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In the early 1900’s, two great mathematicians made a conjecture about the
reconstructibility of a graph. Specifically they said this:

The Kelly-Ulam Conjecture
Let G and H be graphs with V (G) = {v1, v2, · · · , vn} and V (H) = {u1, u2, · · · , un},

for n ≥ 3. If G− vi = H − ui,∀i = 1, · · · , n, then G = H.

We have not yet been able to prove the conjecture true or false. The work
that has been done with the conjecture has helped us gain a better understand-
ing about what kinds of graphs are always reconstructable and also what kinds
of graphs we do not yet know about.

We say that a graph G is reconstructable if we can recover the unique graph,
up to isomorphism, from the vertex deleted subgraphs. This says that given
G− vi,∀i = 1, · · · , n, we can recover G or a graph that is isomorphic to G.

Frank Harary has restated the Kelly-Ulam Conjecture using this definition.
Sometimes it is more helpful to look at his restatement rather than the original
reconstruction conjecture. It does no matter which version of the conjecture
that we are considering because the two are equivalent.

Harary’s Restatement of the Reconstruction Conjecture
All graphs of order three or more are reconstructable.

Now, let us look at some of the basic information about graphs that we can
use in reconstruction.

Basic Information
The reconstruction conjecture is only stated for graphs of order 3 or more.

We already know that if G and H have order 2, then the reconstruction conjec-
ture is false.

A graph G is referred to as labeled if its vertices are associated with distinct
labels in a one to one manner. We refer to the labels as the vertex set of G.
However, in consideration of the reconstruction conjecture, we do not consider
that the vertex deleted subgraphs are labeled when we are looking at them. If
the vertex deleted subgraphs were labeled, then the reconstruction conjecture
would be trivially true.

Example
Let H be the graph consisting of just two vertices and G be a path of order

2. Then it is obvious that G−vi is isomorphic with H−ui for i = 1, 2. However,
with the H and G that we started with, the two graphs are not isomorphic to
each other.

G = 1 2 H = 1 2

We refer to the graphs G− vi,∀i = 1, · · · , n as the vertex deleted subgraphs.
Denote the graph G − vi = Gi. If we have the collection of vertex deleted

1



subgraphs there are several facts that we know that we recover about the original
graph G. We refer to these items as recoverable. We will also refer to the set of
all the vertices of G as V (G).

One of the most obvious recoverable facts about G is its order. We know
that the order of G is going to be at least three. If we have all of the Gi then
we will have exactly one Gi for each of the vertices vi ∈ G. From this we can
see that the number of Gi that we have is going to be the same as the order of
G. Since we know that the order of a graph G is recoverable, let n represent
the order of a graph.

Another fact about G that is recoverable is the total number of edges, q.
When looking at the graphs Gi we notice that each of the edges in G appears
in n − 2 of the subgraphs. Specifically the two Gi that any edge would not be
in are the two Gi where the vertices associated with that specific edge are the
deleted vertices. Let qi be the number of edges in each of the Gi, i = 1, · · · , n,
then the total number of edges is

q =
∑ qi

n−2 .
We are also able to tell the degree of each vi ∈ G. Now that we know

that there are p edges in the whole graph G and from the way that we have
constructed the subgraphs Gi, we can see that in each of these Gi the only edges
that are missing are going to be the ones that have vi as an endpoint. Therefore,

degvi = q − qi,∀i = 1, · · · , n.
In a connected graph G, we say that v is a cut vertex if the graph G− v is

disconnected. In a disconnected graph G, v is a cut vertex if it is a cut vertex
in any of the components of G.

Theorem 1
Let G be a non-trivial connected graph and let u ∈ V (G). If v is a vertex

of G such that the length of a u− v path in G is maximal, then v is not a cut
vertex.

Proof:
Assume that v is a cut vertex. Then, there exists a vertex w of G− v such

that w is in a different component of G − v than u. Then because v is a cut
vertex in G, every u−w path contains v. Therefore there is a u−w path which
has length longer than our maximal u − v path. This is a contradiction, so v
must not be a cut vertex.//

Corollary 1
If G is a non-trivial connected graph, then G contains at least two vertices

that are not cut vertices.
Proof:
Let u, v ∈ V (G) such that the length of a u− v path in G is maximal. Then

by Theorem 1, u and v are not cut vertices.//

Corollary 2
If G is a graph of order n ≥ 3 with q edges and G has no isolated vertices,

then
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a) if n is odd, q ≥ ((n + 1)/2)
b) if n is even, q ≥ (n/2)

Proof by induction:
Start with n = 3
Since there are no isolated vertices, then each vertex must have an edge from

one of the other vertices to it. By inspection, the least number of edges that
you could have then is 2.

2 ≥ (3 + 1)/2 = 2
So the inequalities hold for n = 3
Next show that if the inequalities hold for n and then they hold for n + 1.
Case 1, n is even
Then let qi be the number of edges in a graph of order i. Assume that

qn ≥ (n/2). We need to show that qn+1 ≥ (((n + 1) + 1)/2). To get a graph
of order n + 1 from any graph of order n, we have to add a vertex. Since we
have assumed that there are no isolated vertices, we also have to add at least
one edge to connect that vertex to another vertex already in the graph. Then
it follows that

qn+1 ≥ qn + 1 ≥ (n/2) + 1 = (n + 2)/2 = ((n + 1) + 1)/2.
So from this we get that qn+1 ≥ (((n + 1) + 1)/2).
Case 2, n is odd
Assume that qn ≥ ((n + 1)/2). We need to show that qn+1 ≥ ((n + 1)/2).

Since there are no isolated vertices in G, then by the same argument as in case
1,

qn+1 ≥ qn ≥ ((n + 1)/2).
So from this we get that qn+1 ≥ ((n + 1)/2).
Then by induction the corollary is true for all n ∈ N.//

Theorem 2
If G is a graph with V (G) = {v1, · · · , vn}, for n ≥ 3, and Gi is the subgraph

with the vertex vi and the edges incident to it deleted ∀i = 1, · · · , n. Then
G is connected iff at least two of the Gi are connected.

Proof:
Let G be connected. Then by Corollary 1, we know that G contains two

vertices which are not cut vertices.
Assume that there exist two vertices of G, u, v, such that both G − u and

G− v are connected. This means that in G− u, v is connected to each vi, i ≥ 3
and in G − v, u is connected to each vi, i ≥ 3. Then there exists a vertex
w ∈ V (G) such that there is a u−w path in G− v and there is a v−w path in
G−u. Then we know that there exists a u−v walk in G. Therefore, by previous
work we know that there exists a u− v path in G. So, G is connected.

From Theorem 2, it is obvious that if we have all of the vertex deleted
subgraphs, Gi, then we are able to tell if the graph is connected or disconnected.
The connectivity of a graph is another fact about G that is recoverable from
the vertex deleted subgraphs.
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If G is connected then by looking at the Gi we can tell also how many cut
vertices the original graph G has. We already know that we can tell if G is
connected or not. If G is connected then we look at the number of the Gi which
are disconnected. Each vertex vi that created a disconnected Gi is a cut vertex.

Another fact about G that is recoverable is whether or not G is unicyclic.
A connected graph G is unicyclic if it contains exactly one cycle.

Theorem 3
A (n, q) graph G is unicyclic if and only if G is connected an n = q.
Proof:
Let G be a (n, q) unicyclic graph and let e be an edge of the cycle of G. The

(n, q − 1) graph G − e is a tree and is connected. Then because the number
of edges in a connected tree is equal to the number of vertices minus one.
Therefore, n − 1 = q − 1. Obviously if G is unicyclic, it is connected based off
of the definition of unicyclic. Also if n− 1 = q − 1 then it follows that n = q.

Let G be a connected (n, q) graph such that n = q. Since n = q, G is not
a tree. Then because G is not a tree, not every edge of G is a bridge. Since
there is some edge of G that is not a bridge, call it e, then e must be an edge
on a cycle. Then since e is on a cycle, G− e is connected and has n− 1 edges.
Therefore, G− e is a tree. So, e was an edge on the only cycle in G. Therefore,
G is unicyclic.//

Since we know that we can determine whether a graph G is disconnected or
not and because we can recover the n and q. Then we can also determine from
Theorem 3 whether a graph G is unicyclic or not.

A nontrivial connected graph G is Eulerian if it contains a circuit which
touches every edge of G exactly one time.

Theorem 4
Let G be a graph in which every vertex has degree at least 2. Then G

contains a cycle.
Proof:
Let v0 be a vertex of G. Since it has degree at least 2, then we can pick on

edge of G which has v0 as one end and a vertex, v1, as the other. Since the
degree of v1 is at least 2, we can pick an edge which has v1 as one end and a
vertex, v2, as the other. We can continue this process until eventually we pick
a vertex that has been chosen before. Thus, the choice of vertices that we have
done thus far is a cycle of G.//

Theorem 5
A connected graph G is Eulerian if and only if every vertex has even degree.
Proof:
Let G be a connected graph. Assume that G is Eulerian. Let C be an

Eulerian circuit in G. Put u as the start and end vertex of C. Let v be a vertex
of G such that v 6= u, then because G is connected, v is a vertex on C. Then,
every time v is on the circuit, it must be we must use a different edge to come
and leave v since C uses each edge of G exactly one time. Then, every time
that v appears in C, we add two to its degree. Thus, v has even degree. Since
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C began and ended at u, the beginning and ending edges of C add two to the
degree of u. Any other time that u appears in C the same idea as v applies.
Thus, the degree of u is even.

Let G be a connected graph such that every vertex has even degree.
Proof by induction on the number of edges in C.
First since G is connected if C has zero edges, then G must contain just the

vertex u. Therefore, trivially, G is Eulerian.
Next assume that if C has 1, · · · , n edges then G is Eulerian. We need to

show that if C has n + 1 edges, then G is Eulerian. Since G is connected, then
no vertex of G has degree zero. Then by theorem 4, because every vertex has
even degree, G contains a cycle. Call the cycle C1. If this cycle contains all the
edges of G then we are done. It C1 does not contain every edge of G, then we
delete every edge of G that we have already used. Thus creating a subgraph of
G, call it G1. We should note that G1 can be disconnected and that G1 has
the same vertex set as G. Also, all the vertices of G1 have even degree still
since the edges we removed took away two edges from every vertex that had
any edges removed from it. Also, obviously, G1 has less than n + 1 edges, so
by the induction hypothesis, each of the components of G1 must be Eulerian.
Then because we obtained G1 by deleting edges of G, each component of G1

must have at least one vertex in common with C. Now, to obtain an Eulerian
circuit, we start at any vertex of C and travel around C until we reach a vertex
that is part of a non-empty component of G1. When we reach such a vertex, we
follow the Eulerian circuit around that component. Then we resume traveling
around C until we reach the next such vertex. We continue this process until
we arrive back at the vertex of C that we chose to start with. Thus we have
constructed a Eulerian circuit in G.

Then by induction, for any connected graph G, if the degree of every vertex
of G is even, then G is Eulerian.//

We already know that we can recover the degree sequence of all the vertices
of G. Therefore, it then follows from Theorem 4 that whether a graph is Eulerian
or not is a recoverable fact about G.

Before we look at graphs that we know are reconstructable, it is important
to point out that just because we know whether a graph G is reconstructable or
not does not mean that we have determined a special technique to reconstruct
that graph. The discovery of such a technique is another problem in graph
theory that if we were to solve it, then the Reconstruction Conjecture would be
proven.

Some Reconstructable Graphs
There are many graphs that we know are reconstructable. We are going to

look at a few of these graphs and the proofs that they are reconstructable. We
will assume that all of our graphs are not multigraphs or digraphs, since there
is a proof that the reconstruction conjecture is false for both of these types of
graphs.
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Regular

First, we know that regular graphs are reconstructable.
Proof:
Let G be a regular graph of order n ≥ 3. And let Gi be the vertex deleted

subgraphs. From the definition of these subgraphs, we know that each of them
is going to be missing one of the vertices of G. Since G is regular then we
also know what the degree of each of the vertices in G is going to be, call it r.
Looking at any one of the Gi we can insert one more vertex, replacing the one
that has been deleted. Now we replace edges from our inserted vertex to any of
the v − i who have degree r − 1 until all the vertices have degree r. Then, G is
reconstructed.//

Complete

From this it follows that complete graphs are reconstructable.
Proof:
Let G be a complete graph of order n ≥ 3. Then by the definition of a

complete graph, G is n−1 regular. Then since regular graphs as reconstructable,
G is also.//

Disconnected

We also know that disconnected graphs are reconstructable.
Proof:
We know from Theorem 2 that we can determine from the vertex deleted

subgraphs whether the graph G is disconnected or not. Assume that G is
disconnected. Then, at most 1 of its vertex deleted subgraphs are connected.

Let the order of G be n ≥ 3. Put V (G) = {v1, · · · , vn}. Also let qi be the
number of edges in each of the G − vi. Also let q be the number of edges in
G. We know from above that we can compute the values of the numbers q and
p. We also know that we can compute the degree for each vi ∈ G and more
specifically that we can associate that degree sequence with each of the vi.

If for some j, qj = q, then it is obvious that the vertex vj is an isolated vertex
in the graph G. So then the graph G consists of the vertex deleted subgraph
G− vj with one added vertex, namely the vertex vj .

Now, assume that G has no isolated vertices. If there are no isolated vertices,
then it follows from Corollary 2, and the fact that for any n, (n + 1)/2 ≥ n/2,
that q ≥ (n + 1)/2. Therefore, G cannot be trivial if the order of G is at least
3 and there are no isolated vertices. Then by Corollary 1, G contains at least
two vertices which are not cut vertices.

Then for some Gi there will be a component F which contains the smallest
number vertices. Let m be the number of vertices in this component. Then it is
obvious that the deleted vertex vi must be in this component F in the original
graph G. If it was not in F then it would have to be in some other component
F ′. Then there would be a vertex deleted subgraph Gj with a component that
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would have m− 1 vertices in it. This contradicts the assumption that m is the
least number of vertices in any of the components of the subgraphs.

Now, because we are able to isolate the components that contain the deleted
vertex in the way described above, then we will only consider subgraphs which
have a component which is isomorphic to the original component F . In any
of these graphs, label the components which have more than m vertices as
F2, · · · , Fk. It is clear that these components are components contained in the
the graph G. So we are only interested in the components in the subgraphs
which are isomorphic to F since this is the only component of G that we have
left to reconstruct.

We must consider 3 cases:

1. Some component Fi, i = 2, · · · , k has order at least m + 3.

Let b denote the number of components which have order m+1. However,
please note that b can be 0. Then if we select one subgraph Gj with k
components such that b + 1 of these components have order m + 1. This
means that vj belongs in a component that has order greater than m+2. If
vj was not in a component of larger order, then it would be in a component
with order m + 1 then there would be b + 1 components of order m + 1
which contradicts the definition of b. So then the r + 1 components that
have order m + 1 are all components of G, one of them is F . Then the
original G consists of these components which have order m + 1 in Gj

together with any of the previously assigned Fi, i = 2, · · · , k which have
order greater than m + 1. So G is reconstructed.

2. All components of Fi, i = 2, · · · , k have order m + 2.

Look at all all the remaining Gi which have k components, two of which
have order m + 1. Each time, one of those two components is F . If there
is only one graph which appears in each pair, then it is F . If this is
not the case then every pair of components will be two non-isomorphic
components. Call these two F ′ and F ′′. One of either F ′ or F ′′ is F , the
other was obtained by deleting a non-cut vertex from some component of
G, specifically Fi, i = 2, · · · , k. So look at the Fi. Pick one and remove a
non-cut vertex from this component. You will then obtain a graph that is
either F ′ or F ′′. Which ever one you do not get by removing the vertex
is F .

3. At least one component among the Fi, i = 2, · · · , k has order m + 1, all
others have order m + 2.

First, some basic things to remember. If we are considering all components
of Gi which have k components of order m, then all components that have
order greater than m will be components of G. Also, a graph G′ is a
component of G iff it has order greater than m and it is a component of
Gj for some j where Gj has at least one component of order m.

Now, if each Gi has all but one of its components isomorphic to G′ then
every component of G is isomorphic to G′. If there is some components
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of the Gis which is not isomorphic to G′, then notice that the number of
components in G which are isomorphic to G′ is going to be the same as the
maximum number of components that are isomorphic to G′, denote this
maximum as c′ in one of the Gi where one of the components has order
m. If this is the case, then looking at the Gi which gave us this maximum
we get that all the components of this Gi which are isomorphic to G′ are
components in G. Then we look at a Gj which has less than c′ components
isomorphic to G′, specifically it will have c′− 1 components isomorphic to
G′. Then vj must have been deleted from one of the components that is
isomorphic to G′. Then the other k− c′ components are also components
of G. Then G has been reconstructed.

In this case there is one exception. If only one component has order m+2
and G′ is a component of order m+1 and every component of order m+1
in each of the Gi is isomorphic to G′ then the number of components of
G which are isomorphic to G′ is one more than the maximum that was
previously described. However, this will not affect the reconstruction of
G.

Therefore, disconnected graphs are reconstructable.//

Compliment is Disconnected

From the above it follows that if the complement of G is disconnected then
we can reconstruct G.

Assume that G is a connected graph such that the compliment of G, G, is
disconnected. Then from the Gi it is obvious that Gi is the same as taking the
compliment of each of the Gi. Then when we have the compliment of each of
the Gi we know that since G is disconnected that we can reconstruct it. From
here, the definition of a compliment allows us to reconstruct G.//

Trees

Another kind of graph that we know is reconstructable are trees. Before
looking at that proof, let us introduce some terminology that will make the
discussion easier.

Atree is a connected graph in which every edge is a bridge. An edge e in a
connected graph G is called a bridge if G − e is disconnected. An edge e in a
disconnected graph G is called a bridge if it is a bridge in one of the components
of G. When needed, we are able to select a vertex in a tree T , and call it the
root of T . When we do this, we then refer to the the T as a rooted tree and these
trees are often redrawn so that the root r is at the top of the graph and the
remaining vertices are below the root. For convenience we will denote a rooted
tree T with root r as (T, r). If the tree T that we are dealing with is a path,
and we select an r such that at most one other vertex is incident to r, then we
refer to (T, r) as a rooted path. Also, in a tree, any vertex v that has three or
more edges incident to it is referred to as a junction vertex. Since T is a tree,
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then T has some vertices which are end vertices. If v is a vertex on the longest
path which is also a end vertex, then we call v a /emphperipheral vertex of G.
We will denote the set of peripheral vertices by Π(G). Any Gi which is itself a
tree will also be referred to as a vertex deleted subtree. It should also be noted
that if Gi is a vertex deleted subtree, then the vertex vi would have been an
end vertex of G.

If we take a tree T and remove all the end vertices, then we will obtain a
subtree by repeated application of the previous definition. If we continue this
process, eventually the subtree will either be a single vertex or a pair of vertices
joined by a single edge. If the result is a single vertex, then we will refer to
the tree T as a central tree and the remaining vertex as the center of T . If the
result is a pair of vertices then we will refer to the tree T as a bicentral tree and
the remaining vertex as the bicenter. If T is a central tree, then a branch of T ,
(B, c), is a rooted tree such that the center of T , c, is the root, only one edge
incident to c is included, and the collection of vertices, u, where the is a path
from c to u that uses that edge. If T is a bicentral tree, then a branch of T
is one of the components of the subgraph obtained by deleting the single edge
which connects the bicenter of T . It follows from this that if T is a bicentral
tree, then T has exactly two branches and if T is a central tree, then T has
deg(c) branches.

A branch of T is a peripheral branch if it contains a peripheral vertex of T .
It also follows that every tree will have at least two peripheral branches, in a
bicentral tree, both branches are peripheral branches. However, it is possible
that a tree T will have more than 2 peripheral branches. This happens when
there are more than two vertices in Π(G). The number of peripheral branches
cannot exceed the number of vertices in Π(G).

A pair graphs G and H are called hypomorphic if there exists a bijection
σ : V (G) → V (H) such that G − v ∼= H − σ(v)∀v ∈ V (G). We refer to the
function σ as a hypomorphism of G onto H.

Fact 1
A graph G is reconstructable if it has a vertex z such that every z-reconstruction

of G is isomorphic to G.

Theorem 6
1) If G and H are hypomorphic, then |V (G)| = |V (H)|
2) If G and H are hypomorphic and both have three or more vertices, then

|E(G)| = |E(H)|.
Proof:
1)
Since G and H are hypomorphic, then there exists a hypomorphism, σ, from

G onto H. Then it follows that any hypomorphism of G onto H is a one to
one, onto function from V (G)toV (H). Then it follows from the properties of
bijections that |V (G)| = |V (H)|.

2)
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Let σ be a hypomorphism from G onto H. Then because each edge of G is
in |V (G)| − 2 of the Gi and each edge of H is in |V (H)| − 2 of the Hi and also
G− v ∼= H − σ(v)∀v ∈ V (G), it follows that

|E(G)|(|V (G)| − 2) =
∑
|E(G− v)|,∀v ∈ V (G)

=
∑
|E(H − σ(v))|,∀v ∈ V (G)

=
∑
|E(H − w)|,∀w ∈ V (H)

= |E(H)|(|V (H − 2)|
Then it follows that |E(H)| = |E(G)| because |V (G)| ≥ 3 and |V (H)| ≥ 3.//

Theorem 7
If two graphs of order greater than or equal to three are hypomorphic then

they are either both connected or both disconnected.
Proof:
Let G and H be two graphs of order n ≥ 3. Assume that σ is a hypomor-

phism from G onto H. We know from Corollary 1 that if G and H are connected
then they both contain at least two vertices that are not cut vertices and that
they both have at least two connected vertex deleted subgraphs. If G and H are
disconnected then it follows that they must have at most one connected vertex
deleted subgraph. Then because G and H have the same number of connected
and disconnected vertex deleted subgraphs, it follows that if G is connected then
so is H and if G is disconnected then H must be also.//

Lemma 1
Any graph hypomorphic to a tree with at least three vertices, is also a tree

with at least three vertices.
Proof:
Assume that G is a graph which is hypomorphic to a tree T which has at

least 3 vertices. Then by Theorem 6, the order of G is the same as the order of
T . Let the order of G be n. Since T is a tree, then T has n − 1 edges. Also,
because there is a hypomorphism between G and T , Theorem 6 says that the
number of edges in G and T is the same. Therefore, G has n− 1 edges. It also
follows from Theorem 7 that G is connected. Then by the definition of a tree,
G is a tree.//

Lemma 2
Every tree T with at least 3 vertices and at most one junction vertex is

reconstructable.
Proof:
Let T be a tree with at least 3 vertices and at most one junction vertex. Let G

be a graph which is hypomorphic to T . Then, by the definition of hypomorphic,
there exists a hypomorphism σ of T onto G. Then it follows from lemma 1 that
G is a tree.

Case 1
Assume T has no junction vertices. Then it follows that also G has no

junction vertices. Then by the definition of a junction vertex, it follows that T
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and G are both paths. Therefore, T is isomorphic to G and it then follows that
G is the reconstruction of T .

Case 2
Assume T has one junction vertex. Assume that v is the junction vertex of

T and by the definition of a hypomorphism, σ (v) is the only junction vertex of
G. Then from this information it follows that G is isomorphic to T and more
so that G is the reconstruction of T.//

We will refer to a v-reconstruction of a graph G as a graph H where V (G) =
V (H), G− v = H − v and G is hypomorphic to H. Since in a v-reconstruction
of a graph G, any v ∈ V (G) is also a v ∈ V (H) then if we are referring to a
vertex that is in one of these sets while looking at a v-reconstruction of H, in
consideration of the degree of the vertex v, degG(v) will be the degree of v in
the graph G and degH(v) will be the degree of v in H. For our discussion, we
will use the convention that the set of vertices, NG(v) of vertices in G which are
adjacent to v will be called the neighborhood of v. We will also let Yα denote
a tree which has exactly one junction vertex and exactly three end vertices, in
which the junction vertex is adjacent to two and only two of the end vertices
and for any positive integer α the distance between the junction vertex and the
non-adjacent end vertex is α.

Looking at the set of vertices of G, V (G), we will refer to V1(G) as the set
of the end vertices of G. It also follows that V1(G) is a subset of V (G). Also, a
vertex of a graph G is bad is G has a vertex of degree n = deg(v)−1. Assuming
that G and Q are graphs, we will let sQ(G) denote the number of subgraphs
of G which are isomorphic to Q. More specifically we will let sQ(G, v) be the
subgraphs of G which include the vertex v that are isomorphic to Q. We will also
let dT (u, v) denote the distance in tree T between vertices u and v. Assuming
that U is a nonempty subset of V (T ), then we will let dT (u, U) denote the
minimum dT (u, v)∀v ∈ U . If T is a tree with three or more vertices and (R, r)
is a rooted tree, we will let b(R,r)(T ) denot the number of branches of T that
are isomorphic to (R, r).

Lemma 3, Kelly’s Lemma
If G and H are hypomorphic graphs, Q a graph such that |V (Q)| < |V (G)|,

then sQ(G) = sQ(H).
Proof:
Since G and H are hypomorphic, then there exists a hypomorphism, σ, of

G onto H. Since each subgraph of G which is isomorphic to Q is contained in
|V (G)| − |V (Q)| of our Gi and each subgraph of H which is isomorphic to Q is
contained in |V (H)| − |V (Q)| of our Hi and also G− v ∼= H − σ(v)∀v ∈ V (G),
then it follows that

sQ(G)(|V (G)| − |V (Q)|) =
∑

sQ(G− v),∀v ∈ V (G)
=

∑
sQ(H − σ(v)),∀v ∈ V (G)

=
∑

sQ(H − w),∀w ∈ V (H)
= sQ(H)(|V (H)| − |V (Q)|).
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From this we can conclude that sQ(G) = sQ(H) since |V (Q)| < |V (H)| and
|V (Q)| < |V (G)| by theorem 6.//

Lemma 4
If v is a vertex of a graph G and if H is a v-reconstruction of G and if Q is

a graph such that |V (Q)| < |V (G)|, then sQ(G, v) = sQ(H, v).
Proof:
Since G− v = H − v, then by Lemma 3 we get that

sQ(G, v) = sQ(G)− sQ(G− v)
sQ(H)− sQ(H − v)
sQ(H, v).//

Lemma 5
Let z be a vertex of a graph G with at least three vertices. Let H be a

v-reconstruction of G. Then for some non-negative integer m, there exist m
distinct bad neighbors, v1, · · · , vm, of z in G and m distinct vertices, u1, · · · , um

of V (G)−NG(z) such that
degG(u− i) = degG(vi)− 1,∀i = 1, · · · ,m

and
NH(z) = (NG(z)− {v1, · · · , vm})

⋃
{u1, · · · , um}

Proof:
Since H is hypomorphic to G and H − z = G − z, then it follows that

degG(z) = degH(z). For all nonnegative integers k the number of vertices in
NH(z)−NG(z) who have degree k in H must be equal to the number of vertices
in NG(z)−NH(z) who have degree k. So we write

NG(z)−NH(z) = {v1, · · · , vm}
NH(z)−NG(z) = {u1, · · · , um}

with
degG(vi) = degH(wi) = degG(wi) + 1, i = 1, · · · ,m.

It follows from this that v1, · · · , vm are bad in G and u1, · · · , um are the
vertices of G such that degG(ui) = degG(vi)− 1.

We still must show that NH(z) = (NG(z) − {v1, · · · , vm})
⋃
{u1, · · · , um}.

However, using substitution this result easily follows from the above information.//

Lemma 6
Let T be a tree and either

(i) T has exactly two branches, and at least one of them is a rooted path
or
(ii) T is a central tree and all of its peripheral branches are rooted paths.

Then T is reconstructable.
Proof:
From Lemma 2 we can assume that G has more than one junction vertex.

Assume that the diameter of T is a. By the assumptions of the lemma, T has a
peripheral branch that is a rooted path. Let v be the peripheral vertex on that
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branch. Let w be the neighbor of v in T . Assume that S is a v-reconstruction
of T . Then by Fact 1, it remains to prove that T ∼= S.

Since T has at least two junction vertices, we can then conclude that deg(w) =
2. Then, by Lemma 5, either NS(v) = {w} or NS(v) = {z} for some z ∈
V1(T )− {v}.

If NS(v) = {w} it is obvious that S ∼= T .
Assume that NS(v) = {z} for some z ∈ V1(T ) − {v}. In this case, it is

obvious that the set of junction vertices of T , J(T ) is the same as the set of
junction vertices of S, J(S). It also follows thats S is a tree. We will put the
set J equal to J(T ). Then by Lemma 4, the smallest positive integer α such
that v is in a subtree of T that is isomorphic to Yα is the same as the smallest
α such that v is in a subtree of S that is isomorphic to Yα. In other words,

dT (v, J) = dS(v, J) = dT (z, J) + 1
It also follows from the way that we defined v and the fact that the diameter

of T is larger than dT (v, z) that dT (v, J) ≥ 1
2a. Then it follows, with a little work

which will be omitted at this time, that the vz-path in T includes exactly one
element in J , call it u. Then it follows that dT (u, v) = dT (z, u) + 1. Therefore,
S ∼= T.//

Trees are reconstructable.
Proof:
Let T and U be hypomorphic trees of order greater than or equal to three.

Then by Lemma 1, we need to prove that S ∼= T .
If Lemma 6 applies to either U or T , then we know that because they are

hypomorphic and one of them is reconstructable that S ∼= T . Assume both U
and T fail at least one of the hypotheses of Lemma 6.

The by Lemma 3, sQ(U) = sQ(T ). Let l be the path of longest length in
T . Then it follows that U must contain a path of length l and that it must be
the longest path in U . This means that U and T have the same diameter, let
d = diam(U) = diam(T ). Define a set D(T ) as the set of all vertex deleted
subtrees of T which have diameter d. Then D(U) represents the same thing for
U . Since U and T are hypomorphic, then every tree in D(T ) is isomorphic to a
tree in D(U) and the same for trees in D(U) being isomorphic to trees in D(T ).
Then it follows that if b(R,r) is the order of the largest branch in T , then b(R,r)

is the order of the largest branch in U also. Pick (R, r) a rooted tree of order
b(R,r) where at least one subtree in D(U) has a branch isomorphic to (R, r).

We need to show that (R, r) is not a rooted path, however we will omit this
work at this time and assume that (R, r) is not a rooted path. Since (R, r) is not
a rooted path, we can choose a vertex, v ∈ v1(R) − {r} so that dR(r, w) = 1

2a
for some vertex w ∈ V1(M)− {v}. Put L = M − v. Now pick an element S − z
of D(S) such that

1) b(R,r)(S − z) ≤ b(R,r)(S − u),∀S − u ∈ D(S)
2) b(L,r)(S − z) ≥ b(L,r)(S − u),∀S − u ∈ D(S)suchthatb(R,r)(S − z) =

b(R,r)(S − u)
Let T − x ∈ D(T ) such that T − x ∼= S − u.
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Since S does not satisfy Lemma 6, we are assured that each branch of S is
a member of D(S). Also becase T does the same, we know that each branch
of T is a member of D(T ). Then following the same idea that we used in the
proof that disconnected graphs are reconstrutable, we see that S is isomorphic
to a tree obtained from the graph S − u by replacing one of the branches that
is isomorphic to (L, r) with one that is isomorphic to (R, r). If we do a similar
style replacement with T . Then combining this with he fact that S−u ∼= T −x
we conclude that S ∼= T.//

Example Reconstruction
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First we can easily see that n for our original G is 10.
Using the formulas that we have previously introduced, we can compute p.

We know that
q =

∑ qi
n−2

We can easily see that
q1 = 11
q2 = 11
q3 = 11
q4 = 11
q5 = 10
q6 = 11
q7 = 11
q8 = 10
q9 = 9
q10 = 9.

So from that we get
q = 11+11+11+11+10+11+11+10+9+9

10−2

q = 104
8 = 13

Another formula that we have previously introduced will give us the degree
of each vi.

degvi = q − qi

So
degv1 = q − q1 = 13− 11 = 2
degv2 = q − q2 = 13− 11 = 2
degv3 = q − q3 = 13− 11 = 2
degv4 = q − q4 = 13− 11 = 2
degv5 = q − q5 = 13− 10 = 3
degv6 = q − q6 = 13− 11 = 2
degv7 = q − q7 = 13− 11 = 2
degv8 = q − q8 = 13− 10 = 3
degv9 = q − q9 = 13− 9 = 4
degv10 = q − q10 = 13− 9 = 4.
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We know that the original graph, G, is disconnected because each of the
G− vi subgraphs are disconnected.

Since the Reconstruction Conjecture has not been proven true, we do not
know that we can uniquely reconstruct G. However, one possible reconstruction
of G is

G =
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