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Abstract � This paper examines congestion control for
explicit rate data networks.  The Available Bit Rate (ABR)
service category of Asynchronous Transfer Mode (ATM)
networks serves as an example system for this paper, however
the results of this paper are applicable to other explicit rate
systems as well.  After a plant model is established, an adaptive
control strategy is presented and compared to other strategies.
Two algorithm enhancements are then introduced.  These
enhancements reduce convergence time and improve queue
depth management.  This work differentiates itself from the
other contributions in the area of rate-based congestion control
in its balanced approach of retaining enough complexity as to
afford attractive performance properties, but not so much
complexity as to make implementation prohibitively expensive.

I. INTRODUCTION

In 1984, the Consultative Committee on International
Telecommunications and Telegraph (CCITT), a United
Nations organization responsible for telecommunications
standards, selected Asynchronous Transfer Mode (ATM) as
the paradigm for broadband integrated service digital
networks (B-ISDN) [2].  ATM networks provide 6 service
categories.  Each category of service is customized for a
particular type of traffic.  Of these 5 categories, only one,
Available Bit Rate (ABR), uses a feedback mechanism to
create a closed-loop congestion control. 

Congestion control is a process by which networks use
feedback to adjust the influx of data such that the customer�s
Quality of Service (QoS) requirements are met while
simultaneously attempting to maximize the utilization of the
network�s resources.  The complete ABR congestion control
mechanism is described in [1] and [2].  This paper focuses on
explicit rate congestion control.  The plant description of
Section II.A is an approximation to the mechanisms specified
in [1].  The present challenge is to devise a controller that
resides at the output queue of an ATM switch port and
produces a single explicit rate to be sent to all ABR sources
passing through the queue.  The explicit rate must be chosen
such that the incoming ABR bandwidth matches the available
ABR bandwidth in some appropriate sense.  Specifying a
single explicit rate at time n for all sources ensures fairness.
Matching the incoming ABR bandwidth to the available ABR
bandwidth attains efficiency.

Congestion control for ABR traffic utilizes a feedback
mechanism, namely resource management (RM) cells. An
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ABR Source periodically inserts RM cells into the stream of
data cells.  These RM cells pass through each switch along
the path to the destination of the Virtual Connection (VC).
The destination then returns the RM cell to the ABR source
along the same path (but in reverse order) used for the
forward Virtual Connection from source to destination1.  RM
cells moving from source to destination are called forward
RM cells and RM cells returning to the source are called
backward RM cells.

A. Related Work
Significant contributions to the understanding of

congestion control in ATM ABR networks have been made
in the past decade.  Contributions include [2]-[18].
Benmohamed and Meerkov made a significant early
contribution in plant modeling with [4]-[5]. Benmohamed
and Meerkov content themselves to place the closed-loop
poles.  No effort is made to cancel the plant (and thus closed-
loop) zeros. Their calculation is costly, requiring a large
matrix inversion and multiplication.

Altman et al. make several contributions; see [6],[7] and
references within.  Note that in [6],[7] the number of sources
and their action delays are assumed to be known.  Also note
that their models do not include the presence of ABR traffic
which is controlled by other switches.

Raj Jain has made the best know contributions to the field
of ATM ABR congestion control [9]-[11].  His
implementation-friendly Explicit Rate Indication for
Congestion Avoidance (ERICA) algorithm [9] works well in
a large number of situations and appear to be favored by
ATM switch designers.  The approach of [11] is very similar
to that suggested by Fulton and Li in 1997 [13] and marks an
intersection in these two bodies of work.  Section II.D
includes further comments on [13], [8] and [11].

In addition, there has been significant contributions made
in the ATM Forum  [1].

This work differentiates itself from the other contributions
in the area of rate-based congestion control in its balanced
approach of retaining enough complexity as to afford
attractive performance properties, but not so much
complexity as to make implementation prohibitively
expensive.

B. Outline of Paper
The remainder of this paper is as follows: Section II

specifies an appropriate plant and controller for the
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use the same congestion control techniques, but with much longer
action delays, with the expected performance degradation.



congestion control problem and compares this scheme to
other strategies. Section III presents two algorithm
enhancements.  The first, described in Section III.A,
dramatically improves the convergence time of the controller
specified in Section II.B.  The second, described in Section
III.B, extends the purely rate-matching control scheme of
Section II.B to provide queue depth management.
Conclusions are made in Section IV.

II. THE CONGESTION CONTROL SYSTEM

A. Plant Definition
Reference  [1] defines the mechanism used for congestion

control for ATM ABR networks.  In this section, the
important features of [1] are distilled into a plant model.

Since each switch implements its own, independent
controller, one may consider the plant from the perspective of
a single switch SW.  A discrete-time model is used, where
sample intervals correspond to control intervals, i.e. a new
control action ( )u n  is calculated for each n.  Port j of switch
SW carries N simultaneous Available Bit Rate (ABR)
sessions, and serves as an output port for data cells and an
input port for backward resource management (RM) Cells.
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Figure 1  Plant from perspective of Switch Output Port

The present challenge is to devise a controller that resides
at port j of switch SW and produces a single explicit rate

( )u n  to be sent to all ABR sources passing through the port.
The explicit rate ( )u n  must be chosen such that the
incoming ABR bandwidth ( )y n  matches the available ABR
bandwidth ( )*y n  in some appropriate sense.  Specifying a
single explicit rate at time n for all sources ensures fairness
among sources.  Matching ( )y n  to ( )*y n  attains efficiency.
Rates ( )u n , ( )y n , and ( )*y n  are in units of cells/second.

With different sources responding to ( )u n  with different
(but no less than d ) amounts of delay, and with some
unresponsive sources (e.g. they have other bottlenecks), the
input rate ( )y n  can be modeled as

( ) ( )Ty n n d C= − +B u , [ ]0 1, ,..., T
dBb b b≡B , (1)

( ) ( ) ( ) ( ), 1 ,...,
T

n u n u n u n dB≡ − −� �� �u .

It is assumed that C , 0b , 1b ,�, dBb   remain constant2 for
periods of time long enough for adaptive identification to

                                                          
2 The case of non-constant unresponsive sources, where C is
replaced by C(n), is explored in [18].

occur.  Faster convergence speed of the adaptive algorithm
results in better tracking of these time-varying parameters.
Note that (1) models the general application where bandwidth

( )*y n  is to be equally shared among customers with non-
equal delays.  Therefore, the results of this paper could be
instructive in the investigation of future resource allocation
problems (beyond ATM ABR).

Since the minimum delay in the plant is d , adjustments in
( )u n  will not be observed until n d+ .  Therefore to generate
( )u n , it must be decided at time n what the desired value of
( )y n d+  should be. This desired bandwidth, which is

notated as ( )* |y n d n+ , may reflect both bandwidth and
buffer measurements made up to time n (this may be
generated by a prediction filter as in [7]).  By extension, in
many cases, the input of the algorithm will be

( )* |y n d V n+ +  (for some non-negative V), i.e. the desired
value of ( )y n d V+ +  chosen at time n.  The goal of the
congestion control mechanism of SW is to choose the control
signal ( )u n  at time n  so as to minimize

( ) ( )( )2
* |E y n d V y n d V n� �+ + − + +

� �
.

This plant model was introduced in [12].  It is a direct
generalization of the plant models implicit in the work of
Fahmy, Jain et al. [11] and Fulton and Li [13], which have
been extensively simulated under realistic conditions.

B. Controller Definition

The plant ( )1B z−  is an FIR filter and is thus bounded
input/bounded output (BIBO) stable, but may be non-
minimum phase.  The controller proposed in [16]
approximately inverts one Finite Impulse Response (FIR)
filter with another FIR filter.  This concept is attractive due to
its simplicity and its attractive stability properties.  The
resulting controller, ( )1Q z− , is a causal ( )1dQ +  tap FIR
filter which approximates a delayed (by V ) version of the
plant ( )1B z− .
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Figure 2  Direct Inverse Plant Modeling

Note that adding delay V  is a common characteristic of non-
minimum phase plant control, given the large phase lags
inherent in non-minimum-phase plants.



Figure 2 specifies the suggested structure for controller
identification.  The controller ( )� nQ  can be adaptively
determined using the Normalize Least Mean Square
algorithm [21].  At time n, calculate

( ) ( ) ( )�� Tu n d V n n− − =Q y (2)

( ) ( ) ( ) ( ) ( )0 1
� � � � �, ,..., ,

T

dQ DCn q n q n q n q n� �= � �Q ,

( ) ( )
( )

* | * | ,...,

* | , ,
T

DC

n d V n y n d V n

y n d V dQ n dQ y

+ + ≡ + +��

+ + − − ��

y

( ) ( ) ( ) ( ), 1 ,..., ,
T

DCn y n y n y n dQ y= − −� �� �y (3)

( ) ( ) ( ) ( )�ue n e n d V u n d V u n d V≡ − − ≡ − − − − − (4)

( ) ( ) ( )
( ) ( )

( )� �1 T

n
n n e n

n n

µ
+ = +

y
Q Q

y y
, 0 2µ< < (5)

( ) ( ) ( )� 1 * |Tu n n n d V n= + + +Q y  (6)

The scalar d is the minimum plant delay, V is an operator
chosen (non-negative) inversion polynomial delay, and µ is
the adaptive gain chosen such that 0 2µ< < .  The constant

DCy  is operator-chosen, appended to the delay-chain values

of { }y  in (3) so that the final tap of ( )� nQ  becomes a DC tap

( )�DCq n  (see [15]), ( ) ( ) ( )� � �,
TT

lin DCn n q n� �≡
� �

Q Q .

Figure 3 shows the complete control architecture.  The
Identification section uses NLMS adaptation to determine

( )� 1n +Q  (shown with �DCq  separated from the remaining

linear taps, �
linQ , and with 1DCy = ) by creating estimate

( )�u n V d− −  using (2).  ( )� 1n +Q  is copied into the

Controller, which produces ( )u n  from the set point

( )* |y n V d n+ + .  The Plant is represented by (1).
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Figure 3  Complete Control Architecture ( 1DCy = )

The control algorithm (2)-(6) has many attractive features,
as discussed in [15], [18].  Specifically, [15] shows that,
under a set of reasonable assumptions, the adaptive, Finite
Impulse Response controller filter ( )� nQ  converges to its
optimal Weiner solution

 ( ) ( ){ } ( ) ( )
1

0
TE n n E n u n d V

−
� �≡ − −� �� �� �

Q y y y

in the mean, i.e. ( ) 0
�lim

n
E n

→∞
� �− =� �Q Q 0 .   Likewise [15],[18]

demonstrates that coefficients comprising ( )� nQ  have
bounded variance for all n  and an expression is given for

( )( ) ( )( )0 0
� �lim

T

n
E n n

→∞

� �− −
� �� �

Q Q Q Q .  Further [18] gives

conditions which guarantees that

( ) ( )lim * | 0
n

y n y n n d V
→∞

− − − = .

Despite these results, the algorithm (2)-(6) confronts many
practical obstacles.  Section III identifies these obstacles and
offers solutions, thereby creating an enhanced algorithm with
a much-improved practical value.

C. Simulation Framework
To demonstrate the various design issues covered in this

paper, a common simulation framework is now defined.
These simulations use the Matlab [22] simulation tool. The
measurement and control sample time is 1sT =  msec.  The
set-point *y  is chosen to be a white Gaussian process with
mean [ ]*E y =1 Mcps (million cells per second) and a
standard deviation *yσ  of 22 Kcps3. The minimum response
delay d =10 msec.  The distribution of the delays of 22
responsive sources is given by

( ) ( )1 10 1 2 32 9 8 3B z z z z z− − − − −= + + + .  Let C =200 Kcps. The

number of taps in the controller is 30dQ = , with 10V = .
The adaptation gain is set at its optimal value 1µ = .4

D. Comparisons to Less Complex Schemes
Before proceeding to the main contribution of this paper,

the algorithm enhancements, it is appropriate to evaluate the
merits of the general control scheme proposed here.  Other
approaches to congestion control have been outlined in
Section I.A.  Included in this list are approaches that claim to
provide satisfactory performance with a lower computational
cost than (2)-(6).  In what follows, it is shown that the added
computational cost of (2)-(6) provides better performance
than less computationally complex schemes, specifically [11],
[8], [13].  Also, (2)-(6), in its simplest ( 0dQ = ) case, is
essentially equivalent in performance and complexity to these
simpler schemes.

                                                          
3 These deviations about the mean of the desired ABR rate are
determined by the extent that the port measures and re-allocates
bandwidth from higher-level service category flows.  It is somewhat
uncertain how aggressively ports will attempt to re-allocate unused
bandwidth.  Very small variances are possible.
4 These values represent a realistic scenario.  See discussion in [18].



Consider the proposed controller (2)-(6) with only one
adaptive tap, i.e. 0dQ = , 0V = , 1µ = . Note that in the

0dQ =  case, the NLMS adaptation (5) devolves into a single
division: ( ) ( ) ( )� 1 /q n u n d y n+ = − .  Compare this to Fulton�s

identification [13]: ( ) ( ) ( ),Fulton
� 1 /effN n = y n u n -1+ , where

( 1)u n −  is the time average of a sequence of previous values
of u.  Fulton does not explicitly estimate d , therefore
requires the averaging on u  for convergence (unsurprisingly,
the recommended time interval for averaging is d samples).
Similarly, Imer [8] calculates ,Imer

� /effN y u=  every 'd
samples, 'd d≥ , where u  is kept constant over the past 'd
samples.  The Fahmy parameter Effective Number of active
VCs, or ,Fahmy

�
effN , is defined similarly [11], albeit in an

indirect manner.
Clearly ,Laberteaux

� �1/effN q= , ,Fulton
�

effN , ,Imer
�

effN , and

,Fahmy
�

effN  are adaptive estimates that attempt to capture the
same information.  In each controller, this value is used to
divide the amount of available bandwidth *y  so that a future
y  will match a future *y  in some appropriate way. Thus the

controller (2)-(6), in its simplest version ( 0dQ = ), is
essentially equivalent, in performance and complexity, to the
suggestions made by Fulton, Imer, and Fahmy.

Consider how these one-tap controllers perform.  The
controller in each case consists of dividing a future estimate
of ( )*y n  by the associated �

effN .  All provide fair and
efficient allocation of *y  in the long-term.  The best such a
controller could accomplish is that the incoming ABR
bandwidth matches the available ABR traffic in the mean, i.e.

( ) 0E nχ =� �� � , ( ) ( ) ( )*n y n y nχ ≡ − .
While the authors of [11], [8], [13] make a fair and stable

allocation their performance goal, here fair and stable
allocation is taken to be a minimum acceptable performance
objective.  This difference in performance objective may be
based on a modeling assumption.  Clearly for ATM ABR
congestion control systems, two quantities change with time:
the amount of bandwidth allocated to ABR and the number of
competing ABR connections vying for this bandwidth.  Since
operational experience with ABR is limited, it is difficult to
know with certainty the time-scales over which these two
quantities change.  However, this paper assumes that an
Available Bit Rate controller is likely to see its available
bandwidth change more rapidly than the number of
connections.

If the available bandwidth ( )*y n  remains constant for
long periods (e.g. multiples of the maximum round trip time,
d ), or 2

* 0yσ ≈ , then the single-tap schemes discussed above
work effectively.  Note that Imer, both in his development

and simulations, assumes that ( )*y n  is constant.  Fulton

uses ( )*y n , the sample mean of ( )*y n , in her calculation

of the explicit rate ( )u n .

Since this paper assumes that ( )*y n  changes more
quickly than changes in the number of ABR connections,

( )*y n  is modeled as a noise source. Unless, ( )1
oB z b− = , it

is straightforward to show that both the variance of ( )nχ ,
2

χσ , and the variance of ( )queue n , 2
queueσ , increase as 2

*yσ
increases (this will be validated by simulations below).  This,
in turn increases the necessary buffer size if overflow is to be
avoided.  Also, if buffer underflow is to be avoided, a larger
average queue size must be targeted as 2

queueσ  increases.
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Figure 4 Set-point error, ( ) ( )*y n y n− , and size of queue, ( )queue n , with

* 22yσ =  (a) 4, 2dQ V= = , (b) 0, 0dQ V= = .

Since larger queue sizes require a larger memory cost and
also increases the delay through the switch, both of which are
preferably avoided, this paper views minimizing 2

χσ , and

thus 2
queueσ , as a desirable performance goal. Using the

simulation environment established in Section II.C, Figure 9
shows5 how effectively 2

χσ  and 2
queueσ  can be minimized by

using 31 ( 30dQ = ) taps in the controller (2)-(6).  As dQ  is
decreased to the limiting one-tap ( 0dQ = ) case, performance
gracefully degrades to that of the one-tap solutions discussed
above.  These simulations are identical to those shown in
Figure 9-where the desired queue size is 100-200 cells-except
for changes in dQ  and V  as noted.

                                                          
5 For the sake of space economy, the simulations of (2)-(6) shown in
this section are in fact using the algorithm enhancements of Sections
III.A and III.B.  However the basic complexity/performance
comparisons are essentially the same for the non-enhanced
controller of (2)-(6).



Figure 9 (31 taps), Figure 4a (4 taps), Figure 4b (1 tap)
show the performance, both in terms of set-point error,

( ) ( )*y n y n− , and the size of the queue, ( )queue n ,
gradually degrading as the number of taps decreases.  In the
limiting one-tap case, shown in Figure 4b, the performance is
essentially equal to the performance of Fulton�s UT
algorithm, shown in Figure 5a.  This supports the near-
equivalence of performance predicted in the discussion
above.6
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Figure 5 Set-point error, ( ) ( )*y n y n− , and size of queue, ( )queue n , with

Fulton�s UT algorithm, (a) * 22yσ = , (b) * 223yσ =

Some may be satisfied with the performance of the simple,
one-tap controllers shown in Figure 4b and Figure 5a.
However, it is important to note that performance of one-tap
controllers is highly dependent on the standard deviation of
the set-point, *yσ .  When *yσ  is increased an order of
magnitude from 22 to 223, it is observed in Figure 5b the
performance degrades an order of magnitude.

To summarize, higher-performance-through-higher-
complexity solutions such as (2)-(6) have not yet received
considerable attention from switch vendors and even many
researchers.  However, the added complexity of (2)-(6) does
indeed provide much improved performance over those of
[11], [8], [13].  Further, (2)-(6) can be simplified in
implementation (by reducing dQ ), thereby gradually
reducing its performance and complexity to that of the
popular one-tap solutions [11], [8], [13].  For example, if the
complexity budget for a specific available bit rate application
allows five taps ( 4dQ = ), then the added complexity of
these five taps appears justified.

                                                          
6 It is well known that the convergence time for LMS type
algorithms, including NLMS, decreases as the number of taps
increases [21].  The plots above begin after 2 seconds, as all cases
converge within this time.  However, convergence rates of the
adaptive estimates increase as the number of taps decreases,
revealing a short-term vs. long-term performance trade-off.

Other, even computationally simpler, congestion control
schemes have been presented for the Internet.  Generally
these schemes are one-bit marking approaches.  These
approaches occupy a very different location on the
performance/complexity curve of congestion control.  At
best, these one-bit schemes will match the arriving bandwidth
to the available bandwidth in the mean, with even greater
error variance 2

χσ .  The comparisons made above can
therefore be extended to the one-bit Internet proposals.

III. ALGORITHM ENHANCEMENTS

In this section, two additions to the congestion control
mechanism are introduced and discussed.  Each addition
provides necessary mortar in cementing together theoretical
analysis and practical design.  These two modifications are
singled out for attention here since each addresses a general
issue likely to appear in many complex congestion control
schemes, not just that of ATM ABR congestion control.

A. Convergence Rate Improvement
Figure 6a shows the results of simulating the system

without any modifications to improve the rate of
convergence.  After 8 seconds, the convergence of the
controller is so poor that it appears to be admitting over twice
the desired rate of traffic7. This is clearly unacceptable
performance.

The Least Mean Square (LMS) algorithm has the property
that the mean of the coefficient error vector, ( )E n� �

� �Q� ,
converges to zero at a rate inversely proportional to the

eigenvalue spread max min/λ λ  of ( ) ( )TE n n� �=
� �

R y y  [21].  It

is more difficult to specify the convergence trajectory of
( )E n� �

� �Q�  for Normalized Least Mean Square (NLMS)
adaptation in all but the simplest cases [20], although
practical experience shows that speed of convergence is still a
strong function of eigenvalue spread.
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after convergence rate improvement when ( )*Q n  is updated twice a
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7 Note that the results from [15], [18] ensures that y(n) will
eventually coincide with y*(n).



While we have considered several strategies to improve
convergence time of the system defined in Section II, the
most promising strategy is as follows: Provide the
identification algorithm with zero-mean signals by estimating
and removing the signal means (thereby reducing the
eigenvalue spread).  Then perform �DC correction� in the
controller by an additive term *q .

One obvious method for estimating ( )E u n� �� �  and

( )E y n� �� �  is by directly calculating sample means.  The most
common method is using a single-pole filter.  If the sample
means of ( )u n  and ( )y n  are notated ( )SMu n  and ( )SMy n
respectively, then, with 0 1δ< <

( ) ( ) ( ) ( )1 1SM SMu n u n u nδ= − − +

( ) ( ) ( ) ( )1 1SM SMy n y n y nδ= − − + .

( )SMu n

CONTROLLER

( )* |y n d V n+ +
+

PLANT

�
linQ

( )*q n

Bz-d +

C
y(n)

(copy)

+
IDENTIFICATION

+_ _

�
linQ

+ _ � ��u n d V�

� �

� �u n�

� �y n�
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d Vz− −

Figure 7  Architecture for subtracting sample mean estimates.

The concept is illustrated by Figure 7.  Subtract ( )SMu n
and ( )SMy n  from their corresponding signals to perform
identification. Estimates ( )SMu n  and ( )SMy n  are then used
to form ( )*q n , which is added to the controller to perform
DC correction.  Generally no DC tap is needed ( 0DCy = ).

The DC correction term ( )*q n  uses down-sampled
versions of the signal sample means.

( ) ( )

( )

, *

, *
0

*

�

SM q

dQ

SM q i
i

q n u n

ny n q dsInterval
dsInterval=

=

� �� �− � �� �
� �	 


�
(7)

( ), *SM q SM
nu n u dsInterval

dsInterval
� �� �≡ � �� �
� �	 


( ), *SM q SM
ny n y dsInterval

dsInterval
� �� �≡ � �� �
� �	 


where x� �� �  is the integer part of x  and dsInterval is an
integer down-sample interval.

It is easy to show that with such a formulation, when the
sample means are accurate, ( ) ( )*E y n n V d E y n� �− − = � �� �� � ,

i.e. *q  provides proper DC correction [18].

Figure 6b shows the case when 500dsInterval = , i.e.
( )*q n  is updated once per 500 msec. The final measured

eigenvalue spread is 6.  The convergence rate is satisfactorily
fast. If ( )*q n  did not use down-sampled versions of ( )SMu n
and ( )SMy n , the resulting feedback path would create
instability.

B. Control of Queue Size
Congestion Control work done by control theorists, e.g.

[4]-[6], [7], often explicitly include queue matching in
addition to rate matching in their cost functions, no doubt in
part a response to [6].  In contrast, Section II.B presents a
pure rate-matching controller.  This strategy requires that the
bandwidth available for ABR traffic be slightly under-
utilized, thus creating extremely short (or zero) queue lengths
in steady state.  While this has advantages, e.g. shorter end-
to-end delay and smaller memory requirements, it may be
more desirable to have, on average, longer buffers.  Since
ABR is not designed for delay-sensitive traffic, it may be
preferable to add a small, known delay by targeting a non-
zero buffer size in order to ensure network efficiency.  The
scheme presented thus far does not allow for a desired queue
depth greater than zero.

The proposal here is similar to [10], but distinct in that it
scales the set point, ( )* |y n d V n+ + , not the explicit rate

( )u n  directly.  Specifically, decide at time n the target input
rate for time n d V+ + , but notate this as ( )|n d V nΘ + +
instead of ( )* |y n d V n+ + .   The target input rate

( )|n d V nΘ + +  is chosen without regard of the queue size.
Further, for simplicity of presentation, assume that

( )|n d V nΘ + +  is the actual service capacity for ABR traffic
at n d V+ + .  Define a scalar ( )nη  that is monotonically
decreasing function of the queue size ( )queue n . Control of
this queue size is accomplished by

( ) ( ) ( )* | |y n d V n n n d V nη+ + = Θ + + . (8)

To target a non-zero queue-depth, use a ( )nη  function
that decreases monotonically with queue(n).  A simple
function is shown in Figure 8.

( )queue n

1 _ _queue scale bound+

1 _ _queue scale bound−

1

Q1 Q2 Q3

Figure 8   Sample ( )nη  Function

This queue-aware set-point ( )* |y n d V n+ +  is used in
exactly the same way as outlined in Section II.B.  The plant
model now includes the queue-depth ( )queue n , which
progresses as

( ) ( ) ( ) ( )1 |queue n queue n y n n n d V+ = + − Θ − − . (9)



To demonstrate the effectiveness of this strategy, a
representative simulation, with the ( )nη  function shown in
Figure 8, queue_scale_bound = 0.01, Q1=100 cells, Q2 = 200
cells, Q3 = 300 cells, the target-queue-depth is within the
desired range of 1, 2Q Q� �� �  without perceptibly affecting the
convergence rate, as shown in Figure 9.  With no queue
control, i.e ( ) 1nη = , simulations show the steady-state queue
frequently grows to thousands of cells.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5
size of the queue

K
Ce

lls

0 1 2 3 4 5 6 7 8
0.99

0.995

1

1.005

1.01

1.015
Queue Dependent setpoint scaling factor

Time (Seconds)
0 1 2 3 4 5 6 7

-100

-80

-60

-40

-20

0

20

40

60

80

100
Set Point error: y*-y

C
el

l R
at

e 
(K

ce
lls

/s
ec

)

Time (Seconds)

a b

Figure 9  (a) Queue depth (upper plot) and Set-point scaling factor η(n)
(lower plot) when queue target is 100-200 cells.  (b) Set point error when
queue depth is actively controlled.

Clearly potentially destabilizing feedback is created by
performing queue control with (8). Intuition suggests, and
simulations confirm, that stability is only in jeopardy when
the scaling of ( )nη  is aggressive, e.g.

_ _ 0.1queue scale bound ≥ .  It is intuitive that using a small
queue_scale_bound can make the impact of ( )nη  on

( )* |y n d V n+ +  nearly negligible, yet still effect the desired
behavior.

IV. SUMMARY AND CONCLUDING REMARKS

This paper takes up the challenge of finding an effective
control strategy for the explicit rate congestion controller.
The problem is motivated in Section I, where other related
work is summarized.  The system under study is defined in
Section II.  The new contributions of this paper are presented
in Section III.  These contributions consist of algorithm
enhancements to the system defined in Section II, and include
convergence rate improvements and queue depth
management.  A method to reduce coefficient bias without
compromising convergence or significantly increasing
computational complexity has also been found [18] (see
Footnote 2), but not reported here due to space limitations.

There are several potential directions for future research.
One path would examine real-world protocols and networks
in an attempt to improve the fidelity of the plant model.  This
will almost certainly create a more complex plant model.
Modeling the blending effect introduced in [18] is but one
possibility.  Other modeling extensions include delayed or
lost data (e.g. resource management cells), non-linearities due

to rate and buffer saturations, bursty sources, and other
phenomena.

REFERENCES
[1] J. Kenney, Editor, Traffic Management Specification Version

4.1, available from [19].
[2] R. Jain, �Congestion Control and Traffic Management in ATM

Networks: Recent Advances and A Survey,� Comp Net ISDN
Sys, Vol. 28, No. 13, pp. 1723-1738, October 1996.

[3] C. Rohrs, R. Berry, and S. O'Halek, �Control engineer's look at
ATM congestion avoidance,� Comp Comm, v 19 n 3, pp. 226-
234, Mar 1996.

[4] L. Benmohamed and S. M. Meerkov, �Feedback Control of
Congestion in Packet Switching Networks: The Case of a
Single Congested Node,� IEEE/ACM Trans Netw, Dec 1993.

[5] L. Benmohamed and S. M. Meerkov, �Feedback control of
congestion in packet switching networks: The case of multiple
congested nodes,� Int J Comm Sys, p 227-246, Sep-Oct 1997.

[6] E. Altman, F. Baccelli, J-C. Bolot, �Discrete-time analysis of
adaptive rate control mechanisms,� Intl. Conf. Data Comm Sys
and Performance, pp. 121-140, Raleigh, NC, Oct. 1993.

[7] E. Altman, T. Basar, and R. Srikant, �Robust rate control for
ABR sources,� Proceedings - IEEE INFOCOM v 1, p 166-173,
Mar 29-Apr 2 1998.

[8] O. Imer et al., �ABR Congestion Control in ATM Networks�,
IEEE Control System Magazine, February 2001.

[9] R.  Jain,  S.  Kalyanaraman,  R.  Goyal,  S.  Fahmy,  F.  Lu,
"ERICA+:  Extensions  to  the ERICA Switch Algorithm," AF-
TM 95-1145R1, October 1995.

[10] B. Vandalore, R. Jain, R. Goyal, S. Fahmy, �Design and
Analysis of Queue Control Functions for Explicit Rate Switch
Schemes,� IC3N '98, pp. 780-786, October 1998.

[11] S. Fahmy, R. Jain, S. Kalyanaraman, R. Goyal and B.
Vandalore, �On Determining the Fair Bandwidth Share for
ABR Connections in ATM Networks,� ICC, 1998.

[12] K. Laberteaux and C. Rohrs, �Application Of Adaptive Control
To ATM ABR Congestion Control,� Globecom, 1998.

[13] C. Fulton and S. Q. Li , �UT: ABR Feedback Control with
Tracking,� Infocom'97, April 1997.

[14] S. Mascolo, �Smith Principle for Congestion Control in High-
Speed Data Networks,� Trans. Auto. Control, Feb. 2000.

[15] K. Laberteaux and C. Rohrs, �On the Convergence of a Direct
Adaptive Controller for ATM ABR Congestion Control,� Int
Conf Comm 2000, June 2000.

[16] K. Laberteaux and C. Rohrs, �A Direct Adaptive Controller for
ATM ABR Congestion Control,� Amer Ctrl Conf, June 2000.

[17] K. Laberteaux and C. Rohrs, �A Proof of Convergence for a
Direct Adaptive Controller for ATM ABR Congestion
Control,� http://www.nd.edu/~isis, September 2000.

[18] K. Laberteaux, �Explict Rate Congestion Control for Data
Networks,� Dissertation, Univ. of Notre Dame, available from
http://www.geocities.com/klaberte/dissertation.html, 2000.

[19] ATM Forum web site, http://www.atmforum.org.
[20] M. Tarrab and A. Feuer, �Convergence and Performance

Analysis of the Normalized LMS Algorithm with Uncorrelated
Gaussian Data,� Trans Info Theory, Vol. 34, No. 4, July 1988.

[21] Haykin, Simon S., Adaptive Filter Theory, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1991.

[22] Mathworks, Inc., Matlab, R11, http://www.mathworks.com/.


	Introduction
	Related Work
	Outline of Paper

	The Congestion Control System
	Plant Definition
	Controller Definition
	Simulation Framework
	Comparisons to Less Complex Schemes

	Algorithm Enhancements
	Convergence Rate Improvement
	Control of Queue Size

	Summary and Concluding Remarks

