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EXPLICIT RATE CONGESTION CONTROL FOR DATA NETWORKS

Abstract

by

Kenneth Patrick Laberteaux

This dissertation addresses congestion control for explicit rate controlled data

networks.  Congestion control is a closed-loop technique to regulate the influx of data

into a network.  In the application considered here, an internal switching node employs

congestion control to specify source input rates such that the traffic arriving at the node

matches the node�s available resources in a fair and efficient manner.  Due to the closed-

loop and dynamic nature of this problem, adaptive control techniques are utilized

extensively.  The specific context for this study is the Available Bit Rate (ABR) service

category of Asynchronous Transfer Mode (ATM) networks.  However, the obtained

results apply beyond this specific protocol due to the generality of the derived plant

model.  It differentiates itself from the other contributions in the area of rate-based

congestion control in its balanced approach of retaining enough complexity as to afford

attractive, analytically-proven performance properties, but not so much complexity as to

make implementation prohibitively expensive.
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CHAPTER 1 INTRODUCTION

1.1 Congestion Control for Data Networks

From the first bugles and smoke signals to the Internet and video-conferencing

links of today, data and communication networks have tremendously impacted our

society.  Commerce, recreation, governance, warfare, and personal relationships have all

been drastically affected. Today the desire to exchange data and communicate shows no

signs of abating.  In fact, the amount of data carried by the Internet backbone now

doubles every 100 days [55].

As communicated data grows in both scale and diversity, networks are becoming

increasingly complex.  This increasing complexity encourages network designers to draw

upon diverse expertise from a variety of fields.   Congestion control, the topic of this

dissertation, is a prime example of such cross-discipline research, incorporating both

fields of data networking and control theory.

To gain some initial intuition for congestion control, consider the analogy of air

travel on a hypothetical, low-cost airline, LCA.  LCA uses small planes with limited

range.  A typical LCA passenger expects four to ten airport connections, most of which

last only a few minutes, but occasionally can last several hours.  Further, LCA does not

take reservations from passengers until they are ready to leave for the airport.  A
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prospective passenger calls an LCA booking agent, specifies his current location and

destination, and then receives a departure time.

The LCA booking agent performs two tasks before informing the passenger of his

departure time.  Routing is the first task.  If the passenger is in Detroit and wishes to

travel to Los Angeles, the agent might determine that the best route includes stops in

Chicago, St. Louis, Denver and Las Vegas.  The agent�s second task is that of congestion

control.  This task determines when the passenger should begin his journey in order to

minimize his travel time.  If the agent discovers that Denver�s airport is currently

experiencing severe congestion, he must do his part to reduce the congestion at Denver

by decreasing the rate of departures routed through Denver.  By creating such an

itinerary, the agent delays the passenger�s departure. However, this delay actually

improves the passenger�s travel experience�who would not prefer to wait at home than in

an airport?

The key virtue of congestion control is that both a network provider and its

customers frequently benefit when the provider admits the correct number of customers

in a given time period.  Admitting more customers causes heavy congestion.  Admitting

fewer customers allows resources to go under-utilized, creating an opportunity cost that is

eventually transferred to customers.  Congestion control addresses exactly this issue.

More precisely, congestion control is a process by which networks use feedback

to adjust the influx of data such that the customer�s Quality of Service (QoS)

requirements are met while simultaneously attempting to maximize the utilization of the

network�s resources.  Networks that attempt to deliver more data than their capacity
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experience congestion, leading to undesirable data loss, excessive delays, or both1.  The

closed-loop nature of congestion control implies communication between the network

and customer throughout the life of the connection.  Generally this communication comes

in the form of instructions to the customer to increase or decrease its sending rate. Well

suited for data that is not strongly delay sensitive, closed-loop congestion control uses a

feedback mechanism and draws heavily on feedback control theory.

This dissertation studies congestion control as it applies to the Available Bit Rate

(ABR) service category of Asynchronous Transfer Mode (ATM) networks, or ATM

ABR.  As demonstrated in Section 1.3.1, ATM ABR specifies a large collection of tools

that enables sophisticated explicit rate (ER) congestion control.  There have been many

studies on how to best use these tools towards the goal of ATM ABR congestion control

(see Section 1.3.2 and references therein).  This dissertation is dedicated to this goal.

However, the characteristics of ATM ABR congestion control that are likely to reemerge

in future network protocols receive the majority of the attention.  For this reason, the

results of this dissertation should have application outside of the particular ATM ABR

protocol.

                                                          
1 Note that the issues addressed by congestion control can also be attacked using open-loop methods,
including policing, shaping, and call admission control.  In a call admission control environment, a
customer makes a request of the network to deliver data meeting certain specifications.  The network then
examines its current state and, if it is capable, makes a forward-looking commitment to the customer.  Once
the network informs the customer of an affirmative decision, the network takes no further action to limit the
customer�s flow of data, assuming the customer abides by his part of the contract.  One common but
simplistic example of an open-loop call admission control decision is a telephone system�s decision to
make a constant bit rate connection from one phone to another, signaled by either a ring or a busy signal.
More generally, the customer requests a connection that varies in rate as some unknown function of time.
The source characterizes this desired flow, and the network determines if it can adequately support this new
connection in addition to its previously-made commitments to other customers.  Generally the network
attempts to achieve some statistical multiplexing gain, requiring a non-trivial decision process.  Call
admission control is well suited for traffic that is predictable or consistent.  Congestion control is better
suited for traffic with unpredictable or highly varying requirements.
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For many years, ATM ABR was touted as �the next big thing,� not in small part

due to its extensive support of sophisticated congestion control.  However, long before

the completion of this dissertation, the rising star of ATM ABR began to fade.  Other

next big things commanded the headlines of the trade magazines.  ATM ABR, despite

being well suited for the explosively popular applications of web browsing, e-mail, and

data backup, is yet to be widely utilized.  Few personal computers are ATM-enabled,

much less ABR-enabled.  Instead, the dominant protocol of today�s Internet remains

TCP/IP, with its comparatively less sophisticated congestion control ([40]-[42],[44]-

[46]).

However, ATM deployment is on the rise.  �Worldwide revenue for ATM

equipment and services combined is projected to reach almost $9.5 billion in 2001, up

from $2.4 billion in 1997�a compound annual growth rate (CAGR) of 41 percent� [52].

Today ATM is primarily employed as a transport medium for TCP/IP traffic, including

so-called Voice over IP (VoIP) Networks [53].  New technologies, such as FAST [56],

Differentiated UBR [57], and Guaranteed Frame Rate [1], respond to this new role for

ATM.

The extent of future usage of the ABR service category of ATM is still unknown.

Yet despite the ambiguities of the marketplace, there are at least two reasons to continue

research in ATM ABR congestion control.  The first reason is that ABR may yet see

widescale adoption.  Although no longer the newest technology, ATM ABR has yet to be

outperformed by newer technologies in its stated task�providing efficient, fair, and

reliable transport for non-real-time, large bandwidth data applications.  In fact, ABR�s
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critics contend that its high-performance-through-high-complexity approach exceeds,

both in capability and cost, the needs of the network marketplace of tomorrow.  These

critics claim that cheaper and simpler solutions, albeit less robust, are possible by

extending the TCP/IP paradigm.  Examples of these innovations include Differentiated

Services (diffserv) [47], Random Early Detection (RED) [48],[49], Prioritized Switch

Fabrics, and Multi-Protocol Label Switching (MPLS) [51].

Yet these TCP/IP-centric approaches also have their critics:

Customers aren�t asking for less reliable networks�on the contrary, they
are demanding more stringent service guarantees and higher levels of
performance.  Service providers are unlikely�and unwilling�to move
toward network architectures that offer less accountability and control
than they have today [with ATM networks] . . . Despite the formidable
hype for an all-IP communications world, most service providers will
bank on the most reliable and most mature technologies.  That spells ATM
for the time being, and for quite some time to come [54].

The outcome of the current ATM verses TCP/IP battle remains uncertain.  ATM

ABR is by now a well-defined technology.  The onus is on the new TCP/IP

enhancements to prove their claims of doing well enough with less.

The second reason for continuing study of ATM ABR congestion control is that it

reveals and attempts to answer basic issues likely to arise in future networking protocols.

Whether or not ATM ABR is widely deployed, future networks will almost certainly

require high quality congestion control.  In the case of this dissertation, Section 1.2

examines the ATM ABR protocol in detail, but the model developed in Chapter 2
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remains general2. This general plant description is studied to discover an appropriate

general control strategy.  Therefore, as the title of this dissertation suggests, the results of

this work are applicable to the basic study of explicit rate congestion control and should

not be considered applicable only to ATM ABR.  Given the rate at which bandwidth

consumption is increasing and computational costs are decreasing, it seems inevitable

that any protocol likely to dominate future data networks will employ a high-performance

explicit rate congestion control mechanism.

1.2 Congestion Control in ATM Networks

In 1984, the Consultative Committee on International Telecommunications and

Telegraph (CCITT), a United Nations organization responsible for telecommunications

standards, selected Asynchronous Transfer Mode (ATM) as the paradigm for broadband

integrated services digital networks (B-ISDN) [2].  ATM networks provide six service

categories [1]; a given ATM network may implement some or all of these service

categories:

1. Constant Bit Rate (CBR) is used for traffic requiring a

constant cell rate.

2. Real Time Variable Bit Rate (rt-VBR) is used for traffic

with a varying cell rate which can be expressed with a few

traffic specifications, e.g. maximum cell rate, sustainable

cell rate, etc.

                                                          
2 This general plant model assumes that some network element is tasked with fairly and efficiently
allocating a time-varying quantity of bandwidth to consumers.  The number of these bandwidth customers
is initially unknown.  Some customers are likely not to be responsive. The network element employs a
congestion controller that controls the rate influx of the bandwidth consumers by explicitly feeding back a
maximum send rate.
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3. Non-Real Time Variable Bit Rate (nrt-VBR) is similar to

rt-VBR, except no guarantees are made about the delivery

delay or delay jitter; thus, nrt-VBR is only appropriate for

non-real time traffic.

4. Available Bit Rate (ABR) is used for traffic with

unpredictable rate requirements, although a minimum cell

rate may be imposed; ABR is ideal for many data transfer

applications.

5. Unspecified Bit Rate (UBR) is a best effort service used for

traffic that is content to use whatever network capacity

remains.  UBR is somewhat the ATM peer of the Internet

Protocol (IP).

6. Guaranteed Frame Rate (GFR) is designed to specify a

minimum cell rate (MCR) and a peak cell rate (PCR).  All

traffic sent above the MCR will be treated as best effort.

Conformance definitions are based on frames of data, not

cells.

Each category of service is customized for a particular type of traffic.  Of these

six categories, only one, Available Bit Rate (ABR), uses a feedback mechanism to create

closed-loop congestion control.  The other categories use either open-loop traffic

management strategies, e.g. call admission control (see Footnote 1 on page 3), or in the

case of UBR, no Quality of Service (QoS) component to traffic management.  The

creation of a control mechanism for a switch that can work with the closed-loop

congestion control mechanism specified by the ATM Forum is the focus of this

dissertation, although, as discussed in Section 1.1, the results are likely applicable beyond

ATM ABR.
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1.3 Available Bit Rate (ABR) Congestion Control

The ATM Traffic Management Specification [1] states that �the ABR service

category provides a low cell loss ratio� and that �no numeric commitment is made about

cell transfer delay,� but both should be minimized.  Key to this goal is avoiding

congestion at any switching node in the ATM network; cells that arrive to a nearly full

switch buffer will experience excessive delay, while cells arriving to a completely full

buffer are lost entirely.

Congestion control for ABR traffic utilizes a feedback mechanism, namely

resource management (RM) cells. An ABR source periodically inserts RM cells into the

stream of data cells.  These RM cells pass through each switch along the path to the

destination of the virtual connection (VC).  The destination then returns the RM cell to

the ABR source along the same path (but in reverse order) used for the forward virtual

connection from source to destination3.  RM cells moving from source to destination are

called Forward RM cells, and RM cells returning to the source are called Backward RM

cells.

RM cells contain fields that support two methods of feedback control.  The first

method, called Relative Rate Marking, uses the Congestion Indication (CI) bit and No

Increase (NI) bit together for binary feedback control.  Essentially, switches use these

two bits to request the ABR source to increase or decrease its rate using a fixed

mechanism4.  In the second method, an explicit rate field within the RM cell can be used

                                                          
3 If for some reason a network does not send Backwards RM cells along the reverse path of the data flow,
this network can generally use the same congestion control techniques, but with much longer action delays,
with the expected performance degradation.
4 Note that although two bits (the CI bit and the NI bit) are used, this control mechanism is usually called
binary, since the single CI bit tends to have the dominant effect.
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by switches to request a specific rate.  ABR sources must abide by both the binary and

the explicit rate mechanisms, adjusting their rates to that specified by the mechanism that

specifies the lower rate [1].  However, since a given switch need only use one or the

other, researchers tend to consider the binary and the explicit rate mechanisms separately.

1.3.1 ATM ABR Explicit Rate Congestion Control

ATM ABR explicit rate congestion control occurs as follows: ABR source S

periodically inserts (at least every RMN  cells) resource management (RM) cells into its

stream of data cells.  These RM cells generally contain an explicit rate (ER) field that is

initialized to the maximum possible sending rate of the source, its peak cell rate (PCR).

As the RM cell moves from switch to switch, each switch can reduce the rate indicated

by the explicit rate field.  When the RM cell is returned to the source, the source is

required to adjust its allowed cell rate (ACR), an upper bound on its sending rate, to be

no greater than the rate indicated by the explicit rate field.  Thus, the ACR of an ABR

source equals the minimum rate allowed by the switches in the path of the flow as

indicated by the most recently received RM cell.

ACR(n)
y1(n) y2(n) y3(n) y4(n)

BRM
SW2
u2(n)

y*2(n)

SW4
u4(n)

y*4(n)

SW3
u3(n)

y*3(n)

SW1
u1(n)

y*1(n)

D
S

Figure 1.1  Congestion Control Mechanism From
Perspective of Source/Destination Pair

Consider Figure 1.1, which shows the congestion control mechanism from the

perspective of a single ABR virtual connection (VC) from source S to destination D via
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switches SW1-SW4.  Assume a digital model, such that at time n, S transmits at the

allowed cell rate, ( )ACR n  cells/sec (S is a greedy source).  The arrival rate at SW1 is

( ) ( )1 1ACRy n n d= − , where 1d  is the propagation delay between S and SW1.

The output port bandwidth is *y .  Due to the special configuration of Figure 1.1,

1*i iy y += , although this is generally not true.  At each time n, each switch independently

performs a congestion control calculation to produce ( )iu n .  As a resource management

cell returns from D to S, each switch examines the RM cell�s explicit rate field.  If the

switch�s current iu  is smaller than the contents of the ER field, the switch copies its

current iu  into the explicit rate field.  When this resource management cell returns to S, it

contains the smallest explicit rate iu  it encountered along its path.  The source�s ACR is

then updated, thereby creating a feedback control process.

Two key metrics for congestion control are efficiency and fairness.  Efficiency

means that traffic allowed into the network closely matches the resources of the network.

Over-allocating the network causes delays and data loss.  Under-allocating the network

generally reduces the return on the network�s investment by the network provider.  This

opportunity cost is likely eventually to be transferred to customers.  Various definitions

of fairness exist.  Max-min fairness [4] is one frequently used definition.  When all ABR

connections specify a minimum cell rate equal to zero, the definition of max-min fairness

is unambiguous.  Consider the specific switch SW of Figure 1.2 carrying N  ABR

connections through output port j.  These connections can be divided into two groups.

The first group are the constrained connections�connections that cannot use their fair

share allocated by port j because they are limited to a rate below their fair share
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elsewhere in the network5.  The second group are the unconstrained connections�

connections that can reach their fair share of bandwidth, i.e. are limited in bandwidth by

the allocation provided by port j.

u(n)

y(n) y*(n)

...

S1

S2

SN

.

.

.

D1

D2

.

.

.

DN

Port j of
switch
SW

Figure 1.2  Plant from perspective of Switch Output Port

Max-min allocation occurs by giving constrained connections the bandwidth they

require and splitting the remaining bandwidth evenly among the unconstrained

connections.  Let uN  and cN  be the number of unconstrained and constrained

connections at port j, respectively.  Further, define C as the total bandwidth consumed by

the cN  connections and *y  as the total bandwidth available at port j.  Then the max-min

fair share bandwidth is
*

max min
u

y Cfair share
N−
−= . (1.1)

Note that the definition of fair share depends on uN , and the definition of uN

depends on the fair share.  In many practical situations, finding the fair share is non-

trivial.

                                                          
5 Note that one possible definition of max-min fairness with non-zero minimum cell rate (MCR) is to define
connections with MCR greater than their fair share as a constrained connection.  Generally the case with
non-zero MCR is not considered here, but when it is, this definition is used.
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1.3.2 Previous Contributions

The past decade has seen significant contributions to the understanding of

congestion control in ATM ABR networks.  Contributors include Rohrs, Berry and

O�Halek from M.I.T.; Benmohamed and Meerkov from the University of Michigan;

Altman, Baccelli and Bolot from INRIA (France); Altman, Basar and Srikant from the

University of Illinois; Jain from the Ohio State University; Fulton and Li from the

University of Texas; and Mascolo from Politecnico di Bari (Italy).  These contributions

are summarized in Sections 1.3.2.1 through 1.3.2.6.

The ATM Forum has also made significant contributions.  The ATM Forum �is

an international non-profit organization formed with the objective of accelerating the use

of ATM products and services through a rapid convergence of interoperability

specifications. In addition, the Forum promotes industry cooperation and awareness� [3].

The ATM Forum approved what has become the de facto guidelines for the operation of

ABR congestion control by defining the required behaviors and properties of ABR

sources, Destinations, and resource management (RM) cells [1].  This specification

intentionally leaves the method by which switches determine explicit rates unspecified6.

However, several candidate algorithms have been proposed in the ATM Forum, many by

switch designers.  Not too surprisingly, these designers tend to show interest in

implementation-friendly solutions. Of the above-cited authors, Raj Jain clearly made the

most significant contributions in the ATM Forum, and his ERICA algorithm and its

derivatives are very popular.  Mike Hluchyi, Andy Barnhart and Larry Roberts also made

early contributions to the ATM Forum [3], [1].  The other cited author�s contributions

                                                          
6 This is precisely the issue addressed in this dissertation.
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tend to promote controllers well studied in the literature of control theory with many

attractive analytical features.  However, implementation costs rarely enter their cost

functions to be optimized, and thus the resulting algorithms are often viewed as too

complex by those designing �real-world� ATM network components, many of whom are

represented by the ATM Forum.

As compared to the algorithms in favor of the ATM Forum, a slight increase in

complexity can reap significant returns in performance and predictability.  However, a

push towards greater complexity must be minimal. Implementation cost should be a very

important consideration.  It is believed that the results of this dissertation will provide

performance advantages that justify their implementation costs.

1.3.2.1 Rohrs

Rohrs, Berry, and O�Halek explored binary congestion control in their 1996

article [5]. Generally, switches mark the CI bit to one when their buffers exceed some

threshold and set the CI bit to zero otherwise [1].  Rohrs, et al. demonstrated that such a

non-linear control scheme leads to oscillations in both arrival rates and buffer sizes.  To

overcome these oscillations, [5] proposes a method to communicate from the switch to

the source a parameter p , 10 p≤ ≤ , which indicates the level of congestion at the

switch.  The parameter p  is transmitted to the source by the switch�s marking the CI bit

with probability p .  Thus the source receives a noisy estimate of p .  With the model

(almost) linearized, Rohrs et al. uses linear control theory to design a controller that

demonstrates much improved performance and substantially reduces oscillations.  The

lessons of [5] could be applied to other binary congestion control situations.
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Binary feedback mechanisms are often unfair due to the beat down effect [7].

Consider a VC that spans a relatively large number of switches.  Such a VC is more

likely to traverse a congested switch than a VC spanning relatively few switches.  Even

though the longer VC may not in any way contribute to the congestion, it is more likely

to have its CI bit marked, causing it to further reduce its rate.  Many schemes have been

proposed to improve the fairness of binary congestion control, e.g. intelligently mark

cells from VCs that exceed their fair share, but it is always possible to design an explicit

rate scheme that is at least as fair and efficient as any given binary scheme.

1.3.2.2 Benmohamed and Meerkov

An important, early contribution to explicit rate congestion control comes from

Lotfi Benmohamed�s Ph.D. thesis while working with Semyon Meerkov at the University

of Michigan.  The work was published in 1993 [8].  Benmohamed makes important

modeling contributions, providing detailed assumptions, including:

1. greedy sources

2. a discrete-time model

3. a fluid flow model for traffic

4. that link rates, not processing time, limit traffic throughput

5. that input traffic patterns are piecewise constant for periods

of time long enough for controller transients settle between

changes

6. first come, first served (FCFS) queue service

The strategy consists of designing a controller to drive the queue to some target depth.
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Benmohamed and Meerkov made another contribution in 1997 [9], this time

considering multiple congested nodes.  Again the contribution is substantially that of

modeling.  In the end, through careful reasoning and imposing judicious assumptions,

they essentially arrive back at the single bottleneck node case described in [8].  This

contribution [9] makes a strong case for simplifying the congestion control problem to a

single node study.  Few investigators have deviated from this since.

A few comments are in order.  First, the integral action of the queue plant

necessitates control to provide stability.  Second, Benmohamed and Meerkov content

themselves to place the closed-loop poles.  No effort is made to cancel or affect the plant

(and thus closed-loop) zeros. Their costly calculation requires a large matrix inversion

and multiplication. Finally, this work is widely cited and many have adopted their models

and conclusions.

1.3.2.3 Bolot

Jean-Chrysostome Bolot, then of The French National Institute for Research in

Computer Science and Control (INRIA), appears to be the first to suggest a self-tuning

regulator for congestion control of communication networks [10].  He models a one-node

network with only one source and model noise. He finds even this simple model difficult

to directly analyze and therefore proposes a general ARMAX model to represent the

progression of the queue length.

( ) ( ) ( ) ( ) ( ) ( )1 1 1A z q n B z u n C z w n− − −= + (1.2)
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where ( )queue n  is the queue length, u(n) is the requested rate at time n, and ( )w n  is an

independent and identically distributed zero-mean, Gaussian process.  He suggests using

Recursive Least Squares (RLS) to estimate ( )1A z− , ( )1B z− , and ( )1C z−  and to use a set

point of ( )* / 2queue n maxqueue= , where maxqueue  is the length of the buffer.

Although his summary suggests that future work will further explore the use of self-

tuning regulators in congestion control problems, no evidence of this has been found in

his later publications.  Instead he began work with E. Altman.

1.3.2.4 Altman et al.

Eitan Altman from INRIA has co-authored several papers relevant to ATM

congestion control with individuals such as J-C Bolot (see 1.3.2.3), F. Baccelli, T. Basar,

O. Ait-Hellal, and R. Srikant.  The first major contribution, which came in 1993 [11],

investigates a single node with a single source with unit action delay.  Randomness is

introduced from an available service rate that changes in time according to an unknown

ARMA process.   Also, noisy measurements of the queue length are assumed.  The

control mechanism is given by

( ) ( ) ( ) ( )( ) ( )( ){ }*�1 max * ,0estu n u n u n u n queue n queueα β+ = + − − − (1.3)

where ( )1u n +  is the rate requested at the time n, ( )� *u n  is the estimate of the desired

rate arriving at time n, ( )estqueue n  is the estimate of the queue length at time n, *queue

is the desired queue length, and α and β are control parameters to be designed.

Significantly, this contribution discusses how a pure rate-matching algorithm,

when 0β = , produces, in time, unacceptably long queues.  More precisely, if the buffer
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is assumed to be infinitely large but queue lengths are lower bounded by zero, then for

any finite 0queue ,

( )( )0 0 asP queue n queue n< → → ∞ (1.4)

The intuition here is that the queue integrates mismatches in the actual available

rate and the requested rate.  If the queue length grows because the requested rate exceeds

the actual rate, the controller only acts to reduce the requested rate so as to stop the

increase of the queue size.  With 0β = , the controller will not further reduce the

requested rate to decrease the queue size back to some desired, reasonable size.

In [12] Ait-Hellal, Altman, and Basar examine the use of a pure rate-matching

algorithm where slightly less than the available (predicted) bandwidth is utilized.  They

show that under fairly general restrictions, under-allocating the available bandwidth,

using either an additive or multiplicative constant, ensures stability in the queue length.

This gives some credibility to the rate matching schemes proposed by others and

proposed here (although this dissertation suggests extending this rate-matching scheme to

include buffer matching.  See Section 4.4).

Two more contributions came in 1995 [13] and 1996 [14].  These assume

essentially the same model of [11] but propose a more complex H ∞  controller.

Reference [13] assumes that the ARMA plant model parameters are known. Reference

[14] assumes no knowledge of these ARMA parameters and instead of certainty

equivalence, �combines identification . . . with the ( H ∞ ) control in a novel way� [14].
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In 1997 [15] and 1998 [16], Altman, Basar and Srikant admit multiple sources,

each with potentially a different action delay.  The service rate available to the ABR

traffic is modeled with an AR process.  The instantaneous cost function is given by

( )( ) ( ) ( )( )2 2*
2

1

1 *
M

m m
m m

queue n queue u n a u n
c=

− + −� (1.5)

where { }ma  allows flexibility in apportioning u*(n) to the M sources, { }mc  differentiates

relative importance to the M sources, as well as balances the priority of rate matching and

queue matching.  Several certainty-equivalence formulations are suggested and

compared.

Note that throughout this body of work, the number of sources and their action

delays are assumed to be known.  Also note that their models do not include the presence

of ABR traffic which is controlled by other switches.

1.3.2.5 Jain and Li

Although working separately, there has been an intersection of the most recent

work of Raj Jain and his student Sonia Fahmy at the Ohio State University and San-qi Li

and his student Cathy Fulton at the University of Texas, Austin.

Raj Jain made the best know contributions to the field of ATM ABR congestion

control.  His implementation-friendly Explicit Rate Indication for Congestion Avoidance

(ERICA) algorithm [17], its predecessor, the ERPCA+ [19], and its successor, ERICA+

[20], work well in a large number of situations and appear to be favored by ATM switch

designers.
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The basic ERICA algorithm is characterized by calculating two rates for each VC

and writing the larger rate into the explicit rate field of the VC�s BRM cells.  The first of

the two rates calculated, VCshare, modifies a VC�s current cell rate based on the switch�s

current loading.  Specifically

( )
( )*

y n
loadfactor

y n
=

, 1,...,i
i

CurrentCellRateVCshare i N
loadfactor

= = ,

that is, VCshare is increased when 1loadfactor <  and decreased when 1loadfactor >  for

each of the N VCs.

The second rate calculated is the VC�s FairShare,

( )*y n
FairShare

N
=

where N is the total number of ABR VCs sharing the ( )*y n  of bandwidth.  Note that if a

VC is constrained at another point in the network, then that VC will not use its

FairShare.

If every VC adjusted its rate to its VC share, then the allocation would be efficient

( 1loadfactor = ) but not fair.  Conversely, if every VC adjusted its rate to its FairShare,

then unless there are no VCs constrained at other points, the allocation is inefficient

( 1loadfactor < ) but fair.  Thus the explicit rate given to each VC, iERcalculated , is

{ }max , ,iERcalculated FairShare VCshare MCR=

( ){ }min , *i iERcalculated ERcalculated y n=
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ERICA is computationally inexpensive to implement and has been shown, via

simulations, to rapidly achieve max-min fairness in many cases.  As such, it demonstrated

the viability of explicit rate schemes at a time when many considered explicit rate

congestion control to be an extravagant luxury.  However, further study discovered

various scenarios where max-min fairness was not achieved.  Several small modifications

were made to address the more serious of these shortcomings.

Until recently, ERICA and ERICA+ were pure rate-matching algorithms.  A

recent contribution [21] acknowledged the usefulness of queue control.  A modification

to ERICA+ is proposed where explicit rates are multiplied by a factor corresponding to

the current queue level.

In another recent contribution [22], persisting fairness concerns of ERICA+

prompted a new approach.  The switch determines an effective number of sources.  This

effective number of sources, or effN , assigned a specific fractional value to sources

unable to use their fair share allocation.  This approach is very similar to that suggested

by Fulton and Li in 1997 and marks an intersection in these two bodies of work7.

The approach suggested by Cathy Fulton and San-qi Li, the Uniform Tracking

(UT) method, assumes that one fair explicit rate results from equally dividing the

contested bandwidth by the number of contesting sources.  However the contested

bandwidth and number of contesting sources are not found directly.  Instead the fair rate

is found iteratively by comparing past explicit rates to the current total input rate.

                                                          
7 The work of Fahmy et al. [22] does not mention Fulton and Li�s work [24], the latter published a year
before the former.
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In steady state, both of Jain�s algorithms [19] [22] as well as Li�s UT algorithm

[24] achieve fairness and efficiency if they equally divide the bandwidth available for

ABR traffic among the competing sources.  Since each source sends cells at no more than

the minimum explicit rate specified by the switches in its path (each switch calculates its

explicit rate independently), it is quite likely that a switch will carry traffic from a source

constrained by another switch.  Both algorithms supply the constrained sources their

needed bandwidth, and, at least in steady state, equally divide the remaining bandwidth

among the unconstrained sources.

1.3.2.6 Mascolo

Saverio Mascolo of Politecnico di Bari, Italy, explores congestion control using

Smith Predictor principles [26].  The Smith Predictor eliminates the time delay from the

closed-loop controlled system [27].  Mascolo views the response delay of arrival rates

from each source to requested rates of the switch as fixed and known, ( )1 2, , NT T T� .  He

attempts to keep the queue length ( )x t  equal to a set-point ( )r t .

Using Smith principles, [27] finds the controller ( )G s  such that Figure 1.3 and

Figure 1.4 have the same transfer function ( ) ( )X s R s .

� �G s

1sTe�

NsTe�

1
s

+ +� �r t
� �u t � �x t

� �*y t

Figure 1.3  Actual Model of [27]
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Figure 1.4  Equivalent Model of [27]

The controller ( )G s  is found to be ([27])

( )

1
1

N
sT

i

K NG s
k N N e

s
−

=

=
� �+ −� �
� �

�

.

With this model, [27] shows that the buffer never overflows or underflows.

The work of [27] shows promise but has some shortcomings.  First, round trip

delays are considered known (this dissertation assumes that delays must be adaptively

determined).  Second, [27] assumes that all ABR flows populating the queue ( )x t  are

responsive to the explicit rate ( )u t .  This appears to be a significant oversight, despite

the author�s acknowledgement of this possibility.

In addition to [27], Mascolo considers ATM ABR congestion control in [28] and

TCP/IP control in [29].  All these works rely heavily on the Smith Predictor.

1.4 Outline of Dissertation

This introductory chapter introduces several basic congestion control concepts

and reviews relevant previous contributions.  The remainder of this dissertation is

organized as follows: Chapter 2 selects an appropriate model for the congestion control

problem. Chapter 3 identifies a control methodology for the plant specified in Chapter 2,

then examines the convergence and stability properties of the selected controller. Chapter
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4 introduces enhancements to the control algorithm selected in Chapter 3, in part by

extending the plant model of Chapter 2.  Conclusions are made in Chapter 5, as well as

suggested future research directions.
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CHAPTER 2 PLANT MODELING

The plant of the congestion control problem is developed in this chapter.  Section

2.1 distills the description of the ATM ABR congestion control mechanism presented in

Section 1.3.1 into analytic expressions.  These expressions create the framework of the

plant model used throughout this dissertation.  Section 2.2 shows that a simplification of

the plant developed in Section 2.1 inspires an adaptive control strategy taken from the

literature of adaptive control.  This well-understood control method is very similar to the

Uniform Tracking [24] scheme.  The connection between these two control schemes is

explored, connecting Uniform Tracking to adaptive control theory. Section 2.3 shows that

the original plant of Section 2.1, only slightly more complex than the plant of Section 2.2,

inspires an improved control strategy.  Section 2.4 further generalizes the plant of Section

2.1 and controller of Section 2.3.  This generalized strategy justifies its added complexity

with its ability to match arrival rates to available capacity for much finer time intervals.

This results in much smaller queue sizes, reducing both hardware costs and delay

experienced by the traffic.  A further improved control strategy is presented in subsequent

chapters.  Extensions to the plant defined in Section 2.4 are further extended in Chapter 4

to include queue sizes and a noise disturbance.  Section 2.5 explains the Blending Effect,

by which cell rates are modulated by intervening switches between a source and its

bottle-neck node.
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2.1 Preliminaries and Plant Definition

Since each switch implements its own independent controller, one may consider

the plant from the perspective of a single switch SW, as in Figure 2.1.  A discrete-time

model is used, where sample intervals correspond to control intervals, i.e. a new control

action ( )u n  is calculated for each n.  Port j of switch SW carries N  simultaneous

Available Bit Rate (ABR) sessions, and serves as output port for data cells and input port

for backward resource management cells.

u(n)

y(n) y*(n)

...

S1

S2

SN

.

.

.

D1

D2

.

.

.

DN

Port j of
switch
SW

Figure 2.1  Plant from Perspective of Switch Output Port

The present challenge is to devise a controller that resides at output port j of

switch SW and produces a single explicit rate u  to be sent to all ABR sources passing

through the port.  The explicit rate u  must be chosen such that the incoming ABR

bandwidth y matches the available ABR bandwidth *y  in some appropriate sense.

Specifying a single explicit rate at time n for all sources ensures fairness.  Matching y  to

*y  attains efficiency.

Port j generates a single desired rate ( )u n  for all connections.  As resource

management (RM) cells for the N ABR virtual connections (VCs) pass through j on their

return from destination to source, port j examines each, specifically the contents of each
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Explicit Rate (ER) field.  If port j finds the ER field contains a rate above its current

( )u n , port j overwrites the ER field with ( )u n .  The RM cell transports this explicit rate

( )u n  to each ABR source.  It is assumed that for each of the N ABR virtual connections,

at least one RM cell passes j during each sample interval.  Rates ( )u n , ( )y n , and ( )*y n

are in units of cells/second.

Although N  sources share ( )*y n  of available bandwidth, it is assumed that a

subset cN  of the N  sources are constrained to a rate different than ( )u n . There are at

least two reasons for this possibility.  First, a source may be controlled or bottlenecked by

another switch along its path.  Second, a source may have been guaranteed a minimum

cell rate (MCR) greater than the rate assigned by port j, or have insufficient data to take

advantage of the offered bandwidth. Thus only the u cN N - N≡  unconstrained sources

will react to ( )u n . These uN  sources are assumed greedy and will send cells

continuously at the maximum allowed cell rate (ACR) dictated by the switch output ports

through which they pass. The aggregate bandwidth of the ( )cN n  constrained sources8

( )
c

i
i N

C y n
∈

= �

is assumed to be constant and independent of ( )u n a+  for any positive or negative a .

The switch is assumed not to initially know the value of uN  or C .

The round trip response delay for each of the uN  unconstrained sources, assumed

to be equal and known9 by the switch, is d , giving

( ) ( )uy n N u n d C= − + . (2.1)

                                                          
8 A non-constant C  is introduced in Section 4.5.
9 Section 2.4 removes this assumption on d.
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It is assumed that C  and uN  remain constant for periods of time long enough for

adaptive identification to occur.  Faster convergence speed of the adaptive algorithm

results in better tracking of these time-varying parameters.

Since the minimum delay in the plant is d, adjustments in ( )u n  will not be

observed until time n d+ .  Therefore to generate ( )u n , it must be decided at time n what

the desired value of ( )y n d+  should be. This desired bandwidth, notated as

( )* |y n d n+ , may reflect both bandwidth and buffer measurements10 made up to time n

(this may be generated by a prediction filter as in [16]).  By extension, in many cases, the

input of the algorithm will be ( )* |y n d V n+ +  (for some non-negative V), i.e. the

desired value of ( )y n d V+ +  decided at time n.

2.2 The One Parameter Plant

This section introduces an application to congestion control of an algorithm

thoroughly understood in the literature of Adaptive Control.  As such, its stability and

convergence characteristics can be rigorously proven, even for generalized plants where

the reaction times of various sources differ.  Under certain conditions and assumptions,

this algorithm bears a strong resemblance to the suggested algorithms of [22] and [24],

briefly reviewed in Section 1.3.2.5. Contributions to the understanding of the modeling of

rate control problems also appear in this section.

                                                          
10 Requested bandwidth can be reduced to shrink the buffer if it is too large.
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Fulton and Li propose [24] a similar plant for (2.1) that is slightly simpler than

(2.1) but also has somewhat less fidelity to the real situation.  At time n , define the

desired fair rate at time n d−  as ( )*u n d− ,

( ) ( )*
*

u

y n C
u n d

N
−

− ≡ . (2.2)

Fulton and Li implicitly define a new effective number of sources ( )effN n  where

( ) ( )
( )
*

*eff

y n
N n

u n d
≡

−
. (2.3)

Thus, they define their plant as

( ) ( ) ( )effy n N n u n d= − . (2.4)

Note that Fulton and Li do not use forward-looking estimates of ( )*y n , therefore the

notation ( )*y n  instead of ( )* |y n d n+  is used.

Assuming for now that the plant in (2.4) is a valid model, a simple Minimum

Prediction Error Adaptive Controller (Direct Approach) [63] can be created to determine,

at time n , the control signal ( )u n  that minimizes

( ) ( )( )2
* |E y n d y n d n� �+ − +

� �
.

As with the design of most adaptive controllers, for the purposes of analysis, it is

assumed that the parameter o effNθ =  is constant within the time interval needed to

generate an estimate ( )�
effN n  with accuracy.  Similar assumptions are made in future

sections.

Since knowledge of d is assumed, a Normalized Least Mean Squares (NLMS)

[64] formulation is possible:
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( ) ( ) ( ) ( ) ( ) ( ) ( )( )2
� � �1eff eff effN n N n u n d y n u n d N n

u n d
µ+ = + − − −
−

(2.5)

( ) ( )
( )

* |
� 1eff

y n d n
u n

N n
+

=
+

 (2.6)

Update equation (2.5) converges to the desired value if 0 2µ< <  [63].  All poles and

zeros of (2.4) are at the origin, thus within the unit circle, leading to the result of Lemma

2.1.

Lemma 2.1 For the adaptive controller of (2.5) and (2.6) applied to the plant (2.4):

1. ( ){ }y n  and ( ){ }u n  are bounded sequences,

2. ( ) ( )lim * | 0
n

y n y n n d
→∞

− − = , and

3. ( ) ( ) 2
lim * |

N

N n d
y n y n n d

→∞ =
− − < ∞� �� �� .

Proof: See [63].

Fulton and Li [24] propose the following adaptive controller, which is quite

similar to (2.5) and (2.6):

( ) ( )
( )

� 1eff

y n
N n =

u n -1
+  (2.7)

( ) ( )
( )
*

� 1eff

y n
u n

N n
=

+
(2.8)

where ( 1)u n −  is the time average of a sequence of previous values of u.  (Comments on

the time averaging of ( )*y n  are made in Section 2.3).  The time index of �
effN  is chosen

to be 1n +  instead of n  to maintain notational consistency with other control schemes in



30

this dissertation.  This plant model and controller are simulated extensively in [22] and

[24].

Compare the controller proposed here ((2.5) and (2.6)) and that of [24] ((2.7) and

(2.8)).  For a moment, ignore the time averaging of ( 1)u n −  in (2.7) and map (2.7) into

something similar to (2.5),

( ) ( ) ( )
( ) ( )

1� 1
1 1eff

y n u n
N n

u n u n
−

+ =
− −

 ( ) ( ) ( )
( ) ( ) ( ) ( )( )2

1� � �1 1
1eff eff eff

u n
N n N n y n u n N n

u n
−

+ = + − −
−

, (2.9)

which is equivalent to (2.5) with 1µ =  and d = 1.  Thus the Fulton and Li controller

without the averaging of ( )1u n −  is equivalent to the one-parameter controller, (2.5) and

(2.6), where d is assumed to be 1. Define the parameter estimation error as

( ) ( )�
eff eff effN n N n N≡ −� . Without the averaging of ( )1u n − , if 1d ≠ , a non-zero steady

state parameter estimation error will occur:

( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( )
( ) ( )

2

1 �1 1
1

� .
1

eff eff eff eff

eff eff eff

u n
N n N n u n d N u n N n

u n

u n d
N n N N n

u n

−
+ = + − − −

−

−
= + −

−

� �

�

(2.10)

The averaging of ( )1u n −  proposed by Fulton and Li should bring the parameter error

closer to zero.

Fulton and Li suggest that the time average �should be taken over the maximum

expected round trip delay time of the ABR sources� [24].  In this case, ( )1u n −  should be

averaged over at least d steps. The purpose of the averaging becomes clear: to make

( ) ( )1 1u n d u n− − ≈ .
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2.3 The Two-Parameter Plant

Now reexamine the plant model developed in (2.2) and (2.3).  Solving each for

( )*y n ,

( ) ( ) ( ) ( )* * *u effy n N u n d C N n u n d= − + = − (2.11)

Using the assumption that uN  and C  are constant in the time-scale needed for

parameter convergence, then (2.11) can be understood by examining Figure 2.2.

l in e  2

lin e  1y*(n)

C

u *(n -d)

Nu

N (n )eff

Figure 2.2  Graphical Interpretation of effN

Optimal explicit rate ( )*u n d−  is determined by finding the horizontal

coordinate of line 1 that corresponds with its vertical component ( )*y n . ( )effN n  can

then be determined by calculating the slope of a line extending through the origin to the

point ( ) ( )( )* , *u n d y n− .

Clearly, if ( )*y n  varies time, ( )effN n  is not constant, making the task of the

adaptive controller of (2.7) and (2.8) (where the delay is not known and incorrectly

assumed) or even (2.5) and (2.6) (where the correct delay is used) very difficult.

In short, [24], and similarly [22], avoid the task of determining the response delay

d .  This requires averaging ( )1u n −  and ( )*y n , as shown by (2.10) and Figure 2.2.

However this averaging allows ( )y n  only to match ( )*y n  in the mean.  The variance of
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( ) ( )*y n y n−  could be large, requiring larger queue sizes to smooth this variance.  These

larger queue sizes require a larger hardware cost and generally increase delay.

A two parameter controller is more appropriate when ( )* |y n d n+ , and thus

( )effN n , is not, or should not, be constrained in its variance.  In such cases, the original

plant model given by (2.1) is more appropriate.  The controller suggested by [63] is as

follows:

( ) ( )
( )

( ) ( )�
�, ,�DC DCDC

N nN u n d
n n

nθ φθ

� � −� �� �
= = =� � � �� �

� �� � � �� �
θ θ φ

where DCφ  and DCθ  are constants such that DC DC Cφ θ = .  Then

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

,
�� ,

� .

T

T

y n n

y n n n

e n y n y n

=

=

= −

θ φ

θ φ

The parameter estimate vector is updated as follows:

( ) ( ) ( )
( ) ( )

( ) ( ) ( )� � �1 T
T

n
n n y n n n

n n
µ

� �+ = + −
� �

φ
θ θ θ φ

φ φ
(2.12)

with the adaptive gain µ  given by 0 2µ< < , and the control law given by

( ) ( ) ( )
( )

�* | 1
� 1

DC DCy n d n n
u n

N n
θ φ+ − +

=
+

. (2.13)

Define the parameter estimate error as ( ) ( )�n n≡ −θ θ θ� .  Then from (2.12),

( ) ( ) [ ] ( )
( ) ( )

2
2 2

1 2 T

e n
n n

n n
µ

µ+ = + − +θ θ
φ φ

� � . (2.14)
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Therefore the parameter error power ( ) 2
nθ�  never increases, since the right most term of

(2.14) is negative.  The parameter error ( )nθ�  converges to zero if the signal

( )* |y n d n+ , and thus ( )u n , is persistently exciting11.

One more check must be made before declaring the controller (2.12) and (2.13)

stable.  Specifically, the inverse function mapping ( )y n  to ( )u n d−  must be stable [63]

so that the control law produces well-behaved ( )u n .  From (2.1),

( ) ( )
u u

y nCu n d
N N

− = − + ,

and since both C and uN  are finite by assumption, stability is given by a minor

generalization of  Lemma 2.1, thus (2.12) and (2.13) provide a stable controller.

2.4 The Multi-Parameter Plant

A more realistic plant than that given by (2.1) would have sources responding to a

switch�s explicit rate {u} with varying amounts of delay. Output port j will observe

changes to its input rate ( )y n  as various sources ( iS ) react to previously specified

explicit rates ( )u n m− .  The reaction delay, m, as viewed by j for source iS , is the time

between j�s adjustment of its explicit rate at time n m−  to the time j measures this

explicit rate as its input rate from iS .  Reaction delays vary for different sources.  Assume

that there are 0b  sources that respond with reaction delay d, 1b  sources that respond with

delay 1d + , �, and dBb  with delay d dB+ , where dB  is a known upper bound on j�s

reaction delay. It is assumed that C , 0b , 1b ,�, dBb   remain constant for periods of time

                                                          
11 There are various definitions of persistent excitation.  In this dissertation, an adaptive filter input signal is
persistent exciting if its auto-correlation is full rank.  See [63] for a full discussion.
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long enough for adaptive identification to occur.  Faster convergence speed of the

adaptive algorithm results in better tracking of these time-varying parameters. The plant

is therefore given by

( ) ( ) ( )0 dBy n b u n d b u n d dB C= − + + − − +� (2.15)

( ) ( ) ( )1y n B z u n d C−= − + (2.16)

( ) ( )Ty n n d C= − +B u (2.17)

where [ ]0 1, ,..., T
dBb b b≡B  and ( ) ( ) ( ) ( )[ ], 1 ,...,

T
n u n u n u n dB≡ − −u .  Note that for

convenience, filters in z-1 and time sequences in n are mixed in expressions, e.g. (2.16).

Matrix notation is also used.  Equations (2.15), (2.16), and (2.17) are equivalent.  This

plant is a direct extension of the plants validated by simulation in [22] and [24].

Simulations of this plant, in combination with the controller of Chapter 3, appear in

Chapter 4.

Defining the plant as (2.17) leads to a generalized controller that is a direct

extension to the two-parameter controller presented in Section 2.3.  Define

( ) ( ) ( ) ( ) ( )0 1
� � �� �, , , ,T

dB DCn b n b n b n nθ� �= � �θ � ,

( ) ( ) ( ) ( ), 1 ,..., ,
T

DCn u n u n u n dB φ≡ − −� �� �φ

and reuse (2.12) to perform updates on the parameter estimates, copied again here:

( ) ( ) ( )
( ) ( )

( ) ( ) ( )� � �1 T
T

n
n n y n n n

n n
µ

� �+ = + −
� �

φ
θ θ θ φ

φ φ
(2.18)

The control law is then given by

( ) ( ) ( )� 1 * |Tn n y n d n+ = +φ θ ,
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or equivalently

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

1

0

� � �* | 1 1 1 1
� 1

dB DC DCy n d n b n u n b n u n dB n
u n

b n
θ φ+ − + − − − + − − +

=
+

�

. (2.19)

Clearly (2.13) is simply (2.19) with ( ) ( )0
�� 1 1N n b n+ = +  and

( ) ( ) ( )1 2 1 2
� � �1 1 0dB dBb b b b n b n b n= = = = + = + = = =� � .

The parameter vector error power ( ) 2
1n +θ�  will converge to a constant, as is

shown in (2.14), and will further converge to zero if the signal ( )u n d−  is persistently

exciting [63].

However, only if the inverse mapping from ( )y n  to ( )u n d−  is stable can the

controller be deemed suitable.  This requires that ( )DC DC Cφ θ =  is finite (true by

assumption) and that zeros of the plant (2.16) lie within the unit disk 1z < .  Clearly

there are situations where this is not so, e.g. if 0 11, 3;b b= =  2 3, , 0Lb b B =� , (2.16) has a

zero at 3z = − .  In such a case, the generated ( )u n  may not behaved well. On a related

note, the algorithm requires that 0 0b ≠ , i.e. the minimum delay d must not be

underestimated.  Underestimating d also has the effect of placing a plant zero outside the

unit disk and thus produces an unstable controller. The practical consequences of these

limitations are addressed in Chapter 3.

2.5 The Blending Effect of Queues

The plant model (2.15) implicitly assumes that cells that leave a source with a

specific rate will arrive at a bottleneck port j at the same rate, i.e. cell rates are unchanged

or unmodulated by intervening ports.  This assumption is not appropriate in every
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scenario.  This section reveals how intervening ports might modulate rates.  However,

including this mechanism in the plant model involves significant, perhaps intractable,

complexity.  The specific rate-modulating mechanism described here is the Blending

Effect.  However, as discussed in Section 2.5.3, this effect is not included in the model

used in the following chapters.

The following simple example illustrates the Blending Effect.  Consider an output

port p that has a constant output service rate *
py  cells/sec.  Let port p service two virtual

connections, 1VC  and 2VC , having fixed input rates ( ) *
1, , 1/ 2in p py y=  and

( ) *
2, , 3 / 4in p py y= .  The resulting ratio of cells in p �s buffer is approximately 2/5 and 3/5

for 1VC  and 2VC  respectively.  The output rates are therefore ( ) *
1, , 2 / 5out p py y=  and

( ) *
2, , 3 / 5out p py y= .

A number of initial observations can be drawn from this example.  First, the rates

of both virtual connections are modified by port p, i.e., 1, , 1, ,in p out py y≠ , 2, , 2, ,in p out py y≠ .

Second, the output rate of 1VC , 1, ,out py , is as much a function of 2 ,in py  as it is 1, ,in py .  By

extension, 1, ,in py  is a function of the rates of all of the virtual connections sharing all of

the upstream ports with 1VC , and likewise for 2VC .  Third, if the source rate of 1VC  is

controlled by a downstream port j ( p≠ ), and if 2VC  does not continue through j, port j

has no way to directly measure or directly control 2VC , nor the impact of 2VC  on 1, ,in jy .

These observations reveal the significant difficulty that the Blending Effect poses to the

modeling of explicit rate congestion control.
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2.5.1 Modeling the Blending Effect

This section presents a model for the Blending Effect.  The Blending Effect was

first reported in [30], which included an approximate model.  The model introduced here

does not rely on some of the limiting assumptions of [30].  This algorithm takes as an

input a 1N ×  vector ( )nin , which represents the number of cells from each of the N

virtual connections that enter the queue at time n .  The output of the algorithm is a 1N ×

vector ( )nout , which represents the number of cells from each of the N  virtual

connections that exit the queue at time n .

The Blending Effect algorithm is in discrete time and counts cells and cell rates as

continuous (i.e. non-discrete) quantities.  Queue service is first in-first out (FIFO).  Let

port p have an output rate of ( )*y n . The sample time is ∆  seconds, therefore the input

and output rates are ( ) /n ∆in  and ( ) /n ∆out  cells per second.

Section 2.5.1.1 presents the Blending Effect algorithm in pseudocode.  Additional

variable definitions and discussion follows in Section 2.5.1.2.

2.5.1.1 Pseudocode for Blending Effect
/* Initialize.*/

0n =
0c =

for each n
{

1c c= +
( ) ( )c n=Cells in

( )
1

N

xc
x

remain c
=

=�CELLS

=outcells 0
( )*M y n= ∆

while ( )0M >

{ if ( )( )1remain M≤
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{ ( ) ( )
1

1

1
1N

x
x

remain

=

= +
�

outcells outcells Cells
CELLS

( )1M M remain= −

if ( )1c >

{ for  , 1, , 2t c c= − �

{ ( ) ( )1t t− =Cells Cells

( ) ( )1remain t remain t− =
}

}
else

( ){ 1 =Cells 0
       0M =

}
1c c= −

}
else

{ ( )
1

1

1N

x
x

M

=

= +
�

outcells outcells Cells
CELLS

( ) ( )1 1remain remain M= −
0M =

}
}

( )n =out outcells

}

2.5.1.2 Discussion of Pseudocode for Blending Effect

The cells in the queue are represented by N c×  matrix CELLS . Row i  of

CELLS , notated as the 1N ×  vector ( )iCells , corresponds to the input cell vector

( )( )1n i− −in , 1 i c≤ ≤ .  The scalar c  indicates the number of partial and complete input

intervals remaining in the queue.  Therefore c  fluctuates depending on the rate of cell

arrival as compared to the cell service rate. The operations at time n begin by appending

( )nin  to CELLS , thereby incrementing c.  Then ( )*M y n= ∆  cells, if available, are

removed from �the front of� CELLS . At time n , some of the cells located at the front of
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the queue, i.e. in ( )1Cells , may have exited the queue at time 1n − .  Therefore a count of

the remaining cells represented by ( )1Cells  is maintained as the scalar ( )1remain

( ( )remain c  is actually calculated when ( )nin  becomes ( )cCells ).  The 1N ×  vector

outcells counts the number of cells from each virtual connection as they exit.  The

specific manner in which the M cells are removed from CELLS  is given by the above

pseudocode in Section 2.5.1.1.  Basically, CELLS  keeps track of the relative population

of each Virtual Circuit�s cells throughout the queue.

2.5.2 Simulation

The following simple example demonstrates the Blending Effect as it is

characterized by Section 2.5.1.1.  Consider the case where only two virtual connections,

1VC  and 2VC , share port p.  Port p has a constant service rate ( )* 1py n =  million cells per

second (Mcps). 1VC  presents a constant input load and 2VC  presents a sinusoidal load to

port p:

( )1, , 500 Kcpsin py n = ,

( ) ( )( )2, , 1 sin / 20 500 Kcpsin py n nπ= + .

The average load provided by 1VC  and 2VC  is equal to the service rate ( )*
py n .

The input and output rates are shown together for 1VC  in Figure 2.3 and for 2VC  in

Figure 2.4.  Due to the Blending Effect, the output rates depart significantly from their

respective input rates, especially for 1VC .
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Figure 2.3  Input (dashed line) and Output (solid
line) Rates for 1VC .  The disparity is the result of
the Blending Effect.
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Figure 2.4  Input (dashed line) and Output (solid
line) Rates for 2VC .  The disparity is the result of
the Blending Effect.
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2.5.3 Discussion

Clearly the Blending Effect presents an enormous challenge to explicit rate

congestion control.  The algorithm of Section 2.5.1.1 characterizes the Blending Effect as

it applies to one port, e.g. port p.  However, before output rates of port p can be

calculated, the input rates must be known.  Generally these input rates are the output rates

of ports immediately preceding port p.  As the Blending Effect is presumably present in

these ports as well, the algorithm of Section 2.5.1.1 must be executed for these ports

before it is run for port p.  By iterative logic, it appears that the model for the input rates

of p may include a very large, perhaps intractable, number of virtual connection source

rates and port rate blendings.  Further, port j is very unlikely to measure or learn all of

this information.  Efforts to meaningfully model the effect from other ports as a

disturbance has yet to show promise.

Consider the alternative of ignoring the Blending Effect altogether.  Loosely

stated, if port j is the sole bottleneck port for 1VC , the ports between 1'sVC  source and

port j should presumably have adequate resources to serve 1VC .  When this is not true,

then it may be appropriate to move the designation of �controlling port for 1VC � to the

port causing the blending.  In other words, instead of augmenting the plant model of

(2.15) to incorporate the Blending Effect, allow the plant model to rapidly add and

remove responsive flows.  Faster adaptive identification employed by the controller

results in improved tracking of these time-varying parameters.

Furthermore, it may be argued that ports will by design conservatively allocate

less bandwidth to ABR traffic than is actually available, as suggested by [11] and [12].  If

ABR cells are served in a separate buffer from other service category cells, extremely
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short ABR cell queues should result.  As the length of queue depths diminish, the

associated Blending Effect also diminishes12.

The Blending Effect can be diminished by lengthening sample intervals.  In

steady state, 1'sVC  input rate to a port must equal its output rate over large intervals of

time.  Another possible solution, although protocol specific to ATM ABR, is to avoid

direct measurement of input cell rates.  Resource management cells include a field that

specifies the allowed cell rate of the source at the time the resource management cell was

created.  This field will be unaffected by the Blending Effect.  Port j can then determine

its input rate by summing the field values read from the RM cells of distinct virtual

connections.

For these reasons, combined with the intractability problem, the Blending Effect

is ignored for the remainder of this dissertation. Incorporating the Blending Effect into

the results that follow would be a significant future contribution.

2.6 Summary

In this chapter, Minimum Prediction Error Adaptive Controllers are used as

congestion control algorithms for ATM ABR traffic.  A one-parameter controller was

developed in Section 2.2 and shown to converge when the bandwidth available for ABR

traffic is constant.  The previously published algorithm of [24] and [22] is shown to be an

approximation to the one-parameter controller. Section 2.3 introduces a mechanism for

directly estimating and removing constrained source traffic.  This improves convergence

                                                          
12 Note that Section 4.4 attempts to keep queue depths at a targeted, non-zero value.
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when the available bandwidth for ABR traffic changes in time.  Section 2.4 generalized

the controller of Section 2.3 to the case of sources with non-identical response delays.

This generalized controller of Section 2.4 can be proven to be stable only under certain

conditions.  Developing an improved controller is the topic of the next chapter. Section

2.5 explores the Blending Effect.  Much of the material presented in this chapter is

published as [23].
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CHAPTER 3 A CONTROLLER FOR CONGESTION CONTROL

This chapter identifies a controller to operate in the congestion control plant

developed in Chapter 2.

Section 3.1 examines several control strategies with regard to their

appropriateness for controlling the congestion control plant.  One of the strategies

examined is selected as the best choice.  The convergence and stability properties of this

chosen control strategy is examined in Section 3.2.

3.1 Selection of Controller for the Congestion Control Plant

In the previous chapter, several models for the rate-controlled data network plant

are discussed.  These models differentiate themselves in part by the amount of detail used

to represent sources� response delay to explicit rate assignments. For each of the models,

an adaptive, indirect controller that inverts the estimate of the plant is suggested.  The

most detailed model is presented in Section 2.4, where the response delay of each source

is explicitly expressed.  It is noted in Section 2.4 that the multi-parameter control scheme

(2.18) and (2.19) requires a minimum-phase plant assumption.  This assumption has little

basis in reality, and violation of this assumption causes undesirable results.  Therefore the

focus of present section is finding control strategies that effectively control non-minimum

phase and minimum-phase plants alike.
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This section begins with a review of the multi-parameter plant presented in

Section 2.4.  Several control strategies are proposed and evaluated.  The most attractive

control scheme is presented in Section 3.1.4.  Stability, convergence and convergence

rate issues are presented in Sections 3.2 and 4.3.

3.1.1 Plant Definition (Review)

This subsection briefly restates the plant presented in Section 2.4.

Since each switch implements its own, independent controller, the plant may be

considered from the perspective of a single switch SW.  A discrete-time model is used,

where sample intervals correspond to control intervals, i.e. a new control action u(n) is

calculated for each n.  Port j of switch SW carries N simultaneous Available Bit Rate

(ABR) sessions, and serves as an output port for data cells and an input port for backward

resource management (RM) cells.

u(n)

y(n) y*(n)

...

S1

S2

SN

.

.

.

D1

D2

.

.

.

DN

Port j of
switch
SW

Figure 3.1  Plant from Perspective of Switch Output Port

Output port j observes changes to its input rate ( )y n  as various sources ( iS )

reacts to previously specified explicit rates ( )u n m− .  The reaction delay, m, as viewed

by j for source iS , is the time between j�s adjustment of its explicit rate at time n m−  to
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the time j measures this explicit rate as its input rate from iS .  Reaction delays vary for

different sources.  Assume that there are 0b  sources that respond with reaction delay d, 1b

sources that respond with delay 1d + , and dBb  with delay d dB+ , where dB  is a known

upper bound on j�s reaction delay. It is assumed that C , 0b , 1b ,�, dBb   remain constant

for periods of time long enough for adaptive identification to occur.  Faster convergence

speed of the adaptive algorithm results in better tracking of these time-varying

parameters. The plant is therefore given by

( ) ( ) ( )0 dBy n b u n d b u n d dB C= − + + − − +� (3.1)

( ) ( ) ( )1y n B z u n d C−= − + (3.2)

( ) ( )Ty n n d C= − +B u (3.3)

where [ ]0 1, ,..., T
dBb b b≡B  and ( ) ( ) ( ) ( )[ ], 1 ,...,

T
n u n u n u n dB≡ − −u .  Note that

for convenience, filters in z-1 and time sequences in n are mixed in expressions, e.g.

(2.16).  Matrix notation is also used.  Equations (2.15), (2.16), and (2.17) are equivalent.

Since the minimum delay in the plant is d, adjustments in ( )u n  will not be

observed until n d+ .  Therefore to generate ( )u n , it must be decided at time n what the

desired value of ( )y n d+  should be. This desired bandwidth, which is notated as

( )* |y n d n+ , may reflect both bandwidth and buffer measurements13 made up to time n

(this may be generated by a prediction filter as in [16]).  By extension, in many cases, the

input of the algorithm will be ( )* |y n d V n+ +  (for some non-negative V), i.e. the

desired value of ( )y n d V+ +  known at time n.  Rates ( )u n , ( )y n , and ( )*y n  are in

units of cells per second.

                                                          
13 Requested bandwidth can be reduced to shrink the buffer if it is too large.
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The goal of the congestion control mechanism of SW is to choose at time n  the

control signal ( )u n  so as to minimize ( ) ( )( )2
* |E y n d V y n d V n� �+ + − + +� � .

3.1.2 Control of Stable Non-Minimum Phase Plants

To simplify the presentation of basic concepts, consider the plant (2.16) with zero

DC offset, i.e. 0C = ,

( ) ( ) ( )1y n B z u n d−= − . (3.4)

In Section 3.1.4.2, a coefficient, the DC tap, is added to the identification filter for the

purposes of matching DC offsets, thereby extending the following comments.

The plant (3.4) is an FIR filter ( )1B z−  and is thus Bounded Input/Bounded

Output (BIBO) stable.  The controller proposed in Section 2.4 cancels the dynamics of

the plant by placing controller poles where plant zeros are located (all plant poles are at

the origin).  One of the assumptions required for stable operation of such a controller is

that the zeros of ( )1B z−  lie within the unit disk, i.e. that the plant ( )1B z−  is minimum-

phase.  However, as noted in Section 2.4, the underlying physical plant does not suggest

that this assumption is appropriate.  A non-minimum phase plant is not only possible, but

quite likely.  Thus a controller capable of controlling a non-minimum phase (NMP) plant

is needed.

There has been significant progress in the control of Non-Minimum Phase (NMP)

plants in the past twenty years.  Section 3.1.2 reviews some of the better-known NMP-

plant controllers and discusses their appropriateness for the explicit rate congestion

control problem.
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3.1.2.1 Minimum Variance Control Law for NMP Plants

The Minimum Variance Control Law for NMP Plants was introduced by Grimble

in 1981 [35].  The following year, the same author proposed a self-tuning version [36].  A

direct (or implicit) adaptive controller, where controller parameters instead of plant

parameters are directly identified, was significantly extended by Niederlinski and

Moscinski in 1988 [37].  For  plant (3.4), Grimble�s indirect and Niederlinski�s direct

controllers reduce to the same controller.

It is convenient to separate ( )1B z−  into two polynomals: ( )1B z+ −  includes all

minimum-phase zeros of ( )1B z−  and ( )1B z− −  includes all non-minimum-phase zeros of

( )1B z− .

( ) ( ) ( ) ( )1 1y n B z B z u n d+ − − −= − (3.5)

Further, define a reflection polynomial of ( )1B z− −

( ) ( )1 dBB z z B z
−− − − −≡� (3.6)

If 0z  is a root of ( )1 0B z− − = , 1
0z−  is a root of ( )1 0B z− − =� .

The Generalized Minimum Variance Control Law for (3.5) is ([35])

( ) ( )
( ) ( )1 1

* |y n d n
u n

B z B z+ − − −

+
=

�
(3.7)

Substituting (3.7) into (3.5), the closed loop response is

( ) ( ) ( ) ( )
( ) ( )

( )
( ) ( )

1 1 1 1

1 1 1

* |
*

B z B z y n n d B z
y n y n

B z B z B z

+ − − − − −

+ − − − − −

−
= =

� �
. (3.8)

( ) ( )1 1B z B z− − − −�  has the property that
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( )
( )

1

1
1

B z

B z

− −

− −
=

�
, (3.9)

and is called an all-pass filter; see Figure 3.2 for an example with ( ) 2 8 4B z z z= − + .
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Figure 3.2  Poles and Zeros of ( ) ( )1 1B z B z− − − −�

with ( ) 2 8 4B z z z= − +

The controller of (3.7) places closed-loop poles to cancel the minimum-phase

zeros of the plant.  Plant zeroes that are not minimum-phase are not cancelled.  Instead,

reflection poles are placed such that the reflection poles and non-minimum-phase plant

zeros form an all pass filter, ( ) ( )1 1B z B z− − − −� .  Note that Section 2.4 developed a

controller very similar to (3.7).  In fact, given the assumption of Section 2.4 that the plant

be minimum-phase, i.e. ( )1 1B z− − = , the controller (3.7) reduces to the same multi-

parameter controller of (2.19), repeated here:

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

1

0

� � �* | 1 1 1 1
� 1

dB DC DCy n d n b n u n b n u n dB n
u n

b n
θ φ+ − + − − − + − − +

=
+

�
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The simple appearance of (3.7) masks a significant complication: the need for a

root-finding algorithm to factor ( )1B z−  into ( )1B z− −  and ( )1B z+ − .  A survey of

numerical algorithms that find the roots of a polynomial can be found in [38], and include

the Secant method, False Position method, and the Newton-Ralphson method.  High

levels of precision generally require that the algorithm be run twice, once to find the

general range of each root, the second time to find  the location precisely.  Each located

root must be factored from the remaining polynomial before finding the next root.

This process is computationally expensive.  Further, root location techniques are

very sensitive to polynomial coefficients.  Small inaccuracies in the estimate of ( )1B z− ,

common in many estimation techniques, could result in considerably inaccurate root

calculations.  Many simulations verify that the generalized minimum variance controller

is not a good choice for explicit rate congestion control.

3.1.2.2 Approximate Inversion Using FIR Filters

This section introduces the concept of approximately inverting one finite impulse

response (FIR) filter with another FIR filter.  This concept is attractive due to its

simplicity and its attractive stability properties.  It is therefore the common theme of

controllers in the rest of this dissertation.

The minimum-phase plant limitation described in Section 2.4 is required since

violation of this condition introduces non-stable closed-loop eigenvalues into the system

via the controller�s poles. These controller poles are placed in series with the plant and

therefore do not effect feedback control with its associated desirable qualities [34]. This
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begs the question of whether control of plant (3.4) can be satisfactorily accomplished

without adding potentially destabilizing controller poles.  Except in special cases, one

finite impulse response (FIR) filter cannot perfectly invert another FIR filter�an infinite

impulse response (IIR) filter is required.  However, as discussed below, in many practical

situations, an FIR control filter placed in series with an FIR plant produces an impulse

response with attractive qualities�loosely stated, the FIR controller approximately inverts

the FIR plant.

The concept of approximately inverting one FIR filter with another FIR filter is

not new, e.g. [39], [59].  Yet this concept seems to have gained relatively little attention

despite its attractive characteristics.  Its most attractive attribute is its ability to control

non-minimum phase stable plants without introducing the potential for instability.  To

control non-minimum phase plants, a delay of V samples is added to the controlled

system.  Given the large phase lags inherent in non-minimum-phase plants, adding delay

is a common characteristic of non-minimum phase plant control.

A general plant ( )1B z−  can have zeros inside and outside the unit circle.

Consider the ideal inverting IIR filter ( ) ( )1 1 11/B z B z− − −≡ .  The time-domain realization

( ) ( ){ }1 1 1 1b n B z− − − −≡� , where ( ){ }1 1x z− −
�  is the inverse Z-transform of ( )1x z− [58],

is not specified until a region of convergence is specified.  Let ,maxp+  be the location of

the largest magnitude pole of ( )1 1B z− −  inside the unit circle, and let ,minp−  be the

location of the smallest magnitude pole outside the unit circle.

Consider a region of convergence for ( )1 1B z− −  of ,max ,minp z p+ −< < .  With this

region of convergence, the impulse response is two-sided, i.e. non-zero for both positive
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and negative n.  However, unless there is a root of ( )1B z−  on the unit circle, i.e. the

region of convergence includes the unit circle, ( )1b n−  converges to zero exponentially

as n → ±∞  [58].  As an example, consider ( )1 1 2 32 9 8 3B z z z z− − − −= + + + , which has a

pair of complex minimum-phase zeros and one non-minimum-phase zero, as shown in

Figure 3.3.
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Figure 3.3  The Zeros of ( )1 1 2 32 9 8 3B z z z z− − − −= + + +

The inverse Z-transform of ( )1 1 2 32 9 8 3B z z z z− − − −= + + + , with a region of

convergence that includes the unit circle, results in a two-sided time-domain filter that

converges in magnitude rapidly to zero, as shown in Figure 3.4.
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Figure 3.4  A Two-Sided, Causal Impulse Response
( )1b n−  if ( )1 1 2 32 9 8 3B z z z z− − − −= + + +  and the

Region of Convergence is Chosen to Include the
Unit Circle.

If an FIR filter ( ) 1b n − , with impulse-response shown in Figure 3.4, is shifted in

time to the right by 10 samples and truncated after 26 coefficients, the resulting causal,

stable, FIR filter ( )q n  would provide a good approximation to a delayed version of

( )1b n− ; that is, ( ) ( )1 10q n b n−≈ −  (see Figure 3.5), or

( ) ( )
10

1 1 25
0 1 25 1

zQ z q q z q z
B z

−
− − −

−
= + + + ≈� .

If this delay is acceptable, ( )q n  could be used to approximately invert the non-

minimum-phase plant ( )1B z− .

Now to generalize, let ( )Q z  be a causal, FIR filter that attempts to invert a

delayed version of ( )B z .  If ( ) 1 0b n V −− ≈  for 0n <  and n dQ>  ( 0V ≥ ), then a causal

( )1dQ +  tap FIR filter with impulse response ( )q n  could approximate ( ) 1b n V −−
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increasing well with increasing choices of V  and dQ  (if ( )B z  has no roots on the unit

circle).

( ) ( )
1 1

0 1 1

V
dQ

dQ
zQ z q q z q z

B z

−
− − −

−
= + + + ≈�

The above explanation does not appear in [39] or [59], although the more recent

[60] makes brief, similar comments.
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Figure 3.5  The Impulse Response of ( )q n , a

Delayed, Truncated Version of ( )1b n−

3.1.2.3 Indirect Adaptive Control Using an Approximate Inverse FIR Filter

This section briefly outlines a previously published control strategy.  The

controller is an example of the concept of Approximate Inverse FIR Control described in

Section 3.1.2.2 and motivates the control strategies presented in Section 3.1.4.
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Yahagi and Lu proposed an intuitive adaptive controller for non-minimum-phase

plants in 1993 [39].  The controller consists of a time-varying, FIR filter ( )1�Q z−  (note

that this notation drops the implicit dependence on time n), which when placed in series

with the ( )B z , approximately produces a delayed unit pulse, i.e.

( ) ( )1 1� VB z Q z z− − −≈ (3.10)

The constant V is an operator-chosen delay which is non-negative, introduced �so that the

accuracy of the approximate inverse system [(3.10)] becomes better� [39].  Further

comments on this are made in 3.1.2.2.

The Approximate Inverse Indirect Controller for the current scenario is given as

([39]):

( ) ( ) ( )� 1 * |Tu n n n d V n= + + +Q y , (3.11)

( ) ( ) ( )0
� � �,...,

T

dQn q n q n� �≡ � �Q (3.12)

( ) ( ) ( )* | * | ,..., * |
T

n d V n y n d V n y n d V dQ n dQ+ + ≡ + + + + − −� �� �y

Using the polynomial notation ( )1�Q z−  and vector notation ( )� nQ

interchangeably, the plant (3.4) and controller (3.11) give the closed loop response

( ) ( ) ( ) ( )1 1� * |y n Q z B z y n V n d− −= + − .  If the approximation of (3.10) is assumed to be

exact, then ( ) ( )* |y n y n n d V= − − .

The least-squares fit to the estimated ( )�1/ 1n +B  is ( )� 1n +Q , defined as:

( ) ( )( ) ( )( )� � �1 arg 1 1
TT T

v vn n n+ = + − + −
Q

Q B Q e B Q e , (3.13)
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� �
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B

�

�

� �

� �

, (3.14)

with an estimate of B , ( )� 1n +B , similarly defined.  Also define

0 1
� � � �, ,...,

T
dQq q q� �≡ � �Q ,  [ ]0,0,...,0,1,0,...0 T

v ≡e ,

with the ( )1V + th element of ve  equal to 1.  The Wiener solution [64] solves (3.13):

( ) ( ) ( )( ) ( )
1� � � �1 1 1 1T

vn n n n
−

+ = + + +Q B B B e (3.15)

The computational cost of evaluating (3.15) can be reduced by using a Levinson

algorithm [39], but is still ( )2O dQ .

Operation of the Approximate Inverse Indirect Controller Algorithm consists of

the following steps at each time n.  First, update estimate ( )� nB  to ( )� 1n +B  using an

appropriate identification algorithm, e.g. Normalized Least Mean Squares.  Second,

calculate ( )� 1n +Q  from (3.15), using the latest estimate of ( )� 1n +B .  Finally, calculate

( )u n  from (3.11).  A computationally less expensive alternative is presented next.

3.1.3 Rejected Direct Adaptive Controllers

In this section, two adaptive controllers are presented.  Although neither can be

used in their presented form, both controllers presented in Section 3.1.3 motivate the

controller of Section 3.1.4.

Direct adaptive controllers are discussed in Sections 3.1.3 and 3.1.4.  The term

direct specifies that controller parameters are directly identified using an adaptive

identification method.  In contrast, the indirect controller of Section 3.1.2.3 identifies the
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plant parameters first and then derives controller parameters from the estimates of the

plant parameters.  The controllers in Sections 3.1.3.1, 3.1.3.2, and 3.1.4 were developed

in an attempt to find a direct formulation of the indirect controller presented in Section

3.1.2.3.  The motivation for finding a direct formulation is reducing computational cost

by eliminating the calculation of (3.15).

3.1.3.1 A Potentially Non-Convergent Adaptive Controller

Consider a direct controller where �Q  is directly estimated from plant input and

output signals, as shown in Figure 3.6.  Using the Normalized Least Mean Squares

(NLMS) method [64], adaptively estimate ( )*
�

y nQ  to obtain the ideal *,0yQ  that

minimizes the least squares criterion

( )
*

2
*,0 �

arg min
y

y E e n� �= � �Q
Q .

( )* |y n d n d+ −
e(n)

Vz�

*
�

yQ B ( )y nu(n-d)

+

( )* |y n n d V− −

Figure 3.6  A Direct Adaptive Controller System for
Controlling MA Plant That MAY NOT
CONVERGE.

A careful study of Figure 3.6 shows that convergence cannot be ensured.  Briefly

stated, the update error ( )e n  is not the required inner product of the parameter error

vector ( )* *,0
�

y yn −Q Q  and input vector ( )* |n V n d+ −y , but instead this inner product is
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filtered by the FIR filter ( )1B z− .  Since ( )1B z−  is not strictly positive real (SPR), except

for the case of 0dB = , i.e. ( )1
0B z b− = , convergence cannot be assured [63].  Therefore,

the controller of Figure 3.6 is disqualified as a viable explicit rate congestion controller.

3.1.3.2 An Unrealizable Controller

Consider a second control method shown in Figure 3.7 which inverts the order of

�Q  and B in Figure 3.6.  The auxiliary signal ( )t n  is introduced.  The issue of filtering

the coefficient error vector is overcome.

y*(n + V|n-d)
e(n)

Vz�

�
tQB y(n)t(n)

+

Figure 3.7  Inverting Plant and Controller, AN
UNREALIZABLE CONTROLLER ( ( )t n  is not
available).

Comparing Figure 3.7 with Figure 3.6, clearly

( )2
,0 *,0 �

arg min
t

t y E e n� �= = � �Q
Q Q .

Then the Wiener solution, as given by [64], is

( )* *

1

,0 *,0
T

t y Vy y

−
= =Q Q BR B BR e (3.16)

where

( ) ( )*
* *| | T

y E n d V n n d V n� �≡ + + + +
� �

R y y
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is a dB+dQ+1 by dB+dQ+1 auto-correlation matrix assumed to be full rank, i.e. there is

sufficient excitation.  Note that if { }*y  is white noise with *
2

y
σ=R I , then (3.16) is

equivalent to (3.15).

However, there is a problem.  Since ( )1B z−  is unknown, ( )t n  cannot be created.

The formulation of Figure 3.7 provides insight and intuition, but cannot be implemented.

3.1.4 Direct Adaptive Approximate Inverse Control

In this section, a control strategy is presented that was developed expressly for an

ABR explicit rate congestion controller.  It is based in part on the identification scheme

shown in Figure 3.7.

However, further investigation revealed that the control methodology presented in

this section is nearly identical to Adaptive Inverse Control, a methodology previously

proposed by Widrow and Walach [59].   The approach here distinguishes itself from the

approach of [59] in its use of the Normalized Least Mean Square (NLMS) adaptation

scheme; Widrow uses Least Mean Square (LMS).  The advantage of NLMS is that it

allows setting the adaptive gain to its optimal value (=1), resulting in the fastest possible

stable convergence.  Use of NLMS requires a new proof of convergence, which appears

in Section 3.2.

3.1.4.1 A Convergent, Realizable Adaptive Control Strategy

An attractive adaptive control strategy must converge to desirable parameters and

be realizable; the controllers of Sections 3.1.3.1 and 3.1.3.2 each fail in one of these

respects. Yet both controllers motivate the controller presented in this section.  When
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placed in series with B, an ideal FIR controller will approximate a delayed impulse.  The

adaptation error must not be filtered by a non-SPR filter (e.g. by B, as it was in Figure

3.6). Figure 3.7 achieves this.  Unfortunately ( )t n  is not available.  However, if in Figure

3.7, the signals ( )* |y n n d V− − , ( )t n , and ( )y n  are replaced respectively with

( )u n d− , ( )y n , and ( )�u n V d− − , as in Figure 3.8, all necessary signals are available.

� �ue n d V� �

( )u n d−( )y n

Vz�

�
uQ

B

+
� ��u n V d� �

Figure 3.8  Direct Inverse Plant Modeling

Figure 3.8 specifies the suggested structure for controller identification.  It will be

shown that ,0 ,0u t≈Q Q , and that �
uQ  can be found using a NLMS estimation process.

Define ( )2
,0 arg min

u
u uE e n� �≡ � �Q

Q  and the dB+dQ+1 by dB+dQ+1 auto-

correlation matrix ( ) ( )T
u E n n� �≡ � �R u u , (assumed to be full rank).  Then the Wiener

solution gives

( ) 1

,0
T

u u u V

−
=Q BR B BR e . (3.17)

Although (3.17) and (3.16) are not equivalent, except for the case of ( )1
0B z b− = ,

both provide an approximate inverse of B.  To better compare *,0yQ  and ,0uQ , consider

the formulation of Figure 3.9.

The error power ( )2
xE e n� �� �  is to be minimized as a function of �

xQ .  Clearly �
xQ

must approximately invert B, but the specific ( ) 1

,0
T

x x x V

−
=Q BR B BR e  is a function of
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the spectral content of excitation signal { }x .  For example, if { }x  is primarily a low-

frequency signal, then �
xQ  can only hope to match the inverse of B at these low

frequencies; �
xQ  may not be a good match for the inverse of B at higher frequencies not

represented by { }x .

x(n+V)

Vz�

+

� ��x n
B

� �xe n

�
xQ

Figure 3.9  A System Where ,0xQ  is a Function of { }x

For *,0yQ , the driving signal is { }*y , while the driving signal of ,0uQ  is { }u .

When { }*y  and { }u  have similar spectral characteristics, then by (3.16) and (3.17),

*,0 ,0y u≈Q Q .  Further, if both *,0yQ  and ,0uQ  have enough taps to well match the inverse

of B at all frequencies, assuming sufficient excitation, then 1
*,0 ,0y u

−≈ ≈Q B Q .

3.1.4.2 Removing DC Offsets With a DC Tap

For Sections 3.1.2 through 3.1.4.1, the analysis has been simplified by assuming

the plant parameter 0C = .  To extend these results to the non-zero C case, a DC tap is

appended to the estimator and controller.  This simply requires increasing ( )�
u nQ  by one

tap, i.e. incrementing dQ  by one, and appending a constant DCy  to the vectors y  and

*y .  Redefine

( ) ( ) ( ) ( ), 1 ,..., ,
T

DCn y n y n y n dQ y≡ − −� �� �y (3.18)

( ) ( ) ( )* | * | ,..., * | ,
T

DCn d V n y n d V n y n d V dQ n dQ y+ + ≡ + + + + − −� �� �y . (3.19)
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The final tap of ( )�
u nQ  is called the DC tap, and once converged, ensures that

( ) ( )�E u n V d E u n V d− − = − −� � � �� � � � .  The DC tap is further discussed in Section 3.2.2.2.

3.1.4.3 Normalized Least Mean Square Adaptive Mechanism

Unlike *,0yQ , ,0uQ  can be estimated using the Normalize Least Mean Square

algorithm [64].  At time n, calculate14

( ) ( ) ( )�� Tu n d V n n− − =Q y (3.20)

( ) ( ) ( )�ue n d V u n d V u n d V− − = − − − − − (3.21)

( ) ( ) ( )
( ) ( )

( )� �1 uT

n
n n e n d V

n n
µ

+ = + − −
y

Q Q
y y

(3.22)

( ) ( ) ( )� 1 * |Tu n n n d V n= + + +Q y (3.23)

Defining the error parameter vector ( ) ( ) 0
�n n≡ −Q Q Q� , Section 3.2 shows that if

0 2µ< <  and certain other assumptions are made, then ( )nQ�  converges to the zero

vector.  Section 3.2 also addresses global stability.

3.1.4.4 Complete Control Architecture

Figure 3.10 shows the complete control architecture.  The Identification section

uses NLMS adaptation to determine ( )� 1n +Q  (shown with �DCq  separated from the

remaining linear taps, �
linQ , with 1DCy = , and without time index) by creating estimate

( )�u n V d− −  using (3.20).  ( )� 1n +Q  is copied into the Controller, which produces ( )u n

                                                          
14 There will be no further consideration of *yQ  and tQ  introduced in Sections 3.1.3.1 and 3.1.3.2.  From

this point forward, the explicit subscript u  in ,0uQ  and ( )�
u nQ  is dropped, i.e. ,0 0u =Q Q  and

( ) ( )� �
u n n=Q Q .
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from the set point ( )* |y n V d n+ +  ((3.19) using (3.11)).  The Plant is represented by

(3.3).

C

*( | )y n d V n+ +
( )y n

( )�u n d V− −

( )ue n d V− −

( ) ( )* |y n n d V y n− − −

( )u n
B (copy)

�
linQ

Vz−

+

Plant Controller

Identification

d Vz− −

�
linQ

�DCq

+

+dz−

+

+

(copy)
�DCq

Figure 3.10  Complete Control Architecture ( 1DCy = )

3.1.5 Summary

After reviewing the ATM ABR congestion control plant in Section 3.1.1, five

control mechanisms based on adaptive linear control theory are presented.  The first,

described in Section 3.1.2.1, requires use of a polynomial root-finding algorithm and is

therefore impractical.  The second, described in Section 3.1.2.3, is a previously published

controller that approximates the inverse of the Moving Average (MA) plant with a BIBO

stable FIR filter.  This indirect controller approach is judged to be unnecessarily

computationally complex, yet it inspires the ensuing three controllers.  The first two of

these three are impractical choices, as discussed in Section 3.1.3, but provide intuition to

the proposed controller in Section 3.1.4. The selected controller can be viewed as a direct
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adaptive controller based on the controller of Section 3.1.2.3.  This controller can employ

an NLMS adaptation mechanism.

Convergence and other issues pertaining to this control architecture are discussed

in Section 3.2.  Other algorithm modifications to improve performance are given in

Chapter 4.

3.2 Convergence and Stability

In this section, the convergence and stability properties of the controller proposed

in Section 3.1.4 are examined extensively.  Section 3.2 contains two separate yet

complimentary proofs.  The proof in Section 3.2.2 is summarized by Theorem 3.1 and

Theorem 3.2. The proof in Section 3.2.3 is summarized by Theorem 3.3.  Each of these

two proofs demonstrates desirable qualities of the controller presented in Section 3.1.4.

Each proof has its own set of assumptions.

The first proof�s assumptions relate primarily to the signals associated with the

controlled system.  This proof focuses on the convergence of the controller parameters.

Its claims on global stability are weaker than that of the second proof.  The second

proof�s assumptions relate primarily to the plant.  These assumptions take the discussion

in Section 3.1.2.2 to its logical extension�a finite impulse response (FIR) filter�s

approximate inversion of a second FIR filter is assumed to be exact.  This approximation

allows a very compact yet rigorous proof of convergence and global stability.

The two proofs are necessitated by lack of the perfect modeling that attempting to

invert one FIR filter with another affords.  When perfect modeling is assumed, as it is in



65

the second proof, strong results are possible.  Intuitively, these results well approximate

practical experience when a plant can be nearly inverted by an FIR filter, e.g. when the

FIR plant has no roots on the unit circle and the FIR controller has a sufficiently large

number of taps.  However, as this approximation becomes less accurate, e.g. when the

FIR plant has roots near or on the unit-circle or when the FIR controller has an

insufficient number of taps, it is important to know that the controller will converge to a

desirable filter.  The first proof offers assurances that the controller will converge to a

minimum mean square error solution.  Therefore the two proofs should be viewed as

complimentary.  Of course it would be possible to combine these two proofs by

combining their assumptions and results.  However, this would obscure important

understanding of the system under study.

3.2.1 Plant and Controller (Review)

This section briefly reviews the plant and controller under consideration.  The

plant is given by (3.1) to (3.3), repeated here:

( ) ( ) ( )0 dBy n b u n d b u n d dB C= − + + − − +� (3.24)

( ) ( ) ( )1y n B z u n d C−= − + (3.25)

( ) ( )Ty n n d C= − +B u (3.26)

where [ ]0 1, ,..., T
dBb b b≡B  and ( ) ( ) ( ) ( ), 1 ,...,

T
n u n u n u n dB≡ − −� �� �u .

Identification of the controller �Q  employs Normalized Least Mean Square

(NLMS) [64]:

( ) ( ) ( )�� Tu n d V n n− − =Q y (3.27)
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( ) ( ) ( ) ( ) ( )0 1
� � � � �, ,..., ,

T
dQ DCn q n q n q n q n� �= � �Q

( ) ( ) ( ) ( ), 1 ,..., ,
T

DCn y n y n y n dQ y= − −� �� �y (3.28)

( ) ( ) ( ) ( )�ue n e n d V u n d V u n d V≡ − − ≡ − − − − − (3.29)

( ) ( ) ( )
( ) ( )

( )� �1 T

n
n n e n

n n
µ

+ = +
y

Q Q
y y

. (3.30)

The controller ( )� 1n +Q , as described in Section 3.1.4, comprises an adaptive FIR

filter with a DC tap.  Its input is the desired future input rate ( )* |n n d V− −y  (this

notation is introduced at the end of Section 2.1) and its output is the explicit rate ( )u n .

( ) ( ) ( )� 1 * |Tu n n n d V n= + + +Q y (3.31)

( ) ( ) ( )* | * | ,..., * | ,
T

DCn d V n y n d V n y n d V dQ n dQ y+ + ≡ + + + + − −� �� �y

The scalar d is the minimum plant delay, V is an operator chosen (non-negative)

inversion polynomial delay (discussed at length in Section 3.1.2.2), and µ is the adaptive

gain chosen such that 0 2µ< < .  The constant DCy  is operator-chosen, appended to the

delay-chain values of { }y  in (3.28) so that the final tap of �Q  becomes a DC tap �DCq

(discussed further in Section 3.2.2.2),

( ) ( ) ( )� � �,
TT

lin DCn n q n� �≡
� �

Q Q . (3.32)

Quantify the amount of convergence at time n by defining the parameter error vector

( ) ( ) 0
�n n≡ −Q Q Q� .  For notational convenience, define another vector, identical to (3.28)

except for the DC term:

( ) ( ) ( ) ( ), 1 ,...,
T

n y n y n y n dQ≡ − −� �� �� (3.33)
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Figure 3.10 shows the complete system under consideration.  Plant (3.25) is

controlled by Controller (3.31).  The Controller is identified with (3.27) to (3.30).

The system will operate optimally if ( )� nQ  produces, at time n , the control signal

( )u n  that minimizes ( ) ( )( )2
* |E y n d V y n d V n� �+ + − + +� � .  This occurs if ( )� nQ

converges to its stationary, minimum mean square error optimal value, 0Q  (defined by

(3.34)).    This section shows that ( )� nQ  converges to 0Q , and that ( )y n  appropriately

emulates ( )* |y n n d V− − .

3.2.2 A Proof of Controller Convergence�The Inaccurate Plant Inversion Case

This section shows that the controller parameters converge to their optimal values

in both the mean and the mean square sense.  Further, the form of the controller ensures

stability.  These results are published as [31].

The convergence analysis in this section is based on a proof of convergence for

the NLMS algorithm by Tarrab and Feuer [62].  However different assumptions are

made; see Section 3.2.2.1.  Most notably, this proof does not require zero-mean signals,

which are required by [62].  Further, the filter ( )� nQ  includes a DC tap (drift tap) that

ensures that the mean of the estimated signal equals the mean of the signal being

estimated.

To improve readability, many technical details have been moved to the Appendix.

Lemmas with numbers proceeded by the letter �A�, e.g. Lemma A.1,  are found in the

Appendix.  Reference [33] contains a full, continuous presentation.
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3.2.2.1 Assumptions

The following assumptions are made throughout Section 3.2.2:

Assumption 1 ( )u n  is Gaussian.

Assumption 2 ( )ny  and ( )nQ�  are independent.  Also ( )u n V d− −  and ( )nQ�  are
independent.

Assumption 3 The auto-covariance matrix,

( ) ( )( ) ( ) ( )( )2 T
E n E n n E n� �≡ − −� � � �� � � �� �� �

σ � � � � , is full rank.

Assumption 4 ( ) 2
0 nα ≤ y , 0 0α >

Assumption 4 ensures that finite adaptation adjustments in (3.30) will occur.  In

implementation, it is common to impose Assumption 4 by simply skipping the adaptation

of (3.30) unless Assumption 4 is satisfied.

Assumption 3 is a sufficient excitation condition.  From Assumption 3, it follows

that ( ) ( )TE n n� �� �y y  is full rank (see Lemma A.1), which ensures that the plant will be

fully identified, allowing the discovery of a unique 0Q ; see (3.34).

Assumption 2 is an often-made assumption in convergence proofs of adaptive

filters.  If { }y  were white (an assumption generally not made, but considered here only

for illustration), both ( )u n V d− −  and ( )ny  would be independent of ( )n dQ−Q� ; and,

if µ <<1, then ( ) ( )n n dQ≈ −Q Q� � . More generally, signals ( )u n V d− −  and ( )ny  make

their most significant contribution to ( )1n +Q� .  For ease of computation, the much

smaller impact on ( )nQ�  is ignored.

Assumption 2 replaces an assumption made in [62].  The proof of [62] assumes

that the excitation signal is Gaussian and further, if ( )ny  is a vector of the excitation
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signal at time n, ( ) ( )[ ]E n m =y y 0  for n m≠ , even if 1m n= + .  This assumption tends

not to be even approximately true if { }y  is the input of an FIR filter, thus it is replaced

with Assumption 2.

Assumption 1 ensures that ( )u n d−  and ( )ny  are jointly Gaussian.  It is

significant to note that [62] further requires ( )ny  to be zero-mean.  No such assumption

is made here.  Broadening [62] beyond the zero-mean case is the primary contribution of

this proof.

3.2.2.2 DC Identification

Consider the Identification section of Figure 3.10 ((3.27) through (3.30)), redrawn

as Figure 3.11.

( )�u n V d− −

DCy
( )ue n V d− −

( )�
lin nQ

( )�DCq n

+ + ( )u n V d− −( )y n

Figure 3.11  Adaptive System for Calculating ( )� nQ

From Figure 3.11, the optimal solution 0Q  for the adaptive coefficients ( )� nQ  is

defined as ( ){ }2
0 �

arg min e n≡
Q

Q .  Defining ( ) ( )TE n n� �≡
� �

R y y , 0Q  is known to be [64]

( ) ( )1
0 E n u n V d−= − −� �� �Q R y . (3.34)

This solution exists and is unique since R  is full rank (Lemma A.1).

Now consider a different yet similar scheme where the DC tap is not employed

but the means of y  and u  are removed, as in Figure 3.12.
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( )ue n V d− −

( )� n
�

� + ( )u n V d− −( )y n

( )E y n� �� �

+ +

( )E u n� �� �

Figure 3.12  Adaptive System with Means
Explicitly Removed

Define ( ) ( ) ( )[ ]n n E n≡ −
�

� � �  and ( ) ( ) ( )[ ]u n u n E u n≡ −� . The optimal

solution for the adaptive coefficients ( )� n
�

�  is 0

�

� , which solves

 ( ) ( ) ( ) ( )0
TE n n E n u n V d� � � �= − −� �� �

�� � �

�

� � � � . (3.35)

Lemma 3.1 shows that the solutions 0

�

�  and 0Q  are closely related.

Lemma 3.1 The unique solution of (3.34) is

 
( ) ( )0,

0 0 ,

T

i
T i

DC

E y n E u n V d

y

� �− + − −� � � �� � � �
� �= � �
� �� �

�
Q

�

�

�

� .

Proof: As noted before, 0Q  is unique due to R being full-rank [33].  Describe

( ) ( )0,

0 ,

T

i
T i

DC

E y n E u n V d

y

� �− + − −� � � �� � � �
� �
� �
� �� �

�
�

�

�

� (3.36)

as the proposed solution to (3.34). Directly substituting the proposed solution into (3.34)

verifies that it is indeed a solution (Lemma A.2), and thus the unique solution,

completing the proof.

Lemma 3.1 demonstrates that by using a DC tap in the adaptive estimator, as in

Figure 3.11, the optimal solution for ,0linQ  is equivalent to 0

�

� .  To gain intuition,
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consider that for a linear estimator not using a DC tap, the optimal solution would create

the best possible match between the frequency spectrum of the desired signal (u) and the

spectrum of the estimated signal ( �u ), given the regressor (y).  This match would consider

all frequencies, including DC.  A DC tap, if included, can only affect the spectrum of the

estimated signal at DC.  But by doing so, the DC tap allows the linear taps to ignore DC

in their spectrum matching, as if there was no DC content in either regressor signal (y) or

the desired signal (u).

The DC tap creates an additional similarity between Figure 3.11 and Figure 3.12�

a zero-mean optimal error.  By defining the optimal error

( ) ( ) ( ) ( )0* Te n u n d V n n≡ − − −Q y ,

then with (3.36), it is easy to show (Lemma A.3) that

( )* 0E e n =� �� � . (3.37)

3.2.2.3 Other Notation

Now that the control and estimation methods have been described, what remains

is to show convergence.  Before proceeding with the proofs, some notation needs to be

introduced.  For matrix R , let the matrices of ortho-normalized eigenvectors and

eigenvalues of be TW  and Λ  respectively, where ( ) ( )diag , 1, , 1i i dQλ= = +Λ � ,

T =W W I , T =W R W Λ . (3.38)

Because R is full-rank, W is full-rank.  A linear transformation of the random vector

( )ny  is defined as follows.
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( ) ( ) ( ) ( ) ( ), T Tn n n n n≡ = =ψ W y W ψ W W y y (3.39)

( ) ( ) ( ) ( ), Tn n n n≡ =L WQ W L Q� � (3.40)

( ) ( )TE n n� � =
� �
ψ ψ Λ . (3.41)

Substituting (3.27) and (3.29) into (3.30), pre-multiplying by W, adding and

subtracting a term, then subtracting 0WQ  from both sides produces

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

*
1

T

T T

n n n e n
n I n

n n n n
µ

µ
� �

+ = − +� �
� �
� �

ψ ψ ψ
L L

ψ ψ ψ ψ
(3.42)

and

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( )
( ) ( )

( ) ( ) ( ) ( )

( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )( )
( ) ( )( )

2

22

2

1 1

*

*

*

T
T T T

T

T T T
T T

T T T

T T
T

T T
T T

T T T

T

T

n n
n n n n n n

n n

n n n n n n
n n n n

n n n n n n

e n
n n n n

n n

e n n n n n
n n n n

n n n n n n

n n e n

n n

µ

µ µ

µ

µ

µ

+ + = −

− +

� �+ +
� �

� �
− +� �

� �� �

+

ψ ψ
L L L L L L

ψ ψ

ψ ψ ψ ψ ψ ψ
L L L L

ψ ψ ψ ψ ψ ψ

L ψ ψ L
ψ ψ

ψ ψ ψ ψ
L ψ ψ L

ψ ψ ψ ψ ψ ψ

ψ ψ

ψ ψ

(3.43)

The following notations are used extensively:

( ) ( )
( ) ( )

T

T

n n
E

n n

� �
≡ � �

� �� �

ψ ψ
A

ψ ψ
,

( ) ( ) ( )Tn E n n� �≡
� �

C L L ,
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( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

T T

T T

n n n n
n E n

n n n n

� �
≡ � �

� �� �

ψ ψ ψ ψ
D C

ψ ψ ψ ψ

( ) ( )
( ) ( )( )2

T

T

n n
E

n n

� �
� �≡ � �
� �� �

ψ ψ
H

ψ ψ

3.2.2.4 Parameter Convergence in the Mean

In this section shows that ( )[ ]lim
n

E n
→∞

=L 0 , and in turn, by (3.40),

( )[ ]lim
n

E n
→∞

=Q 0� .

Note a few key independencies. From Assumption 2, and the fact that W provides

one-to-one mapping, Section 5.4 of [61] shows that ( )nψ  and ( )nL  are independent.

Similarly ( )u n d V− − and ( )nL  are independent.

Note that ( )*e n  and ( )ny  are jointly Gaussian, and uncorrelated,

( ) ( ) 1*E n e n −= − =� �� �y ρ R R ρ 0 .

The auto-covariance matrix of two jointly-Gaussian, uncorrelated random variables,

where at least one is zero-mean ( ( )*e n ), is diagonal.  Therefore, ( )ny  and ( )*e n  are

independent. By a similar argument,     ( )nψ  and ( )*e n  are also independent.

The auto-covariance ( )nψ  is diagonal ((3.38) gives 0T
i j =W W  where jW  is the

j�th row of W), thus the elements of ( )nψ  are independent.

Lemma 3.2  A and H  are diagonal matrices.

Proof:  The proofs for A  and H  are nearly identical; only the former is shown.  Let ijA

indicate the element of A  in the i�th row, j�th column.  Then
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( ) ( )
( ) ( )

( )2

T
i j

ij T

ij

x xn n
E f d

n n

� �
= =� �

� �� �
� ψ
X

ψ ψ
A X X

ψ ψ X
.

From Assumption 4,

( ) ( ) ( )
0 0

1 1
ij i j i jx x f d E n nψ ψ

α α
� �≤ = � �� ψ

X

A X X .

From (3.41),

0

0 if

ifij i

i j
A

i jλ
α

≠�
�≤ � =�
�

(3.44)

Thus all non-diagonal elements of A  equal zero, completing the proof (note that A  is

positive definite and thus all of its eigenvalues iλ  are positive).

Lemma 3.3 10 1iiA�� � �

Proof:  

� �

� �
� � � �

2

1
2

1

i
ii dQ n

j
j

x n
A f d

x n
ψ

X

X X
�

�

� �
�

.

� �

� �

2

1
2

1

0 1i
dQ

j
j

x n

x n
�

�

� �

�
 and ( ) ( )0 1nf≤ ≤ψ X  for any X .

Then it is possible to choose a closed, bounded set of X , setX , that simultaneously

satisfies four constraints:
1. 0ix ≠ ,

2. 2
j

j
x < ∞� ,

3. ( ) ( )0 nf< ψ X , and
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4. � �

� �
� � � �

2

11
2

1

0
set

i
dQ n

j
j

x n
f d

x n
ψ

X

X X �
�

�

� ��
�

.

Since � �

� �
� � � �

2

1
2

1

i
dQ n

j
j

x n
f

x n
ψ X

�

�

�
 is non-negative for every X  outside of setX , the proof is

completed.

The main result of Section 3.2.2.4 is as follows:

Theorem 3.1 Given Assumption 1 through Assumption 4 and 0 2µ< < ,

( )lim
n

E n
→∞

� � =� �Q 0� .

Proof:  From (3.37),

( ) ( )
( ) ( )

( )
( ) ( )

( )*
* 0T T

n e n n
E E E e n

n n n n
µ

µ
� � � �

= =� �� � � � � �
� � � �� � � �

ψ ψ
ψ ψ ψ ψ

.

From (3.42), since ( )nψ  and ( )nL  are independent,

( ) ( ) ( )1E n E nµ+ = −� � � �� � � �L I A L .

From Lemma 3.2, the linear system completely decouples,

( ) ( ) ( )1 1 , 1, , 1i ii iE L n A E L n i dQµ+ = − = +� � � �� � � � � .

From Lemma 3.3 and if 0 2µ< < , then ( )1 1iiAµ− < , 1, , 1i dQ= +� .  Thus,

( )lim
n

E n
→∞

=� �� �L 0 .  Equation (3.40) gives ( )lim
n

E n
→∞

� � =� �Q 0� , thus completing the proof.

Theorem 3.1 states that given Assumption 1 through Assumption 4 (if µ is

bounded as 0 2µ< < ) then our NLMS adaptive system of estimating �Q  (given by (3.27)

through (3.30)) converges in the mean to the ideal 0Q  (given by Lemma 3.1). Theorem
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3.1 is distinctive from the related proof of [62] in that it uses (3.37), instead of a zero-

mean assumption for ( )ny , to eliminate the expectation of the second term of (3.42).

3.2.2.5 Parameter Convergence in the Mean Square

Given Theorem 3.1, a statement bounding the variance of ( )nQ�  would give

additional credibility to the proposed controller, and is the goal of this section.

The proof in [62] relies heavily on a zero-mean assumption on ( )ny , an

assumption not made here.  However, Lemma 3.4 shows that almost all of the terms of

( )nψ  are zero-mean.  Because of this, a strategy similar to that of [62] is adopted.

Lemma 3.4  Given the independence of the terms of ( )nψ , (3.41) is the necessary and

sufficient condition that no less than dQ of the 1dQ +  elements of ( )nψ  are zero mean.

Proof: (Sufficiency) By contradiction.  For i j≠ ,

( ) ( ) ( ) ( )i j i jE n n E n E nψ ψ ψ ψ� � � �= � �� �� � � � .

If less than dQ  elements of ( )nψ  are zero mean, ( ) ( )TE n n� �� �ψ ψ  is not diagonal,

contradicting (3.41).

(Necessity) If no less than dQ  of the 1dQ +  elements of ( )nψ  are zero mean, then the

independence of the terms of ( )nψ  gives (3.41), concluding the proof.

The element of ( )nψ  that generally has non-zero mean is notated ( )nζψ ,

( ) 0, 1, , 1iE n i dQψ = = +� �� � � , i ζ≠ , (3.45)

If ( ) 0E y n =� �� � , ( ) 0E nζψ� � =� � .

Lemma 3.5  The expectation of the fifth through eighth term of (3.43) is zero.
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Proof: Examine the expectation of the seventh term on the right side of (3.43),

specifically the term at row i, column j:

( ) ( ) ( ) ( ) ( )

( ) ( )( )

1

1
2

*
dQ

k i j k
k

T

L n e n n n n
E

n n

ψ ψ ψ
µ

+

=

� �
� �
� �
� �
� �� �

�

ψ ψ
(3.46)

For the kth term of the summation, since ( )kL n  is independent of ( )nψ , and

( )*e n  is independent from ( )nψ , ( ) ( )* kE e n L n� �� �  can be separated from the remaining

terms inside the expectation of (3.46).  Now, from (3.40), Assumption 2, and (3.37):

( ) ( ) ( ) ( )* * 0k kE e n L n E e n E n� �= =� � � �� � � � � �W Q� , for all k,

which shows that the expectation of row i, column j of the seventh term equals zero.

Since this is true for every ( ),i j , the expectation of the seventh term results in a matrix

of zeros.  By a similar argument, the expectations of the fifth, sixth, and eighth terms of

(3.43) produce matrices of zeros, thus completing the proof.

With Lemma 3.5, (3.43) is equivalent to

( ) ( ) ( ) ( )( ) ( )2 21 *n n n n nµ µ µ ε+ = − + + +C C AC C A D H (3.47)

where *ε  is the minimal mean-square error ( )( )2
* *E e nε � �≡ � � .

Since (3.47) is a discrete, linear, time-invariant difference equation, its

convergence is guaranteed if its homogeneous part is asymptotically stable (this implies

BIBO stability) and if its forcing term 2 *µ ε H  is bounded.  These are shown below.

The row i, column j element of ( )nD , ( )ijD n , can be computed as

( ) 2ij ij ijD n G C= , i j≠ (3.48)
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( )
1

1

dQ

ii iJ JJ
J

D n G C
+

=
= � (3.49)

where G is defined as

( )( ) ( )( )
( ) ( )( )

22

2
i j

ij T

n n
G E

n n

ψ ψ� �
� �≡ � �
� �� �
ψ ψ

. (3.50)

By direct substitution,

( ) ( ) ( ) ( ) ( )
( ) ( )( )

1 1

2
1 1

dQ dQ
i j J K

ij JKTK J

n n n n
D n E C

n n

ψ ψ ψ ψ+ +

= =

� �
� �= � �
� �� �

� �
ψ ψ

. (3.51)

Since the elements of ( )nψ  are independent and all but one are zero-mean, the

numerator of the expectation in (3.51) equals zero in many cases.  To show which terms

of the double summation of (3.51) equal zero, note that for any ( ), , ,i j J K  the numerator

can always be expressed as

( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( ) ( )( )31 2 4

1 2 3 4
,

i j J KE n n n n

E n E n E n E n
ρρ ρ ρ

τ τ τ τ

ψ ψ ψ ψ

ψ ψ ψ ψ

� � =� �

� �� � � � � �
� � � � � �� �� � � � � �� �

(3.52)

such that

{ }1 2 3 4, , , 0,1, 2,3,4ρ ρ ρ ρ ∈ , 1 2 3 4 4ρ ρ ρ ρ+ + + = , 1 2 3 4ρ ρ ρ ρ≥ ≥ ≥ ,

{ }1 2 3 4, , , 1,..., 1dQτ τ τ τ ∈ + , and β δτ τ≠  for β δ≠ .

Then each ( ), , ,i j J K  maps to exactly one of the following five cases:

Case 1: 1 2 3 41, 1, 1, 1ρ ρ ρ ρ= = = =

Case 2: 1 2 3 42, 1, 1, 0ρ ρ ρ ρ= = = =

Case 3: 1 2 3 42, 2, 0, 0ρ ρ ρ ρ= = = =
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Case 4: 1 2 3 43, 1, 0, 0ρ ρ ρ ρ= = = =

Case 5: 1 2 3 44, 0, 0, 0ρ ρ ρ ρ= = = =

Remembering that the element not assured to be zero-mean is denoted as ( )nζψ ,

(see (3.45)), then for Case 1, at most one member of the set { }1 2 3 4, , ,τ τ τ τ  equals ζ , thus

(3.52) equals zero.  Similarly for Case 2, at most one member of the set { }1 2 3, ,τ τ τ  equals

ζ , thus (3.52) equals zero.

For Case 4, if 1τ ζ= , then from (3.45), (3.52) equals zero.  If 2τ ζ= , then by

Lemma A.4, (3.52) equals zero.  If 1 2,τ τ ζ≠ , then by either (3.45) or Lemma A.4, (3.52)

equals zero, thus (3.52) equals zero for the entirety of Case 4.

For Cases 3 and 5, (3.52) could be non-zero.

Using an argument similar to that found in the proof of Lemma 3.2, the instances

of ( ), , ,i j J K  that fall into Cases 1, 2, and 4 can be shown to have a zero contribution to

the double summation of (3.51).  For the remaining cases, consider first the instances

where i j≠ , which eliminates Case 5 in addition to Cases 1, 2, and 4, thus (3.51) equals

(3.48).  For i j= , after eliminating Cases 1, 2 and 4, Cases 3 and 5 make (3.51) equal to

(3.49).

Having shown (3.47), (3.48), and (3.49), the techniques used for remainder of the

mean-square proof are nearly identical to those presented in [62], and thus will only be

outlined here (see the Appendix and [33] for details).  Off-diagonal elements of ( )nC  are

treated separately from the diagonal elements.  The off-diagonal term of (3.47) is

( ) ( )1 ,ij ij ijC n C n i jγ+ = ≠ (3.53)
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( ) 21 2 ,ij ii jj ijA A G i jγ µ µ= − + + ≠ , (3.54)

with 1ijγ <  (Lemma A.5), and thus (3.53) goes to zero as n approaches infinity.

Focussing now on the diagonal entries of ( )nC , define a vector of the diagonal

entries of ( )nC , ( ) ( ) ( ) ( )( ) ( )11 22 1 1, , ,
T

dQ dQn C n C n C n+ +
� �≡ …� �Ω .  From (3.47),

( ) ( ) 2 *n n µ ε+1 = +Ω FΩ h , (3.55)

( ){ } 2diag 1 2 iiµ µ= − +F A G , ( )11 22 1, , ,
T

dQ+
� �≡ � �h H H H� .  (3.56)

It can be shown ([62], [33], Lemma A.8) that (3.55) is BIBO stable. Assuming

0 2µ< < , the forcing term of (3.55) is bounded, i.e. 2
2* iiµ ε α<H , 2α < ∞ ,

2 * 0ijµ ε =H , i j≠ , since ( ) min1 2iiH dQ λ≤ −  (Lemma A.6).  Equations (3.53) and

(3.55) show that each element of ( )nC  is bounded at each n, that the off-diagonal

elements of ( )nC  converge to zero, and that the diagonal elements also converge,

( ) ( ) 12lim *
n

n µ ε −

→∞
= −Ω I F h .

This is formalized in Theorem 3.2, the main result of Section 3.2.2.5:

Theorem 3.2  Given Assumption 1 through Assumption 4 and 0 2µ< < ,

 ( ) ( ) ( ) 12lim *T T

n
E n n µ ε −

→∞
� � = −
� �
Q Q W I F HW� � .

Proof: Linear time-invariant system (3.55) is BIBO stable ([62], [33], Lemma A.8).  Its

input signal is bounded, thus ( ) ( ) 1 2lim *
n

n µ ε−

→∞
= −Ω I F h .  Then with (3.53) and 1ijγ < ,

( ) ( ){ }1 2lim *
n

n diag µ ε−

→∞
= −C I F h .  The definitions of ( )nC  and ( )nL  give the final

result, concluding the proof.
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The key contribution of Section 3.2.2.5 comes from showing (3.47) through

(3.49) without requiring ( )[ ]E n =y 0 .  Expressions (3.47) through (3.49) exist in [62],

but required ( )[ ]E n =y 0 .  By demonstrating (3.47) through (3.49) without requiring

( )[ ]E n =y 0 , the results of [62] are significantly extended.

3.2.2.6 Global Stability

Global Stability has been built into the control structure.  Both plant (3.24) and

controller (3.31) are FIR filters.  The controller simply conditions the set point { }*y ; all

other control is open loop.  The parameters of the plant are obviously bounded.  The

parameters of the controller are random variables that have been shown to have mean

square values that are finite for all n and converge, implying a bounded mean-square gain

for the controller.  From an implementation view, the controller parameters can be kept

bounded at each time n by a simple limiter after the adaptation of (3.30).  The FIR

structure of the controller then guarantees BIBO stability for the modified system.

3.2.2.7 Discussion

This concludes the first proof of Section 3.2.  Theorem 3.1 and Theorem 3.2

prove that the controller parameters converge to their optimal values in the mean and

mean square sense.  It is observed that the controller runs essentially open loop, only

conditioning the set point, thus global convergence is assured.  Unlike the proof

presented next in Section 3.2.3, no assumption about the FIR invertibility of the plant is

made in Section 3.2.2.
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3.2.3 A Proof of Controller Convergence and Global Stability�
The Accurate Plant Inversion Case

Section 3.2.3 contains the second of the proofs of Section 3.2.  The plant and

controller used in Section 3.2.3 are identical to that described in Section 3.2.1 except the

NLMS update equation (3.30) is replaced by

( ) ( ) ( )
( ) ( )

( )� �1 T

n
n n e n

n n
µ

ς
+ = +

+
y

Q Q
y y

, 0ς > . (3.57)

3.2.3.1 All-Pole Plant Approximation and other Assumptions

As discussed in Section 3.1.2.2, the possibility of a Non-Minimum Phase (NMP)

( )1B z−  encourages the use of an all-pole plant approximation (with a corresponding all-

zero controller).  Assume that ( )1B z−  has no zeros on the unit circle and that

( ) ( ) ( )1 1 1B z B z B z− + − − −= , with ( )1B z+ −  having zeros exclusively inside the unit circle

and ( )1B z− −  having zeros exclusively outside the unit circle.  By long division,

( ) ( )( ) 11 1 1
0 1 ...N z B z n n z

−+ − + − + + −= = + + , with 1 1i in nξ+ +
+≥ , 0i ≥ , 10 1ξ≤ <  (a causal

filter) and  ( ) ( )( ) 11 1 1
1 ...N z B z n n zγ

γ γ

−− − − − − − +
+= = + + , with 2 1i in nξ− −

+≥ , i γ≥ , 0γ > ,

20 1ξ≤ <  (a non-causal filter).  Since the coefficients are decreasing exponentially, with

enough taps, N +  and N −  can be approximated by truncated FIR filters,

( )1 1
0 1 ... dN

dN
N z n n z n z

+

+
+ − + + − + −= + + +  and ( )1 1

1 ... V
VN z n n z n zγ

γ γ
− − − − + −

+= + + + .  Therefore,

an FIR

( ) ( ) ( )1 1 1VQ z z N z N z C− − + − − − ′≡ + (3.58)

can well approximate ( )( ) 11Vz B z C
−− − + .  This approximation is formalized by the

following Assumption, used throughout Section 3.2.3.
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Assumption 5 ( )1B z−  has no zero on 1z =  and the plant (3.25) is equivalently
expressed as

( ) ( ) ( )1Q z y n u n d V− = − − . (3.59)

In addition to the all-pole assumption given by Assumption 5, here are the other

assumptions made throughout Section 3.2.3:

Assumption 6 ( )� 0n >Q for all n .

Assumption 7 At each n , jz e ω′−= is not a root of ( )1� 0z− =Q  if ( )*y n  contains the
frequency ω′ .

Assumption 6 requires at least one tap of ( )� nQ  to be non-zero.

Assumption 7 states that the controller cannot null a frequency present in the set-

point signal.  Such an occurrence would make it impossible for the plant output to match

the set-point at frequency ω′ .  Intuitively, the controller should not place a zero on the

unit circle since the plant has no marginally stable poles.

Both of these assumptions prevent pathological cases; neither pose significant

limitations in practice.

3.2.3.2 Convergence and Global Stability

In Section 3.2.2, the all-pole plant approximation discussed in Section 3.2.3.1 is

considered inexact.  As a result, considerable effort and some additional assumptions are

required.  These assumptions included a Gaussian excitation signal that is sufficiently

exciting [63] and an assumption of independence between the current tap estimates ( )� nQ

and previous values of ( )ny  and ( )u n d V− − .  The main result of Section 3.2.2 is that,
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under these assumptions, the NLMS adaptation process produces a controller that

converges in the mean and mean square to the minimum mean square error solution, 0Q .

Global stability claims are made, although they are looser than those made below.

In this section, some of the more limiting assumptions of Section 3.2.2 are lifted.

In their place, Assumption 5 is made, as well as the minor Assumption 6 and Assumption

7.  This leads to a cleaner proof with stronger global stability results.

3.2.3.2.1 Proof of Convergence and Global Stability

The update equation (3.59) is identical to (3.3.19) of [63].  From (3.29), (3.59)

and (3.27), ( ) ( ) ( )Te n n n= −Q y� , and from Lemma 3.3.2 of [63],

( )
( ) ( )( )1/ 2lim 0

n T

e n

n nς→∞
=

+ y y
, (3.60)

( ) ( )� �lim 0
n

n k n
→∞

− − =Q Q  for any finite k. (3.61)

From (3.29), (3.31), and (3.27),

( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( )

( ) ( ) ( )( )

� �* |

� � * |

� * |

T T

T

T

e n n d V n n d V n n

n d V n n n d V

n n n d V n

= − − − − −

= − − − − −

+ − − −

Q y Q y

Q Q y

Q y y

(3.62)

Then from (3.60) and (3.61)

( )
( ) ( )( )

( ) ( )
( ) ( )( )1/ 2 1/ 2

�
0 lim lim

T

n nT T

e n n n

n n n nς ς→∞ →∞
= =

+ +

Q χ

y y y y

( ) ( )( )
( ) ( )

2�
lim 0

T

Tn

n n

n nς→∞
=

+

Q χ

y y
(3.63)
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where the set-point error is  ( ) ( ) ( )* |n n n d V n≡ − − −χ y y .

To show that (3.63) implies that ( ) ( )( )2�lim 0T

n
n n

→∞
=Q χ , note that

( ) ( )1 2 0
max

n
n

τ
κ κ τ

≤ ≤
≤ +y y , 1 20 ,κ κ< < ∞

Since ( )* |n n d V− −y  is bounded, and since

( ) ( ) ( )* |n n n n d V≥ − − −χ y y ,

together with Assumption 6,

( ) ( ) ( )3 4 0
�max T

n
n

τ
κ κ τ τ

≤ ≤
≤ +y Q χ , 3 40 ,κ κ< < ∞ . (3.64)

With (3.63) and (3.64), the Key Technical Lemma [63] asserts that

( )ny  is bounded, and (3.65)

( ) ( )( )2�lim 0T

n
n n

→∞
=Q χ . (3.66)

Note that (3.65) and (3.66) do not require use of Assumption 7.  However,

Assumption 7 is needed to show that ( )lim 0
n

nχ
→∞

= .  As n approaches infinity,

( ) ( )� Tn nQ χ  can be viewed as a signal ( )nχ  filtered by a constant FIR filter ( )� nQ ; see

(3.61).  Assumption 7 prevents ( )� nQ  from nulling frequencies present in ( )nχ .

The main result of Section 3.2.3 is as follows:

Theorem 3.3 Given Assumption 5 through Assumption 7, the plant (3.24), which is

equivalent to (3.59), controlled by (3.31) through (3.29) and (3.57), gives

( )lim 0
n

nχ
→∞

= .

Proof: Equations (3.60) and (3.61) give (3.63).  The Key Technical Lemma gives (3.66),

which with Assumption 7, gives the result.  This completes the proof.
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3.2.3.2.2 Discussion

The result above is a strong statement on global stability.  Note that no a-priori

assumption on the boundedness of ( ) 2
ny  is made, nor are any of Section 3.2.2.1�s

restrictions placed on ( )*y n  (aside from boundedness).

The main assumption made in this proof is Assumption 5.  When this restriction is

violated, e.g. ( )1 11B z z− −= + , Theorem 3.1 and Theorem 3.2 as well as simulation

experiments suggest that the control structure behaves stably.  Thus the results of this

section and the convergence results of Section 3.2.2 should be viewed as complimentary.

Both examine the control system of Section 3.2.1, each start with different assumptions,

and both produce desirable results.

3.2.4 Summary

In Section 3.2, the convergence and stability properties of the controller proposed

in Section 3.1.4 are examined extensively. Section 3.2 contains two separate yet

complimentary proofs. Theorem 3.1 and Theorem 3.2 summarizes the first proof, in

Section 3.2.2. The second proof, in Section 3.2.3, is summarized by Theorem 3.3.  Each

of these proofs demonstrates desirable qualities of the controller presented in Section

3.1.4.  Each proof starts with its own set of assumptions.  The first proof focuses on the

convergence of the controller parameters �Q  to an optimal 0Q .  The second proof

requires that perfect inversion of plant B  by FIR �Q  is a reasonable approximation to

assume.  Taken together, the proofs of Section 3.2 make a convincing case that Adaptive

Approximate Inverse Control has attractive convergence and stability properties.
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3.3 Chapter Summary

This chapter takes up the challenge of finding an effective control strategy for the

explicit rate congestion controller.  Section 3.1 recognizes that the plant developed in

Chapter 2 is frequently non-minimum phase.  Several strategies appropriate for the

control of non-minimum phase plants are reviewed.  In the end, one control strategy is

chosen for its comparatively low computational cost, realizability, and what appears to be

attractive convergence properties.  However, formal convergence analysis is postponed to

Section 3.2.

Section 3.2 contains two complimentary proofs of convergence for the control

structure selected in Section 3.1.  Each of these proofs begin with different assumptions;

both suggest attractive analytical convergence properties.

Further comments are made in Sections 3.1.5 and 3.2.4.  Most of the material of

this chapter has been published as [23] and [31].
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CHAPTER 4 ALGORITHM ENHANCEMENTS

In this chapter, three additions to the congestion control mechanism are

introduced and discussed.  Each addition provides necessary mortar in cementing

together theoretical analysis and practical design.  These three modifications are singled

out for attention here since each addresses a general issue likely to appear in many

complex congestion control schemes, not just that of ATM ABR congestion control.

Before these modifications are introduced, a simulation framework is presented,

wherein the parameters of the plant are assigned values consistent with actual ATM

networks.  This framework is described in Section 4.2.

The first algorithm enhancement addresses the convergence rate of the controller.

The results of Section 3.2 ensure that the originally proposed congestion controller

eventually converges.  However, without the modifications presented in Section 4.3,

convergence rates are unnecessarily, and possibly unacceptably, slow.  Significant

speedup is obtained with the modifications of Section 4.3.

The second algorithm enhancement, described in Section 4.4, responds to an

addition to the plant.  Specifically, a model of the buffer queue size is added to the plant,

prompting a method to control this queue size.  It is argued here and elsewhere that size

of output queue should be neither too long nor too short.  Many congestion control
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schemes that directly control buffer size are computationally complex.  The enhancement

offered here controls queue size in an elegantly simple way.

The third algorithm enhancement, described in Section 4.5, also responds to an

enhancement in the plant model.  The enhanced model generalizes the behavior of the

non-responsive ABR sources, allowing them non-constant rates.  This is modeled as a

noise source in the plant model.  This noise causes biasing in the parameter estimates

used for the controller.  A novel method to minimize the bias is introduced.  Unlike

previously published remedies for bias, this solution requires only a trivial amount of

added calculations.  Further, unlike other methods, this new method does not jeopardize

convergence.

The remainder of this chapter begins with a brief review of the original

congestion control structure.  Section 4.2 discusses how certain plant and controller

parameters are chosen to emulate a realistic congestion control scenario, thereby

establishing a framework for the subsequent simulations.  Convergence rates are

addressed in Section 4.3.  Adding queue sizes to the model and controller occurs in

Section 4.4.  Section 4.5 augments the original plant to include non-responsive ABR

sources with varying rates and then attacks the resulting bias issues.  Brief concluding

remarks are made in Section 4.6.

4.1 System Definition (Review)

The system under consideration is

( ) ( )Ty n n d C= − +B u (4.1)
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( ) ( ) ( )� * |Tu n n n d V n= + +Q y  (4.2)

( ) ( ) ( ) ( ) ( )0 1
� � � � �, ,..., ,

T

dQ DCn q n q n q n q n� �= � �Q

( ) ( ) ( )* | * | ,..., * | ,
T

DCn d V n y n d V n y n d V dQ n dQ y+ + ≡ + + + + − −� �� �y

( ) ( ) ( )�� Tu n d V n n− − =Q y (4.3)

( ) ( ) ( ) ( ), 1 ,..., ,
T

DCn y n y n y n dQ y= − −� �� �y (4.4)

( ) ( ) ( ) ( )�ue n e n d V u n d V u n d V≡ − − ≡ − − − − − (4.5)

( ) ( ) ( )
( ) ( )

( )� �1 T

n
n n e n

n n
µ

+ = +
y

Q Q
y y

, 0 2µ< < (4.6)

This system is introduced  and discussed in Sections 2.4 and 3.1.4.

4.2 Simulation Framework

To demonstrate the various design issues covered in this chapter, a common

simulation framework, using the Matlab [67] simulation tool, is now defined.

The plant as defined in Section 2.4 and reviewed in Section 4.1 envisions a switch

SW having an output port j containing a congestion controller.  The output port has a

buffer and output link that carries traffic of various service categories.  The amount of

bandwidth assigned to the explicit rate controlled Available Bit Rate (ABR) traffic is

designated ( )*y n  cells per second.  Outgoing ABR traffic arrives to port j from the

various input ports of SW at rate ( )y n .  The congestion controller must determine an

explicit rate ( )u n . Resource management (RM) cells deliver these explicit rates to the

ABR sources.  Each responsive ABR source changes its sending rate to the explicit rate

communicated by the most recently arrived RM cell.  Port j sees each source responding



91

to its explicit rates with a potentially different (but non-changing) delay.  This plant is

shown in Figure 2.1, repeated here.

u(n)

y(n) y*(n)

...

S1

S2

SN

.

.

.

D1

D2

.

.

.

DN

Port j of
switch
SW

Figure 4.1  Plant from perspective of Switch Output Port

For the purpose of a common simulative framework, the output port rate of port j

is 2488 Mbps (million bits per second) = 5.869 Mcps (million cells per second), i.e. an

OC48.  Of that, 1 Mcps (on average) is allocated to ABR traffic.  Let C =200 Kcps

(thousand cells per second) of this 1 Mcps constitute ABR traffic controlled by other

ports, leaving on average 800 kcps of ABR traffic responsive to the port j.  The set-point

*y  is therefore chosen to be a white Gaussian process with mean [ ]*E y =1 Mcps and a

standard deviation *yσ  of 22 kcps15.

Let the 800 kcps of responsive ABR traffic be comprised of 22 high-capacity,

greedy sources, each averaging 15.4 Mbps = 36.4 kcps.  If the number of ABR cells that

must include one RM cell, RMN , is 32, then the per-connection rate of RM cells

corresponding to responsive ABR sources is 1.14 kcps, or one RM cell every 880

microseconds.  The measurement and control sample time is 1sT =  msec.

                                                          
15 These deviations about the mean of the desired ABR rate are determined by the extent that the port
measures and re-allocates bandwidth from higher-level service category flows.  It is somewhat uncertain
how aggressively ports will attempt to re-allocate unused bandwidth.  Very small variances are possible.



92

The minimum response delay d =10 msec.  The distribution of the delays of the

22 sources is given by ( ) ( )1 10 1 2 32 9 8 3B z z z z z− − − − −= + + + .  This corresponds to a plant

with one non-minimum phase zero and a pair of complex minimum phase zeros (See

Figure 3.3).  The number of taps in the controller is 30dQ = , with 10V = .  The

adaptation gain is set at its optimal value 1µ = .  Cell rates are not strictly limited to be

non-negative, although manual inspection reveals that this rarely occurs after an initial

transient.

4.3 Convergence Rate Improvements

The results of Chapter 3 assure convergence as time goes to infinity, but say little

about the rate of convergence.

4.3.1 Unmodified Convergence

Figure 4.2 shows the results of simulating the system without any modifications

to improve the rate of convergence.  After 8 seconds, the convergence of the controller is

so poor that it appears to be admitting over twice the desired rate of traffic16. This is

clearly unacceptable performance.

                                                          
16 Note that the results from Chapter 3 ensures that y(n) will eventually coincide with y*(n).
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Figure 4.2  Comparing the Set Point (lower curve
centered at 1000) and Port Input Rates (higher curve
approximately centered at 2000)�Unmodified Case.
The lower set point *y  plot remains around 1000
kcps while the port input rate y  plot has a mean
value around 2000 kcps.

4.3.2 Managing the Eigenvalue Spread

The Least Mean Square (LMS) algorithm has the property that the mean of the

coefficient error vector, ( )[ ]E nQ� , converges to zero at a rate inversely proportional to

the eigenvalue spread max min/λ λ  of ( ) ( )TE n n� �= � �R y y  [64].  Note that the eigenvalue

spread is a measure of the conditionality of a matrix.  Often the term condition number is

used to quantitatively describe the ill-condition of a matrix; in fact, the eigenvalue spread

is equivalent to one definition of the condition number [64]17.  It is more difficult to

                                                          
17 This is true if the condition number of a matrix A  is 1−A A  and the norm is

largest eigenvalue of H≡A A A .  Reference [64] describes this relationship in its concise review of  the
properties of eigenvalues and their relationship to adaptive filtering.
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specify the convergence trajectory of ( )[ ]E nQ�  for Normalized Least Mean Square

(NLMS) adaptation in all but the simplest cases [62], although practical experience

shows that speed of convergence is still a strong function of eigenvalue spread.

Generally adaptive filters will converge relatively quickly in the frequency bands

associated with the strongest parts of excitation signal.  In many situations, the excitation

signal used to identify the filter is also the input used to produce the desired adaptive

filter output. However, this is not the case in the current control strategy. Therefore, the

congestion control system under study is unlikely to perform well until ( )� nQ  well

approximates 0Q  at all frequencies.

4.3.3 Reducing Means Via Constant Estimates

In the course of the study leading to this dissertation, several strategies to improve

convergence time were proposed and evaluated.  The most promising strategy is as

follows: provide the identification algorithm with zero-mean signals by estimating and

removing the signal means.  Then, perform DC correction in the controller by an additive

term.

The basic concept is illustrated by Figure 4.3.  Let α  and β  be fixed estimates of

( )E u n� �� �  and ( )E y n� �� �  respectively.  Subtract α  and β  from their corresponding

signals to perform identification. Constants α  and β  are then added to the controller to

perform DC correction.

It is now shown that for the architecture of Figure 4.3, once ( )� nQ  converges to

its optimal 0Q , ( ) ( )* |E y n E y n n V d= − −� � � �� � � � .  As shown in Section 3.2.2.2, the DC
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tap allows ( )�
lin nQ  to converge as if the signals ( )1u n  and ( )1y n  are zero-mean. In other

words, inclusion of the DC tap allows ( )�
lin nQ  to converge to the same 0,linQ , regardless

of the chosen values of α and β.  Further, inclusion of a DC tap ensures

( ) ( )1 1�E u n E u n=� � � �� � � � (4.7)

once ( )� nQ  fully converges to 0Q .  Therefore, when 0
� =Q Q , from (4.7),

( ) ( ) 0, 0,i DC
i lin

E u n E y n q qα β
∈

− = − +� � � �� � � �� . (4.8)

� ��
lin nQ( )* |y n d V n+ +

CONTROLLER

dzB �

PLANT C

+

( )y n

+

+

IDENTIFICATION

� �1u n

� �1y n
+

� ��
lin nQ

_

_

_

( )u n
+

_

� ��DCq nβ α

α β

� ��DCq n+

� �1u n
+ +

d Vz− −

� �1�u n d V� �

Figure 4.3  Architecture for Adding and Subtracting
Fixed Estimates of the Means

Also, if ( )� nQ  is set equal to its converged value 0Q , the relationship between the

controller�s mean input and mean output is

( ) ( ) 0, 0,* | i DC
i lin

E u n E y n d V n q qβ α
∈

= + + − + +� � � �� � � �� . (4.9)

Eliminating ( )[ ]E u n  from (4.8) and (4.9) reveals the desired result: when �Q  in Figure

4.3 is replaced with the filter to which it is converging, 0Q , then

( ) ( )* |E y n E y n n V d= − −� � � �� � � � . (4.10)
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Methods for finding α  and β  have not been completely explored.  One

possibility is to set β equal to the sample mean of ( )* |y n d V n+ + .  Then, if N is the

total number of ABR flows supported by the port (including bottle-necked flows), set

/ Nα β= . Other methods are also possible.  However, simply using sample means of y

and u leads to instability, as will be shown in Section 4.3.4.

Simulations show the method depicted in Figure 4.3 has the potential to make a

significant improvement in convergence rate, but that performance is quite sensitive to

the accuracy of the mean estimates.  For example, Figure 4.4 shows the case when

( )[ ]0.99a E u n=  and ( )[ ]1.01E y nβ = .  The measured eigenvalue spread of R  is 50.

The convergence is very fast.
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Figure 4.4  Set-Point Error When Estimates a  and
β  are Within 1% of Their Correct Values
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Figure 4.5  Set-Point error When Estimates a  and
β  are Within 10% of Their Correct Values

However, when ( )[ ]0.9a E u n=  and ( )[ ]1.1E y nβ = , as shown in Figure 4.5, the

performance is noticeably slower, albeit much better than shown in Figure 4.2 (where

essentially 0a =  and 0β = ).  The measured eigenvalue spread is 51.7 10× .

In summary, if an off-line method can be found to estimate ( )[ ]E u n  and

( )[ ]E y n  accurately, this method holds promise, but its effectiveness decreases rapidly as

the estimates a  and β  become less accurate.

4.3.4 Reducing Means Via Constantly Updating Estimates

One obvious method for estimating ( )[ ]E u n  and ( )[ ]E y n  is by directly

calculating sample means.  The most common method is using a single-pole filter.  If the

sample means of ( )u n  and ( )y n  are notated ( )SMu n  and ( )SMy n  respectively, then

( ) ( ) ( ) ( )1 1SM SMu n u n u nδ= − − + (4.11)
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( ) ( ) ( ) ( )1 1SM SMy n y n y nδ= − − + (4.12)

where 0 1δ< < .

The sample means ( )SMu n  and ( )SMy n  then replace α  and β  in Figure 4.3, as

shown in Figure 4.6.  Note that no DC tap is employed in this architecture.

( )SMu n

CONTROLLER

( )* |y n d V n+ +
+

PLANT

�
linQ

( )*q n

Bz-d +

C

y(n)

(copy)

+
IDENTIFICATION

+_ _

�
linQ

+ _ � ��u n d V�

� �

� �u n�

� �y n�

� �SMy n

d Vz− −

Figure 4.6  Architecture for Subtracting Sample
Mean Estimates

From Figure 4.6,

( ) ( ) k
k

y n u n k b C= − +� (4.13)

( ) ( ) ( ),�* lin i
i

u n y n d V i n i q n= + + − −� (4.14)

( ) ( ) ( ),�* *lin i k k
k i k

y n y n d V k i n k i q b q n b C= + + − − − − + +�� � (4.15)

The optimal DC correcting value for ( )*q n  is

 ( ) ( ) ( ) ( )
0

�*
dQ

i
i

q n E u n E y n q n
=

= −� � � �� � � �� , (4.16)
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which is now shown.  Lemma 4.1 relies on Assumption 6, introduced on page 83,

repeated here for convenience:

Assumption 6 ( )� 0n >Q for all n .

Lemma 4.1 For the architecture shown in Figure 4.6, given Assumption 6, the

necessary and sufficient condition that ( ) ( )*E y n n V d E y n� �− − = � �� �� �  is that ( )*q n  is

given by (4.16).

Proof: (Sufficiency) Note that

( ) ,
0 0

� �
dQ dQ

j lin j
j j

q n q
= =

=� �

 is the DC gain of FIR filter �
linQ , since there is no DC tap.  Taking expectations of both

sides of (4.15), and then substitute for ( )E u n� �� �  from (4.13) gives

( ) ( ) ( ) ( )

( ) ( )( )
, ,

,

� �*

�0 * .

lin i k lin j k
k i k j

lin j k
k j

E y n E y n d V n q b E y n C E y n q b C

E y n d V n E y n q b

� �= + + + − − +� � � � � �� � � � � �� �

� �= + + − � �� �� �

�� ��

��

Thus from Assumption 6,

 ( ) ( )*E y n d V n E y n� �+ + = � �� �� � .

(Necessity) Given: ( ) ( )*E y n d V n E y n� �+ + = � �� �� � , substitute (4.14) into (4.13), take

the expectation of both sides of the result, and also (4.13), then

( ) ( ) ( ) ( )� *k i k k
k i k k

E u n b E y n q n b q n b= +� � � �� � � �� �� �

( ) ( ) ( ) ,�* lin i
i

q n E u n E y n q= −� � � �� � � �� ,

thus completing the proof.
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However, there is a problem.  Signal ( )*q n  creates feedback paths not readily

observable in Figure 4.6.  Express (4.11) as a filter in the delay operator 1z− ,

( ) ( ) ( )
1SM
zu n u n

z
δ

δ
=

− −
(4.17)

( ) ( ) ( ) ( ) ( )1

1
1

SM

z
u n u n u n u nz

δ

−
= − =

−
−

� , (4.18)

with ( )SMy n  and ( )y n�  similarly defined.

Redrawing Figure 4.6 using expressions (4.17) and (4.18) gives Figure 4.7, where

the feedback path is plainly shown.

�
linQ

( )* |y n d V n+ +
�

linQ dz− B

C

y(n)(copy)
+

uSM(n)

_

+ _
� �u n�

� �u n

� �y n�

� �SMy n � �1
z

z
�

�� �

+ +

� �1
z

z
�

�� �

� �SMu n

1

1
1

z
z
�

�

�

�

1

1
1

z
z
�

�

�

�

,�lin jq�

d Vz− −

Figure 4.7  Architecture for Subtracting Sample
Mean Estimates (Shown in Figure 4.6) with
Feedback Explicitly Shown
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Several simulations expose the unstable behavior suggested by Figure 4.7.  When

the closed-loop poles and zeros of this system are periodically plotted during system

convergence, it is clear that unstable performance occurs when the closed-loop poles fall

outside the unit-circle during the convergence interval.  Unsurprisingly, stable

performance is more likely as δ  is decreased, e.g. below .001.  This has the effect of

nearly breaking the feedback path shown in Figure 4.7.  However, as δ  is decreased, the

sample-mean estimates ( )SMu n  and ( )SMy n  take much longer to converge to good

estimates of ( )[ ]E u n  and ( )[ ]E y n .  As a result ( )u n�  and ( )y n�  take longer to become

approximately zero-mean signals, thus the eigenvalue spread of ( ) ( )TE n n� �� �y y� �  remains

large and ( )�
lin nQ  converges very slowly.

4.3.5 Reducing Means Via Downsampled Estimates

To break the feedback path shown in Figure 4.7 and thus avoid instability, use

significantly down-sampled versions of ( )SMu n  and ( )SMy n  for DC Correction.

Specifically, run the identification process as shown in Figure 4.7, but update ( )*q n  at a

down-sampled rate.

( ) ( ) ( ), * , *
0

�*
dQ

SM q SM q i
i

nq n u n y n q dsInterval
dsInterval=

� �� �= − � �� �� �	 

� , (4.19)

( ), *SM q SM
nu n u dsInterval

dsInterval
� �� �≡ � �� �� �	 


,

( ), *SM q SM
ny n y dsInterval

dsInterval
� �� �≡ � �� �� �	 


,

where x� �� �  is the integer part of x  and dsInterval is an integer down-sample interval.
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By infrequently latching the values of ( ), *SM qu n  and ( ), *SM qy n  used for

determining ( )*q n , the feedback paths of Figure 4.7 are essentially broken.  For

example, Figure 4.8 shows the case when 500dsInterval = , i.e. ( )*q n  is updated once

per 500 msec. The final measured eigenvalue spread is 6.  The convergence rate is

satisfactorily fast.
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Figure 4.8  Set-Point  Error When ( )*Q n  is
Updated Twice a Second.

4.3.6 Discussion

Convergence rate is a serious issue for the proposed explicit rate congestion

controller.  Without modifications, performance is unacceptable (Figure 4.2).  If accurate

estimates of ( )[ ]E u n  and ( )[ ]E y n  can be obtained a-priori, fixed estimates provide

excellent performance (Figure 4.4), but if these fixed estimates are less accurate,

performance degrades severely (Figure 4.5).  An online sample mean calculation works
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quite well, as long as the feedback path of Figure 4.7 is broken by down-sampling the DC

correction update (Figure 4.8).

4.4 Control of Queue Size

Most of the congestion control work by control theorists presented in Section

1.3.2 explicitly include queue matching in addition to rate matching in their cost

functions, no doubt in part a response to [11].  In contrast, this dissertation, up to this

point, has focussed on a pure rate-matching controller.  This strategy, supported by [12],

requires that the bandwidth available for ABR traffic be slightly under-utilized, thus

creating extremely short (or zero) steady state queue lengths.  While this has advantages,

e.g. shorter end-to-end delay and smaller memory requirements, it may be more desirable

to have, on average, longer buffers.  Since ABR is not designed for delay-sensitive

traffic, it may be preferable to add a small, known delay by targeting a non-zero buffer

size in order to ensure network efficiency.  The scheme presented thus far does not allow

for a desired queue depth greater than zero.

Queue control is fairly easily incorporated into rate-matching schemes.  The basic

idea, suggested by [21], uses any preferred rate-matching scheme to determine an explicit

rate.  This explicit rate is then increased if the present queue depth is below its target, or

decrease the explicit rate if the present queue depth is above the target.

The proposal of this section is distinct from [21] in that it scales the set point,

( )* |y n d V n+ + , not the explicit rate ( )u n  directly.  Specifically, decide at time n the

target input rate for time n d V+ +  (see Section 2.1), but notate this as ( )|n d V nΘ + +
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instead of ( )* |y n d V n+ + .   The target input rate ( )|n d V nΘ + +  is chosen without

regard of the queue size.  Further, for simplicity of presentation, assume that

( )|n d V nΘ + +  is the actual service capacity for ABR traffic at n d V+ + .

Define a scalar ( )nη  that is monotonically decreasing function of the queue size

( )queue n . Control of this queue size is accomplished by multiplying ( )|n d V nΘ + +

by ( )nη  to form ( )* |y n d V n+ + , i.e.

( ) ( ) ( )* | |y n d V n n n d V nη+ + = Θ + + . (4.20)

This queue-aware set-point ( )* |y n d V n+ +  is used in exactly the same way as

outlined in Sections 4.3.3 and 4.3.5.  The plant model now includes the queue-depth

( )queue n , which progresses as

( ) ( ) ( ) ( )1 |queue n queue n y n n n d V+ = + − Θ − − . (4.21)

Taking the constant mean estimate method of Section 4.3.3 (shown by Figure 4.3)

and incorporating (4.20) and (4.21) produces Figure 4.9.

To illustrate the queue control provided by (4.20), reconsider the example

discussed in Section 4.3.3, where accurate constant estimates ( )[ ]0.99a E u n=  and

( )[ ]1.01E y nβ =  are used to reduce the convergence rate.  The set-point error is shown

in Figure 4.4.  In one example, with no attempt to control the size of the queue, i.e

( ) 1nη = , the queue grows to just over 5000 cells, as shown in Figure 4.10.
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( )|n d V nΘ + +

( )* |y n d V n+ +

dz�B

C

+ ( )y n+

+

� �1u n

� �1y n
+

�
linQ

_

_

_

( )u n

+_

1
1z �

β α

α
β

�DCq

� �1�u n d V� �

+

+

V dz� �

� �n� �
linQ

(copy)
+

+ �DCq

� �e n

d Vz− −

Figure 4.9  Queue Control Added to Controller of
4.3.3 (Compare to Figure 4.3)
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Figure 4.10  Queue Size for Example in Figure 4.4
Using No Queue-Depth Control

If instead, ( ) 0.99nη =  for all n , corresponding to a fixed policy of using only

99% of the ABR capacity, then the target queue depth is zero.  Figure 4.11 shows the
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result.  The rate at which the queue re-converges to zero increases if ( ) 0.99nη < .  In

itself, allowing 1% of the available explicit rate bandwidth to go unused in steady state

may be acceptable.  However, if the available explicit rate bandwidth were to increase or

if the number of responsive flows were to decrease, the port would remain under utilized

until the control system could respond or reconverge.
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Figure 4.11  Queue Depth When Requested
Bandwidth Remains 99% of Available Bandwidth,
i.e. Target Queue Depth is Zero

To target a non-zero queue-depth, use a ( )nη  function that decreases

monotonically with queue(n).  A simple function is shown in Figure 4.12.
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( )queue n

1 _ _queue scale bound+

1 _ _queue scale bound−

1

Q1 Q2 Q3

Figure 4.12   Sample ( )nη  Function

Using the ( )nη  function shown in Figure 4.12, with queue_scale_bound = 0.01,

1 100Q =  cells, 2 200Q =  cells, 3 300Q =  cells, achieves the target queue-depth without

perceptibly affecting the convergence rate, as shown in Figure 4.13 and Figure 4.14.
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Figure 4.13  Queue depth and Set-point Scaling
Factor η(n) when Queue Target is 100-200 Cells

Comparing Figure 4.3 to Figure 4.9, clearly potentially destabilizing feedback is

created by performing queue control with (4.20). Intuition suggests, and simulations
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confirm, that stability is only in jeopardy when the scaling of ( )nη  is aggressive.

Stability is maintained, using the ( )nη  shown in Figure 4.12, with queue_scale_bound

equal to 0.01. However, if queue_scale_bound changes from 0.01 to 0.1, the oscillations

introduced significantly impact overall performance, as demonstrated by Figure 4.15 and

Figure 4.16.  It seems intuitive that using a small queue_scale_bound can make the

impact of ( )nη  on ( )* |y n d V n+ +  nearly negligible, yet still effect the desired

behavior.
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Figure 4.14  Set-Point Error when Queue Depth is
Actively Controlled. Estimates a  and β  are within
1% of their correct values.  Note that this is
comparable to Figure 4.4
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Figure 4.15  Queue Depth and Set-Point Scaling
Factor η(n) when Queue Target is 100-200 Cells.
Too aggressive queue depth control can lead to
instability.
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Figure 4.16  Set-Point error, ( ) ( )* |y n n d V y n− − − .
Using too aggressive queue depth control, poor
performance can result.
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4.5 Biasing Issues

4.5.1 Generalizing the Plant by Incorporating Noise

Until this point, ABR traffic that is non-responsive to the explicit rate ( )u n of

port j has been characterized as a constant C  (see (4.1)).  This characterization is

plausible if the non-responsiveness is due to a set of characteristics of the source.  For

example, a source may be entitled to a minimum cell rate (MCR) that exceeds the explicit

rates proposed by port j, or the source provides data at a fixed rate below the offered

explicit rate of port j.  However, an ABR source may be non-responsive to port j because

it is responsive to another port ( )i j≠  of another switch.  The explicit rates of port j are

no more likely to be constant than those of port i.  Therefore a more realistic traffic model

for port j includes non-zero variance in its non-responsive traffic.  Specifically, a zero-

mean, white Gaussian noise signal ( )nϖ , which is uncorrelated to ( )u n , is added to the

plant (4.1).

( ) ( ) ( )Ty n n d C nϖ= − + +B u (4.22)

The signal ( )( )C nϖ+  can be viewed as the non-responsive traffic having mean

C  and variance 2
ϖσ .  Let ( ) ( ) ( )y n y n nϖ ϖ≡ −  be the plant output without noise.  Figure

4.17 shows the modified identification process incorporating the plant noise.

A complete study of the implications of plant noise on convergence and stability

does not appear here.  However, it appears feasible to extend the results from the

noiseless case of Section 3.2 to the ( ) 0nϖ ≠  case using techniques similar to those of

Chapter 8 of [63].
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( )y nϖ

−

C

−

� �1

1
zB �

Vz−+ +

+
� �� nQ

−

( )�u n d v− −

( )u n d V− −

( )nϖ

( )y n

Figure 4.17  Identification Process Incorporating
Plant Noise ( )nϖ

A parameter estimation process is said to be biased if the mean of the estimates

are not equal to the parameters being estimated.  In Section 3.2, the controller

identification process of (4.3) through (4.6) is shown to converge to its Weiner solution.

For the noiseless case � � 0n� �  and � � � �y n y n
�

� , the unbiased Weiner solution UBQ  is

� � � �� � � � � �

� � � �� � � � � �

1

0

1

.

T
UB

T

E n n E n u n d V

E n n E n u n d V

Q Q y y y

y y y
� � �

�

�

� � � �� � � �� �� �

� � � �� � �� �� �

(4.23)

When � � 0n� � , the biased Weiner solution BQ  is

� � � �� � � � � �

� � � �� � � � � �

1

1
2 .

T
B

T

E n n E n u n d V

E n n E n u n d V

Q y y y

y y I y
� � � �

�

�

�

� � � �� � �� �� �

� � � �� � � �� �� �

(4.24)

Clearly B UB≠Q Q  when � � 0n� � .

4.5.2 Related Work

The biasing effect of � � 0n� �  on Adaptive Approximate Inverse Control was

previously reported ([59], [60], [65], [66]).
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The accompanying recommendations focus on adding a second adaptive filter

� �� nB , which includes a DC tap, to estimate the plant.  This estimate will be unbiased, as

the noise ϖ(n) occurs on the output of the estimated plant (B).

� �*y n d V n� �

( )nϖC

−� ��y n

(copy)

�Q

Vz�

++

−

� �u n B

+

�B

+

� �y n

� �2e n

� �1e n

�Q

Figure 4.18  A First Method for Removing Bias
from ( )� nQ  [59]

Figure 4.18 shows a controller estimation process that identifies � �� nQ  with � �� nB

in place of the true plant B.  Widrow [59] argues that since the filter � �� nB  is free of

output noise, and if � �� nB  has a sufficient number of parameters, then � �� nB  converges to

B in the mean, and � �� nQ  will converge without bias to UBQ .  The second scheme, shown

in Figure 4.19, identifies � �� nQ  with an offline process.  The modeling signal ( )model n

can be chosen by the operator to produce fast convergence of � �� nQ .  This second scheme

is fundamentally an indirect adaptive controller � the plant B is estimated by � �� nB  and

the control parameters � �� nQ  are determined using � �� nB .   As such, this second method

is similar to that of Yahagi (discussed in Section 3.1.2.3), where � �� nQ  is determined

from � �� nB  using matrix calculations.  All indirect methods, including those shown in
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Figure 4.18 and Figure 4.19, require extra calculations as compared to direct schemes

since both � �� nB  and � �� nQ  are calculated.

� �*y n d V n� �

( )nϖC

(copy)

�Q ++
� �u n B

+

�B

� �y n

� �1e n

Vz�

+
� �2e n

�Q(copy)
�B� �model n

Offline inverse modeling

Figure 4.19  A Second Method for Removing Bias
from ( )� nQ [59].  The top figure is used to estimate
�B .  The bottom figure depicts and off-line process

to estimate �Q  using the estimate �B  from the top
figure.

The schemes of Figure 4.18 and Figure 4.19 have intuitive merit, yet both lack

complete analysis.  Preliminary, often heuristic, results are presented in [59].  The

possibility of poor estimates of � �� nB  motivates yet another architecture (see Chapter 7 of

[59]) to reduce the sensitivity of � �� nQ  to the parameter errors in � �� nB .  However, this
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new architecture filters its adaptation error, and thus, like the rejected controller of

Section 3.1.3.1, cannot be assured to converge.

Another possible solution to the biasing problem is to extend the estimated plant

model to explicitly characterize the noise.  One popular algorithm is the Pseudo Linear

Regression Algorithm [63], also known as the Extended Least Squares Algorithm.  In its

general form, this algorithm uses an ARMAX model

( ) ( ) ( ) ( ) ( ) ( )1 1 1dA z y n z B z u n C z w n− − − −= +

where ( )w n  is white noise.  The estimates of ( )1C z−  are estimated along with the other

plant parameters ( )1A z−  and ( )1B z− .  For each time n, both a priori and a posteriori

estimates are created, the former to estimate ( )�y n , and the latter to find a posteriori

estimates of ( )w n .  This method works well if the noise is well modeled by

( ) ( )1C z w n− .  However, care must be taken to ensure convergence.  Specifically, the

estimate ( )�1 C n  must remain positive real since this expression filters the adaptation

error.  If a good a priori estimate of ( )1C z−  exists, this estimate can be used to improve

the likelihood of convergence.  In short, Pseudo Linear Regression finds bias-free plant

estimates if the model noise is well approximated by ( ) ( )1C z w n− .  However, there is a

higher computational cost � estimates are required for ( )1C z−  in addition to ( )1A z−  and

( )1B z− , and convergence is no longer assured unless extra steps are performed.

The Simple Hyperstable Adaptive Recursive Filter (SHARF) algorithm [43]

offers another method to find bias-free estimates.  Like the Pseudo Linear Regression

algorithm, it requires added computational complexity and requires care to ensure

convergence.
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4.5.3 Reducing Estimation Bias

This section presents a novel method for reducing the biasing effect of plant noise

described in Section 4.5.1.  Unlike the previous suggestions of Section 4.5.2, this strategy

does not require additional adaptive filter coefficients, e.g. ( )� nB  in Figure 4.18 and

Figure 4.19 or ( )� nC  of the Pseudo Linear Regression Algorithm, and is thereby

computationally less expensive.  Further, this bias-reducing strategy poses no threat to

global stability, as was the case with the methods of Section 4.5.2.

The strategy employed is reparameterization.  Instead of adaptively finding ( )� nQ

by estimating ( )�u n d V− −  as in (4.3), repeated here:

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )0 1

��

� � �1 ,

T

dQ

u n d V n n

q n y n q n y n q n y n dQ

− − =

= + − + + −

y Q

�

(4.25)

use the following reparameterized adaptive model to estimate ( )y n π− :

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )( ) ( ) ( )

( ) ( )

0 1 2

1

� � �� 1
� �1 1

�

yu

dQ

T

y n n u n d V scale n y n n y n

n y n n y n n y n dQ

n n

π π

π θ θ θ

θ π θ π θ+

− = − − + + − +

+ − − + − + + + −

=φ θ

�

� (4.26)

for some appropriately chosen integer π , 0 dQπ≤ ≤ , and

( ) ( ) ( ) ( )( ) ( )( ) ( ), , 1 , 1 , ,
T

yun u n d V scale y n y n y n y n dQπ π� �= − − − − − + −� �φ � �

where yuscale  is an operator chosen constant.  Normalized Least Mean Square (NLMS)

adaptation is performed using

( ) ( ) ( )�ye n y n y n
π

π π= − − − , (4.27)

( ) ( ) ( ) ( )
( ) ( )

� �1 y
T

n e n
n n

n n
π

µ
+ = +

φ
θ θ

φ φ
. (4.28)
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For each n , ( )� 1n +θ  is translated into the controller FIR ( )� 1nθ +Q  using

( )
( )

( ) ( )

( ) ( ) ( )

1 2
0

1

1� � �1 1 , 1 , ,� 1

� � �1 ,1, 1 , , 1

yu

T

dQ

n n n
n scale

n n n

θ

π π

θ θ
θ

θ θ θ+

�+ = − + − +�+

�− + − + − + �

Q �

�

(4.29)

Note that (4.26) through (4.28) do not attempt to include a characterization of the

noise, nor attempt to otherwise filter the adaptation error.  Such techniques, including

those of [63] and [59], often require strictly positive real (SPR) assumptions on the �noise

filter� or some other plant aspect.  Violation of such an assumption compromises

convergence, both theoretically and practically.  By avoiding any adaptation error

filtering, the reparameterized adaptation of (4.26) through (4.28) causes ( )� nθ  to

converge to its Weiner solution.  This Weiner solution will be biased, but as shown

below, the biasing is decreased for the reparameterized case as compared to the non-

reparameterized case.

Frequently when a plant�s pole polynomial is estimated, this pole polynomial is

assumed to be monic and the remaining plant parameters are scaled accordingly.

However, in the present case, the magnitude of the first term of ( )1
0Q z−  is ideally close

to zero.  Numerical difficulties arise in any estimation scheme that treats ( )1
0Q z−  as a

monic polynomial.  This is the reason for choosing a non-zero π  for the purpose of

estimating ( )1
0Q z− .  Ideally π  is chosen as

0,arg max ii
qπ = ,

although any π  such that 0,q π  is �relatively large� will do.
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For the noiseless case, i.e. ( ) 0nϖ = , both the original non-reparameterized

adaptation scheme ((4.3) through (4.6)) and the reparameterized scheme ((4.26) through

(4.28)) have unbiased Weiner solutions.  Let the unbiased Weiner solution for the non-

reparameterized case and reparameterized case be UBQ  and UBθ  respectively:

( ) ( ){ } ( ) ( )

( ) ( ){ } ( ) ( )

1

1

T
UB

T

E n n E n u n d V

E n n E n u n d Vϖ ϖ ϖ

−

−

� �= − −� �� �� �

� �= − −� �� �� �

Q y y y

y y y
(4.30)

( ) ( ){ } ( ) ( )

( ) ( ){ } ( ) ( )

1

1

.

T
UB

T

E n n E n y n

E n n E n y nϖ ϖ ϖ ϖ

π

π

−

−

� �= −� �� �� �

� �= −� �� �� �

θ φ φ φ

φ φ φ
(4.31)

Further, define the transformation of UBθ  to UB
θQ  as

,1 ,2 , , 1 ,
,0

1 , , ,1, , , .
T

UB UB UB UB UB UB dQ
yu UBscale

θ
π πθ θ θ θ θ

θ +� �≡ − − − − −� �Q � � (4.32)

Note that UB UB
θ =Q Q  if perfect inversion is assumed (Assumption 5 on page 83).

When ( ) 0nϖ ≠ , the Weiner solutions for both the non-reparameterized case BQ

and reparameterized case Bθ  are biased.

( ) ( ){ } ( ) ( )

( ) ( ){ } ( ) ( )

1

1
2

T
B

T

E n n E n u n d V

E n n E n u n d Vϖ ϖ ϖ ϖσ

−

−

� �= − −� �� �� �

� �= + − −� �� �� �

Q y y y

y y I y
(4.33)

( ) ( ){ } ( ) ( )

( ) ( ) { }{ } ( ) ( )

1

1
2 diag 0,1,1, ,1 ,

T
B

T

E n n E n y n

E n n E n y nϖ ϖ ϖ ϖ ϖ

π

σ π

−

−

� �= −� �� �� �

� �= + −� �� �� �

θ φ φ φ

φ φ φ�

(4.34)

where ( )nϖφ  is defined
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( ) ( ) ( )

( )( ) ( )( ) ( )

, ,

, 1 , 1 , , .

yu

T

n u n d V scale y n

y n y n y n dQ

ϖ ϖ

ϖ ϖ ϖπ π

�≡ − −�

�− − − + − �

φ

� �

Noting the bias error in BQ  and Bθ  as vectors BE B UB≡ −Q Q Q  and

BE B UB≡ −θ θ θ , then from (4.33) and (4.34)

( ) ( ){ } ( ) ( ) ( )2T
UB BEE n n E n u n d Vϖ ϖ ϖ ϖσ� � + + = − −� �� �� �

y y I Q Q y

( ) ( ){ }

,0

,1

1
2 2

,

,

UB

UB

T
BE

UB

UB dQ

q
q

E n n
q

q

ϖ ϖ ϖ ϖ
π

σ σ
−

� �
� �
� �
� �

� �= − + � �� �
� �
� �
� �
� �� �

Q y y I
�

�

(4.35)

and

( ) ( ) { }{ } ( ) ( ) ( )2 diag 0,1,1, ,1T
UB BEE n n E n y nϖ ϖ ϖ ϖ ϖσ π� � + + = −� �� �� �

φ φ θ θ φ�

( ) ( )

,0
1

,1

2
2

, 1,

, 1

,

0

0
1

1

UB

UB

T
BE

UBUB

UB

UB dQ

q
q

E n n
qq
q

q

θ

θ

ϖ
θϖ ϖ ϖ θ

ππ
θ

π

θ

σσ

−

−

+

� �
� �
� �
� �� �� �
� �� �� �

� � � �� �� �= +� 	 � �
 � � �� � � �� �� � � �
 �� 
� �
� �
� �
 �

θ φ φ
�

�

�

(4.36)

It is possible to translate BEθ  into an analytical expression for the bias error BE
θQ .

However, the non-linearity of the translation (4.29) and (4.32) obscures any added

intuition provided by such an analytical expression.  Instead, what follows are heuristic

arguments claiming that 2
ϖσ  has a larger biasing effect on BQ  than on Bθ , and thus B

θQ .



119

Consider the large 2
ϖσ  case.  As 2

ϖσ  increases, (4.35) indicates that BE UB→ −Q Q ,

or B →Q 0 .  Such a controller produces an all-zero control signal, i.e. doing nothing is

better than attempting any non-trivial control, the biasing effect is so great.  In contrast,

as 2
ϖσ  becomes large in (4.36), the matrix

( ) ( ) { }{ }2 diag 0,1,1, ,1TE n nϖ ϖ ϖσ� � +
� �
φ φ � (4.37)

becomes increasingly diagonal.   (It also becomes increasingly ill-conditioned, but avoids

singularity since ( )2 0E u n d V� �− − ≠� � .)  As (4.37) becomes more diagonal, from (4.36)

the first term of BEθ , ,0BEθ , becomes close to zero.  Surprisingly, as the noise increases,

,0 ,0B UBθ θ≈  and thus ,BQθ
π  is only slightly biased (and not equal to zero, as in the non-

reparameterized case).  By construction, the thπ  tap of the controller is one of its most

significant taps.

Even when 2
ϖσ  is not excessively large, the reparameterized case seems to have

an advantage, although the explanation is somewhat more heuristic.  If yuscale  could be

chosen so that

( ) ( ){ } ( ) ( ) { }{ }1 1
2 2 diag 0,1,1, ,1T TE n n E n nϖ ϖ ϖ ϖ ϖ ϖσ σ

− −
� � � �+ ≈ +
� � � �
y y I φ φ � , (4.38)

and if (4.36) is multiplied by ,UBqθ
π− , the result compares favorably to (4.35).  The

expression BEQ  of (4.35) includes ,UBq π  in its right-most vector. However, the expression

of BEθ  has a zero instead of ,UBqθ
π  in its right-most vector. The same is true for ,UB BEqθ

π− θ .

Recall that ,UBq π  is one of largest magnitude taps of B
θQ .  It is therefore quite plausible

that ,UB BE BEqθ
π− <θ Q , i.e. the reparameterized case is less biased than the non-

parameterized case.
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The key advantage of reparameterizing can be seen by comparing (4.33) and

(4.34).  By making ( )y n π−  the value to be estimated and including ( )u n d V− −  in the

regressor vector, there is an �advantage� in the auto-correlation matrix, yet there is no

�disadvantage� in the cross-correlation matrix.  The structure of the Weiner solution

shows that if white noise corrupts only the value being estimated, with no noise

corrupting the regressor vector, no bias results.  If there is noise only on the regressor

vector and not the signal being estimated, large bias results.  The reparameterization

suggested above creates an amount of bias somewhere between these two extremes.

Before presenting the simulation results, a few comments on yuscale  are in order.

As briefly implied above, yuscale  should be chosen to reduce eigenvalue spread of the

auto-correlation matrix ( ) ( )TE n n� �� �φ φ .  As discussed in 4.3.2, reducing the eigenvalue

spread of the auto-correlation matrix causes a desirable reduction in the convergence

time.  An appropriate choice of yuscale , or even a reasonable guess, can significantly

reduce convergence time when the reparameterized scheme is used.

There are several ways to determine a helpful yuscale , including

2

2
y

yu
u

scale
σ
σ

=
�

�
(4.39)

where 2
yσ�  and 2

uσ�  are sample-mean estimates of the variance of y  and u  respectively.

The scaler yuscale  is treated as a constant, but in practice could be occasionally updated

using on-line measurements.

The simulation experiments presented below demonstrate the reduction

of bias that occurs with reparameterization.  As in Section 4.2,
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( ) ( )1 10 1 2 32 9 8 3B z z z z z− − − − += + + + , 200C = , 30dQ = , and 10V = .  The sample time is

1sT =  msec.  The bandwidth available for explicit rate traffic, ( )* |y n n d V− − , is

modeled as a Gaussian random process with ( )* | 1E y n n d V� �− − =� �  Mcps, 2
* 484yσ =

kcps.  When reparameterization is performed, 9π = , as this is the largest magnitude tap

of UBQ  (Figure 4.20).  To reduce the eigenvalue spread of the autocorrelation matrix, the

method of Reducing Means Via Downsampled Estimates is used, as described in Section

4.3.5.

When the plant output noise ( )nϖ  is a zero-mean, Gaussian random process with

variance 2 120ϖσ =  kcps, without reparameterization, biasing is pronounced. Figure 4.20

shows the impulse response the parameter estimate �Q  and the optimal, unbiased UBQ

after 8 seconds (8000 samples) of convergence.  The estimate �Q  bears a poor

resemblance to UBQ .

When �Q  is convolved with B, instead of the expected impulse at 10V =  (see

(3.10)), Figure 4.21 demonstrates that �Q  poorly inverts B.

Comparing bode plots of UBQ , BQ , and �Q  in Figure 4.22 shows that �Q  does

indeed closely resemble BQ  and poorly resembles UBQ .  The set-point error,

( ) ( )* |y n n d V y nϖ− − − , is shown in Figure 4.23.  In contrast, the reparameterized case,

with 9π = , shows much less bias.  The impulse response of �Q  is much closer to UB
θQ , as

shown in Figure 4.24.  Convolution of �Q  and B reveals an impulse at delay 10V = , as

shown in Figure 4.25.
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Figure 4.20  Impulse Response of �Q  (solid line)
and UBQ  (dash-dot line) with 2 120ϖσ =  kcps.  No
Reparameterization.
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Figure 4.21  Convolution of B and �Q , with
2 120ϖσ =  kcps.  No Reparameterization.
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Figure 4.22  Bode Plot of UBQ  (dash-dot line), BQ  (dashed

line), and �Q  (solid line) with 2 120ϖσ =  kcps.  No
Reparameterization
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Figure 4.23  Set-Point error, ( ) ( )* |y n n d V y nϖ− − − ,

with 2 120ϖσ =  kcps.  No Reparameterization.
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Figure 4.24  Impulse response of �Q  (solid line) and

UBQ  (dashed line) with 2 120ϖσ =  kcps.  Using
Reparameterization. 9π = , 12.5yuscale = .
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Figure 4.25  Convolution of B and �Q , with
2 120ϖσ =  kcps.  Using Reparameterization. 9π = ,

12.5yuscale = .
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Figure 4.26  Bode Plot of UBQ  (dash-dot line), BQ  (dashed

line), and �Q  (solid line) with 2 120ϖσ =  kcps.  Using
Reparameterization. 9π = , 12.5yuscale = .
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Figure 4.27  Set-Point error, ( ) ( )* |y n n d V y nϖ− − − ,

with 2 120ϖσ =  kcps.  Using Reparameterization. 9π = ,
12.5yuscale = .
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Figure 4.28  Set Point error, ( ) ( )* |y n n d V y nϖ− − − ,

with 2 120ϖσ =  kcps.  Using Reparameterization, 9π = ,
1yuscale = .  Note that convergence is much slower than in

Figure 4.27.

In Figure 4.26, the bode plots of 
UB

θQ , 
B

θQ , and �Q  show that �Q  well

approximates 
B

θQ  and nearly well approximates 
UB

θQ .  The upward shift of �Q  as

compared to 
UB

θQ  is consistent with the slight overshoot observed in the delayed impulse

of Figure 4.25.

The set-point error, as shown in Figure 4.27, is noticeably superior as compared to

the non-parameterized case shown in Figure 4.23.

Note that the results of Figure 4.24 through Figure 4.27 use 12.5yuscale =  as

calculated by (4.39).  To demonstrate the improvement in convergence rate from this

reasonable estimate of yuscale , the experiment shown in Figure 4.27 is repeated with

1yuscale = .  The results are shown in Figure 4.28.  Note that the measured eigenvalue
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spread of the auto-correlation matrix increased from 15 to 145 for 12.5yuscale = and 1

respectively.

Consider now the large 2
ϖσ  case.  As 2

ϖσ  is increased from 120 to 300 kcps, the

non-reparameterized case produces =Q 0 , as predicted by (4.35).  The impulse response

and set-point error are shown in Figure 4.29 and Figure 4.30 respectively.

In contrast this large increase in 2
ϖσ  degrades the performance of the

reparameterized case only slightly, as shown in Figure 4.31 through Figure 4.34

(compare to Figure 4.24 through Figure 4.27).

0 5 10 15 20 25 30
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Figure 4.29  Impulse response of �Q  (solid line) and

UBQ  (dashed line) with 2
ϖσ =300 kcps.  No

Reparameterization.
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Figure 4.30  Set Point error, ( ) ( )* |y n n d V y nϖ− − − ,

with 2
ϖσ =300 kcps.  No Reparameterization.
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Figure 4.31  Impulse response of �Q  (solid line) and UBQ
(dashed line) with 2

ϖσ =300 kcps. Using
Reparameterization. 9π = , 12.5yuscale = .
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Figure 4.32  Convolution of B and �Q , with 2
ϖσ =300 kcps.

Using Reparameterization. 9π = , 12.5yuscale = .
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Figure 4.33  Bode Plot of UBQ  (dash-dot line), BQ  (dashed

line), and �Q  (solid line) with 2
ϖσ =300 kcps.  Using

Reparameterization. 9π = , 12.5yuscale = .
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Figure 4.34  Set-Point error, ( ) ( )* |y n n d V y nϖ− − − ,

with 2
ϖσ =300 kcps.  Using Reparameterization. 9π = ,

12.5yuscale = .

4.6 Chapter Summary

This chapter addresses three important practical issues that arise in the application

of Adaptive Control theory to problem of congestion control.

Section 4.3 discovers that the bandwidth desired by a congestion controller is

likely to be a large mean, small variance signal.  Such a set-point is problematic for the

convergence rate of the congestion controller originally presented and studied in Chapter

3.  The offered solution �subtracts and adds� the large signal means and reduces

convergence speed dramatically.
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Section 4.4 integrates queue depth management into the original congestion

controller.  This is achieved by slightly modifying the original set-point up or down,

depending on the current queue�s size compared to its target.

Section 4.5 recognizes that port j  will likely serve both responsive and non-

responsive ABR sources.  These non-responsive sources were originally assumed to offer

a constant bandwidth load to port j .  Assuming a non-constant load for the non-

responsive sources makes the model more realistic, but exposes the original control effort

to biasing problems.  The offered solution can dramatically reduce the biasing effect

without significantly increasing the computational cost over the original controller.

Further, unlike previously published solutions to the biasing issue, the solution of Section

4.5.3 does not compromise convergence of the controller.
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CHAPTER 5 DISSERTATION SUMMARY AND CONCLUSIONS

This chapter contains a summary of the contributions of this dissertation as well

as possible future research directions.

5.1 Summary

This dissertation addresses congestion control for explicit rate controlled data

networks.

Chapter 1 introduces the concept of congestion control for data networks, with a

focus on explicit rate controlled networks.  The Available Bit Rate (ABR) service

category of Asynchronous Transfer Mode (ATM) networks, or ATM ABR, is an example

of an explicit rate controlled network, and is the example studied in this dissertation.

The characteristics of ATM ABR are reviewed.  Previous contributions in this field of

study are summarized.

Chapter 2 addresses the modeling of an ATM ABR explicit rate controlled

network.  One simple model is shown to be similar to the implicit model of the Uniform

Tracking [24] algorithm, thereby explicitly connecting the Uniform Tracking algorithm

to the theory of adaptive control.  As an extension of this simple model, a more detailed

model is presented, which affords analytically tractable control schemes.  Simple control

strategies are suggested. Chapter 2 also introduces the Blending Effect, a property of
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multiple switch rate-controlled plant models.  The Blending Effect makes high fidelity

plant modeling intractable.  Further, it can be minimized through other means and is

therefore ignored for the remainder of the dissertation.

Chapter 3 explores control strategies for the explicit rate controlled network plant

proposed in Chapter 2.  The plant of Chapter 2 is potentially non-minimum phase.

Therefore the control strategies explored in Chapter 3 are all capable of controlling non-

minimum phase plants.  After evaluation, one scheme, Adaptive Approximate Inverse

Control, is selected for its relatively low computational cost, realizability, and attractive

convergence and stability properties.  This control scheme was independently developed

for the present congestion control application.  However, it shares many characteristics

with the previously proposed Adaptive Inverse Control [59].  Upon selecting Adaptive

Approximate Inverse Control as the preferred control strategy, convergence and stability

properties are explored.  Theorem 3.1 through Theorem 3.3 result.  The convergence and

stability analysis presented in Section 3.2 significantly contribute to the understanding of

this control paradigm.

Chapter 4 extends the control algorithm proposed in Chapter 3.  Application of a

control strategy, such as Adaptive Approximate Inverse Control, to a real-word

application, such as ATM ABR congestion control, often benefits from application-

specific tailoring.  The three modifications suggested in Chapter 4 receive particular

attention due to the generality of the problems they address, problems that are likely to

arise in other applications.  The first modification significantly reduces convergence

times of the control parameters.  The second modification extends the system to explicitly
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model and control the buffer queue depth.  The third modification extends the plant to

allow a disturbance due to rate-varying non-responsive sources.  Unlike other solutions

for this issue, this third modification addresses the bias on controller parameters without

significantly increasing the computational load or compromising controller convergence.

Simulations are shown throughout Chapter 4 to validate each solution, as well as the

overall control strategy.

5.2 Future Research Directions

There are several potential directions for future research.  One path examines real-

world protocols and networks in an attempt to improve the fidelity of the plant model.

This almost certainly creates a more complex plant model.  Modeling the Blending Effect

introduced in Chapter 2 is but one possibility.  Other modeling extensions include

delayed or lost data (e.g. resource management cells), non-linearities due to rate and

buffer saturations, bursty sources, and other phenomena.

Another direction for research is to examine different control methodologies

outside of linear adaptive control, the primary tool of this dissertation.  However, the

dynamic nature of data networks suggests that any successful control strategy maintain an

adaptive quality.

Yet another direction, albeit further afield from this work, is application of

adaptive control principles to TCP/IP congestion control.  TCP/IP is a set of protocols

widely employed in today�s data networks, including the Internet.  TCP/IP presently

employs coarse congestion control only at the end-points of a connection.  Current efforts
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are underway to improve TCP/IP congestion control.  This likely requires delivering

additional information from internal nodes to TCP/IP end-points.  Researchers must

determine what information should be delivered, how it should be delivered, and how

best to use that information to effect improved congestion control.  However, any

suggested change must heavily consider backwards compatibility with the large installed

base.
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APPENDEX

This Appendix contains supporting lemmas for Section 3.2.2.

Lemma A.1 ( ) ( )TE n n� �=
� �

R y y is positive definite, thus full rank.

Proof:  Consider an arbitrary, real, non-zero vector [ , ]T T
DCx+ ≡x x  that is length 1dQ + ,

i.e. x  is length dQ  and DCx  is a scalar.

( )( ) ( )( ) ( ) ( )2 2 22 0T T T T
DC DC DC DC DC DCE n x y E n n x y x y+ +

� � � �= + = + + ≥� � � �� � � �
x Rx x y x y x y

Since T
+ +x Rx  cannot be negative, determine if it can equal zero.  Define DC DCx yη ≡  and

find the roots rootη of 0T
+ + =x Rx .

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )
( ) 2

2 4 4

2

T TT T T

root

T TT T

T T

E n E n E n E n n

E n E n E n n E n

E n

η
� � � �− ± −� � � �� � � � � � � �=

� �� �= ± − − −� � � �� � � �� �� �� �

= ± −� �� �

x y x y y x x y y x

x y x y y y y x

x y x σ x

However, 2 0T >x σ x , thus rootη  must be complex, contradicting the definition of DCx .

Therefore, for any real +x , 0T
+ + >x Rx  and R is full rank, completing the proof.

Lemma A.2 A solution of (3.34) is 
( ) ( )0,

0 0 ,

T

i
T i

DC

E y n E u n V d

y

� �− + − −� � � �� � � �
� �= � �
� �� �

�
Q

�

�

�

� .

Proof: Describe

( ) ( )0,

0 ,

T

i
T i

DC

E y n E u n V d

y

� �− + − −� � � �� � � �
� �
� �
� �� �

�
�

�

�

� (A.1)
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as the proposed solution of (3.34). Equation (3.34) defines 1dQ +  linear equations.  The

proposed solution is a solution of the equation defined by the first row of (3.34), as

shown by

( ) ( ) ( )
( ) ( )

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

0,

0,
1

2

0,
1

0,
1

1

1

1 ,

idQ
i

i DC
i DC

dQ

i
i
dQ

i
i

E y n E u n V d
E y n y n i y E y n

y

E y n y n i E y n E y n E u n V d

E y n y n i E y n E u n V d

=

=

=

− + − −� � � �� � � �
− − +� � � �� � � �

� �= − − − + − −� � � � � �� � � � � �� �� �
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�
�

�

�

�

�

�

�

� �

�

�

�
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(A.2)

where the last line uses the fact that

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )

2

.

E y n y n i E y n E y n E y n y n i E y n i

E y n y n i

� �− − = − − − −� � � � � � � �� � � � � � � �� �

= −� �� �
� �

From the equation defined by the first row of (3.35)

( ) ( ) ( ) ( )0,
1

1
dQ

i
i

E y n y n i E y n u n V d
=

− − = − −� � � �� � � ��
�

� � � �

� . (A.3)

Substituting (A.3) into the last line of (A.2) gives

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

0,

0,
1

1

,

idQ
i

i DC
i DC

E y n E u n V d
E y n y n i y E y n

y

E y n u n V d E y n E u n V d

E y n u n V d E y n E u n V d E y n E u n V d

E y n u n V d

=

− + − −� � � �� � � �
− − +� � � �� � � �

= − − + − −� � � � � �� � � � � �

= − − − − − + − −� � � � � � � � � �� � � � � � � � � �

= − −� �� �

�
�

�

�

� �

�

�

(A.4)

since ( )y n�  and ( )u n V d− −�  are both zero mean.  Thus from (A.4), the proposed

solution does in fact solve the first row of (3.34).  In a similar manner, the proposed

solution can be shown to solve rows 2 through dQ  of (3.34).

It is trivial to show that the proposed solution solves the last row of (3.34):
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( ) ( )
( ) ( )

( )

0,
2

0,
1

idQ
i

DC i DC
i DC

DC

E y n E u n V d
E y n y y

y

y E u n V d
=

− + − −� � � �� � � �
+� �� �

= − −� �� �

�
�

�

�

�

� (A.5)

Thus the proposed solution is indeed a solution to (3.34), concluding the proof.

Lemma A.3 ( )* 0E e n =� �� �

Proof:

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

0

0,

0,

*

0

T

i
i

i DC
i DC

E e n E u n V d E n n

E y n E u n V d
E u n V d E y n y

y

� �= − − −� � � �� � � � � �

� �− + − −� � � �� � � �
� �= − − − +� � � �� � � � � �
� �� �

=

�
�

Q y
�

�

�

�

completing the proof.

Lemma A.4 Since the elements of ( )nψ  are Gaussian and independent, given (3.45),

the expectation of an Odd Function of ( )nψ  around ( )i nψ  for i ζ≠  is zero.

Proof: A function of � �nψ , � �� �i nψ� , is defined as an Odd Function around ( )i nψ if

� � � � � � � �� �

� � � � � � � �� �

1 2 1

1 2 1

, , , , ,

, , , , , .

i i dQ

i i dQ

n n n n

n n n n

� �

� �

� � � �

� � � �

�

�

�

� �� �

(A.6)

Also define ( )nψ�  as ( )nψ  without the ith element, i.e.

( ) ( ) ( ) ( ) ( ) ( )1 2 1 1 1, , , , , ,i i dQn n n n n nψ ψ ψ ψ ψ− + +� �≡ � �ψ� � � . (A.7)

Because the elements of ( )nψ  are independent

( ) ( ) ( ) ( ) ( ) ( )
i in n nf f fψ ψ=ψ ψψ ψ�

� , (A.8)

and since ( ) 0iE nψ =� �� �  and ( )i nψ  is Gaussian,
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( ) ( ) ( ) ( )
i ii in nf fψ ψψ ψ= − . (A.9)

Then,

( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

0

.

i

i

i

i

i i

i i

i i i in n

i i in n
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f d f d

f d f d f d

ψ
ψ

ψ
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ψ ψ
ψ ψ

ψ ψ
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∞ ∞

=−∞ =−∞

∞ ∞

=−∞ =−∞ =
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ψ

ψ
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ψ
ψ

ψ ψ ψ ψ

ψ ψ ψ
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�

�

�

� �

� �

� �

Performing a change a variable on the first integral inside the brackets,

( )( ) ( ) ( ) ( ) ( ) ( ) ( )
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( ) ( ) ( ) ( ) ( )
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1 2 1

1 2 1
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1 2 1
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1 2

, , , , , 1
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i i dQ i in n
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t

i i d

E n t f t dt f d

f d f d
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ψ
ψ
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ψ ψ ψ

ψ ψ ψ ψ ψ ψ

ψ ψ ψ
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� �
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∞ ∞
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� �
� �
� �� �

=

� � ψ
ψ

ψ ψ�

�

� �

(A.10)

where the third line of (A.10) uses (A.6) and (A.9), thus completing the proof.  This

lemma was mentioned without proof in [62].

Lemma A.5 1ij� �

Proof:   Since � � � �� �
2

0i jn n� �� �

� �� � � �� � � �� � � �� �
22

2i j i jn n n n� � � �� � . (A.11)

 With 0 2�� � , (3.54) becomes
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� �

� �� � � �� �
� � � �

� �� � � �� �

� � � �� �

2 22 2

2

1 2

2
.

ij ii jj ij

i j i j
T T

n n n n
E

n n n n

A A G

ψ ψ ψ ψ

� � �

� � � � �
�

� �� � � �� �

� �
�� 	

� �� 	
� 	� �

Squaring both sides of (A.11) produces

� �� � � �� �
� � � �

� �� � � �� �
� � � �

2 22 2

1 1
2

0

i j i j
ij T T

n n n n
E

n n n nψ ψ ψ ψ

� � � ��
� �

� �� �� �� �� �	 
 	 �� � �� �� �� �� �

�

(A.12)

where the strict inequality is due to Lemma 3.3.  Conversely

� �
� �� � � �� �
� � � �

22

1 2i j
ij ii jj T

n n
E

n n
A A

ψ ψ

� �
� � � �

� ��
� �� � � � 	 �
� �

 �

(A.13)

Taking (A.12) and (A.13) together, 0 1 2ij�� � � , or, 1ij� � , completing the proof. This

was originally proven in [62].

Lemma A.6 � � min1 2iiH dQ �� �

Proof: � �
� � � � � � � �

1 1
2 21

1 1
ii T Ttr E E

n n n n
H H

ψ ψ ψ Λ Λ Λ ψ�

� � � �
� � �� � � �

� � � �� � � �

� � � �1/ 2 1/ 2
min

1 1
ii TE

n n
H

ψ Λ Λ ψ� � �

� �
� � �

� �� �

� � � �1/ 2n nυ Λ ψ�

�  is a vector of independent Gaussian random variables with and unit

variance with the further property that all but the ζ th term is zero mean, i.e.

( ) 0, 1, , 1,iE n i dQ iυ ζ= = + ≠� �� � �  (see (3.45)). [62] shows that

� �

1
1

2

1,

1
2

dQ

i
i
i

E n
dQ

�

�

�

�

�

�

� �� �
� �� � 	� �� � 
� �� � �

� , (A.14)
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and since

� � � �

1
11 1

2 2

1 1,

dQ dQ

i i
i i

i

E n E n
�

� �

�

�
� �

� �

�

� �� �� �� � � �� �� � 	 � �� � � �
 �� � � ��  
 �� 

� �

then � � min1 2iiH dQ �� � , thus completing the proof.

Lemma A.7  All entries of F  are non-negative.

Proof:   Consider off-diagonal and diagonal entries separately.  For i j�

� �� � � �� �

� � � �� �

22

2 2
2 0i j

ij ij T

n n
E

n n
F G

ψ ψ

� �
� �

� �
� �

� � �� �
� �� �

. (A.15)

For diagonal entries, consider the fact that

� �� �
� � � �

22

1 0i
T

n
E

n nψ ψ

� �
� �� �
� �� �	 
� �	 
� �� � �

. (A.16)

Expanding (A.16)

� �� �
� � � �

� �� �

� � � �� �

2 42

2

2

2
0 1

1 2

i i
T T

ii ii

ii

n n
E

n n n nψ ψ ψ ψ

A G
F

� � � �

� �

� �
� �

� � �� �
� �� 	

� � �

�

(A.17)

completes the proof. This lemma was mentioned in [62] with a different, longer proof.

Lemma A.8  For 0 2�� � , � �
0

lim 0
n

v n
�

�  where � �v n  is defined by (A.21).

Proof: Consider the autonomous part of (3.55)

� � � �1n nΩ F Ω� �
� � (A.18)
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where � � � �0 0Ω Ω�
� , noting that for 1, , 1i dQ� �� ,

� � � � � � � �� �0 0 0 0 0T
i ii

ii
EΩ C L L� � �� � �
� �

. (A.19)

From (A.18) and Lemma A.7, clearly

� � 0, 1, , 1, 0i n i dQ nΩ� �� � � � . (A.20)

Now define

� � � �
1

1

dQ

i
i

v n nΩ�
�

�

� � . (A.21)

Substituting (3.56) into (A.18), pre-multiplying the result by a row vector of ones,

� � � � � � � � � � � � � �

� � � �2

1,1,1, ,1 1 1,1,1, ,1 2 1,1,1, ,1 diag
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� � �

�

(A.22)

Using the fact that 
1

1

dQ

ij ii
j

�

�

�� G A ,
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� �� � � �
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11 22 1 1

2
11 22 1 1

1
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1 2 , , ,

, , ,

2 .

dQ dQ

dQ dQ
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jj j
j

v n v n A A A n

A A A n

v n n

Ω

Ω

A Ω

��

��

�

�

�

� �

� �

� �

�

�

� �� � � � �

� �� � �

� � � �

(A.23)

From (A.21) and Lemma 3.3

� � � �� � � �11 1 2v n v n� � �� � � � .

By constraining µ such that 0 2�� � , the lemma is proven. This lemma was

mentioned without complete proof in [62].
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