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a b s t r a c t

In this paper, we consider two problems which can be posed as spectral radius minimization problems.
Firstly, we consider the fastest average agreement problem on multi-agent networks adopting a linear
information exchange protocol. Mathematically, this problem can be cast as finding an optimal W ∈ Rn×n
such that x(k + 1) = Wx(k), W1 = 1, 1TW = 1T and W ∈ S(E). Here, x(k) ∈ Rn is the value
possessed by the agents at the kth time step, 1 ∈ Rn is an all-one vector and S(E) is the set of real
matrices in Rn×n with zeros at the same positions specified by a network graph G(V, E), where V is the
set of agents and E is the set of communication links between agents. The optimal W is such that the
spectral radiusρ(W−11T/n) isminimized. To this end,we consider two numerical solution schemes: one
using the qth-order spectral norm (2-norm) minimization (q-SNM) and the other gradient sampling (GS),
inspired by the methods proposed in [Burke, J., Lewis, A., & Overton, M. (2002). Two numerical methods
for optimizing matrix stability. Linear Algebra and its Applications, 351–352, 117–145; Xiao, L., & Boyd,
S. (2004). Fast linear iterations for distributed averaging. Systems & Control Letters, 53(1), 65–78]. In this
context, we theoretically show that when E is symmetric, i.e. no information flow from the ith to the
jth agent implies no information flow from the jth to the ith agent, the solution W (1)

s from the 1-SNM
method can be chosen to be symmetric and W (1)

s is a local minimum of the function ρ(W − 11T/n).
Numerically, we show that the q-SNM method performs much better than the GS method when E is
not symmetric. Secondly, we consider the famous static output feedback stabilization problem, which is
considered to be a hard problem (some thinkNP-hard): for a given linear system (A, B, C), find a stabilizing
control gain K such that all the real parts of the eigenvalues of A + BKC are strictly negative. In spite of
its computational complexity, we show numerically that q-SNM successfully yields stabilizing controllers
for several benchmark problems with little effort.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction and problem statement

A typical scenario in multi-agent missions is for the agents to
agree upon a certain quantity or decision based on their current
information. For example, suppose that a teamofUAVs (unmanned
air vehicles) is tracking a moving object and needs to sense
continuously relevant data, e.g. position and heading of the object,
and to communicate them to the teammembers in order to update
the current status of the object. In practice, each UAV is likely
to have limited data processing power and therefore the tracking
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must be done in a decentralized manner. In other words, a UAV is
only capable of communicating with a limited number of adjacent
UAVs. Therefore, one may easily conclude that the mission heavily
hinges on the ramifications of the limited information exchange
pattern. Such a decentralized tracking problem that requires each
agent (processor) to do iterative weighted average operations in a
decentralized manner is called the average consensus problem, and
has been studied for numerous applications, e.g.mobile ad-hoc and
wireless sensor networks. These applications include consensus
with statically or dynamically changing information-exchange
topologies (Olfati-Saber & Murray, 2004), high-frequency channel
noise (Olfati-Saber & Shamma, 2005), corrupted measurement
data (Ren, Beard, & Kingston, 2005), network link failures (Cortes,
Martinez, & Bullo, 2006), or state-dependent graph settings (Kim &
Mesbahi, 2006).
In this paper, we are particularly interested in the optimal

matrixW ∈ Rn×n (denoted byW ∗) such that the following rule
x(k+ 1) = Wx(k), (1)
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allows xi(k) to converge to 1Tx(0)/n with minimum k∗ within a
prescribed tolerance for every i (∈ {1, 2, . . . , n}). Here, x(k) =
[x1(k), . . . , xn(k)]T, xi(k) is the value possessed by the ith agent
at time step k on a network (graph) G with a proper1 information
exchange pattern E , and k (∈ {0, 1, 2, . . .}) is the discrete-time
step index. Anetwork (graph)G consists of a setV of nodes (agents)
vi (i = 1, 2, . . . , n) and a set E of edges (communication links)
eij (i, j = 1, 2, . . . , n, i 6= j) with weight wij on eij. The weighting
factor wij is zero if no communication link exists from i to j,
and can be any real (not necessarily positive) value otherwise.
The position of zero weights (no communication links) defines
different information exchange patterns and a set

S(E)
def
={W = [wij] ∈ Rn×n | wij = 0 if eij 6∈ E}.

We note that symmetric E , i.e. eij ∈ E implies eji ∈ E , does not
necessarily imply symmetric weightW . For the sake of the average
convergence of the rule (1), i.e.

‖W q − 11T/n‖ < ε (2)
for large positive integer q and sufficiently small positive ε, the
matrixW ∈ S(E)must have the following properties, as observed
in Xiao and Boyd (2004):
W1 = 1, 1TW = 1T

and ρ(W − 11T/n) def= ρ(W̃ ) < 1, (3)
where 1 ∈ Rn denotes an all-one vector and ρ(X) is the spectral
radius of matrix X . This implies that the optimal W ∗ is obtained
when ρ(W̃ ) or q is minimized.
FindingW ∗ is an old problem, although the structure embedded

in W may not be old. It can be translated into finding the
most stable discrete-time linear system, or finding the fastest
mixing Markov chain (discrete-time stochastic process) when
W is non-negative (entry-wise). These areas have been popular
research topics in the control community. However, findingW ∗ or
minimizing the spectral radius matrix function ρ(·) is known as a
very hard problem in general. This is becauseρ(·) is continuous but
neither convex nor locally Lipschtz (Overton & Womersley, 1988).
For this reason, there are few works in the literature that directly
address the problem in question. In Xiao and Boyd (2004), the
authors approach the problem by solving the following program:
Ps : min

W
‖W̃‖

s.t. W ∈ S(E), W1 = 1, 1TW = 1T

for a given G. The programPs minimizes the largest singular value
of W̃ , σ̄ (W̃ ), instead of ρ(W̃ ). Thus, the solution Ws to Ps only
guarantees the well-known bound
ρ(W̃ ∗) ≤ ρ(W̃s) ≤ σ̄ (W̃s),
where the gap between ρ(W̃ ∗) and σ̄ (W̃s) can be unacceptably
large in general. In Burke, Lewis, and Overton (2002), the authors
propose the so-called (unconstrained) gradient sampling method to

1 By a proper information exchange pattern at the kth time step, we mean an
information exchange pattern such that (1) allows x(k) to converge to (11T/n)x0 .
In otherwords, forW to be associatedwith a proper information exchange pattern it
must satisfy the three conditions in (3). For an example of an improper information
exchange pattern, consider four agents whose information exchange pattern is a
one-way path, i.e. the first agent only talks to the second, the second only to the
third and the third only to the fourth. In this case, there is no W such that (3) is
satisfied, and (1) thus fails to converge to the desired value. The characterization
of proper information exchange patterns is under study and nontrivial, because
the spectral radius condition (3) is not convex. As a special case, if one further
restricts W by three linear constraints: (i) every entry of W is non-negative;
(ii) the corresponding (directed) graph is strongly connected (see page 358 in (Horn
& Johnson, 1985) for the notion of strongly connectedness); (iii) one of the diagonal
entries ofW is positive; then one can drop the spectral radius condition in (3) and
thus obtain at least a desired W (satisfying (3)) by solving, for example, Ps (to
be introduced shortly) with the additional three linear constraints (see page 522
in Horn and Johnson (1985)).
minimize the spectral abscissa α(·) (the largest real part of the
eigenvalues). The gradient sampling method is a variation of the
reliable steepest descent method. It uses gradient information on
the neighbourhood of each iteration point yk, not just the gradient
at the single point yk. As a result, the gradient sampling method
becomesparticularly usefulwhen it is applied tominimizing anon-
smooth (non-differentiable) function such as ρ(·) (see Burke et al.
(2002) and Section 2.2 for details).
In this paper, we further develop the foregoing two ideas for

finding W ∗. In the following Section 2.1, we first introduce the q-
th order spectral norm (2-norm) minimization method (q-SNM) to
improve the solutionWs toPs. We then show that 1-SNM can yield
a symmetric solution W (1)

s such that σ̄ (W̃ (1)
s ) = ρ(W̃ (1)

s ) if E is
symmetric, and, as a consequence,W (1)

s is a local minimizer of the
objective functional in (4) with any positive integer q, and thus
of the function ρ(W̃ ). In Section 2.2, we propose the constrained
gradient sampling method (CGSM) to accommodate non-smooth
functionminimization problemswith general constraints, wherein
we provide formula for computing the gradient of ρ(·). We
finally compare the two methods by extensive numerical tests in
Section 3. These numerical tests suggest that q-SNM is a better
choice than CGSM when the information exchange pattern E is
non-symmetric.
After the numerical tests for optimal average consensus, we

further delineate the q-SNM’s superiority in non-symmetric cases
in Section 4. We consider the classical static output feedback
stabilization problem which has long been considered a hard
problem (Syrmos, Abdallah, Dorato, & Grigoriadis, 1997): for a
given state model (A, B, C), find a stabilizing K such that all the
eigenvalues of A + BKC are strictly negative. We consider several
benchmark problems in which all associated A + BKC have non-
symmetric structures. It is then shown numerically that q-SNM
successfully yields stabilizing controllers with little effort, in spite
of the problems’ notorious reputation. Concluding remarks follow
in Section 5.

2. Optimal average consensus and two methods

2.1. q-SNM

The qth-order spectral norm minimization method (q-SNM)
basically solves the following program: for a given G and a positive
integer q

P (q)
s : minW

‖W q − 11T/n‖ (4)

s.t. W ∈ S(E), W1 = 1, 1TW = 1T,

where ‖ · ‖ denotes the 2-norm of a matrix. Note that P (1)
s = Ps.

If there exists W such that (2) is satisfied for some fixed q and ε,
W must be a feasible solution to P

(q)
s . Since we are interested in

finding the least q, we first solve (4) with q = 1, and then increase
q to enlarge the feasible setWq, where

Wq = {W | W1 = 1, , 1TW = 1T,W ∈ S(E),

‖W q − 11T/n‖ < ε}

for given ε and G (note thatWq1 ⊆ Wq2 for 1 ≤ q1 < q2). In other
words, we aim to find the smallest q such thatWq is non-empty.
Unfortunately, P (q)

s is not convex for q > 1 and thus cannot
be exactly solved using convex programming techniques. For this
reason, we consider approaching the optimal solution toP

(q)
s from

a feasible solution by iteratively solving the following dynamic
version of P (q)

s , i.e.
min
W (t)

‖X(t)− 11T/n‖

s.t. W (t) ∈ S(E), W (t)1 = 1, 1TW (t) = 1T,
X(t) = W (t)q.
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For the sake of removing nonlinearity from the program, we note
that (under the assumption thatW (t) is differentiablewith respect
to t)

X(t) = W (t)q (5)

if and only if, X(0) = W (0)q and

X ′(t) = (W (t)q)′ = W ′(t)W (t)q−1

+W (t)W ′(t)W (t)q−2 + · · · +W (t)q−1W ′(t).

We now discretize the program via X0 := X(0), W0 := W (0),
X ′(t) := (Xl − Xl−1)/1t and W ′(t) := (Wl − Wl−1)/1t , where
1t is a small positive constant and l is the time index. Note that
the discretization is valid provided that ‖Wl−Wl−1‖ is sufficiently
small. In other words, the nonlinear constraint (5) can be treated
as linear constraints via differentiation and linearization under
certain restrictions. Thus, we actually solve the following P

(q)
s for

Wl and Xl, instead of P
(q)
s : for givenWl−1 and Xl−1 = W

q
l−1,

P
(q)
s : minWl

‖Xl − 11T/n‖

s.t. Wl ∈ S(E),Wl1 = 1, 1TWl = 1T,
Xl = Xl−1 + (Wl −Wl−1)W

q−1
l−1 +

Wl−1(Wl −Wl−1)W
q−2
l−1 +

· · · +W q−1l−1 (Wl −Wl−1)

and

‖Wl −Wl−1‖ ≤ δ, (6)

where δ > 0 is a sufficiently small constant and varies
dynamically (see the algorithmAs below).
The choice of initial matrix W0 is crucial for obtaining a

high-quality solution to P
(q)
s . Since the program P

(1)
s (before

linearization) can be globally solved using a convex program, we
use the solution W (1)

s to P
(1)
s as the initial condition for P

(q)
s .

Recalling (2), suppose we fix ε ∈ (0, 1) and, after solving P
(1)
s , we

have

‖W (1)
s − 11T/n‖ def= ‖W̃ (1)

s ‖ ≤ ε1,

which implies

‖(W (1)
s )q − 11T/n‖ = ‖(W (1)

s − 11T/n)q‖

≤ ‖W (1)
s − 11T/n‖q

= ‖W̃ (1)
s ‖

q
≤ ε

q
1.

If εq1 < ε, thenW (1)
s solves P

(q)
s . Otherwise, we search for a better

solutionW nearW (1)
s in the sense that ρ(W̃ ) < ρ(W̃ (1)

s ). Since the
least q such that (2) is satisfied for the fixed ε is unknown, we start
with q = 2 and thus solve P

(2)
s with Wl−1 = W

(1)
s and Xl−1 =

(W (1)
s )2, in the hope of findingW (2)

s such that ‖W̃ (2)
s ‖

q < ε. Once
W (2)
s is obtained, we check if ρ(W̃ (2)

s ) < ρ(W̃ (1)
s ). If so, we iterate

again solving P
(2)
s to improve the solution with newWl−1 = W

(2)
s

and Xl−1 = (W (2)
s )2. Otherwise, we solve the same problem with

a smaller δ in (6) for a refined search or (if δ is too small) move
on to P

(3)
s and repeat the same procedure until q is sufficiently

large (typically in our experience 7). The following summarizes the
aforementioned algorithmAs:
Initialization: Fix δ := 10−3 and set q := 2.

Step 1: Solve P
(1)
s , obtainW

(1)
s and

setW ∗ := W (1)
s ,Wl−1 := W

(1)
s

and Xl−1 := W 2l−1.
Step 2: Solve P
(q)
s and obtainW

(q)
s .

If ρ(W̃ (q)
s ) < ρ(W̃ ∗),

setW ∗ := W (q)
s ,Wl−1 := W

(q)
s

and Xl−1 := W
q
l−1,

and proceed with Step 2;
else
if q > 7,
terminate the algorithm;
elseif δ < 10−5,

set q := q+ 1, Xl−1 := W
q
l−1,

δ := 10−3 and proceed with Step 2;
else

δ := 0.1δ and proceed with Step 2.

For a fixed ε, there is no guarantee that the proposed algorithm
finds a solution, W ∈ Wq, and it is a challenge to determine how
close the solution W is to the optimal solution W ∗. However, the
following result provides us with a partial answer to this question.

Proposition 1. For a network graph having symmetric E , W (1)
s can

be chosen to be symmetric, so that

σ̄ (W (1)
s − 11T/n) = ρ(W (1)

s − 11T/n).

Furthermore, the symmetric W (1)
s is a local minimum of the objective

functional in (4) with any positive integer q.

Proof. The first claim easily follows by the convexity of the norm
function. In fact, we first note that

γW (1)
s + (1− γ )(W

(1)
s )T

for any γ ∈ [0, 1], is a feasible solution to P
(1)
s when E is

symmetric. In addition,

‖W − 11T/n‖ = γ ‖W − 11T/n‖ + (1− γ )‖W T − 11T/n‖
≥ ‖γW + (1− γ )W T − 11T/n‖.

Thus, if W (1)
s is a global minimizer of the objective functional of

P
(1)
s , so is γW

(1)
s + (1− γ )(W

(1)
s )T for any γ ∈ [0, 1]. This implies

that ‖W (1)
s − 11T/n‖ = ‖γW (1)

s + (1 − γ )(W
(1)
s )T − 11T/n‖.

Setting γ = 1/2, we have another global symmetric minimizer,
(W (1)

s + (W
(1)
s )T)/2.

For the second claim, we only consider q = 2 because a similar
argument can be applied to higher q. We first note that for a
symmetric matrix V ,

‖V q‖ = ‖V‖q.

Thus,

‖(W (1)
s )q − 11T/n‖ = ‖(W (1)

s − 11T/n)q‖

= ‖W (1)
s − 11T/n‖q.

This implies that if W (1)
s minimizes ‖W − 11T/n‖, then it also

minimizes ‖W − 11T/n‖q over the set of symmetric W . Suppose
now that there exists a non-symmetric perturbation 1 such that
for a sufficiently small ε > 0

‖(W (1)
s + ε1)

2
− 11T/n‖ < ‖(W (1)

s )2 − 11T/n‖

= ‖W̃ (1)
s ‖

2,

and therefore

‖(W (1)
s + ε1

T)2 − 11T/n‖ < ‖W̃ (1)
s ‖

2.

Then, we have

(‖(W (1)
s + ε1)

2
− 11T/n‖ + ‖(W (1)

s + ε1
T)2 − 11T/n‖)/2

< ‖W̃ (1)
s ‖

2,
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and consequently

‖(W (1)
s + ε(1+1

T)/2)2 + ε2(1−1T)2/4− 11T/n‖

< ‖W̃ (1)
s ‖

2.

Since ε was chosen sufficiently small, we can conclude that

‖(W (1)
s + ε(1+1

T)/2)2 − 11T/n‖ < ‖W̃ (1)
s ‖

2,

which contradicts the assumption that W (1)
s minimizes ‖W 2 −

11T/n‖whenW is symmetric. This completes the proof. �

Proposition 1 reveals two facts. The first part of the statement
implies that one can further restrict the feasible matrices of
P
(1)
s to be symmetric to obtain the same result, which was
observed through numerical simulations in Xiao and Boyd (2004).
The second part of the statement indicates that W (1)

s is a local
minimizer of the function ρ(W̃ ), and thus q-SNM may not be
better than 1-SNMwhen E is symmetric. This is just because of the
linearization aroundW (1)

s introduced to approximately solve (4).
Note that the computational complexity ofAs is dominated by

solving P
(q)
s in Step 2 at each iteration. As P

(q)
s involves order

n2 variables, it costs order n6L flops if one uses an interior-point
method (Newton’s method), where L is the length of a binary
coding of the input data (Potra & Wright, 2000).

2.2. The constrained gradient sampling method

As briefly introduced earlier, the gradient sampling method
(CGSM) seems quite attractive for optimization problems with
non-smooth functions, e.g. Burke, Henrion, Lewis, and Overton
(2006). This method subsumes and generalizes the classical
steepest descent method by collecting more gradient information
at each iterate. Once the iterates jam near the manifold on which
theminimized functional is not differentiable, themethod samples
a bundle of gradients nearby the jamming point and finds a way-
out, as opposed to the classical steepest descentmethodwhich fails
to do so.
The original gradient sampling method proposed in Burke et al.

(2002) minimizes the spectral abscissa α(·) (the largest real part
of the eigenvalues) of a matrix (

∑m
i=1 xiWi) with respect to scalar

decision variables xi. Here,Wi ∈ Rn×n are fixed constant matrices
and no constraints are imposed on xi. Thus, for our purpose,
we need to modify the method to accommodate constraints on
variables and to calculate the gradient of the spectral radius
function ρ(·) instead of α(·). To this end, at each iteration matrix
X ∈ Rn×n, we sample matrices Y from a uniform distribution such
that ‖Y −X‖ ≤ ε for a sufficiently small ε > 0, and Y1 = 1, 1TY =
1T and Y ∈ S(E) for a network graph G. Note that the number
of decision variables (non-zero entries of X) xi (i = 1, 2, . . . ,m) is
uniquely defined for each fixed E . In order to satisfy the constraints
Y1 = 1 and1TY = 1T, weneed2n linear constraints hj(xi) = 0 (j =
1, 2, . . . , 2n). Recalling the constrained steepest descent method,
we therefore choose a direction d for each sampled Y such that

∇ρ(̃Y )Td ≤ 0, (7)
where ∇ρ(̃Y ) is the gradient of ρ(·) at Y − 11T/n, and

∇hj(x1, x2, . . . , xm)Td = 0 ∀ j = 1, 2, . . . , 2n. (8)
If there are multiple feasible directions d, we choose the one such
that ∇ρ(̃Y )Td is minimized.
We now present the gradient formula of ρ(·). The proof is

motivated by that of Theorem 6.3.12 in Horn and Johnson (1985),
and could be deduced from existing works, e.g. Burke and Overton
(2001).

Proposition 2. Suppose ρ(·) is differentiable at X, and λ = Re(λ)+
iIm(λ) is the largest in magnitude eigenvalue of X =

∑
i xiXi and

it (and its conjugate pair) is algebraically simple, i.e. has multiplicity
one. Then, for k ∈ {1, 2, . . . ,m}

∂ρ(X)
∂xk

=
Re(λ)
|λ|

(uTXkv + ũTXkṽ)+
Im(λ)
|λ|

(uTXkṽ − ũTXkv),

where u+ iũ and v+ iṽ are the left and right eigenvectors associated
with λ, respectively.

Proof. The conditions given in the statement guarantee that (u−
iũ)T(v + iṽ) 6= 0 (see Lemma 6.3.10 in Horn and Johnson (1985)),
which allows the eigenvectors to be normalized such that (u −
iũ)T(v+ iṽ) = 1. If we differentiate the normalized condition with
respect to xi, we have

(u′ − iũ′)T(v + iṽ)+ (u− iũ)T(v′ + iṽ′) = 0.

Consider

(u− iũ)TX(v + iṽ) = λ(u− iũ)T(v + iṽ) = λ

and differentiate the last equality; we then have

λ′ = (u′ − iũ′)TX(v + iṽ)+ (u− iũ)TX ′(v + iṽ)
+ (u− iũ)TX(v′ + iṽ′)

= λ ((u′ − iũ′)T(v + iṽ)+ (u− iũ)T(v′ + iṽ′))
+ (u− iũ)TX ′(v + iṽ) = (u− iũ)TX ′(v + iṽ),

or
∂λ

∂xk
= (u− iũ)TXk(v + iṽ)

= uTXkv + ũTXkṽ + i(uTXkṽ − ũTXkv).

Since ρ(X) = |λ| =
√
Re(λ)2 + Im(λ)2,

∂ρ(X)
∂xk

=
∂ρ(X)
∂Re(λ)

∂Re(λ)
∂xk

+
∂ρ(X)
∂Im(λ)

∂Im(λ)
∂xk

=
Re(λ)
|λ|

(uTXkv + ũTXkṽ)

+
Im(λ)
|λ|

(uTXkṽ − ũTXkv). �

For numerical simulations, we use Algorithm 1 proposed
in Burke et al. (2002), as shown in Table 1, with the following
changes: (1) In Step 0, we choose, e.g. by solving a linear program,
initial non-zero entries xi (i = 1, . . . ,m) of X such that X1 = 1,
1TX = 1T and X ∈ S(E) for a given network graph G; (2) In Step
1-(a) and 1-(b), we sample Y matrices nearby the current iterate X
such that ‖X − Y‖ ≤ ε, Y1 = 1, 1TY = 1T and Y ∈ S(E), and then
d is chosen such that (7) and (8) are satisfied, and∇ρ(̃Y )Td is mini-
mized among Y .Wemodify the code (available on the internet site:
http://www.cs.nyu.edu/faculty/overton/papers/gradsamp/alg/ and
written by one of the authors of Burke et al. (2002)) accordingly.
Note that the computational complexity of the aforementioned

procedure is dominated by evaluating ∇ρ(Y ) N times. Hence, the
number of flops per iteration is order mn2N . More theoretical
justifications for the gradient sampling algorithm may be found
in Burke, Lewis, and Overton (2002).

3. Numerical tests for optimal average consensus

In this section, we present test examples to show the efficacy
of the proposed two algorithms. We first show how much
q-SNM can improve the solutions obtained via 1-SNM, and
then compare q-SNM and CGSM. For each fixed number n of
agents and the number m of zeros in the solution matrix W
in (1), we randomly generate fifty symmetric and, respectively,
non-symmetric information exchange pattern E and apply the
proposed algorithms to each case.

http://www.cs.nyu.edu/faculty/overton/papers/gradsamp/alg/
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Table 1
Algorithm 1 (Gradient Bundle) proposed in Burke et al. (2002).

0. (initialization) Choose an initial feasible point x ∈ Rm , an initial positive value
for the sampling radius ε, a positive radius factor θ < 1, a positive integer N
defining the number of gradients per bundle, and two positive integersM1 and
M2 to terminate the iterations. Initiate k = 1.
1. (Inner Iteration) Carry out minimization k, controlled by the sampling radius
ε, as follows. Initialize j = 0.

(a) Define a bundle G as the set of N gradients {∇f (y)}, where y takes on N
values: the current iterate x, and N − 1 other vectors differing from x by
vectors whose entries are obtained by sampling from a uniform
distribution on [−ε/2, ε/2].

(b) Define the search direction d = −arg min{‖v‖2 : v ∈ convG}. If d = 0,
go to Step 2.

(c) Use a line search to find a positive step-length satisfying
f (x+ td) < f (x)with t ∈ (0, t̄], where t̄ = arg max{t : ‖x+ td‖∞ ≤ χ}
and χ is a large constant.

(d) Replace x by x+ td. If t = t̄ , terminate. If j < M2 , increment j and return
to Step (a).

2. (Decrease Sampling Parameter) If k < M1 , replace ε by the smaller value θε,
increment k and return to Step 1. Otherwise, terminate.

Table 2
The average fractions of ρ(W̃ (1)

s ) for various n andm.

n m 2-SNM 3-SNM 4-SNM 5-SNM

5 5 0.6784 0.5225 0.3834 0.1791
5 10 0.5229 0.3996 0.2962 0.2350
10 20 0.6777 0.5988 0.2940 0.2202
10 30 0.5885 0.4807 0.2991 0.1101
10 40 0.8293 0.6960 0.5864 0.4053

Fig. 1. Spectral radius values and computational times for (n,m) = (5, 5) and
non-symmetric E : solid line for q-SNM and dotted line for CGSM.

3.1. q-SNM versus 1-SNM

As discussed before, q-SNM is nothing but 1-SNM when E
is symmetric. Therefore, all the simulations below are meant
for non-symmetric E . Table 2 tabulates the simulation results
for (n,m) = (5, 5), (5, 10), (10, 20), (10, 30) and (10, 40),
respectively. Each value represents the average fraction ofρ(W̃ (1)

s ),
i.e. ρ(W̃ (q)

s )/ρ(W̃
(1)
s ), after iteratively applying q-SNM with

different q ∈ {2, 3, 4, 5}, whereW (q)
s is the solution obtained via q-

SNM for each randomly generated pattern. As clearly shown, when
E is non-symmetric, the solutions obtained via 1-SNM are greatly
improved by up to over 80% after successively applying q-SNM.

3.2. q-SNM versus CGSM

Figs. 1–4 show comparison results between q-SNM and
CGSM in terms of the spectral radii of the obtained solutions
and the associated computational times. Figs. 1 and 2 are for
Fig. 2. Spectral radius values and computational times for (n,m) = (5, 5) and
symmetric E : solid line for q-SNM and dotted line for CGSM.

Fig. 3. Spectral radius values and computational times for (n,m) = (10, 20) and
non-symmetric E : solid line for q-SNM and dotted line for CGSM.

Fig. 4. Spectral radius values and computational times for (n,m) = (10, 20) and
symmetric E : solid line for q-SNM and dotted line for CGSM.

(n,m) = (5, 5), Figs. 3 and 4 for (n,m) = (10, 20), Figs. 1
and 3 are for non-symmetric information exchange patterns E
and Figs. 2 and 4 for symmetric information exchange patterns
E . The dotted lines correspond to CGSM and the solid lines to
q-SNM. As the figures show, q-SNM finds the solutions with a
lower spectral radius than CGSM for more than 90% of test cases
when E is non-symmetric. In contrast, when E is symmetric, it is
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hard to compare the two methods in general. The two methods
show similar performance for (n,m) = (10, 20), but q-SNM
is much inferior to CSGM for (n,m) = (5, 5). Regarding the
computational complexity of the methods, CGSM pertains to the
number of samples for surveying gradient information and the
size of the quadratic program for deciding the best direction to
move at each iteration, whereas q-SNM mainly concerns the size
of the quadratic or semi-definite program for solving (4). Since
one can not predict which method requires the least number
of mathematical programs to solve to reach a solution for a
fixed information exchange pattern, the exact estimation of total
computational complexities of the two algorithms may not be
obtained easily.

4. Static output feedback stabilization and q-SNM

Having noticed that q-SNM performs well particularly for non-
symmetric cases, we further test it for the famous static output
feedback stabilization problem (SOFP).2
The SOFP is stated as follows: for a given linear system

ẋ(t) = Ax(t)+ Bu(t),
y(t) = Cx(t),

find a gain K such that u(t) = Ky(t) stabilizes the system, i.e. all
the real parts of the eigenvalues of A + BKC are strictly negative.
This simply stated problem is a famous open problem in control
theory (Blondel, Sontag, Vidyasager, &Willems, 1999).Withu(t) =
Ky(t), the closed-loop system becomes

ẋ(t) = (A+ BKC)x(t)

or in discrete form

x(k+ 1) = (I +1t(A+ BKC))x(k)

with k = 0, 1, 2, . . . and a sufficiently small 1t > 0. Note that
ρ(I+1t(A+BKC)) < 1 implies all the real parts of the eigenvalues
ofA+BKC are strictly negative, i.e.maxRe(A+BKC) < 0. Therefore,
the SOFP can be posed as the minimization of ρ(I +1t(A+ BKC))
over a set of matrices K .
In order to handle the SOFP, the previously proposed algorithm

As can be changed as follows:
Initialization: Set δ := 10−3, 1t := 10−2, q := 2 and stabilizing
control gain K := Φ .

Step 1: Solve P
(1)
s and obtain (W (1)

s , K (1)s ).
Ifmax Re(A+ BK (1)s C) < 0,
terminate the algorithm with K := K (1)s .
SetW ∗ := W (1)

s ,Wl−1 := W
(1)
s

and Xl−1 := W 2l−1.

Step 2: Solve P
(q)
s and obtain (W

(q)
s , K

(q)
s ).

Ifmax Re(A+ BK (q)s C) < 0,
terminate the algorithm with K := K (q)s .
If ρ(W (q)

s ) < ρ(W ∗),
setW ∗ := W (q)

s ,Wl−1 := W
(q)
s

and Xl−1 := W
q
l−1,

and proceed with Step 2;
else
if q > 7,

2 Although the SOFP is known to be theoretically difficult, many practical
instances of the SOFP can be solved routinely using publicly available software,
e.g. HIFOO (a MATLAB package for fixed-order controller design) available on the
internet site: http://www.cs.nyu.edu/overton/software/hifoo/.
terminate the algorithm;
elseif δ < 10−5,

set q := q+ 1, Xl−1 := W
q
l−1,

δ := 10−3 and proceed with Step 2;
else

δ := 0.1δ and proceed with Step 2,

where

P (q)
s : min

W=A+BKC
‖W q‖

and (W (1)
s , K (1)s ) is the solution to P

(1)
s . P

(q)
s is similarly defined

as we did in Section 2.1, i.e. the linearized version of P
(q)
s , and

(W (q)
s , K

(q)
s ) is the solution to P

(q)
s . If K = Φ after running the

algorithm, then the considered system may have no stabilizing
static output feedback controllers. As opposed to the previous
version ofAs in Section 2.1, the current version can be terminated
before q reaches itsmaximumvalue of 7, i.e. as soon as a stabilizing
controller is found.
We now proceed with the following benchmark systems found

in the literature (Blondel et al., 1999; Leibfritz & Mostafa, 2002;
Keel, Bhattacharyya, & Howze, 1988; Mesbahi, 2008; Nesterov &
Nemirovskii, 1994):

Case 1: A =
[
1 1.05
−1.05 0

]
,

B =
[
0
1

]
, C =

[
0 1

]
;

Case 2: A =

[
1 1.05 0
−1.05 0 0
0 0 0

]
,

B =

[
0 0
0 1
1 0

]
, C =

[
0 0 1
0 1 0

]
;

Case 3: A =

 1 1.05 0 0
−1.05 0 0 0
0 0 0 0
0 0 0 0

 ,
B =

0 0 0
0 0 1
1 0 0
0 1 0

 , C =

[
0 0 1 0
0 0 0 1
0 1 0 0

]
;

Case 4: A =

−0.0366 0.0271 0.0188 −0.4555
0.0482 −1.0100 0.0024 −4.0208
0.1002 0.3681 −0.7070 1.4200
0.0000 0.0000 1.0000 0.0000

 ,
B =

 0.4422 0.1761
3.5446 −7.5922
−5.5200 4.4900
0.0000 0.0000

 , C =
[
0 1 0 0

]
.

Case 5: A =

 1.3800 −0.2077 6.7150 −5.6760
−0.5814 −4.2900 0.0000 0.6750
1.0670 4.2730 −6.6540 5.8930
0.0480 4.2730 1.3430 −2.1040

 ,
B =

0.0000 0.0000
5.6790 0.0000
1.1360 −3.1460
1.1360 0.0000

 , C =
[
1 0 1 −1
0 1 0 0

]
.

The first case is particularly interesting in that the set of K
which stabilizes the system is very small (see Fig. 5). As depicted
in the figure, As starts out with K = 0.9995 and moves along the
standard root-locus plot until it just enters the stabilizing zone and
finds K = −1.0342. Table 3 summarizes the results for all the
cases. Note that stabilizing gains are found in a couple of minutes

http://www.cs.nyu.edu/overton/software/hifoo/
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Fig. 5. The root locus plots for Case 1: the closed-loop poles associated with
different K (crosses) and the closed-loop poles associated with each iteration ofAs
(dots) (Mesbahi, 2008).

Table 3
The results for the five benchmark systems: Iter. and Elap. denote the number
of iterations and the elapsed time (seconds) before the algorithm reaches the
stabilizing gain K , respectively; q̄ is the value of qwhen the algorithm is terminated.

Case K eig(A+ BKC) Iter. Elap. q̄

1 −1.0342 −0.0171±j0.2608 66 10.2 2

2
[
−100.88 −0.0920
−0.0920 −1.0372

]
−0.0186±j0.2550, 58 10.0 2
−100.88

3

−109.11 7.2956 2.2455
7.2952 −108.27 −2.0756
2.2455 −2.0756 −1.1160


−0.0173±j0.2584, 46 10.2 2
−116.08,−101.38

4
[
11.151 28.688

]
−179.30,−0.73, 645 117 2
−0.0018±j0.3392

5
[
6.0984 −21.513
7.7943 −22.433

]
−146.62,−9.9656, 188 39.0 7
−1.7797,−0.0004

for all the cases when a personal computer equipped with an
Intel(R) Core(TM)2 CPU 2.00 GHz is used.
It is observed that As shows stable convergence behaviour in

that no internal parameters need to be changed for each case.
In view of other approaches, this numerical stability is the most
distinguishable feature ofAs and indicates the practical feasibility
of the algorithm.

5. Concluding remarks

We first considered finding the optimal W ∈ Rn×n such that
W1 = 1, 1TW = 1T and W ∈ S(E) for a given network graph
G. The optimal W is such that ρ(W − 11T/n) is minimized, and
results in the fastest average agreement on multi-agent networks
adopting the information exchange protocol x(k + 1) = Wx(k),
where x(k) ∈ Rn is the value possessed by the agents at the
kth time step. To this end, we considered two numerical solution
schemes, the qth-order spectral norm minimization method (q-
SNM) and the constrained gradient sampling method (CGSM).
We showed that for symmetric information exchange patterns E ,
the solution W (1)

s using 1-SNM can be chosen to be symmetric
and q-SNM is nothing but 1-SNM. We also showed through
extensive numerical simulations that q-SNM offers much better
performance than CGSMwhen E is non-symmetric. The numerical
simulation result was then elaborated in concert with the famous
static output feedback problem, and was further supported by
the application of q-SNM to several benchmark systems. Based
on the aforementioned results, we believe that the proposed q-
SNM method can offer a promising approach to many difficult
optimization problems.
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