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Abstract - One of the more challenging and yet
unresolved issues which is paramount to the success of
ATM networks is that of congestion control for Available
Bit Rate (ABR) traffic. Presented here is a new
congestion control algorithm based on a well-
understood Adaptive Controller, namely the Minimum
Prediction Error Adaptive Controller. As such, stability
and convergence characteristics can be rigorously
proved. In addition, the work presented here
distinguishes itself from others in its direct estimation of
key parameters and removal of constrained and thus
unresponsive sources.

Topic: Congestion control in ATM networks, feedback
control, traffic management.

Section 1 - Introduction
Critical to the success of ATM networks is the
development of effective and fair methods for traffic
management. One of the most challenging aspects of
ATM traffic management is determining resource
allocation for unpredictable and highly varying traffic.
Generally, such traffic is carried with the Quality of
Service (QoS) designation ofAvailable Bit Rate(ABR).
The standard for ABR traffic does not impose
requirements for cell transfer delay or cell loss ratio, but
both should be minimized. Key to this goal is avoiding
congestion at any switching node in the ATM network;
cells which arrive to a nearly full switch input buffer will
experience excessive delay, while cells arriving to a
completely full buffer are lost entirely.

Several schemes for congestion control of ABR
traffic have been proposed [Jain96], the most promising
algorithms are those designated asClosed-Loop Rate-
Based Traffic Management, as proposed by Hluchyj
[Hluchyj94]. Closed-looprefers to the fact that switches,
which are receiving cells from a variety of ABR sources,
send back to the sources instructions which will alter the
rate at which each source sends cells into the network.
The mechanism used for this switch-to-source
communication consists of Resource Management (RM)
cells, which are inserted with regularity by the source,
returned by the destination back to the source, and then
modified by the switches as needed to effect the
congestion control algorithm. The termExplicit-rate
indicates the fact that switches use the RM cells to
request a specific desired rate as opposed to simply
requesting an increase or decrease in rate. Each source is

expected to adjust its cell rate to the new explicit rate as
soon as possible after receiving the RM cell. A source
which routes cells through multiple switches will observe
the minimum explicit rate requested by the switches in its
path.

Many algorithms for determining the explicit rate
a switch should specify have been proposed. Most of
these algorithms assume sources to be greedy but
compliant. The ERICA algorithm and its extensions,
presented by Jain [Jain95], and the Uniform Tracking
(UT) algorithm, presented by Fulton and Li [Fulton97],
have gained widespread attention.

In steady state, both algorithms achieve fairness
and efficiency if they equally divide the bandwidth
available for ABR traffic among thecompetingsources.
Since each source sends cells at the minimum explicit
rate specified by the switches in its path (each switch
calculates its explicit rate independently), it is quite
likely that a switch will carry traffic from a source
constrained in its rate by another switch. Both
algorithms supply the constrained sources their needed
bandwidth, and, at least in steady state, equally divide the
remaining bandwidth among the unconstrained sources.

Each algorithm reaches this goal in a distinct way.
ERICA sends each constrained source a Fair Rate that it
is unable to achieve. The resulting under-utilization of
the available bandwidth pushes each unconstrained
source up towards its equal share of the contested
bandwidth.

The UT approach assumes there is one fair
explicit rate that results from equally dividing the
contested bandwidth by the number of contesting
sources. However the contested bandwidth and number
of contesting sources are not found directly. Instead the
fair rate is found iteratively by comparing past explicit
rates to the current total input rate.

The algorithm for congestion control presented in
this paper is distinct in that it directly approximates the
switch’s total incoming bandwidth due to constrained
sources and removes it before calculating a fair rate. In
addition, this paper continues the effort of applying the
methods of Control Theory to the issue of Closed-Loop
ABR Congestion Control. Previous efforts include those
by Rohrs, Berry, and O’Halek ([Rohrs96], [Rohrs97]), as
well as others. Zhao and Li apply a known control
structure to produce what they call the H2 scheme and
prove its closed-loop stability in [Zhao96]. Fulton and
Li then developed UT which “can be viewed loosely as



an adaptive H2 control” [Fulton97]. Stability of UT was
not demonstrated analytically but instead with an
extensive simulation study. This paper provides
analytical results that confirm and clarify Fulton and Li's
simulation results.

Contributed here is an application of an algorithm
thoroughly understood in the literature of Adaptive
Control, and as such its stability and convergence
characteristics can be rigorously proven, even for
generalized plants where the reaction times of various
sources differ. Under certain conditions and
assumptions, this algorithm bears a strong resemblance
to the UT algorithm. Contributions to the understanding
of the modeling of rate control problems also appear in
this paper.

The remainder of this paper is organized as
follows: Section 2 defines the plant to be controlled and
states required assumptions. Section 3 makes further
assumptions and then presents a one-parameter
controller. This controller is then shown to be similar to
the UT algorithm. Section 4 presents a two-parameter
controller where the additional term directly estimates
the constrained bandwidth present at the switch. Section
5 generalizes the plant from that presented in Section 2.
The controller in Section 4 is then appropriately
generalized. Concluding remarks are made in Section 6.

Section 2 - Preliminaries and Plant Definition
Consider the following plant: At each time index

n, the node of interestS is required to carryN(n)
simultaneous Available Bit Rate (ABR) sessions. All
session sources are greedy, i.e. will send cells
continuously at the maximum rate allowed by the
switches through which they pass. NodeS treats each of
the N(n) sessions fairly. At each timen, node S has
bandwidth y*(n) available for ABR traffic, and thus
generates a single desired rateu(n) that is sent to each of
the N(n) sources. The switch expects each source to
respond as quickly as possible to the new desired rate.
The goal ofS is then to chooseu(n) so as to minimize
y n y n( ) * ( )- , wherey(n) is the aggregate received input

rate from theN(n) sources.
Although N(n) sources share they*(n) of

available bandwidth, we assume that a subsetN nc( ) of
the N(n) sources are constrained to a rate lower than
u(n) by other nodes in each of theN nc( ) respective
paths. Thus only theN n =N n -N nu c( ) ( ) ( ) unconstrained
sources will react tou(n). The aggregate of theN nc( )

constrained sourcesC n y ni
i Nc

a f a f=
Œ
Â is assumed to be

independent ofu n a+a f for any positive or negativea.
The switch is assumed not to know the value ofN nu( ) or
C(n).

The round trip response delay for each of the
N nu( ) unconstrained sources is assumed to be equal and
known by the switch to bed. Thus

y n N n u n d C nua f a f a f= - +( ) (1)

Section 3 - The One Parameter Controller
Fulton and Li propose an equivalent plant for Eq.

(1) [Fulton97] that is slightly simpler than Eq. (1) but
also has somewhat less fidelity to the real situation.
Define the desired fair rate

u n d
y n C n

N nu

*
*

( )
- =

-a f a f a f
(2)

Fulton and Li define a neweffective number of sources
N neff a f where

N n
y n

u n deff a f a f
a f=

-
*

*
(3)

Thus, they define their plant as

y n N n u n deffa f a f a f= - (4)

Assuming for now that the plant in Eq. (4) is a
valid model, we proceed to create a simple Minimum
Prediction Error Adaptive Controller (Direct Approach)
to determine theu(n) which minimizes y n y na f a f- *

[Goodwin84]. As with the design of most adaptive
controllers, for the purposes of analysis, we assume that
the parameterq o effN= is constant within the order of

time needed to generate an estimate$N neff a f with

accuracy. We will make similar assumptions in future
sections.

Since we assume knowledge ofd, we can use the
following:

$ $

$
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u n
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Eq. (5) converges to the desired value if
0 2< <m , which we see by defining

e n y n y na f a f a f= - * (7)

and the parameter estimation error



~ $N n N n Neff eff effa f a f= - (8)

Substituting into (5), we have
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which clearly shows the trend towards a zero parameter
estimation error. In fact, ifm = 1, then from Eq. (5),
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which indicates convergence in one step, as predicted by
Eq. (9). Since Eq. (4) gives that there are no plant poles
or zeros outside the unit disk, then we can directly assert
[Goodwin84] that the adaptive controller of Eq. (5) and
Eq. (6) applied to the plant Eq. (4) yields:

1. y na fl q and u na fl qare bounded sequences

2. lim *
n

y n y n
Æ•

- =a f a f 0

3. lim *
N

n d

N

y n y n
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=

- < •Â a f a f 2

Fulton and Li [Fulton97] propose the following
adaptive controller for Eq. (4):

$N n =
y n

u n-1eff a f a f
a f (11)

u n
y n

N neff

a f a f
a f=

*
$

(12)

where u n( )-1 is the time average of a sequence of
previous values ofu. (We comment on the time
averaging ofy*(n) in the next section). In addition, if
Eq. (11) produces an$N neff a f < 1, then $N neff a f is replaced

by 1 in Eq. (12). This bounding is not pertinent to the
suitability of Eqs. (11) and (12), so is hereafter omitted.

If for a moment we ignore the time averaging of
u(n-1) in Eq. (11) and map Eq. (11) into something
similar to Eq. (5), we have
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which is equivalent to Eq. (5) withm = 1 and d = 1.
Thus the Fulton and Li controller without the averaging
of u n-1a f is equivalent to our one-parameter controller,
Eqs. (5) and (6), whered is assumed to be 1. Without the
averaging ofu n-1a f, if the d = 1 assumption is not
correct, a non-zero steady state parameter estimation
error will occur, which can be seen by
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The averaging ofu n-1a f proposed by Fulton and
Li should bring the parameter error closer to zero. To
see this, substituteu n-1a f for u n-1a f in Eq. (13). The
parameter estimation error then becomes

~ ~ $N n N n
N u n d

u n
N neff eff

eff
effa f a f a f

a f a f= - +
-

-
- -1

1
1 (15)

Fulton and Li suggest that the time average
“should be taken over the maximum expected round trip
delay time of the ABR sources” [Fulton97]. In this case,
u n-1a f should be averaged over at leastd steps. The
purpose of the averaging can now be seen clearly: to
make u n d u n- - ªa f a f1 1. If the averaging ofu n-1a f
achieves this goal, then Eq. (15) goes to zero and
convergence of the UT algorithm is achieved.

Section 4 - The Two-Parameter Controller
Let us reexamine the plant model developed in

Eqs. (2) and (3). Solving fory*(n), we have

y n N n u n d C n N n u n du eff* ( ) * *a f a f a f a f a f= - + = - (16)

If we use the assumption thatN nu( ) and C(n) are
constant in the time-scale needed for parameter
convergence, then Eq. (16) can be understood by
examining Figure 1.
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Figure 1– A Graphical Interpretation ofNeff

u n d* -a f is determined by finding the horizontal
coordinate of line 1 which corresponds with its vertical
componenty*(n). N neff a f can then be determined by

calculating the slope of a line extending through the
origin to the point u n d y n* , *-a f a fb g .

Clearly, if y*(n) varies time, N neff a f is not

constant, making the task of the adaptive controller of
Eqs. (11) and (12) (where the delay is not known and
incorrectly assumed) or even Eqs. (5) and (6) (where the
correct delay is used) very difficult.

Fulton and Li address this issue by performing
time averages ony*(n). Li and Zhao make a good case
for averaging the available bandwidth in [Zhao96].
However persuasive these arguments are, it is clear that
modeling the plant with an effective number of sources
Neff , as in Eq. (4), requires some mechanism to reduce

variability in y*(n) to produce aN neff a f which varies

slow enough to make tracking effective.
However, a two parameter controller may be more

appropriate wherey*(n), and thus N neff a f, is not, or

should not, be constrained in its variance. In such cases,
we fall back on our original plant model given by Eq.
(1). The suggested corresponding controller is as
follows:
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whereK andP are constants such thatKP = C. Then
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The parameter estimate matrix is updated as follows:
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and the control law is given by
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If 0 2< <m , the parameter estimate error
~ $q q qn na f a f= - converges to zero, as shown by
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Since 0 2< <m by assumption, we see that
~
q n -1

2a f is monotonically decreasing.
~
q na f will

converge to zero if the signaly*(n), and thusu(n), is
persistently exciting [Goodwin84], i.e.y*(n) is not
constant.

One more check must be made before declaring
the controller given by Eq. (19) and (20) stable.
Specifically, the inverse function mappingy(n) to
u u d-a f must be stable [Goodwin84] so that the control
law produces well-behavedu(n). From Eq. (1), assuming
constantC(n)

u n d
C

N

y n

Nu u

- = - +a f a f
(23)

and since bothC and Nu are finite by assumption,
stability is clear and thus Eqs. (19) and (20) provide a
stable controller.

As a side-note, the constantP can be optimally
chosen to give the quickest convergence of Eq. (19).
The optimalP is that which minimizes the eigenvalue
spread off fn n Ta f a f .

Section 5 - The Multi-parameter Controller
A more realistic plant than that given by Eq. (1)

would have sources responding to a switch’s explicit rate
{ u} with varying amounts of delay. Consider now the
generalized plant where
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where

q T
LB B B B K= 0 1 2L ,

f n u n d n d u n d L PTa f a fa f a f= - - - - -1 L ,

PK C= .

Thus there areB0 sources that respond with delayd, B1

sources that respond with delayd +1, etc. We can form
a generalized controller very similar to the Two-
Parameter Controller presented in the previous section.

Let $ $ $ $ $q T
Ln B n B n B n K na f a f a f a f a f= 0 1 L and reuse

Eq. (19) to perform updates on the parameter estimates,
copied again here
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The control law is then given by

f qn n y n dTa f a f a f$ *= + (26)

or equivalently
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Clearly Eqs. (19) and (20) are simply Eqs. (25)
and (27) with B Nu0 = and

B B B B n B n B nL L1 2 1 2 0= = = = = = =L $ $ $a f a f a f .

The parameter vector error power
~
q na f 2

will

converge to a constant, as is shown in Eq. (22), and will
further converge to zero if the signalu n d-a f is
persistently exciting.

However, only if the inverse mapping fromy(n) to
u n d-a f is stable can we declare this a suitable
controller. This requires thatPK n C na f a f= is finite
(which it is by assumption) and that roots of the
polynomial B B z B zL

L
0 1

1+ +- -L all lie within the unit
disk z < 1. Clearly there are situations where this is not
so, e.g. B B B B BL0 1 2 31 3 0= = =, ; , ,L has a root at
z = -3. In such a case, theu n d-a f generated fromy*(n)
may not be well behaved. On a related note, the
algorithm requires thatB0 0π , i.e. the minimum delayd
must not be underestimated. Underestimatingd also has
the effect of placing a root ofB(z) outside the unit disk
and thus produces an unstable controller. The practical

consequences of these limitations are a topic of current
study.

Section 6 - Summary
In this paper, Minimum Prediction Error Adaptive

Controllers were adapted for use as congestion control
algorithms for ATM ABR traffic. A one-parameter
controller was developed in Section 3 and shown to
converge when the bandwidth available for ABR traffic
is constant. The Uniform Tracking (UT) algorithm was
shown to be an approximation to our one-parameter
controller. Section 4 introduced a mechanism for
directly estimating and removing constrained source
traffic. This improves convergence when the available
bandwidth for ABR traffic changes in time. Section 5
generalized the controller of Section 4 to the case of
sources with non-identical response delays. This
generalized controller can be proven to be stable only
under certain conditions. An ongoing study is evaluating
the practical consequences of these limitations and the
effects of violating these conditions in realistic
deployments.
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