5-columns ascii text file (run10.dat) that lists the
coordinates (in Å), masses (in amu) and flags for each atom in the system.

Fig. 9.1. Format Columns dialog box (Process menu of Winnow). The text in in the
Column 5 input box reads fl (mnemonic for flags parameter).

The atomic numbers of the atoms must still be inserted into the output file produced
by this procedure for target atoms (and for any implanted projected species, if the file

Using Winnow 103

is derived from a multiple impact simulation). This is easily achieved with a text
editor, by replacing each mass term (e.g. 6.35460E+0001 for Cu) with the
corresponding atomic number plus mass (e.g. 29 63.546). The final result, as shown
below, is an ascii file which has the Target file format and which can be used in a
simulation project in the usual way.

Original ascii file (*.dat = Format Columns output):

 1.61472E+0001 3.85135E+0000 1.90706E+0000 6.35460E+0001 2
-3.48174E-0002 1.45676E-0004 2.98504E-0001 5.87100E+0001 2
-1.74047E+0001 -1.74428E+0001 1.86811E-0001 5.87100E+0001 2

Replace 6.35460E+0001 by 29 63.546 and replace 5.87100E+0001 by 28 58.710.

Final ascii file (*.trg = Target file):

 1.61472E+0001 3.85135E+0000 1.90706E+0000 29 63.546 2
-3.48174E-0002 1.45676E-0004 2.98504E-0001 28 58.710 2
-1.74047E+0001 -1.74428E+0001 1.86811E-0001 28 58.710 2

Further notes
1. Do not modify the values of the flags output by the Format Columns command!

Consult section 3.4 of the User Guide if you want to interpret the meaning of the
flags.

2. At present there is no procedure for transferring atomic velocities from the
dynamics file to a new simulation, so the latter will start with stationary atoms.

3. Unlike target files created by Spider, the lines of the Target file created by this
procedure have no identifying strings like ‘Cu’ or ‘Ni’ before the line end (these
are not required in order to run a simulation).

9.7. Converting data

 The Convert option performs a simple conversion ('dump') of the records in a binary
dynamics file to a text (human-readable) ascii format; this file has the values of the
dynamical variables in each record laid out in space-delimited columns as follows:

rx×1010, ry×1010, rz×1010, vx, vy, vz, ti×1015, ms/amu, bx, by, rw, rn, fl, ui

The meanings of the symbols are defined in section 9.1. Thus, effectively:

• rx ry rz are expressed in Å
• ms (particle mass) is expressed in atomic mass units
• ti (elapsed time) is expressed in fs

and other variables are expressed in SI units;
 A converted file can be read by commercial spreadsheet programs, but cannot be
processed further by Winnow.

Using Winnow 104

9.8. Constructing data spectra (histograms)

 The Spectrum command uses information in a dynamics file to create the
‘spectrum’ (frequency histogram) of some function of dynamical variables. The
spectrum is output in the form of a .DAT file eg.: TEST.SNK --> TEST.DAT, and can
optionally be displayed on screen. This is an important function, because it enables
you to look at the distribution of the values of some arbitrary function of dynamical
variables.
 Winnow provides two Spectrum commands which are accessed via different menu
items: Spectrum and Weighted Spectrum. The latter command is rarely used; it
provides a means of calculating a weighted distribution of some function of
dynamical variables. For example, you may wish to calculate the energy distribution
weighted by an exponential time decay term ate− , known as the weighting function.
If needed, the weighting function can be specified using the query language.
 In the Spectrum dialog box, the user always needs to specify the spectrum variable
(F) whose distribution of values is of interest; this is done using Winnow’s query
language. For example:

• To examine the altitudinal angular distribution, specify F as:
 alt {altitudinal angle, in degrees}

• For a kinetic energy spectrum (particle energy distribution), specify F as:
 ke {particle kinetic energy}

 Other inputs required from the user are the minimum and maximum limits of the
spectrum, and the number of channels to be utilised by the spectrum. The spectrum
function is calculated for each record in the dynamics file. If the function falls within
the specified spectrum range the appropriate channel count is incremented.
 A given channel registers counts for data within a bandwidth ±0.5∆, where the
interval ∆ is given by: ∆ = (Max limit - Min Limit)/(No. channels - 1). The spectrum
will thus in practice register counts from (Max Limit + ∆) to (Min Limit - ∆) i.e. a
slightly greater range than that specified by the user, as the figure below shows:

 |- ∆ -|
 | | | | channel positions
 | | | | | counting intervals
 <-----------------> range specified by user
 <-----------------------> effective range sampled

If you need to create spectra that are functions of angular variables, you need to take
account of the fact that the result of an expression such as:

 atan(vy/vx) {azimuthal angle},

is ambiguous (since there are two possibilities, separated by π). You might have to
specify additional relations involving vy and/or vx.
 For expressions involving the azimuthal and altitudinal angles of motion, you can
make use of the predefined angular variables “phi”, “alt”, “phi4”, “phi8”, “phid”
and “altd” respectively, which always return angular values in the correct quadrant.
 A minor difficulty arises with spectra that involve sampling at the maximum and
minimum limits of angular variables. These limits are ±90° for the “alt” variables,
and 0° and 360° for the “phi” variables. This results in anomalous count rates for the

Using Winnow 105

points at the limits that are ~50% of what you expect. This problem is easy to
recognise. One workaround is to reduce the size of the counting interval to avoid
sampling beyond the limit.

9.9 Merging and re-merging dynamics files

 The Merge operation takes the atomic coordinates listed in the specified Target file,
and writes them to the output dynamics file, overwriting the values in the input
dynamics file. For example, every record for atom #N in the input file will be
substituted with the Target file coordinates for the same atom, but will otherwise
remain unchanged.

• Input files
• SNK file
• Corresponding TRG file

• Output
• SNK file

By default, the Merge operation writes the Target file coordinates to the (rx, ry, rz)
records in the SNK file. But the user can also choose to overwrite the (vx, vy, vz)
records.
 The Merge operation is useful if you need to collate the post-simulation behaviour
of the system on the basis of the original atomic locations in the Target file.
 The Re-Merge operation restores information that was substituted by the Merge
command. Suppose you used the Merge command to create a file A.snk from
dynvars.snk. You may wish to do something to A.snk - for example, filter out edge
atoms from the lattice. This will produce a smaller file, B.snk. To restore the original
data to the records that remain in B.snk after filtering you can Remerge B.snk with
dynvars.snk. The remerged output file, C.snk, will have similar records to
dynvars.snk, except that it will lack those that were removed by the filter operation.
 In effect, the Merge/Remerge combination allows you to filter a SNK file on the
basis of attributes found in the TRG file.
9.10.

9.10. Find sputtered clusters

 This operation examines a dynamics file for the presence of clusters of a specified
size (among gas phase sputtered atoms). Clusters are identified on the basis of their
spatial proximities. There is no guarantee that the clusters identified are stable in the
chemical sense. This routine is based on Stoddard’s algorithm [1]. In order to qualify
as members of the same cluster, the individual particles must be associated with the
same rw (row number) and ui (unique identifier) indexes. It is the responsibility of
the user to ensure that any records that refer to the projectile species have been
removed (filtered) from the input dynamics file. Otherwise, the projectile species will
be included in the cluster search algorithm, which might distort the results.

● Input file
• SNK file to be analysed.

Using Winnow 106

• Output files
• A text file containing information about detected clusters (see below).
• A SNK file which contains the records of atoms that are members of

clusters of the size specified.

 The user must specify the clustering radius (typically the same as the potential cut-
off distance), the number of atoms in the cluster, and an optional row index (rw)
sorting value.
 If the number of atoms in the cluster is specified as 2 (3,...), information will be
reported for dimers (trimers,...). Monomers can also be identified. The row index is
used simply to sort atoms into categories of interest (e.g. surface vs. bulk atoms).
 The text output file has the following appearance:

List of atoms in clusters
Col 1: No. of atoms in cluster
Col 2: rn
Col 3: ui
Cols 4, 5, ...: atom1-rw, atom2-rw, ...

3 1 9 282 338 310
3 4 12 477 533 505
3 6 14 453 454 455
3 7 15 497 554 526
3 13 21 473 502 501
3 15 23 333 388 361
3 15 23 418 1315 ...

No of clusters with 3 atoms: 198
No of *atoms* (not clusters) with rw <= sorting index: 534
No of *atoms* (not clusters) with rw > sort index: 60
Largest cluster in this file has 26 atoms

In this example, 198 distinct clusters (trimers) are identified. For example, the first
line of output reports that the atoms with rw = 282, 338, 310 are emitted as a trimer in
run 1. Of the 594 (i.e. 198×3) atoms in the identified clusters, 534 have the rw row
index parameter less than or equal to the sorting index value. The largest cluster
identified in the input file is also reported (in this example it is a 6-atom cluster).

9.11. Sputtering statistics

 Simulation statistics for atoms in a dynamics file can be explored using the
Sputtering Statistics command. The user must specify how many runs were involved
in the simulation in order that the sputter yield and other quantities can be calculated.
Some typical output is shown below:

Sputtering statistics for ...
Total sputtered atoms = 5431
No. of projectile impacts = 405
Mean sputter yield = 13.40988
Standard deviation of sputter yield = 9.57904
Standard error of sputter yield = 0.47599

 N P(N) N*P(N) events sig(P) sig(N*P)
 0 0.02469 0.00000 10 0.00781 0.00000
 1 0.01975 0.01975 8 0.00698 0.00698
 2 0.03704 0.07407 15 0.00956 0.01913

Using Winnow 107

 3 0.03210 0.09630 13 0.00890 0.02671
 4 0.04444 0.17778 18 0.01048 0.04190

 For example, the table predicts that the probability that 4 atoms will be sputtered
after a projectile impact is 0.044±0.010 (this happens in 18 out of 405 simulation
runs). A typical presentation of these data would be to plot a histogram of P(N) vs N,
with (Poissonian) error bars sig(P) on the plotted P values (sig refers to the standard
deviation, σ). N×P(N) is also sometimes of interest and can be similarly plotted with
(Poissonian) error bars sig(N*P).
 One use of the statistics is to estimate the sputter yield error. In sputtering
simulations, the sputter yield error can be estimated approximately using a relation
based on Poisson statistics (typically this underestimates the error) as: Y Nσ = ,
where N is the number of runs. This relation gives σ = (13.4/405)1/2 = 0.2. In this
simulation there are sputtering events that involve emission of large numbers of atoms
(N > 40), so that the standard deviation becomes quite large (σ ~ 9.6 in the output
shown above). A better way to estimate the error is via the standard error, which
represents the uncertainty in the mean sputter yield. The standard error in this
example is computed as: Nσ = 9.56/(405)1/2 = 0.48. Thus, the predicted sputter
yield with uncertainty (standard error) is 13.4±0.5.
 Winnow cannot determine the number of runs in the simulation project from the
input file alone (some runs with zero yield may not be represented in the file). This is
why the user must specify the number of runs (i.e. the number of lines in the Impact
file). If the value specified is too small, it may be detected by Winnow (provided it is
smaller than the number of runs that are represented in the input file), in which case a
warning or error message will be issued. In other cases, Winnow will assume that the
value entered is correct.

9.12. Displacements operation

 The Displacements operation creates a output dynamics file from 2 input dynamics
files. The positions and velocities written to the output file are the differences of the
relevant components in the two input files.

Given two input files consisting of records such as:

 x1 y1 z1 vx1 vy1 vz1 ... file #1,

 x2 y2 z2 vx2 vy2 vz2 ... file #2,

the output file will have a corresponding set of records:

 x2-x1 y2-y1 z2-z1 vx2-vx1 vy2-vy1 vz2-vz1 ...

 The remaining records in the output SNK file are reproduced from the second of the
input files (file #2). Note: the two input SNK files used in the operation should be of
the same size.
 The purpose of the operation is to allow you to calculate atomic displacements (in
real or momentum space) which have occurred between an initial and a final system
state. The output file so created can be processed just like an ordinary dynamics file.
The most likely application is in calculating how far atoms have moved from their

Using Winnow 108

lattice sites: in this case, the first input file would contain the initial conditions
information (i.e. at t = 0), and the appropriate expression to use with the output file
would be: sqrt(x*x+y*y+z*z).

9.13. Cross-Reference operation

 The rarely-used Cross-Reference operation carries out calculations based on
coordinate data stored in the Target file used by your simulation. The user has to
supply a file containing pairs of integers, which represent the 'row number' (rw)
parameters extracted from a SNK file (probably by using the Format Columns
command with parameters 'rw' and 'rw').
 The Cross-Reference operation is used to answer the question: how far away from
the origin (and from each other) were these atoms in the Target file? This is mainly
useful for locating the origins of sputtered atoms.
 The format of the file containing the integer pair is as follows (i.e., pairs of free-
format, whitespace-delimited integers).:

21 3
2 34
5 6
... ...

The integers in each pair can be identical or different. If they are the same, the output
in Columns 3 and 4 (see below) will be zero. A list of pairs of different atoms would
represent (for example) the constituents of a 2-atom cluster. However, you will have
to generate this file yourself (e.g. from the Find Sputtered Clusters command).
 The operation reports the following information to the output file:

Column 1 (integer 1 in file)
Column 2 (integer 2 in file)
Column 3: r0
Column 4: r12
Column 5: rho0
Column 6: rho12

The meanings of the output items 3-6 are:

• r0 = distance between centre of mass of atoms 1 and 2 in Target file, and origin of
Target file

• r12 = distance between atoms 1 and 2 in Target file
• rho0 = lateral separation (in x,y plane) between centre of mass of atoms 1 and 2

in Target file, and origin of Target file respectively
• rho12 = lateral separation between atoms 1 and 2 in Target file

Symbolically, these quantities may be expressed as:

• r12 = sqrt(sqr(x^[i]-x^[j) + sqr(y^[i]-y^[j]) + sqr(z^[i]-z^[j]))
• rho12 = sqrt(sqr(x^[i]-x^[j]) + sqr(y^[i]-y^[j]))
• r0 = 0.5*sqrt(sqr(x^[i]+x^[j]) +sqr(y^[i]+y^[j]) +sqr(z^[i]+z^[j]))
• rho0 = 0.5*sqrt(sqr(x^[i]+x^[j]) + sqr(y^[i]+y^[j]))

Using Winnow 109

9.14 Scattering relations

 This simple tool that is available in both Spider and Winnow calculates useful
scattering parameters, based on standard binary collision formulae.
 The user enters the projectile and target atomic masses (M1, M2) and a laboratory
scattering angle for the projectile (θ1 Lab).
 The symbol E0 represents the Lab projectile incident energy, while E1 and E2
represent the energies of the projectile and target respectively, after the collision.
On pressing the <Enter> key or Evaluate button, the following quantities are
calculated:

1. θ2 Lab: This is the scattering (recoil) angle of the target.
2. θ COM (1), θ COM (2): These are the scattering angles in the centre-of-mass

coordinate system (identical for both particles). If M1 > M2, the Lab projectile
scattering angle must lie between 0 and a maximum value (θmax = arcsin(M1/M2)).
In this case there are two possibilities (1) and (2) for the COM angle, which still
ranges from 0-180°. (See a textbook on classical dynamics for an explanation.)
For M1 ≤ M2, there is only one COM angle per Lab angle.

3. E1/E0, E2/E0: These energy ratios reflect the energy transferred during the
collision. If M1 > M2, there are two possibilities for energy partition. These energy
ratios are completely independent of the nature of the interaction potential or
primary projectile energy. (The target is assumed to be stationary initially.)

9.15. Convert SNK to POV

 This command converts *.snk files (dynamics files produced by Kalypso) into the
*.pov format required by the PovRay ray-tracing program. This facilitates the
production of ray-traced images of atomic systems, and simplifies the production of
animation sequences from time-lapse snapshots of a simulation.
 To produce ray-traced images of simulation targets (based on Target files or other
ascii files) you must first convert the ascii file to the dynamics file format using the
TRG to SNK utility provided in Winnow.
 To produce ray-traced images (or image frames for animations), you must install
PovRay, and read its documentation. PovRay is a freeware ray-tracing program that
can be downloaded from: http://www.povray.org.
 To produce animations you will need a utility that can combine individual bitmap
frames into a video sequence. There are many freeware tools that can do this. Search
the web for 'bmp2avi' or 'bmp to avi'.1

 The conversion routine is limited to *.snk files with 3×107 or less atom records (e.g.
for a target with 100,000 atoms, up to 3000 runs may be processed from a single *.snk
file).
 User preferences are entered via the File|Set-Up menu item.The following inputs are
required (the defaults will produce reasonable output for exploratory purposes):
1. Names of input file (*.snk) and output (file) stem (*.pov). The input dynamics

file that will be used to produce the ray-traced image is named here. An output file
stem is also specified, e.g. 'c:/myjob'. The file extension '.pov' will be added
automatically to the output file stem. For an animation job (see Divide data by

1 The freeware program PJBMP2AVI (by Paul Roberts) is used by the author. You can find it at several
places on the Webb via a Google search. Try the following link (working December 2005)
http://download.freenet.de/archiv_p/pjbmp2avi_1232.html.

Using Winnow 110

time item below), a numeric sequence will also be appended to the file stem:
myjob1000.pov, myjob1001.pov etc.

2. Atom Identifier: This is any name (blanks not allowed) which you choose as a
label for the atom types, in order to improve readability of the *.pov file. (The
default names can also be used.) Up to 6 atom types may be defined, but not all
have to be used.

3. Colour: The atom colour can be chosen from the drop-down lists, or specified as
a string in the red-green-blue form rgb<i,j,k> where i,j and k are <= 1.0. For
example: rgb<0.5,0.2,1.0>. When creating images that will be published as
greyscale figures, it is useful to know that different shades of grey can be created
using strings like rgb<0.4,0.4,0.4> where the 3 colour indices are the same.

4. Radius: Radius of atom. If you set the radius to zero, the atom will be invisible.
5. Row number: The rw index you enter here will define the rw value of the first

atom of that type (rw = row number of the atom in the simulation project Target
file; rw = 1 for the projectile). The values of rw are read from the input dynamics
file. Suppose you specify row numbers 1, 2, 1000, 100000, 100000. Then atom #1
is assigned to AtomType1, atoms #2 to #999 are assigned to AtomType2, and
atoms #1000 upwards are assigned to AtomType3. This example uses 100000 as
an arbitrarily high index which ensures that no instances of AtomType3/4 are ever
encountered. By default, the AtomType1 is associated with rw = 1 (the projectile),
while all other atom types are considered to be generic target atoms of
AtomType2. Even for elemental targets, you may wish to use colours to
distinguish between surface and bulk atoms respectively.

6. Length scale factor: determines scale of image.
7. Separate data in *.snk file by time/run (for animation etc.) option: if selected,

this choice will produce multiple output *.pov files, each consisting only of data
that refer to the same elapsed simulation time, t (i.e. system snapshots that can be
used as frames in an animated sequence). Filename stems will be terminated a
numeric index based on the ti parameter in the *.snk file (see item 1 above).

8. Include file: this advanced option (rarely needed) lets you specify the name of an
include file that will be referenced from the *.pov file(s) that you generate. This
allows you to use other features of PovRay that are not incorporated in PovData's
output file. See item 12 for a quick way to include custom expressions in the
PovRay file. See the PovRay Help for general information about include files.

9. Camera location: defines (x, y, z) coordinates of the camera.
10. Camera look-at: defines (x, y, z) coordinates of point to which camera is pointed,

and the perspective angle. There are two ways to view a target: from a short
distance with a large angle, or from a long distance with a small angle. The latter
gives less distortion due to perspective effects.

11. Light sources: defines (x, y, z) coordinates of your light sources (the checkboxes
turn the associated light sources on or off).

12. Extra options: Any strings entered here will be written at the top of the PovRay
file. For example, the string background{<1 1 1>} produces a white background
(useful for work that will be published on paper).

13. Shiny finish: puts a realistic, mirror-like 'twinkle' on the atoms (otherwise the
finish is dull). The appearance of the finish is defined by several finish parameters
(see PovRay documentation for explanations of these).

Using Winnow 111

If you want to Save the current settings, or Load settings previously saved, use the
applicable buttons. This is always a good idea, because visualization is an iterative
process.

Using PovRay

(a) The output file (*.pov) generated by the above procedure can be loaded
immediately into PovRay [File|Open File].

(b) The image can be rendered via the command Render|Start Rendering (output
image is automatically saved as a bitmap file). For animated sequences use the Queue
command (Alt-Q hotkey) to process files as a batch.

(c) Note that PovRay offers many rendering options, including different image sizes
(Render|Edit Settings).

To get the best out of PovRay, you have to study its documentation. However,
relatively little knowledge of ray-tracing is involved for this type of application. Note
that PovRay input files can be combined (either by splicing together, or by using the
#include directive), allowing you to superimpose different scenes. Just make sure that
the atom identifiers are unique for each scene. Tip: use the ‘AA’ render options for
best results (Render|Edit Settings menu item in PovRay).

9.16. Convert TRG to SNK

 This routine converts a Target file into the format (*.snk) used by dynamics files.
The following dynamics file variables are initialised to the values read from the
Target file (as usual, in SI units):

rx, ry, rz, ms, fl

 Other variables are initialised to meaningless values (either 1 or 0). If the input file
has an extension other than TRG, only the rx, ry, and rz fields are read from the file.
The routine performs a simple file name conversion: myfile.trg is converted to
myfile.snk. If the output file (A.snk) exists, the user is prompted to confirm the
overwrite operation (otherwise the routine aborts).

9.17. Reformat MI data

 This operation is designed to compensate for the row indexing problem discussed in
section 4.2.7 of Chapter 4 that arises in multiple interaction (MI) simulations
involving inert atom projectiles. The records in the dynamics file are modified
according to the following prescription: rw → rw - rn*nprj + 1, where nprj
represents the number of atoms in the projectile species (normally = 1, since it is an
inert atom by assumption).
 The effect of this operation is that the row number (rw) fields of target atom records
will now commence from rw = 2 regardless of the run number, as they would in a
normal simulation. This indexing scheme is more convenient for further processing of
the target atom data. For example, any atom with rw < 2 in the reformatted file can be

Using Winnow 112

identified as a projectile atom (incident or embedded) and any atom with rw > 1 can
be identified as a target atom. This simplifies the construction of filters.
 Projectile data will be retained by this operation, but the rw data will be shifted by
this operation to negative values (and also to 0 and 1). Although the new values are
systematically related to the original values, they are less easily manipulated than the
rw values in the original file.
 Do not apply this operation if the projectile is a metallic atom or cluster.

9.20. Neighbour count

 This operation analyses a SNK file in order to count the neighbours of each atom
that lie within a certain range of the atom, R. Typically, the routine would be used to
determine the coordination numbers of each atom, in which case R would be slightly
larger than the 1st neighbour distance in the undisturbed lattice. The output consists of
(a) a SNK file that is similar to the input file, except that the rn field for each atom
has been substituted with the number of neighbours of that atom; (b) a numeric ascii
file (*.dat) that lists the rw indexes of the neighbours according to the following
format:

3 35.59784023 35.62925732 -1.09775612 6 4 32 843 844 872 873

 The first number (3) is the rw index of the atom concerned. The next three number
are its (x, y, z) coordinates expressed in Å. The next number (6) is the number of
neighbours around that atom, and the remaining numbers (4...873) are the rw indexes
of the neighbours (6 in this case).

Annexe: Query Expression Examples

 In this annexe, some further examples of query expressions are given. Recall that
these arise in two contexts:

• Function specifications (e.g. for construction of spectra or averages)
• Conditional expressions (for filtering operations only)

 The conditional expressions combine function specifications with relational and
logical operator symbols. Conditional expressions are only used by Winnow’s Filter
option. In the examples below, comments are enclosed in curly braces {thus}:
comments can be used freely in Winnow, since they are ignored by the parser. The
examples below show how to build up conditional expressions by combining several
simple relations. If you are uncertain about whether you have set up a filter expression
correctly (or whether the program works correctly), you can convert the output file to
a text file and check that its records satisfy the intended condition.

Function (expression) specifications

 The following are some examples of functions of variables that can be expressed in
the query language.

• ke {particle kinetic energy in eV}
• atan(vz/sqrt(sqr(vx)+sqr(vy)) {altitudinal flight angle, ψ}
• alt {altitudinal flight angle, ψ - concise version of preceding}

Using Winnow 113

• rz*1e10 {z-position in Å}
• ti*1e15 {elapsed time in fs}
• rw {index of the particle}
• sqrt(rx^2 + ry^2) {lateral distance of particle from the origin}

Conditional expressions

 The following examples show what is possible in terms of conditional expression
combination and nesting. However, in practice it may be better to use a sequence of
simpler expressions, especially if the query language is unfamiliar.

[rw > 1]
{ this expression filters out projectile atoms, i.e. keeps target
atoms }

[rw > 1] & [rz > 7E-10]
{ this keeps sputtered target atoms (those above z = 7 Å)}

[rw = 1] & [rz > 7E-10] & [vz > 0.0]
{ this keeps reflected projectile atoms (those above z = 7 Å)}

[alt > 50.0]
{any particle travelling with altitudinal angle > 50°}

[rz > 0.0] & [altd > 50.0]
{any particle that is above z = 0.0 and travelling with altitudinal
angles greater than 50°}

[ke > 10.0] & [rz > 0.0] & [altd > 50.0]
{any particle with energy > 10 eV and that is above z = 0.0 and
travelling with altitudinal angles greater than 50°}

[ti*1e15 < 300.0] & [ke > 10.0] & [rz > 0.0] & [altd > 50.0]
{particles with energy > 10 eV which were emitted at altitudinal
angles greater than 50° before 300 fs had elapsed}

[ti*1e15 < 300.0] & [[ke >= 10.0] & [ke =< 50.0]] & [rz > 0.0] &
[altd > 50.0]
{particles with energy in the range 10-50 eV which were emitted at
altitudinal angles greater than 50° before 300 fs had elapsed}

Suppose we wanted to filter using the following criteria:
1. The record should refer to an elapsed time that is less than 300 fs.
2. The particle energy should be between 10 and 50 eV.
3. The particle’s z-coordinate should be greater than 5 Å
4. The particle’s altitudinal direction of travel should be between 50 and 90º

This filtering operation could be achieved by joining the following expressions with a
series of AND operators:
1. [ti*1e15 < 300.0]
2. [ke >= 10.0] & [ke =< 50.0]
3. [rz > 5.0E-10]
4. [altd > 50.0]

 The resulting filter expression is:

Using Winnow 114

[ti*1e15 < 300.0] & [ke >= 10.0] & [ke =< 50.0] & [rz > 5.0E-10] &
[altd > 50.0]

Exercise 1.
What would be the effect of substituting:

[ke <= 10.0] & [ke >= 50.0]

instead of the kinetic energy items item above?

Answer. You would get no output from your filtering operation, since this expression
looks for particles with KE satisfying two mutually exclusive conditions (KE ≤ 10 eV
and KE ≥ 50 eV).

Exercise 2.
What would be the effect of substituting:

[ke <= 10.0] | [ke >= 50.0]

instead of the kinetic energy items above?

Answer. The expression can be read as: (KE ≤ 10 eV or KE ≥ 50 eV). Your output
would capture all particles except those in the energy range 10-50 eV.

References for Chapter 9

[1] S.D. Stoddard, J. Comp. Phys. 27 (1977) 291.

APPENDIX 1: KALYPSO ERRORS AND WARNINGS

 Error messages are issued when Kalypso encounters conditions that cause a
simulation to abort. At the end of the message is a bracketed [hint] about where the
error occurred (either in an input file or inside a Kalypso routine) or a specific
reference to the cause of the error. If (a) the input parameters are sensible, and (b) you
have not edited input files by hand, most of these errors should never occur (i.e. if
they do occur, they represent programming errors). Rarely, an error could occur
because of a surge in the computer power supply. Users should be aware that Kalypso
does not attempt to check for all errors that can be produced by incorrect file formats:
that is the job of Spider.
 Warning messages typically draw attention to anomalies in input data (typically
redundant input options) that may be due to an oversight on the part of an
inexperienced user. However, the simulation as specified will still run correctly.
 Error conditions can trigger several error messages, some of which may be spurious.
Make sure you scroll up to the top of the Messages pane in Kalypso to find out which
message appeared first. For example, an attempt to resume a multiple impact
simulation will produce the following messages:

Messages
Error E035: Multiple impact simulations cannot be resumed.
Error E034: Error reading parameters in Target file.
Error E023: Atomic numbers inconsistency [TRG or PRJ data vs. MDL data].

 Only the first of these messages represents a real error. The other two are triggered
because of actions that failed to complete after the first error condition was detected.
 Vaguely defined error messages (such as E001 or E003-E006) may arise from
hardware failures, such as disruptions to the power supply. Hardware-related errors
are not reproducible, unlike other error types (provided the random seed setting in the
Run file is > 0). If an error cannot be reproduced, or if it occurs after several days of
computation, you should suspect a hardware problem. If the error is reproducible, but
the cause cannot be determined, you can send a description of the problem (including
the program version listed on the About dialog box) with the input files to the author.
 Some types of reproducible error will produce a dialog box that states that an error
occurred, but no corresponding error message in the log. You should first check that
your Target and Projectile files do not contain atoms with duplicated coordinates.

Error messages

 The following is a list of error messages returned by Kalypso and/or Spider. In some
cases, further information about the meaning of the message is provided in italic font.
The [square brackets] indicate the input data source or code portion that is responsible
for the error (where applicable). The phrase math error that arises in several of the
error messages refers to a non-specific numeric exception (e.g. due to memory
corruption). The phrase internal error refers to a debugging feature (you should never
see this message.)

'Error E001: Math error in timestepping loop [ComputeTraj].';
'Error E002: No. of atoms in system exceeds maximum.'; Maximum is 1 million atoms
(although this is probably not feasible on current hardware).
'Error E003: Math error in density loop [forces].';

Appendices 116

'Error E004: Math error in density loop [energy].';
'Error E005: Math error in forces loop [GetRV].';
'Error E006: Math error in forces loop [GetRVInit].';
'Error E007: Invalid Target file data [Z].'; Example: three types of atoms are specified.
'Error E008: Insufficient number of replica atoms [RUN].';
'Error E009: Range-search grid cannot be sized.'; Example: a huge target.
'Error E010: Invalid Model file data [Rc < Rs].';
'Error E011: Invalid Model file data [Cell size < Rc].';
'Error E012: Input file version mismatch [RUN].';
'Error E013: Invalid projectile incident angle [RUN]';
'Error E014: Input file version mismatch [MDL].';
'Error E015: Output expression syntax error [RUN].'; Example: writing (rw = 1)
instead of [rw = 1].
'Error E016: Invalid Projectile file data [Z].';
'Error E017: Too many collision partners [neighbour loop]'; Note: this error can
occur if you allow two atoms to approach to an unphysically close distance, e.g. if the
timestep is unreasonably large, or if there is an error in the initialisation procedure
(such as two target atoms having the same x, y, z coordinates).
'Error E018: Too many collision partners [ST loop].'; Similar to E017.
'Error E019: Impossibly large ST loss [in GetSTLoss].'; Algorithm error.
'Error E020: Too many collision partners [OR loop].'; Similar to E017.
'Error E021: Image potential parameters [INL].'; Generated if (Vim ≤ 0.0) or (zim ≤
0.0)
'Error E022: Math error in cooling schedule.';
'Error E023: Atomic numbers inconsistency [TRG or PRJ data vs. MDL data].'; For
example, if the Model file refers to Cu and Ni atoms, but the Target file contains a Ag
atom (only 2 target atom types are allowed). This error also arises if there are blank
lines (i.e. lines that consist of one or more space characters) inside, or blank
characters at the end of, a Target file that has been edited by hand (you should
always check for this problem if you edit Target files yourself).
'Error E024: Numeric format error in TRG file.';
'Error E025: Numeric format error in PRJ file.';
'Error E026: Merging and switching function regions cannot overlap [MDL].'; In the
model file (switching functions tab) the following condition must be true: R1 < R2 < Rs
< Rc.
'Error E027: Pairwise part of potential must be symmetric between particles [MDL].';
'Error E028: Internal error: Anomaly in projectile mass sum [PRJ].';
'Error E028: Error accessing log file.'; For example, a read-only folder is
encountered.
'Error E029: Cannot terminate by projectile if no projectiles in system [RUN].';
'Error E030: Scan range too wide (reduce it, or increase number of partners)'; This
message can arise when doing layer scans with Spider (it is written to the Spider log
file).
'Error E031: Periodic cell dimensions are too small for the specified potential cut-off
[RUN/MDL].'; Rc must be less than Lx/2.
'Error E032: Lattice atom index out of range [options].';
'Error E033: Cannot compute potential - atomic index out of range.';
'Error E034: Error reading parameters in Target file.';

Appendices 117

‘Error E036: Potential parameters: if b <> 0, hetero terms 2q must be symmetric
[MDL].'; i.e. if b ≠0, Kalypso requires that 2q[0, 1] = 2q [1, 0]. See footnote to
section 2.4 of this User Guide.
‘Error E037: Multiple impact simulations cannot be run with pre-implanted projectile
species.’ To work around this, see the discussion concerning the ofPreImplant flag.

Warning messages

 The following is a list of warning messages returned by Kalypso.

'Warning W001: Project uses only 1 of 2 specified potentials.'; For example, if the
target is a Cu crystal, but the Model file specifies potentials for a Cu-Ni target, a
warning will be issued.
'Warning W002: LSS option disabled [null parameters in INL file].';
'Warning W003: Oen-Robinson option disabled [null parameters in INL file].';
'Warning W004: ST inelastic option disabled [null parameters in INL file]';
'Warning W005: Image potential will never be applied [no atom has flag set].';
'Warning W006: Inelastic file has no active models [INL].';
'Warning W007: Using adaptive timestep without any projectile may give erratic
results.';

APPENDIX 2: FUNDAMENTAL PHYSICAL CONSTANTS

 The values of fundamental physical constants used by Kalypso (2.01 onwards) are
the so-called 2002 CODATA values (online at URL http://physics.nist.gov/constants):

e = 1.60217653×10-19 C;
k = 1.3806505×10-23 J K-1;
ε0 = 8.854187817×10-12 F m-1;
1 amu = 1.6605386×10-27 kg;

 = 1.05457168×10-34 J s.

N.B. Kalypso 2.00 used the 1998 CODATA values, which differ slightly from the
2002 values.

