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Abstract — One of the more challenging and yet unresolved
issues which is paramount to the success of ATM networks is
that of congestion control for Available Bit Rate (ABR) traffic.
Unlike other ATM service categories, ABR provides a feedback
mechanism, allowing interior nodes to dictate source rates.
Previous work has demonstrated how linear adaptive control
theory can be utilized to create a stable and efficient control
system for the purposes of ATM ABR congestion control. This
paper investigates our recently proposed adaptive controller
that uses a finite impulse response (FIR) filter to approximately
invert the FIR plant. Specifically, convergence issues are
addressed in depth. In doing so, a proof is provided for the
convergence of the Normalized Least Mean Square (NLMS)
adaptive algorithm employing a DC tap (drift tap), allowing the
proof to extend beyond the (often-assumed) zero-mean case.
Using a set of reasonable assumptions, parameter convergence
in the mean and mean square is proven. Other issues pertaining
to the stability of this controller are presented.

. INTRODUCTION

In 1984, the Consultative Committee on International
Telecommunications and Telegraph (CCITT), a United
Nations organization responsible for telecommunications
standards, selected Asynchronous Transfer Mode (ATM) as
the paradigm for broadband integrated service digital
networks (B-ISDN) [3]. ATM networks provide 6 service
categories. Each category of service is customized for a
particular type of traffic. Of these 5 categories, only one,
Available Bit Rate (ABR), uses a feedback mechanism to
create a closed-loop congestion control. The creation of a
control mechanism for a switch that can work with the
closed-loop congestion control mechanism specified by the
ATM Forum [2] isthe focus of the present study.

The complete ABR congestion control mechanism is
described in[1] and [3]. This paper limitsits consideration to
explicit rate congestion control. The plant description of
Section Il is an approximation to the mechanisms specified in
[1].

The present challenge is to devise a controller that resides
at the output queue of an ATM switch and produces a single
Explicit Rate u(n) to be sent to al ABR sources passing
through the queue. The Explicit Rate u(n) must be chosen
such that the incoming ABR bandwidth y matches the
available ABR bandwidth y* in some appropriate sense.
Specifying a single Explicit Rate at time n for all sources
ensures fairness. Matching y to y* attains efficiency.

Previous contributions to the problem of ATM ABR
congestion control include [3]-[6]. In addition, there has been

significant contributions made in the ATM Forum [2].
Recently, we proposed a new multi-parameter controller [6].
Specifically, this controller employs an adaptive Finite
Impulse Response (FIR) filter to approximately invert the
FIR plant model. In this paper, we analyze the convergence
and stability of the controller proposed in [6]. It will be
shown that the controller parameters converge to their
optimal values in both the mean and the mean sgquare sense.
Further, the form of the controller ensures stability.

The convergence analysis in this paper is based on a proof
of convergence for the NLMS algorithm by Tarrab and Feuer
[8]. However we make different assumptions (Section 11.B);
most notably, we do not require zero-mean signals, which
were assumed in [8]. Further, our filter includes a DC tap
(drift tap) that ensures the mean of the estimated signal equals
the mean of the signal being estimated.

Due to the page limitations, many technical details have
been omitted here. A full presentation can be found in [7].

The remainder of this paper is organized as follows:
Section |l defines the plant and the controller under
consideration and derives the optimal parameter values for
the controller. Section 11l consists of a proof that the
controller parameters converge to their optimal value in the
mean. Mean square convergence is shown in Section V.
Section V discusses the global stability of the system.
Conclusions are made in Section V1.

II. PROBLEM STATEMENT
In this section, the plant and controller are defined.

A. Plant and Controller

The plant and controller under consideration were
presented in [6] and are briefly summarized here. Since each
switch implements its own, independent controller, one may
consider the plant from the perspective of a single switch SW.
Port j of switch SW carries N simultaneous Available Bit Rate
(ABR) sessions. To befair to all connections, port j generates
asingle desired rate u(n) for all connections. Rates u(n), y(n),
and y* (n) are in units of cells/second.

Output port j will observe changes to its input rate y(n) as
various sources (S) react to previously specified Explicit
Rates u(n-m). These reaction delays will vary for different
sources. In addition, one or more of the N flows may be
unresponsive to u(n). The part of y(n) comprised of non-
responsive flowsis C cellg/second. Itisassumedthat C, by,

b,..., be remain constant for periods of time long enough



for adaptive identification to occur. Faster convergence
speed of the adaptive algorithm results in better tracking of
these time-varying parameters. More detailsarein [6].

Figure 1 — Plant from perspective of Switch

The plant is therefore given by
y(n)=hu(n-d) +--- +bgu(n -d -dB) +C (D
y(m) =B(zHu(n-d) +C 2
Note that for convenience, filtersin z* and time sequences in
n will be mixed in expressions such as (2); (2) is equivalent to
D).

The controller Q(n) is comprised of an adaptive FIR

filter with a DC tap, with the desired future input rate
y*(n+d+V|n) (see [6]) asits input and the Explicit Rate u(n)
asits output.

um =Q(m y*(n+d +V) ©)
QM) =16 (), (N, ..., 0o (N, Goc (M
y*(n+d+V|m s[y*(n+d +vV|m,..,

y*(n+d+V —-dQ|n -dQ),yoc1'

Identification of the controller employs Normalized Least
Mean Square (NLMS) [9]:

an-d-V)=Qum ym 4

y(m =[ym),y(n-21,..,y(n-dQ), yoc1 (5)

et =eg((n-V-d)=un-d-V)-0(n-d V) (6)

A A n

Q(n+1)=Q(n)+#yT—()e(n) (7
y(n) y(n)

d is the minimum plant delay, V is an operator chosen (non-
negative) inversion polynomia delay (discussed at length in
[6]), and u is the adaptive gain chosen such that 0 < u< 2.
The constant y,c is operator-chosen, appended to the delay-
chain values of {y} in (5) so that the fina tap of Qn)
becomes a DC tap @oc (n) (discussed further in Section
11.C),

Q) =[Qi (M, G (M] . (8)
For notational convenience, define another vector, identical

to (5) except for the DC term:

Y(m =ry(n),y(n-1,..,y(n-dQ1’ (9)

The complete system under consideration, as presented in
[6], is shown in Figure 2. Plant (2) is controlled by
Controller (3). The Controller isidentified with (4)-(7).

Controller }

(copy)

Qn(n)

y' (n+V +d|n)

Figure 2 — Complete System ( yoc =1)

The system will operate optimally if Q(n) produces u(n)
that minimizes E[(y(n+d+V)-y*(n+d +V |n)’],

which occurs if Q(n) converges to its stationary, minimum
mean square error optimal value, Q, (see (10) and Lemma
1). Inthis paper, we provethat Q(n) convergesto Q,. To
quantify the amount of convergence at time n, define the
parameter error vector Q(n)=Q(n)-Q,. Given certain
assumptions (Section 11.B, plus O<p<2), it is shown that
limE[Q(n)] =0 and |nimdozlE[(Q m)’]<a,a<w.
i=1

B. Assumptions

Here are the assumptions made:
Assumption 1: u(n) is gaussian.
Assumption 2: y(n)andQ(n) areindependent. Also
u(n-V —d) and Q(n)areindependent.
Assumption 3: The auto-covariance matrix,
62 =E[(Y(m) -ELY(mD (Y —E[Y(m1)'],isfull
rank.
Assumption 4: a, <lly(n)I° <@, o >0, a, <o

Assumption 4 ensures that finite adaptation adjustments in
(7) will occur. In implementation, it is common to impose
Assumption 4 by simply skipping the adaptation of (7) unless
Assumption 4 is satisfied.

Assumption 3 is a sufficient excitation condition. From
Assumption 3, it follows that E[y(n)y(m'] is full rank
[7], which ensures that the plant will be fully identified,
allowing the discovery of aunique Q,; see (10).

Assumption 2 is an often-made assumption in convergence
proofs. If {y} were white (an assumption we generally do not
make, but do here only for illustration), both u(n-V -d)

and y(n) would be independent of Q(n-dQ), and if p<<1,
then Q(n)=Q(n-dQ). Signals u(n-V -d) and y(n)
make their most significant contribution to Q(n+1). For

ease of computations, the much smaller impact on Q(n) is
ignored.

Assumption 2 replaces an assumption made in [8]. The
proof of [8] assumes that the excitation signal is Gaussian and



further, if y(n) is a vector of the excitation signal at time n,
E[y(nNy(m'=0 for nzm, even if m=n+1.
This assumption tends not to be even approximately true if
y(n) is the input of an FIR filter, thus it is replaced with
Assumption 2.

Assumption 1 assures that u(n-d) and y(n) are jointly
Gaussian. It is significant to note that [8] further requires
y(n) to be zero-mean. No such assumption is made here.
Broadening [8] beyond the zero-mean case is the primary
contribution of this paper.

C. DC ldentification

Consider the Identification section of Figure 2 ((4) — (7)),
redrawn as Figure 3.

7
y(n) —> Qlin(n) ]

G(n-V -d)

u(n-V -d)

Yoc—=>| Qoc (M qJ(n_v —d)

Figure 3— Adaptive System for Calculating Q(n)

Recalling (8), from Figure 3, the optimal solution Q, for the
Q(ny is  defined as
Defining R=E[y(myn)'],

adaptive coefficients
Qo =arg min{e(m?} .

Q
p=Ely(mun-V -d)1, Q, isknown to be[9]
Q. =R7p.

This solution exists and is unique since R is full rank [7].

Now consider a different yet similar scheme where the DC
tap is not employed but the means of y and u are removed, as
in Figure 4.

(10)

E[Y(“)] E[u(n)]
R y-
y(n) O, Q(n)

?&@% u(n-v -d)

&(n-v-d)

Figure 4 — Adaptive System with Means Explicitly Removed
Define Y=Y -ELY(m] and
u(n)=u(n)—E[fu(n)]. The optimal solution for the
adaptive coefficients Q(n) is Q,, which solves
E[Y(mYm']Q, = E[Y(nu(n-V -d)].
The solutions Q, and Q, are closely related, as shown by
Lemma 1.

Lemma 1 — The unique solution of (10) is
~ELYy(m1Y Qo +E[u(n -V -d)1 7

Yoc

Qo = QOT;

Proof: As noted before, Q, isunique dueto R being full-rank
[7]. Describe

—E[y(n)]Z@o,‘ +Efun-VvV -d)yn 7t
Yoc

Q' (11)
as the proposed solution to (10). Directly substituting the
proposed solution into (10) verifies (after some algebraic
manipulation) that it isindeed a solution, and thus the unique
solution, compl eting the proof.

Lemma 1 demonstrates that by using a DC tap in the
adaptive estimator as in Figure 3, the optimal solution for
Qino isequivalentto Q,. To gain intuition, consider that for
agenera linear estimator, i.e. not using a DC tap, the optimal
solution would create the best possible match between the
frequency spectrum of the desired signal (u) and the spectrum
of the estimated signal (G), given the regressor (y), across all
frequencies, including DC. A DC tap, if included, can only
affect the spectrum of the estimated signal at DC, but by
doing so, alows the linear taps to ignore DC in their
spectrum matching, as if there was no DC content in either
regressor signal (y) or the desired signal (u).

The DC tap creates an additional similarity between Figure
3 and Figure 4 — a zero-mean optimal error. By defining the

optimal error e*(n)=u(n-d -V) -Q,(m" y(n), then
with (11), it is easy to show that

Ele* (n)] =0. (12

D. Other Notation

Now that the control and estimation methods have been
described, what remains is to show convergence. Before
proceeding with the proofs, some notation needs to be
introduced. Let the matrices of orthonormalized eigenvectors
and eigenvalues of R be W™ and A respectively, where
A =diag(A),i =1 .-, (dQ +1),

W'W=I, WRWT™ =A (13)

Because R is full-rank, W is full-rank. Now define a linear
transformation of the random vector y (n) asfollows.

y(m=Wyn), Wiy (n) =WTWy(n) =y(n) (14)
LM =WQ(n), WL(n)=Q(n) (15)
Elwmwym'[=A (16)

Substituting (4) and (6) into (7), pre-multiplying by W and
adding and subtracting a term, then subtracting WQ, from
both sides produces

Leny + £ ¥ (e

L(n+1) =11 -
wn) yn)

(Mg’
_y‘l’ v

17
ym yon )

and



y(nwymn)'

L(n+DLn+D" =L(mLm) -y - L(mL(n)'
wm y(m
T T T
—pLcmLny YWD o WY )y y gy VD WD)
y(n) y(n) y(n) y(n) y(n) y(n)
e*(n
u—" [y iy +y L]
wm yn)
* T T
erm ["’(n)T‘"(n) L(mw(n' +y(mL(ny’ YWY }
ym ymLym ym wm
+;12\|1(n)\|1(n)T(e*(n))2
(y(m ym)’
(18)

The following notations will be used extensively:

)
A= E[w} ,C(n)= E[L(ML()']

ym yn)
D(n)sE{"’(m"’(mT Cn) \u(n)\y(n)T]
ym yn) ym yn)
HEE{ ymy ' }
(ym y(m)’

I11. PARAMETER CONVERGENCE IN THE MEAN

In this section it will be shown that limE[L(n)1 =0, that
inturn, by (15), shows limE[Q(m)] =0.

We begin by noting a few key independencies. From
Assumption 2, and the fact that W provides a one-to-one
mapping, Section 5.4 of [10] shows that Y (n) and L(n) are
independent. Similarly u(n-V-d) and L(n) are independent.

Note that e*(n) and y(n) are jointly Gaussian, and
uncorrelated (E[y(n)e* ()] =p- R R* p =0). The auto-
covariance matrix of two jointly-Gaussian, uncorrelated
random variables where at least one is zero-mean (e*(n)) is
diagonal. Therefore, y(n) and e*(n) are independent. By a
similar argument, Y (n) and e*(n) are also independent.

The auto-covariance U (n) is diagonad ((13) gives
W'W, =0 where W; isthej’th row of W), thus the elements

of Y (n) are independent.
Lemma2— A and H are diagonal matrices.

Proof: The proofs for A and H are nearly identical; only
the former will be shown. Let A; indicate the element of A

inthei’th row, j’th column. Then

A l_‘E{\u(n)w(n)T] ‘_
ijl= T -
vy

j% f, (X)dX
X

From Assumption 4,

|IA|J|Si
Qy

1
[ xx fW(X)dX‘ = = ELg (M, (]|
X Qo

From (16),

Oifizj
|A,-|s{/\i_ o (19)

—if i=]

2(}

Thus all non-diagonal elements of A equal zero, completing
the proof (note that A is positive definite and thus al of its
eigenvalues A are positive).

Lemma3—- 0<A/a, <A <1.

dQ+1 -1
Proof: Ai=E[w‘(n)z(zlﬂj(n)2) } Since i (ny?,
7=1
i=1..dQ+1, are red and non-negative, 0< A <1.
However, from Assumption 4
1 1 2 A\
> 2 = . =
A>o ij fLO0OdX =~ E[gi )] =

1

Also, since R is full-rank, the eigenvalues A of R are non-
zero. Thus 0< A /o, < A <1, completing the proof.
Now we reach the main result of this Section.

Theorem 1 - Given Assumption 1— Assumption 4 and
O<pu<2,lim E[Q(m] =0.
Proof: Consider (17). From (12),

*
E{,uw(nT)e (n)}:# E[
v yn)

v }E[e*(n)] =0
y(n) y(n)

Since Y (n) and L(n) are independent:

EIL(n+DI = - A) EIL(M]

From Lemma 2, the linear system completely decouples:
EIL(n+DI=1-pgAYEIL(MI,i =1 ...,dQ +1

From Lemma 3 and if O<pu <2, then |[(1-uA)I<1,
i=1..,dQ+1. Thus, InimE[L(n)] =0. Eq. (15) gives

Inim E[Q(n)] =0, thus completing the proof.

Theorem 1 states that given Assumption 1-Assumption 4,
if wisboundedasO< <2, then our NLMS adaptive

system of estimating Q , given by (4) — (7), converges in the
mean to the idea Q,, given by Lemma 1. It is distinctive
from the proof of [8] in that it uses (12) — instead of a zero-
mean assumption for y(n) — to eliminate the expectation of
the second term of (17).

V. PARAMETER CONVERGENCE IN THE MEAN SQUARE
Now that Theorem 1 has been presented, a statement
bounding the variance of Q(n) would give much more

credibility to the proposed controller, and is the goa of this
section.

The proof in [8] relies heavily on a zero-mean assumption
on y(n), an assumption not made here. However, Lemma 4



shows that almost al of the terms of Y (n) are zero-mean.
Because of this, we can adopt a strategy similar to that of [8].

Lemma 4 — Given the independence of the terms of g (n), (16)
is the necessary and sufficient condition that no less than dQ

of the dQ+ 1 elements of Y (n) are zero mean.

Proof: Sufficiency: By contradiction. For i#j,
Elg(my;(m] =El[¢ (MIELY, (M1 . If less than dQ
elements of Y (n) are zero mean, E[y(n)y(n)'] cannot be
diagonal, contradicting (16). Necessity: If no less than dQ
of the dQ+1 elements of Y (n) are zero mean, then the

independence of the terms of  (n) gives (16), concluding the
proof.

For convenience, we shall name the element of  (n) that
generally has non-zero mean ¢/, (n) , i.e.
Elgi(m1=0,i=1...,dQ+1,i#,

noting that if ELy(n)1 =0, El[¢, (m1=0.
Now we begin the mean-square convergence proof.

(20)

Lemma 5 — The expectation of the fifth through eighth term of
(18) is zero.

Proof: Examine the expectation of the seventh term on the
right side of (18), specifically the term of row i, column j:

dQ+1

D Le(ne* cngs (g (N g (n)
/JE k=1

- - (21)
(w(n y(n)

For the K'th term of the summation, since L.(n) is
independent from  (n), and e*(n) is independent from
Y (n), E[e* (n) L« (n)] can be separated from the remaining
terms inside the expectation of (21). Now, from (15),
Assumption 2, and (12):

Ele* (ML (M1 =WE[e* (MIE[Q(m] =0, foral k,

which shows that the expectation of row i, column j of the
seventh term equals zero. Since thisis true for every (i, j),
the expectation of the seventh term results in a matrix of
zeros. By asimilar argument, one can show the expectations
of the fifth, sixth, and eighth terms of (18) produce matrices
of zeros, thus completing the proof.

With Lemma5, (18) is equivalent to
C(n+1) =C(n) —u(AC(N) +C(MA) 22)

+u?D(n) + p2e* H

where £ is the minimal
errore* = E[(e* (n)’].

Since (22) is a discrete, linear, time invariant difference
equation, its convergence is guaranteed if its homogeneous
part is asymptotically stable, as this implies BIBO stability,

mean-square

and if its forcing term w2e* H is bounded. We now show
thesein turn.

Lemma 6 — Since the elements of y (n) are Gaussian and

independent, and given (20), the expectation of an Odd
Function of y(n) around ¢, (n)*for i ¢ iszero.

Proof: Mentioned in[8] (using (20)). Shownin[7].

We now show that D; (n), the row i, column j element of
D(n), can be computed as

D;(M=2GC;,i#j (23)
dQ+1
Di (M =) G,Cy (24)
where G is defined as
2 2
G = E[(w(n))T(wJ(n)z) } 25
(w(n) yn)y)
By direct substitution, we have
dQ+1dQ+1
Dj<n>=ZZEV’(”)””J(niwj(n)‘f’“n)}ck (26)
[ENE (\V(n) w(n))

Since the elements of y(n) are independent and al but one

are zero-mean, the numerator of the expectation in (26) will
equal zero in many cases. To show which terms of the
double summation of (26) equa zero, note that for any
(i, j,J,K) the numerator can always be expressed as

ELg (MY, (MY (N ()] = @27)
E[(Wa (MO TE[ (W ()P TE[(W- ()T ]E[ (@ (n)™]
such that o, 0., 05, 2 0{0,1,2,34 , pp+ o, + s+ p, =4,
P02 0, 7,78, 7, HO{L...,dOF T, and
m; 2 15 for B#5. Then each (i, j,J,K) maps to exactly
one of the following five cases:

Cael p=1p=1Lp=1p =1

Cae2: p.=2,0,=1Lp0: =10 =0

Case3: .=2,0.=2,0=0,0, =0

Cased: =30, =1L =0,0 =0

Caseb5: po=4,0.=0,0,=0,0, =0

Remembering that the element not assured to be zero-mean
isdenoted as ¢, (n), (see (20)), then for Case 1, at most one
member of the set { 7z, 72, 7, & equas { , thus (27) would

equal zero. Similarly for Case 2, at most one member of the
set {75, 75, I equas ¢, thus (27) would equal zero.

For Case 4, if . =, then from (20), (27) would equal
zero. If i, =¢ , then by Lemma 6, (27) would equal zero. If

1 A function [ Cy(n)) , isdefined asan Odd Function around ¢ (n) if
Fi (@), G (0D Paga (N = =T (AN =g (D hga (D)



76, 78 # { , then by either (20) or Lemma 6, (27) would equal
zero, thus (27) would equal zero for the entirety of Case 4.

For Cases 3 and 5, (27) could be non-zero.

Using an argument similar to that found in the proof of
Lemma 2, the instances of (i, j,J,K) that fall into Cases 1,
2, and 4 can be shown to have a zero contribution to the
double summation of (26). For the remaining cases, consider
first the instances where i # j, which eliminates Case 5 in
addition to Cases 1, 2, and 4, thus (26) equals (23). For
i = j,after eliminating Cases 1, 2 and 4, Cases 3 and 5 make
(26) equal to (24).

Having shown (22), (23), and (24), the techniques used for
remainder of the mean-square proof are nearly identical to
those presented in [8], and thus will only be outlined here
(see [7] for details). Off-diagona elements of C(n) are
treated separately from the diagonal elements. The off-
diagonal term of (22) is

Ci(n+D) =y,Ci(n),i # ] (28)

Vi =1- pCA + A +202G i1 £, with 1y;1<1 ([8],[7]),
and thus (28) goes to zero as n approaches infinity.

Focussing now on the diagonal entries of C(n), define a
vector of the diagona entries  of C(ny,

Q) =[Ciu(N),Cp (N, ..., Csguragen (M1 . From (22),

Q(n+1D =FQ(n) +u2c*h, (29)

F= dia\]{ A-2uA:» +12G, h E[Hn,sz,---,H(de]T .
It can be shown ([8],[7]) that (29) is BIBO stable. Assuming
O<u<2, the forcing term of (29) is bounded,

iele*Hil<a,,q, <o, |ue*H;|=0,i#z]j, dnce
IH; 1<1/¢dQ = 2) Awn ([8],[7]). Thus we can state the main
result of this section:

Theorem 2: Given Assumption 1— Assumption 4 and
dQ+1
O<u<2, InimZE[(Q(n))z] <a,a <.
-® =
Proof: Linear time-invariant system (29) is BIBO stable
(8].,[7D). Its input signa is bounded, thus

limQ(n) <as[11..., 1" ,a; <. Then with (28) and

il <1, limCn) <asl, limtr C(n)<a, a <. Since
tr Ccm) =tr E[Q(mQ(n)"], the proof is completed.

The key contribution of Section IV comes from our
showing (22)-(24) without requiring E[y(n)]=0. Expressions
(22)-(24) exist in [8], but required E[y(n)]=0. By
demonstrating (22)-(24) without requiring E[y(n)]=0, the
results of [8] are significantly extended.

Equations (28) and (29) actually show more than stated in
Theorem 2. They show that each element of C(n) is bounded
at each n, that the off-diagonal elements of C(n) converge to

zero, and that the diagonal elements aso converge,
limQn) = (I -F)" p2e*h.

V. GLOBAL STABILITY

Global Stability has been built into the control structure.
Both plant (1) and controller (3) are FIR filters. The
controller simply conditions the set point {y'} ; al other

control is open loop. The parameters of the plant are
obviously bounded. The parameters of the controller are
random variables that have been shown to have mean square
values that are finite for all n and converge, implying a
bounded mean-square gain for the controller. From an
implementation view, the controller parameters can be kept
bounded at each time n by a simple limiter after the
adaptation of (7). The FIR structure of the controller then
guarantees BIBO stability for the modified system.

V1. CONCLUSIONS

After the congestion control problem was presented, a
controller was examined for its convergence and stability
properties. Theorem 1 and Theorem 2 proved that the
controller parameters converge to their optimal values in the
mean and mean sgquare sense, respectively. It was observed
that the controller runs essentialy open loop, only
conditioning the set point, thus global convergence is assured.
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