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Abstract
One of the more challenging and yet unresolved issues

which is paramount to the success of ATM networks is that of
congestion control for Available Bit Rate (ABR) traffic.
Unlike other ATM service categories, ABR provides a
feedback mechanism, allowing interior nodes to dictate
source rates. Previous work has demonstrated how linear
control theory can be utilized to create a stable and efficient
control system for the purposes of ATM ABR congestion
control.  This paper extends our previous contribution that
assumed a minimum-phase plant, an assumption that is likely
violated in practice.  Presented here is a direct adaptive
controller that uses a finite impulse response (FIR) filter to
approximately invert the FIR plant.  This controller is well
suited for the ATM ABR non-minimum-phase plant.  Other
control architectures, which motivate the final proposed
controller, are also discussed.

1 Introduction
In 1984, the Consultative Committee on International

Telecommunications and Telegraph (CCITT), a United
Nations organization responsible for telecommunications
standards, selected Asynchronous Transfer Mode (ATM) as
the paradigm for broadband integrated service digital
networks (B-ISDN) [3].  ATM networks provide 6 service
categories.  Each category of service is customized for a
particular type of traffic.  Of these 5 categories, only one,
Available Bit Rate (ABR), uses a feedback mechanism to
create a closed-loop congestion control. The creation of a
control mechanism for a switch that can work with the
closed-loop congestion control mechanism specified by the
ATM Forum [2] is the focus of the present study.

The complete congestion control mechanism is described
in [1] and [3].  This paper limits its consideration to explicit
rate congestion control.  The plant description of Section 2 is
an approximation to the mechanisms specified in [1].

The present challenge is to devise a controller that resides
at the output queue of an ATM switch and produces a single
Explicit Rate u(n) to be sent to all ABR sources passing
through the queue.  The Explicit Rate u(n) must be chosen
such that the incoming ABR bandwidth y matches the
available ABR bandwidth y* in some appropriate sense.

Specifying a single Explicit Rate at time n for all sources
ensures fairness.  Matching y to y* attains efficiency.

Previous contributions to the problem of ATM ABR
congestion control include [3]-[10]. In addition, there has
been significant contributions made in the ATM Forum [2].
Our recent contribution [7] examined the UT algorithm [9]
(and, due to its similarity, [6]), in the context of adaptive
control theory.  A congestion control algorithm was proposed
based on estimating the number of ABR sources responsive
to rate changes as a function of discrete time.  Representing
this estimation as a polynomial B(z-1) in the delay variable z-1,
then a requirement for proper operation of the controller in
[7] is that B(z-1) be minimum phase.  However, this
assumption is not rooted in the underlying plant process and
would be violated in many normal situations.

Thus effort was focussed on applying controllers for Non-
Minimum Phase (NMP) plants.  In doing so, an extension
was made to the indirect-form Approximate Inverse
Controller proposed by [11], producing approximately a
direct formulation.

The remainder of this paper is organized as follows:
Section 2 presents the ATM ABR congestion plant used for
analysis.  Sections 3-5 consider four control mechanisms.
The first, described in Section 3, is a previously published
controller that motivates the remaining three.  The next two,
discussed in Section 4, are both fatally flawed, but provide
intuition to the proposed controller, which is presented in
Section 5.  Conclusions and future work are outlined in
Section 6.

2 Plant Definition
Since each switch implements its own, independent

controller, one may consider the plant from the perspective of
a single switch SW.  A discrete-time model is used, where
sample intervals correspond to control intervals, i.e. a new
control action u(n) is calculated for each n.  Port j of switch
SW carries N simultaneous Available Bit Rate (ABR)
sessions, and serves as output port for data cells and input
port for Backward Resource Management Cells.  All session
sources are assumed greedy, i.e. will send cells continuously
at the maximum Allowed Cell Rate (ACR) dictated by the
switch output ports through which they pass. To be fair to all
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connections, port j generates a single desired rate u(n) for all
connections.  This u(n) is copied into the Explicit Rate (ER)
Field of each Resource Management (RM) cell for which port
j is an output port if u(n) is smaller than the current value of
the Explicit Rate field.  The RM cell transports this ER to
each ABR Source.  It is assumed that at least one RM cell
from each of the N ABR sources passes j during each sample
interval.  Rates u(n), y(n), and y*(n) are in units of
cells/second.

u(n)
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Figure 1 – Plant from perspective of Switch Output Port

Output port j will observe changes to its input rate y(n) as
various sources (Si) react to previously specified Explicit
Rates u(n-m).  The reaction delay, m, for source Si,, as viewed
by j, is the time between j adjusting u(n-m) and the time j
measures u(n) as its input rate from Si.  These reaction delays
will vary for different sources.  Assume that there are 0b
sources that respond with reaction delay d, 1b  sources that
respond with delay 1d + , and dBb  with delay d+dB, where
dB is a known upper bound on SW’s reaction delay.   In
addition, one or more of the N  flows may be unresponsive to
u(n).  There are at least two reasons for this possibility.  First,
a source may be controlled or bottlenecked by another switch
along its path.  Second, a source may have been guaranteed a
Minimum Cell Rate (MCR) greater than the rate assigned by
SW. The part of y(n) comprised of non-responsive flows is C
cells/second.  It is assumed that C , 0b , 1b ,…, dBb   remain
constant for periods of time long enough for adaptive
identification to occur.  Faster convergence speed of the
adaptive algorithm results in better tracking of these time-
varying parameters.

The plant is therefore given by
( ) ( ) ( )0 dBy n b u n d b u n d dB C= − + + − − +� (1)
( ) ( ) ( )1y n B z u n d C−= − + (2)

Note that for convenience, filters in z-1 and time sequences in
n will be mixed in expressions such as (2); (2) is equivalent to
(1).

Since the minimum delay in the plant is d, adjustments in
u(n) will not be observed until n d+ .  Therefore to generate
u(n), we must decided at time n the desired value of y(n+d),
which is notated as y*(n+d|n). y*(n+d|n) may reflect both
bandwidth and buffer measurements made up to time n and
may be generated by a prediction filter as in [5].  By
extension, in many cases, we shall assume that the input of
the algorithm is y*(n+d+V|n) (for some non-negative V), i.e.
the desired value of y(n+d+V) known at time n.

The goal of the congestion control mechanism of SW is to
choose u(n) so as to minimize

( ) ( )( )[ ]2* |E y n d V y n d V n+ + − + + .

3 Approximate Inverse Indirect Control
In this section, we briefly outline a previously published

control strategy.  This controller motivates the control
strategies presented in Section 5.  In Section 5.3, a special DC
tap is introduced for the purposes of matching DC offsets.
Until then, it is convenient to set 0C =  in (2), thus the plant
becomes

( ) ( ) ( )1y n B z u n d−= − (3)

The plant (3) is an FIR filter B(z-1) and is thus BIBO stable.
The controller proposed in [7] cancels the dynamics of the
plant by placing controller poles where plant zeros are
located (all plant poles are at the origin).  The assumptions
needed for stability included that the zeros of B(z-1)  lie within
the unit disk, i.e. that the plant B(z-1)  is minimum-phase.
However the underlying physical plant does not suggest that
this assumption is appropriate.  A non-minimum phase plant
is not only possible, but quite likely.  Thus a controller
capable of controlling a non-minimum phase (NMP) plant is
needed.

Yahagi and Lu proposed an intuitive controller for NMP
plants in 1993 [11].  In their approach, plant zeros are not
directly cancelled by the closed-loop poles.  Instead, the
controller consists of a time-varying, FIR filter ( )1Q̂ z−  (note
that this notation drops the implicit dependence on time n),
which when placed in series with the B(z-1), approximately
produces a delayed unit pulse, i.e.

( ) ( )1 1ˆ VB z Q z z− − −≈ (4)

V is an operator-chosen delay which is non-negative,
introduced to improve the approximation made in (4).  More
comments on V will be made in Section 5.1.

The Approximate Inverse Indirect Controller for the
current scenario is given as [11]:

( ) ( ) ( )ˆ * |T
nu n n n d V n= + +Q y , (5)

( ) ( ) ( )[ ]0ˆ ,...,ˆ ˆ T
dQn q n q n≡Q (6)

( ) ( )[

( ) ]

* | * | ,...,

* | T

n d V n y n d V n
y n d V dQ n dQ

+ + ≡ + +

+ + − −

y
(7)

Using the polynomial notation ( )1Q̂ z−  and vector notation
( )ˆ nQ  interchangeably, the plant (3) and controller (5) give

the closed loop response
( ) ( ) ( ) ( )1 1ˆ * |y n Q z B z y n V n d− −= + − .  If the

approximation of (4) is assumed to be exact, then  y(n)=
y*(n|n-V-d).

The least squares fit to the estimated ( )ˆ1/ nB  is
( )ˆ nQ that is defined as:
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( ) ( )( ) ( )( )ˆ ˆ ˆarg
TT T

v vn n n= − −
Q

Q B Q e B Q e , (8)
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� �
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B

�

�

� �

� �

, (9)

with estimate ( )ˆ nB  similarly defined, and also define
[ ]0 1ˆ , ,...,ˆ ˆ ˆ T

dQq q q≡Q , [ ]0,0,...,0,1,0,...0 T
v ≡e , with the

(V+1)th element of ve  equal to 1.  The solution of (8) is
given by the Wiener solution [12]

( ) ( ) ( )( ) ( )
1ˆ ˆ ˆ ˆT

vn n n n
−

=Q B B B e (10)

The computational cost of evaluating (10) can be reduced
by using a Levinson algorithm, but is still ( )2O dQ .

Operation of the Approximate Inverse Indirect Controller
Algorithm consist of the following steps at each time n.  First,
update estimate ( )ˆ nB  using an appropriate identification
algorithm, e.g. Normalized Least Mean Squares.  Second,
calculate ( )ˆ nQ  from (10), using the latest estimate of

( )ˆ nB .  Finally, calculate ( )u n  from (5).  A
computationally less expensive alternative is presented next.

4 Rejected Direct Controllers
In this section, two adaptive controllers are presented.

Both are fatally flawed, as will be discussed.  However, their
inclusion here motivates the controller of Section 5.

The controllers of Sections 4 and 5 are direct adaptive
controllers.  The term direct means that controller parameters
are directly identified using an adaptive identification
method.  In contrast, the indirect controller of Section 3 first
identifies the plant parameters and then derives controller
parameters from the estimates of the plant parameters.  The
controller in this section was developed in our attempt to find
a direct formulation of the indirect controller discussed in
Section 3 and presented in [11].  The motivation for finding a
direct formulation is to reduce computational cost by
eliminating the calculation of (10).

4.1 A Potentially Unstable Controller

Consider a direct controller where Q̂  is directly estimated
from plant input and output signals, shown in Figure 2.
Using NLMS [12], adaptively estimate *ˆ yQ  to obtain the

ideal *,0ˆ yQ  that minimizes the least squares criterion
( )[ ]

*

2
*,0

ˆ
ˆ arg min

y
y E e n=

Q
Q .

A careful study of Figure 2 shows that convergence cannot
be assured.  Briefly stated, the update error e(n) is not the
required inner product of the parameter error vector

( )* *,0ˆ ˆy yn −Q Q  and input vector ( )* |n V n d+ −y , but
instead this inner product filtered by the FIR filter B(z-1).

Since B(z-1)  is not strictly positive real (SPR), except for the
case of 0dB =  (B(z-1)=b0), convergence cannot be assured.
Therefore, the controller of Figure 2 is disqualified as viable
ABR congestion controller.

y*(n + V|n-d)
e(n)

vz�

*
ˆ

yQ B y(n)u(n-d)

+

y*(n|n-d-V)

Figure 2 – A Direct Adaptive Controller System for
Controlling MA Plant That MAY NOT CONVERGE

4.2 An Unrealizable Controller
Consider a second control method by inverting the order of

Q̂  and B in Figure 2, as in Figure 3.  The auxiliary signal
( )t n  is introduced.  The issue of filtering the coefficient

error vector is overcome.

y*(n + V|n-d)
e(n)

vz�

ˆ
tQB y(n)t(n)

+

Figure 3 – Inverting Plant and Controller, AN
UNREALIZABLE CONTROLLER (t(n) is not available).

Comparing Figure 3 with Figure 2, clearly
( )[ ]2

,0 *,0
ˆ

ˆ ˆ arg min
t

t y E e n= =
Q

Q Q . Then the Wiener solution,

as given by [12], is

( )* *
1

,0 *,0ˆ ˆ T
t y Vy y

−= =Q Q B R B B R e (11)

where ( ) ( )[ ]*
* *| | T

y E n d V n n d V n≡ + + + +R y y  is a
dB+dQ+1 by dB+dQ+1 autocorrelation matrix assumed to
be full rank, i.e. there is sufficient excitation.  Note that if
{ }*y  is white noise with *

2
y σ=R I , then (11) is equivalent

to (10).
However, there is a problem.  Since B(z-1)  is unknown,

t(n) cannot be created.  The formulation of Figure 3 is useful
for insight and intuition, but cannot be implemented.

5 Direct Adaptive Inverse Control
In this section, we present a control strategy which was

developed expressly for an ATM ABR congestion controller.
It is based in part on the identification scheme shown in
Figure 3.

However, further investigation revealed that the control
methodology presented in this section is nearly identical to
Adaptive Inverse Control, a methodology previously
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proposed by Widrow and Walach [14].   One distinction
between their and our approach is our use of the Normalized
Least Mean Square (NLMS) adaptation scheme, where
Widrow uses Least Mean Square (LMS). Our use of NLMS
allows setting the adaptive gain to its optimal value (=1),
resulting in the fastest possible stable convergence.  Use of
NLMS required a new proof of convergence that can be
found in [10].

5.1 Comments on Parameter ‘V’
Before preceding to our controller, a few comments are

made to motivate the use of positive V.  This particular
explanation does not appear in [11] or [14].

Generally, B(z-1)  is an FIR filter with roots inside and
outside the unit circle.  Consider the ideal inverting IIR filter
1/B(z-1).  Consider a region of convergence for 1/B(z-1) be

,max ,minp z p+ −< < , where ,maxp+  is the location of the
largest magnitude pole of ( )11/ B z−  inside the unit circle,
and ,minp−  is the location of the smallest magnitude pole
outside the unit circle.  With this stated region of
convergence, the impulse response ( ) ( )( )[ ]1 11b n Z B z− −−≡
is two-sided, i.e. non-zero for both positive and negative n,
with its largest magnitude terms surrounding 0n = [13].

Let ( )Q̂ z  be a causal, FIR filter that attempts to invert
( )B z .  If ( )

1 0b n V −− ≈  for 0n <  and n L> , then an L
tap FIR filter with impulse response ( )q̂ n  could potentially

well approximate ( )
1b n V −− , whereas ( )

1b n −  could only be
poorly approximated by a causal FIR filter ( )q̂ n .

5.2 A Stable, Realizable Control Strategy
The inspiration for the controller presented here is Figure

3.  We need to find an FIR filter which, when placed in series
with B, well approximates a delayed impulse.  Further, we
need the adaptation error not to be filtered by a non-SPR
filter (e.g. by B, as it was in Figure 2). Figure 3 achieves this.
Unfortunately ( )t n  is not available.  However, if in Figure
3, the signals y*(n+V|n), t(n), and y(n) are replaced
respectively with u(n-d), y(n), and ( )û n V d− − , as in Figure
4, all necessary signals are available.

� �ue n d V� �

u(n-d)y(n)

vz�

ˆ
uQ

B

+
� �û n V d� �

Figure 4 – Direct Inverse Plant modeling

Figure 4 specifies the structure for controller identification
used in our ATM ABR controller.  It will be shown that

,0 ,0ˆ ˆu t≈Q Q , and that ˆ uQ  can be found using a NLMS
estimation process.

Defining ( )[ ]2
,0ˆ arg min

u
u uE e n≡

Q
Q  and the dB+dQ+1 by

dB+dQ+1 autocorrelation matrix ( ) ( )[ ]T
u E n n≡R u u ,

(assumed to be full rank).  Then the Wiener solution gives

( )
1

,0ˆ T
u u u V

−=Q B R B B R e (12)

Although (12) and (11) are not equal, except for the case of
B(z-1)=b0, both provide an approximate inverse of B.  To
better compare *,0ˆ yQ  and ,0ˆ uQ , consider the formulation of
Figure 5.

x(n+V)

Vz�

+

� �x̂ nB

� �xe n

ˆ
xQ

Figure 5 – ,0
ˆ
xQ  is a function of {x}

( )[ ]2
xE e n  is to be minimized as a function of ˆ xQ .

Clearly ˆ xQ  must approximately invert B, but the specific
( )

1
,0ˆ T

x x x V
−=Q B R B B R e  is a function of the spectral

content of excitation signal {x}.  If {x} is primarily a low-
frequency signal, then ˆ xQ  can only hope to match the inverse
of B at these low frequencies; ˆ xQ  may not be a good match
for the inverse of B at higher frequencies not represented by
{x}.

For *,0ˆ yQ , the driving signal is {y*}, while the driving

signal of ,0ˆ uQ  is {u}.  When {y*} and {u} have similar
spectral characteristics, then by (11) and (12), *,0 ,0ˆ ˆy u≈Q Q .

Further, if both *,0ˆ yQ  and ,0ˆ uQ  have enough taps to well
match the inverse of B at all frequencies, assuming sufficient
excitation, then 1

*,0 ,0ˆ ˆy u
−≈ ≈Q B Q .

5.3 DC tap
For Sections 3 - 5.2, we have simplified the analysis by

assuming the plant parameter C=0.  To extend these results to
the non-zero C case, we add a DC tap to our estimator and
controller.  This simply requires increasing ( )ˆ u nQ  by one
tap and appending a constant to the vectors y and y*, i.e.

( ) ( ) ( ) ( )[ ], 1 ,..., , T
DCn y n y n y n dQ y= − −y�  and

( ) ( )[

( ) ]

* | * | ,...,

* | , T
DC

n d V n y n d V n
y n d V dQ n dQ y

+ + ≡ + +

+ + − −

y�
.

The final tap of ( )ˆ u nQ  is called the DC tap, and once
converged, ensures that
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( )[ ] ( )[ ]ˆE u n V d E u n V d− − = − − .  The DC tap is further
discussed in [10].

5.4 Normalized Least Mean Square Adaptive
Mechanism

Unlike *,0ˆ yQ , ,0ˆ uQ  can be estimated using the Normalize
Least Mean Square algorithm [12].  At time n, calculate

( ) ( ) ( )ˆ * |T
uu n n n V d n= + +Q y� (13)

( ) ( ) ( )ˆˆ T
uu n V d n n− − = Q y� (14)

( ) ( ) ( )ˆue n V d u n V d u n V d− − = − − − − − (15)

( ) ( )
( )

( ) ( )
( )ˆ ˆ1 uT

nn n e n V d
n n
µ+ = + − −yQ Q

y y

�

� � (16)

Defining ( ) ( ) ,0ˆ ˆu un n≡ −Q Q Q� , it is shown in [10] that if
0 2µ< <  and certain other assumptions are met, then

( )[ ]lim
n

E n
→∞

=Q 0�  and ( )( )[ ]
1

2

1
lim ,

dQ

in
i

E Q n α α
+

→∞
=

< < ∞� � (17)

Global stability is addressed in [10].

5.5 Complete Control Architecture
Figure 6 shows the complete control architecture.  The

Identification section uses NLMS adaptation to determine
( )ˆ nQ  (shown with ( )ˆDCq n  separated from the remaining

linear taps, ( )ˆ lin nQ , and with yDC=1) by creating estimate
( )û n V d− −  (Section 5.4).  ( )ˆ nQ  is copied into the

Controller, which produces ( )u n  from the set point
( )* |y n V d n+ +  (with *y�  replacing *y  in (5)).  The Plant

is represented by (2).

C

*( | )y n V d n+ +
( )y n

( )û n V d− −

( )ue n V d− −

( ) ( )* |y n n V d y n− − −

( )u n
B (copy)

( )ˆ
linQ n

vz−

+

Plant Controller

Identification

V dz− −

( )ˆ
linQ n

( )ˆDCq n

+

+dz−

+

+

(copy)
( )ˆDCq n

Figure 6 – Complete Control Architecture ( 1DCy = )

Convergence and other issues pertaining to this control
architecture are discussed in [10].  Simulation results will be
reported shortly.

6 Conclusions and Future Work
After presenting the ATM ABR congestion plant in

Section 2, four control mechanisms based on adaptive linear
control theory were presented.  The first, described in Section
3, is a previously published controller that approximates the
inverse of the MA plant with a BIBO stable FIR filter.  This
approach is an indirect controller and was judged to be

unnecessarily computationally complex, yet it inspired the
ensuing three controllers.  The first two of these three are
fatally flawed, as discussed in Section 4, but provide intuition
to the proposed controller in Section 5. The final controller
can be viewed as a direct adaptive controller based on the
first controller.  This controller can employ a NLMS
adaptation mechanism and is known to be stable.

Further discussion of the proposed controller can be found
in a sequel paper, [10].  Methods to speed convergence are
currently being studied and will be reported shortly along
with results from simulative experiments.
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