
The Average Case Analysis of Partition Sorts∗

Richard Cole David C. Kandathil

Department of Computation,

Courant Institute of Mathematical Sciences, New York University,

251 Mercer Street, New York, NY 10012, USA.

Synopsis

This paper introduces a new family of in-place sorting algorithms, the partition sorts. They are
appealing both for their relative simplicity and their efficient performance. They perform Θ(n logn)
operations on the average, and Θ(n log2n) operations in the worst case.

The partition sorts are related to another family of sorting algorithms discovered recently by Chen
[Che02]. He showed empirically that one version ran faster, on the average, than quicksort, and that the
algorithm family performed Θ(n logn) comparisons in the worst case; however no average case analysis
was obtained.

This paper completes the analysis of Chen’s algorithm family. In particular, a bound of n logn+O(n)

comparisons and Θ(n logn) operations is shown for the average case, and Θ(n log2n) operations for the
worst case. The average case analysis is somewhat unusual. It proceeds by showing that Chen’s sorts
perform, on the average, no more comparisons than the partition sorts.

Optimised versions of the partition sort and Chen’s algorithm are very similar in performance, and
both run marginally faster than an optimised quasi-best-of-nine variant of quicksort [BM93]. They both
have a markedly smaller variance than the quicksorts.

1 Introduction

We consider the problem of in-place sorting of internally stored data with no a priori structure. We shall
be concerned with the average case performance of deterministic sequential sorting algorithms. By in-place,
we mean algorithms which use an additional O(logn) space; by average case, that all input orderings are
equally likely.

A new family of in-place algorithms, which have a quicksort-like flavour, was proposed by Chen [Che02],
and their worst case number of comparisons was shown to be Θ(n logn). Empirical evidence was presented
for the conjecture that their average case number of comparisons is close to the information theoretic lower
bound and the fact that some versions run faster than quicksort on the average (for medium sized sets of
order 104). The average case analysis of comparisons was posed as an open problem. Bounds on operation
counts were not mentioned.

In this paper, we introduce a related new family of in-place algorithms, which we call partition sorts. The
partition sorts are attractive, both because of their relative simplicity, and their asymptotic and practical
efficiency. We show the following performance bounds for partition sort:

1. The average case number of comparisons is n logn+O(n), and for one version, is at most n plog (n+

1) − 1.193n +O(logn) comparisons1. They perform Θ(n log2n) comparisons in the worst case.

∗This work was supported in part by NSF grant CCR0105678.
1We let plogn denote the piecewise log function ⌊logn⌋ + 2

n
(n − 2⌊logn⌋), which is an approximation to the log function,

matching it at n = 2k, for integers k ≥ 0.

1

2. They perform Θ(n logn) operations on the average and Θ(n log2n) operations in the worst case.

As we show by means of a non-trivial argument, the average comparison cost of the partition sorts upper
bounds that of Chen’s algorithm family; this bound is also used in the analysis of exchanges for Chen’s sorts.
Using this and additional arguments, we obtain the following bounds for Chen’s family of algorithms:

1. The number of comparisons performed by each version of Chen’s algorithm is no more than the number
of comparisons performed by a corresponding version of partition sort, on the average. Hence Chen’s
algorithm family performs n logn+O(n) comparisons on the average. We also give a simple and tight
analysis for the worst case number of comparisons.

2. They perform Θ(n logn) exchanges on the average and Θ(n log2n) exchanges in the worst case.

The quicksort partition procedure is a central routine in both families of algorithms, and as a consequence,
they both have excellent caching behaviour. Their further speedup relative to quicksort is due to a smaller
expected depth of recursion.

We outline the analysis of the partition sort (Section 2) and the average case cost of comparisons for
Chen’s algorithm (Section 3). We also present some empirical studies of these algorithms (Section 4).

Prior Work

It is well known [FJ59] that, for comparison based sorts of n items, logn! = n logn−n log e+ 1
2
logn+O(1) =

n logn−1.443n+O(log n) is a lower bound on both the average and the worst case number of comparisons,
in the decision tree model. Merge-insertion sort [FJ59] has the best currently known worst case comparison
count: n plog (3

4
n) −n+O(logn) = n qlogn− 1.441n+O(logn), at the expense of Θ(n2) exchanges2; it is,

however, not clear how to implement it in Θ(n logn) operations while maintaining this comparison count;
the best result is an in-place mergesort which uses merge-insertion sort for constant size subproblems [Rei92];
this achieves Θ(n logn) operations and comes arbitrarily close to the above comparison count, at the cost
of increasingly large constants in the operation count. The trivial lower bound of Θ(n) on both the average
and the worst case number of exchanges is met by selection sort at the expense of Θ(n2) comparisons. A
different direction is to simultaneously achieve Θ(n logn) comparisons, Θ(n) exchanges, and Θ(1) additional
space, thus meeting the lower bounds on all resources; this was recently attained [FG03] but its efficiency in
practice is unclear.

Hoare’s quicksort [Hoa61, Hoa62] has been the in-place sorting algorithm with the best currently known
average case performance, namely 2n lnn = 1.386n logn comparisons, with worst case number of exchanges
Θ(n logn); it runs in Θ(logn) additional space with modest exchange counts, and has excellent caching
behaviour. Its worst case number of comparisons, however, is Θ(n2). These facts remain essentially the
same for the many deterministic variants of the algorithm that have been proposed (such as the best-
of-three variant [Hoa62, Sin69] which performs 12

7
n lnn = 1.188n logn comparisons on the average, and

the quasi-best-of-nine variant [BM93] which empirically seems to perform 1.094n logn comparisons on the
average).

Classical mergesort performs n logn−n+1 comparisons and Θ(n logn) operations in the worst case and
exhibits good caching behaviour, but is not in-place, requiring Θ(n) additional space. In-place mergesorts
with Θ(1) additional space have been achieved [Rei92, KPT96] with the same bounds but their complex
index manipulations slow them down in practice.

Heapsort, due to Williams and Floyd [Wil64, Flo64], is the only practical in-place sorting algorithm
known that performs Θ(n logn) operations in the worst case. Bottom-up heapsort [Weg93], originally due
to Floyd, performs n logn+O(n) comparisons on the average and 3

2
n logn+O(n) comparisons in the worst

case, with Θ(1) additional space; weak-heapsort [Dut93, EW00] performs n logn+ 1.1n comparisons in the
worst case while using n additional bits. The exchange counts are also modest. Nonetheless, its average case

2 qlogn
def
= ⌊log 3

4
n⌋ + log 4

3
+ 2

n
(n − 4

3
2⌊log

3
4
n⌋), i.e., the approximation to the log function with equality roughly when

n = 4
3
2k, for integers k ≥ 0.

2

behaviour is not competitive with that of quicksort; it does not exhibit substantial locality of reference and
deteriorates due to caching effects [LL97].

2 The Partition Sort

We present the partition sort as a one-parameter family of algorithms, with parameter γ > 1.

The sort of an array of n items begins with a recursive sort of the first
⌊

n
γ

⌋

items, forming a subarray S

of sorted items.
The heart of the algorithm is a partition sort completion procedure that completes the sort of the following

type of partially sorted array. The array consists of two adjacent subarrays S and U: The portion to the left,

S, is sorted; the remainder, U, is unsorted; s
def
= |S| and u

def
= |U|. For a call (S,U), sort completion proceeds

in two steps:

Multiway Partitioning: The items of U are partitioned into s + 1 buckets, U0, U1, · · · , Us, defined by
consecutive items of the sorted subarray S = (s1, s2, · · · , ss), where s1 < s2 · · · < ss. Uk contains the

items in U lying between sk and sk+1 (we let s0
def
= −∞ and ss+1

def
= +∞). Thus the items of S act as

pivots in a multiway partitioning of U. We describe the implementation of this partitioning below.

Sorting of Buckets : Each bucket Uk, 0 ≤ k ≤ s, is sorted by insertion sort. In order to bound the worst
case operation count, if |Uk| > c logn (where c is a suitable constant) Uk is sorted recursively; in this
case we say Uk is large, otherwise we say it is small.

The multiway partitioning may be thought of as performing, for each item in U, a binary search over the
sorted subarray S. Nevertheless, so as to implement it in-place and to minimise the number of exchanges
performed, we use a recursive multiway partitioning procedure, essentially due to Chen [Che02], described
below for a call (S,U).

First the unsorted subarrayU is partitioned about the median x of S; this creates the ordering SL x SR UL UR,
with SL < x < SR and UL < x < UR

3. Next the blocks {x}∪SR and UL are swapped (as described in the next
paragraph), preserving the order of {x}∪ SR but not necessarily of UL, yielding the ordering SL U ′

L x SR UR

with SL ∪ U ′
L < x < SR ∪ UR. Then the subarrays (SL,U

′
L) and (SR,UR) are partitioned recursively. The

base case for the recursion arises when the sorted subarray S is empty; then the unsorted subarray U forms
one of the sought buckets.

The partitioning of U about x may be done using any of the partitioning routines developed for quicksort.
A simple way of swapping blocks {x} ∪ SR and UL is to walk through items in {x} ∪ SR from right to left,
swapping each item a thus encountered with the item in a’s destination position.

It is readily seen that each item u ∈ U performs exactly the same comparisons as in a binary search.
By solving the smaller subproblem first, and eliminating the remaining tail recursion, the additional space

needed may be limited to Θ(logn) in the worst case.

Remark 1 The case γ =
√
n corresponds to an in-place sequential implementation of parallel quicksort

[Rei85].

2.1 Worst Case Analysis of Operations

We analyse the algorithm for the case γ = 2 in detail, focusing on the comparisons initially.
Observe that the number of comparisons occurring during the insertion sorts is bounded by O(n logn).

Thus, it suffices to analyse the remaining comparisons.
Let B(s, u) be the worst case number of non-insertion sort comparisons for sort completions on inputs of

size (s, u), and let C(n) be the worst case number of non-insertion sort comparisons for the partition sort
on inputs of size n.

3a < B means that for all b ∈ B, a < b. B < c is defined analogously.

3

Each item u ∈ U performs at most ⌈log(s+ 1)⌉ comparisons during the multiway partitioning. It remains

to bound the comparisons occuring during the sorting of buckets. If lk
def
= |Uk|, then

∑s
k=0 lk = u, and

B(s, u) ≤ max
lk

(

u ⌈log(s + 1)⌉ +
s∑

k=0

C(lk)

)

= u ⌈log(s+ 1)⌉ + C(u)

where we may have overestimated since a term C(lk) is needed only if lk ≥ c logn.
Clearly, C(1) = 0 and, for n > 1:

C(n) ≤ B
(⌊n

2

⌋

,
⌈n

2

⌉)

+ C
(⌊n

2

⌋)

≤
⌈n

2

⌉ ⌈

log
(⌊n

2

⌋

+ 1
)⌉

+ C
(⌈n

2

⌉)

+ C
(⌊n

2

⌋)

Thus, C(n) = Θ(n log2n), since the bound is tight on an input in sorted order, and we have shown:

Lemma 1 The partition sort, with γ = 2, performs Θ(n log2n) comparisons in the worst case.

For larger γ, including the operation count, we can show:

Theorem 1 The partition sort performs Θ(γn log2 n
γ
) operations in the worst case.

2.2 Average Case Analysis of Operations

Again, we analyse the case γ = 2 in detail; as before, the comparison count dominates the operation count,
and thus it suffices to analyse comparisons.

For simplicity, we assume initially that the algorithm sorts all buckets large and small using insertion
sort. We shall ensure, with a suitable choice of c, that precisely because we forsake recursive calls to partition
sort, this introduces an inefficiency in the sorting of large buckets on the average, and hence that the average
case bound that we shall obtain is a valid (if slightly weak) bound for the original algorithm too.

Let B(s, u) be the average case number of comparisons for sort completions on inputs of size (s, u), and
C(n), the average case number of comparisons for the partition sort on inputs of size n. Let I(l) denote the
average case number of comparisons for sorting a bucket of size l. It is easy to show:

Lemma 2 If s + 1 = 2i + h with 0 ≤ h < 2i, then the partitioning for an input of size (s, u) performs
u
(

i + 2h
s+1

)

comparisons on the average.

We now bound B(s, u) by overestimating the number of comparisons required, on the average, for the
sorting of buckets; with s+ 1 = 2i + h, where 0 ≤ h < 2i, we have:

B(s, u) = u

(

i +
2h

s+ 1

)

+
∑

item a

u∑

l=2

Pr[a is in U and its bucket has size l]
I(l)

l

The probability for an arbitrary item a in S ∪ U to be in U and to be in a bucket of size l, may be
overestimated as follows. For an arbitrary item a, the end points of a bucket of size l (which are in S) may
be chosen in at most l distinct ways, and given such a pair of end points, the probability that they form a
bucket (which is the same as saying that the remaining s− 2 items in S are chosen from outside this range)
is exactly:

(

s+ u− l− 2

s− 2

)/(

s+ u

s

)

unless a is among the least or greatest l items of S∪U; to avoid anomalies, it suffices to pretend the buckets
at the two extremes are combined to form a single bucket; then the same probability applies to every item,
and clearly we have only overestimated the cost of the algorithm. Hence:

B(s, u) ≤ u

(

i +
2h

s+ 1

)

+ (s+ u)

u∑

l=2

I(l)

(

s + u− l− 2

s− 2

)/(

s + u

s

)

4

We may now obtain a bound on C(n). For n > 1, we have:

C(n) ≤ B
(⌊n

2

⌋

,
⌈n

2

⌉)

+ C
(⌊n

2

⌋)

≤
⌈n

2

⌉

(

i +
2h

⌊

n
2

⌋

+ 1

)

+ n

⌈n
2 ⌉∑

l=2

(

n−l−2

⌊n
2 ⌋−2

)

(

n

⌊n
2 ⌋
) I(l)

+ C

(⌊n

2

⌋)

where
⌊

n
2

⌋

+ 1 = 2i + h and 0 ≤ h < 2i.

Clearly, I(l) ≤
(

l
2

)

.

Lemma 3
n+1

2∑

l=2

(

n−l−2
n−5

2

)

(

n
n−1

2

)

(

l

2

)

≤ 1

2
+

12

n
+O

(

1

n2

)

Substituting in the equation for C(n) yields:

Lemma 4 If all input orderings are equally likely, the partition sort, with γ = 2, performs at most n plog (n+
1) − n +O(logn) comparisons on the average.

By bounding I(l) more exactly, we can show:

Theorem 2 If all input orderings are equally likely, the partition sort, with γ = 2, performs at most
n plog (n + 1) −

(

1
2
+ ln 2

)

n + O(logn) = n plog (n + 1) − 1.193n + O(logn) comparisons and Θ(n logn)
operations on the average.

3 Chen’s Algorithm

We slightly generalise Chen’s algorithm to a three-parameter family of algorithms, with parameters γ, λ,
and µ, described below. Typically, γ ≥ 2 and a power of 2, λ ≥ 2 and a power of 2, λ ≤ µ, and γ ≤ µ; Chen
[Che02] had considered a one-parameter family with γ = λ and µ = λ(λ− 1), for arbitrary λ ≥ 2.

As with the partition sorts, the sort begins with a recursive sort of the first
⌊

n
γ

⌋

items. The heart of

the algorithm is provided by Chen’s sort completion procedure, for completing the sort of a partially sorted
array (S,U); as before, S is sorted and U is unsorted. This recursive procedure is similar to that used in the
partition sort, except for proceeding differently when S is small relative to U, and has the following form:

Case µ(s+ 1) − 1 ≥ (s+u): Thus, (µ− 1)(s+ 1) ≥ u; we say that such an input has the balanced property.

First, the unsorted subarray U is partitioned about the median x of S, resulting in blocks UL and
UR; next, the blocks {x} ∪ SR and UL are swapped, preserving the order of items in {x} ∪ SR, but not
necessarily of those in UL, yielding the ordering SL U ′

L x SR UR with SL ∪U ′

L < x < SR ∪UR; finally
the subarrays (SL, U

′
L) and (SR, UR) are sorted recursively.

Case µ(s + 1) − 1 < (s + u): Thus, (µ − 1)(s + 1) < u; we call this case expansion, and in particular for
λ = 2, doubling.

First, the sorted subarray S is expanded as follows: Let S ′ be the leftmost subarray of size ⌈λ(s+1)−1⌉.
The subarray S ′ is sorted recursively, with S as the sorted subarray; then, the sort of the whole array
continues recursively, with S ′ as the sorted subarray.

Chen’s description [Che02] of his algorithm can be viewed as bottom-up; (s, u) is set to (1, n−1) initially,
which is analogous to setting γ = λ; we have replaced his single parameter with three.

5

3.1 Average Case Analysis of Comparisons

We prove that on average the partition sort with parameter γ performs at least as many comparisons as
(dominates) Chen’s algorithm with parameters (λ, µ, γ). We analyse the case λ = 2 in detail.

For purposes of the analysis, we introduce another sorting algorithm, which we call the variant partition
sort (to contrast it with the original partition sort, henceforth qualified as basic to emphasise the distinction).
We prove two claims:

Claim 1 The basic partition sort dominates the variant partition sort.

Claim 2 If Claim 1 holds, then the basic partition sort dominates Chen’s algorithm.

It is helpful to view the basic partition sort as follows, when its input is an unbalanced problem instance
(S,U) with (µ − 1)(s + 1) < u (where s = |S| and u = |U|); we name the s items in S type A items, the

immediately following s + 1 items in U type B items, and the remaining t
def
= u− (s+ 1) items in U type C

items; the basic partition sort then proceeds as follows:

P1: It places each of the u items of U in one of the s+ 1 buckets delimited by items in S; we call these the
A buckets. Each placement takes log(s + 1) comparisons.

P2: It sorts each of the s + 1 A buckets by insertion sort.

The variant partition sort, which mimics Chen’s algorithm to a certain extent, proceeds as follows:

V1: It places each of the s + 1 type B items of U in one of the s + 1 A buckets delimited by items in S.
Each placement takes log(s + 1) comparisons.

V2: It sorts each of the s+ 1 A buckets by insertion sort.

V3: It places each of the t type C items of U in one of the 2s + 2 buckets delimited by items in A ∪ B; we
call these the AB buckets. Each placement takes 1+ log(s + 1) comparisons.

V4: It sorts each of the 2s + 2 AB buckets by insertion sort.

Lemma 5 For λ = 2, Claim 2 holds.

Proof : We proceed by induction on s + u. Clearly, for s+ u = 1, the result holds.
For s+u > 1, if (µ− 1)(s+ 1) ≥ u, the initial call in Chen’s algorithm is a non-doubling call, and hence

the same as in the partition sort; for this case the result follows by induction applied to the recursive calls.
It remains to consider the unbalanced case with (µ − 1)(s + 1) < u. Here the initial call in Chen’s

algorithm is a doubling call. In the variant partition sort, the same doubling call occurs, but thereafter it
performs no more doubling calls, i.e., in its recursive calls on subproblems (s̃, ũ) it acts in the same way
as the basic partition sort on input (s̃, ũ). We consider the two top level recursive calls generated by the
doubling call (s, s + 1), namely (s−1

2
, u1) and (s−1

2
, s + 1 − u1), and the call after the doubling completes,

(2s+ 1, u− s− 1). For each value of u1, all possible orderings of the items are equally likely, given that the
initial (s, u) problem was distributed uniformly at random. Consequently, the inductive hypothesis can be
applied to these three inner calls, showing that the basic partition sort dominates Chen’s algorithm in each
of these inner calls. Consequently, the variant partition sort dominates Chen’s algorithm for the original
(s, u) call. Given our assumption that the basic partition sort dominates the variant partition sort, this
proves the inductive step. Q. E. D.

Lemma 6 For λ = 2, Claim 1 holds.

Proof : To compare the basic partition sort with its variant conveniently, we view the execution of the
basic partition sort in the following alternative way; this form has exactly the same comparison cost as the
previous description.

6

P1 ′: It places each of the s + 1 type B items of U in one of the s + 1 A buckets delimited by items in S.
(Each placement takes log(s + 1) comparisons.) This is identical to step V1.

P2 ′: It sorts each of the s + 1 A buckets (containing type B items) by insertion sort. This is identical to
step V2.

P3 ′: It places each of the t type C items of U at the right end of one of the s+ 1 A buckets in A∪B (which
already contain type B items in sorted order). (Each placement is done by a binary search over the A

items, taking log(s+ 1) comparisons.)

P4 ′: For each of the s + 1 A buckets, it places the type C items in their correct position by insertion sort
(at the start of this step, each such A bucket contains both type B and type C items, with type B

items in sorted order, and type C items at the right end).

It remains to determine the relative costs of steps V3 and V4 and of steps P3 ′ and P4 ′. Step V3 performs
one more comparison for each type C item, for a total excess of t comparisons (this is clear for s = 2k − 1,
and needs a straightforward calculation otherwise). In step V4, the only comparisons are between type C

items within the same AB bucket, whereas in step P4 ′ there are, in addition, comparisons between type C

items in distinct AB buckets (but in the same A bucket), and also comparisons between type B and type C

items in the same A bucket, called BC comparisons. We confine our attention to BC comparisons and show
that there are at least t such comparisons, on the average; it would then follow that on average the partition
sort dominates its variant.

If it were the case that one type B item (s+1 in number) went into each of the s+1 A buckets, resulting
in an equipartition, it is evident that the number of BC comparisons would be exactly t. We now argue that
this is in fact a minimum, when considering comparisons on the average.

Given the AB sequence with equipartition (i.e., with one B item in each A bucket) consider perturbing
it to a different sequence. For any such non-trivial perturbation, there is at least one A bucket which holds
a group of r + 1 > 1 type B items (and which contains r+ 2 AB buckets).

Consider an A bucket with multiple type B items in the perturbed sequence. The r excess type B items
must have been drawn from (originally) singleton A buckets (which originally contained two AB buckets)
and thus there are r empty A buckets (which now contain only one AB bucket). An arbitrary type C item
could go into any of the 2s+ 2 AB buckets with equal probability. The number of BC comparisons that this
type C item undergoes, on the average, increases by:

1

2s + 2

[

−2.(r+ 1) + (r + 2).

(

r+ 3

2
−

1

r + 2

)]

> 0

for r ≥ 1 as a consequence of the perturbation.
Finally, we note that in the perturbed sequence, for each A bucket with r + 1 > 1 type B items, the

number of BC comparisons an arbitrary type C item undergoes increases, on the average, by the above
quantity.

Thus, the equipartition configuration minimises the number of BC comparisons, and consequently, the
basic partition sort dominates its variant.

Q. E. D.

Setting γ = 2 to exhibit a bound, from dominance and Theorem 2 we have:

Theorem 3 If all input orderings are equally likely, Chen’s algorithm, with (λ, γ) = (2, 2), performs at most
n plogn −

(

1
2
+ ln 2

)

n +O(logn) comparisons on the average, independently of µ.

3.2 Operation Counts

Theorem 4 Chen’s algorithm performs Θ(µ
λ
log λ n logn) comparisons in the worst case, independently of

γ.

7

Theorem 5 Chen’s algorithm performs Θ(n log2n

log2 µ
λ

) exchanges in the worst case.

Theorem 6 If all input orderings are equally likely, Chen’s algorithm with λ(1+ǫ) ≤ µ performs Θ(γ n logn)
exchanges on the average.

4 Empirical Studies

We implemented and compared the performance of quicksort, the partition sort and Chen’s algorithm. We
measured the running times Tn and counted comparisons Cn and data moves Mn, for various input sizes n.

We implemented quicksort in two different ways. The first largely follows Sedgewick [Sed78]; it uses a
best-of-three strategy for selecting the pivot [Hoa62, Sin69], and sorts small subproblems (of size less than
the insertion cutover) using insertion sort, but unlike Sedgewick, performs the insertion sorts as they arise
(locally), rather than in one final pass (globally). Our experiments showed that for large input sizes, the
local implementation yielded a speedup. The second implementation is similar except that it uses Tukey’s
‘ninther’, the median of the medians of three samples (each of three items), as the pivot; this quasi-best-of-
nine version due to Bentley and McIlroy [BM93] was observed to be about 3% faster than the best-of-three
version.

For the partition sort and Chen’s algorithm, the block swaps (of blocks {x} ∪ SR and UL) are performed
using Chen’s optimised implementation [Che96].

Best results for the partition sort were obtained with γ about 128. The average size of the bucket is
then quite large and we found it to be significantly more efficient to sort them with quicksort. Moderate
variations of γ had little impact on performance.

Again, with Chen’s algorithm, we added a cutover to quicksort on moderate sized subproblems.4 Our
best performance arose with λ = 2, µ = 128, and γ = 128, and a quicksort cutover of about 500. Again,
moderate variation of µ and γ had little effect on the performance.

We compared top-down and bottom-up drivers in our experiments, and found that top-down drivers tend
to have smoother behaviour. We have therefore chosen to use top-down drivers in our implementations.

For our algorithms, we resort to standard hand optimisations, such as eliminating the tail recursions
by branching (and other recursions by explicit stack management); we also inline the code for internal
procedures.

We ran each algorithm on a variety of problem sizes. Each algorithm, for each problem size, was run on
the same collection of 25 randomly generated permutations of integers (drawn from the uniform distribution).
Running times for the best choices of parameters are shown in the table below.

4Without this cutover we were unable to duplicate Chen’s experimental results [Che02]. He reported a 5-10% speedup
compared to best-of-three quicksort on inputs of size up to 50,000.

8

Running Times Tn ± σ(Tn) (µs)
n Partition Chen Quasi-best-of-9 Best-of-3

20000 4906 ± 110 4878 ± 78 4840 ± 190 4868 ± 182
25000 6306 ± 107 6421 ± 185 6134 ± 183 6268 ± 183
30000 7652 ± 78 7863 ± 150 7493 ± 241 7805 ± 201
35000 9124 ± 200 9155 ± 217 8969 ± 315 9215 ± 252
40000 10577 ± 149 10689 ± 221 10406 ± 235 10601 ± 284
200000 65453 ± 764 67048 ± 7861 65294 ± 1467 87997 ± 6412
250000 84526 ± 1355 84551 ± 1269 84110 ± 914 86294 ± 2199
300000 103683 ± 354 104319 ± 3631 102909 ± 1264 105514 ± 2124
350000 123258 ± 1457 124211 ± 2542 122788 ± 1389 127300 ± 2900
400000 143115 ± 1024 144246 ± 2007 143029 ± 1622 147475 ± 2328

2000000 858194 ± 3038 862604 ± 5364 893321 ± 2779 897493 ± 6893
2500000 1093029 ± 2805 1100885 ± 4665 1107729 ± 12688 1148407 ± 10356
3000000 1344032 ± 9178 1348160 ± 9513 1360892 ± 2680 1404965 ± 11242
3500000 1583731 ± 5295 1596032 ± 8990 1602471 ± 9326 1663999 ± 9192
4000000 1833468 ± 4975 1845352 ± 9949 1854723 ± 12678 1921886 ± 2685

In our experiments, even for trials repeated only a few times, the deviations are orders of magnitude
smaller than the average. This is most striking for the operation counts (not shown) where, with trials
repeated 25 times, the deviations are typically below 0.1% of the averages for the new algorithms, and below
2% for the quicksorts.

The experiments were conducted on a Sun UltraSPARC-IIe processor with CPU speed 550 MHz and
Cache size 512 KB. The programs, written in C, were run under Sun OS (kernel version Generic 112233-
08) with gcc (version 3.3.3) compilation at -O3 level. Broadly similar results were obtained on a Pentium
running GNU/Linux.

5 Acknowledgements

We thank J. Ian Munro, Alan Siegel, and an anonymous referee, for their helpful comments.

Bibliography

[Ben00] Jon L. Bentley. Programming Pearls. Addison-Wesley, Reading, MA, second edition, 2000.

[BM93] Jon L. Bentley and M. Douglas McIlroy. Engineering a sort function. Software Practice and
Experience, 23(11):1249–1265, November 1993.

[Che96] Jing-Chao Chen. Proportion split sort. Nordic Journal of Computing, 3(3):271–279, Fall 1996.

[Che02] Jing-Chao Chen. Proportion extend sort. SIAM Journal on Computing, 31(1):323–330, February
2002.

[Dut93] Ronald D. Dutton. Weak-heapsort. BIT, 33(3):372–381, 1993.

[EW00] Stefan Edelkamp and Ingo Wegener. On the performance of weak-heapsort. Lecture Notes in
Computer Science, 1770:254–266, 2000.

[FG03] Gianni Franceschini and Viliam Geffert. An in-place sorting with O(n logn) comparisons and O(n)

moves. In Forty fourth IEEE Symposium on Foundations of Computer Science (FOCS), pages
242–250, Cambridge, Massachusetts, 11–14 October 2003.

9

[FJ59] Lester R. Ford, Jr. and Selmer M. Johnson. A tournament problem. The American Mathematical
Monthly, 66(5):387–389, May 1959.

[Flo64] Robert W. Floyd. ACM Algorithm 245: Treesort 3. Communications of the ACM, 7(12):701,
December 1964.

[Hoa61] C. A. R. Hoare. ACM Algorithm 63: Partition, ACM Algorithm 64: Quicksort. Communications
of the ACM, 4(7):321–322, July 1961.

[Hoa62] C. A. R. Hoare. Quicksort. The Computer Journal, 5(1):10–16, April 1962.

[Knu73] Donald E. Knuth [Ervin]. The Art of Computer Programming, Volume 3: Sorting and Searching.
Addison-Wesley, Reading, Massachusetts, USA, 1973.

[KPT96] Jyrki Katajainen, Tomi Pasanen, and Jukka Teuhola. Practical in-place mergesort. Nordic Journal
of Computing, 3(1):27–40, Spring 1996.

[LL97] Anthony LaMarca and Richard E. Ladner. The influence of caches on the performance of sorting.
In Eighth ACM-SIAM Symposium on Discrete Algorithms, pages 370–379, New Orleans, Louisiana,
5–7 January 1997.

[Mus97] David R. Musser. Introspective sorting and selection algorithms. Software Practice and Experience,
27(8):983–993, August 1997.

[Rei85] Rüdiger Reischuk. Probabilistic parallel algorithms for sorting and selection. SIAM Journal on
Computing, 14(2):396–409, May 1985.

[Rei92] Klaus Reinhardt. Sorting in-place with a worst case complexity of n logn − 1.3n + o(logn) com-
parisons and ǫn logn + o(1) transports. In Third International Symposium Algorithms and Com-
putation, pages 489–498, Nagoya, Japan, 16–18 December 1992.

[Sed78] Robert Sedgewick. Implementing quicksort programs. Communications of the ACM, 21(10):847–
857, October 1978.

[Sin69] R. C. Singleton. An efficient algorithm for sorting with minimal storage. Communications of the
ACM, 12(3):185–187, March 1969.

[Weg93] Ingo Wegener. Bottom-up heapsort, a new variant of heapsort, beating, on an average, quicksort
(if n is not very small). Theoretical Computer Science, 118(1):81–98, 13 September 1993.

[Wil64] J. W. J. Williams. ACM Algorithm 232: Heapsort. Communications of the ACM, 7(6):347–348,
June 1964.

A Addendum to Section 2

A.1 Proof of Lemma 2

An arbitrary item a in U could enter any of the s + 1 buckets taking either i or i + 1 comparisons. For 2h
of these buckets, it will require i + 1 comparisons; for the remaining s + 1 − 2h buckets it will need only i

comparisons.

10

A.2 Proof of Lemma 3

We begin with the case where n is odd.

n+1
2∑

l=2

(

n−l−2
n−5

2

)

(

n
n−1

2

)

(

l

2

)

=

n+1
2∑

l=2

n−1
2

(n−1
2

− 1)(n+1
2

)(n+1
2

− 1) · · · (n+1
2

− l+ 1)

n(n − 1)(n − 2)(n − 3) · · · (n − l− 1)

(

l

2

)

=

n+1
2∑

l=2

n−1
2

(n−1
2

− 1)

n(n − 1)

(n+1
2

)(n+1
2

− 1) · · · (n+1
2

− l+ 1)

(n − 2)((n − 2) − 1) · · · ((n − 2) − l+ 1)

(

l

2

)

≤
n+1

2∑

l=2

n−1
2

(n−1
2

− 1)

n(n − 1)

[

n+ 1

2(n − 2)

]l(
l

2

)

≤
(

1

2
−

1

2n

)(

1

2
−

1

n − 1

)

1

2

[

∞∑

l=1

l2rl −

∞∑

l=1

lrl

]

(where r = n+1
2(n−2)

)

=

(

1

2
−

1

2n

)(

1

2
−

1

n− 1

)

1

2

2r2

(1− r)3

Since

r =
n+ 1

2(n − 2)
=

1

2
+

3

2(n − 2)
=

1

2
+

3

2n
+O

(

1

n2

)

we can see that the above is bounded by 1
2
+ 12

n
+O

(

1
n2

)

.
The other case is similar.

A.3 Proof of Lemma 4

We have, for n > 1:

C(n) ≤
⌈n

2

⌉

i+ 2h+
1

2
n+O(1) + C

(⌊n

2

⌋)

where
⌊

n
2

⌋

+ 1 = 2i + h with 0 ≤ h < 2i.

11

Let the binary representation of n be bi+1bi · · ·b1b0. Since C(1) = 0, we see that:

C(n) ≤
(

⌈n

2

⌉

i+

⌈

1

2

⌊n

2

⌋

⌉

(i − 1) +

⌈

1

2

⌊n

4

⌋

⌉

(i− 2) + · · ·
)

+ 4h+ n +O(logn)

=

[

n

2
+

b0

2

]

i+

[(

n

4
−

b0

4

)

+
b1

2

]

(i − 1)

+

[(

n

8
−

b0

8
−

b1

4

)

+
b2

2

]

(i− 2) + · · ·

+ 4h + n+O(logn)

=
(n

2
i+

n

4
(i− 1) +

n

8
(i − 2) + · · ·

)

+ b0

[

i

2
−

(

i − 1

4
+

i− 2

8
+ · · ·

)]

+ b1

[

i− 1

2
−

(

i− 2

4
+

i − 3

8
+ · · ·

)]

· · ·
+ 4h + n+O(logn)

= n

⌊

log

(

n+ 1

2

)⌋

− n +O(b0 + b1 + · · · + bi+1) + 4h + n +O(logn)

≤ n ⌊log(n + 1)⌋ − n+ 4h +O(logn)

≤ n plog (n + 1) − n+O(logn)

A.4 An Improved Average Case Bound

The following elementary observations regarding standard insertion sort are easily verified.

1. The k th item being inserted performs:

1

k

[

(k − 1) +

k−1∑

i=1

i

]

=
k + 1

2
−

1

k

comparisons on the average, where 1 ≤ k ≤ l, provided that sentinels are not used.

2. Sorting l items consumes:
l+ 3

4
−

Hl

l

comparisons per item, on the average.

Using arguments similar to those used before, we obtain that, for n > 1:

C(n) ≤
⌈n

2

⌉

(

i +
2h

⌊

n
2

⌋

+ 1

)

+ n

⌈n
2 ⌉∑

l=2

(

n−l−2

⌊n
2 ⌋−2

)

(

n

⌊n
2 ⌋
)

(

l(l+ 3)

4
−Hl

)

+ C

(⌊n

2

⌋)

where
⌊

n
2

⌋

+ 1 = 2i + h and 0 ≤ h < 2i, and that:

n+1
2∑

l=2

(

n−l−2

⌊n
2 ⌋−2

)

(

n

⌊n
2 ⌋
)

(

l(l + 3)

4
−Hl

)

≤ 5

8
−

1

4

∞∑

l=2

Hl

(

1

2

)l

+O

(

1

n

)

12

To justify the use of bound (2) above for sorting l items in recursive calls to partition sort, we need that,
for some constant c:

l log l− l+O(log l) ≤ I(l)

for l such that c logn < l ≤
⌈

n
2

⌉

. Clearly this holds for a large enough constant c > 0.

Lemma 7
∞∑

l=2

Hl

(

1

2

)l

= 2 ln 2−
1

2

Proof :

∞∑

i=2

Hi

(

1

2

)i

=

∞∑

i=2

1

2i

i∑

j=1

1

j

=

∞∑

i=2

1

2i

1+

i∑

j=2

1

j

=

∞∑

i=2

1

2i
+

∞∑

i=2

i∑

j=2

1

j2i

=
1

2
+

∞∑

j=2

1

j

∞∑

i=j

1

2i

=
1

2
+ 2

∞∑

j=2

1

j

(

1

2

)j

=
1

2
+ 2

[

− ln

(

1−
1

2

)

−
1

2

]

= 2 ln 2−
1

2

Q. E. D.

This yields, for n > 1:

C(n) ≤
⌈n

2

⌉

(

i+
2h

⌊

n
2

⌋

+ 1

)

+

(

3

4
−

1

2
ln 2

)

n + C
(⌊n

2

⌋)

Since C(1) = 0, we have Theorem 2.
For larger γ, one may, with a similar argument, obtain a bound of n logn + O(γn) comparisons and a

comparable bound on operations, on the average. We note that, for small increases in γ, while the number of
comparisons increases, the number of exchanges decreases. Our experiments indicate that the best tradeoff
occurs at γ > 2. We did not analyse this further, as other factors such as caching effects and the relative
costs of different operations could make meaningful results somewhat machine dependent.

A.5 A Bottom-up Variant of the Partition Sort

We consider a bottom-up variant of the partition sort which is useful for analysing Chen’s algorithm: in
turn we perform an insertion sort on the first γ − 1 items, followed by a series of sort completions of
the form (γk − 1, γk+1 − γk), for 1 ≤ k <

⌊

logγ(n+ 1)
⌋

, finishing with a sort completion of the form

(ŝ, û) = (γ⌊logγ(n+1)⌋−1, n−γ⌊logγ(n+1)⌋+1) on the whole array; thus initial calls are generated with sizes
which are essentially powers of the parameter γ.

We can show that the bounds derived previously apply here too.

13

A.6 Analysis of the Bottom-up Variant

We exhibit this only for the average case comparison count, with γ = 2, since the other bounds entail similar
arguments.

The cost of sorting the array of size ŝ is analysed as before, since it is the same algorithm viewed bottom-
up (rather than top-down), apart from the cost of the initial insertion sort. This yields a comparison count
of ŝ log(ŝ + 1) − 1.193ŝ +O(log ŝ) on the average.

The final sort completion requires at most û log(ŝ + 1) comparisons for the multiway partitioning step,
and 2

(

3
4
− 1

2
ln 2
)

û = O(n) comparisons for the sorting of buckets, on the average.
Thus, the overall comparison count is n plogn − 1.193ŝ +O(logn) on the average.

A.7 Notes

Remark 2 The strategy of improving the average case behaviour of quicksort by choosing the median of a
small sample as the pivot has some commonality with the multiway partitioning in the partition sort.

Remark 3 But for the fact that we sort large buckets recursively, the partition sort would perform Θ(n2)

operations in the worst case, independently of γ.

Remark 4 To detect substantially sorted inputs, which trigger worst case behaviour in partition sort, we
might proceed as follows. During the initial sort of a set of size about

√
n, if the top level application of the

multiway partitioning procedure yields one or more very large buckets, then we heuristically assume the input
is bad. This would then cause a switch to an alternative sort for the buckets; perhaps a randomization of the
set at hand, perhaps a switch to heapsort or insertion sort. A more cautious approach is to keep checking
for undue bucket sizes in each application of the multiway partitioning procedure.

Remark 5 The method for detecting substantially sorted inputs is comparable to the optimisation to quick-
sort [Mus97], which improves the worst case number of comparisons to Θ(n logn), while essentially preserving
the average case comparison bound of quicksort; the optimisation consists of switching to heapsort for quick-
sort subproblems which are found to have been partitioned more than Θ(logn) times. In either optimisation,
we note that Θ(n logn) operations are done before bad inputs are isolated.

B Addendum to Section 3

B.1 Worst Case Analysis of Comparisons

We analyse the algorithm for the case (λ, µ, γ) = (2, 2, 2) in detail.
We observe that the algorithm performs a series of sort completions of the form (s, u) = (2k−1, 2k), with

1 ≤ k ≤
⌈

log n+1
2

⌉

, in turn, followed by a final completion of the form (2⌈log n+1
2 ⌉ − 1, n − 2⌈log n+1

2 ⌉ + 1).
Each completion (except the first) uses the result of the preceding completion as its sorted subarray.

We now analyse the worst case comparison cost of Chen’s sort completion.
Suppose there is a call (s, u) with s ≥ u − 1, i.e., a balanced input. (Observe that this includes all the

top level calls mentioned in the previous paragraph). We wish to prove that after a constant number of
subcalls, all subproblems (s̃, ũ) generated at the fringe (of the call tree with (s, u) as the root) will regain
the balanced property, namely s̃ ≥ ũ− 1.

Let (s1, u1) and (s2, u2) denote the two subcalls of (s, u). Note that s1 = s2 = s−1
2

. We consider the
case in which at least one of the subcalls has lost the balanced property (without loss of generality, the call
(s1, u1), with s1 < u1− 1). It follows that s2 ≥ u2 − 1, i.e., that (s1, u1) is the only subcall to have lost this
property.

The call (s1, u1) first generates a call of the form (s−1
2

, s+1
2

) (which has the balanced property); this

increases the sorted set to size s ′1 = 2s1 + 1 = s, and reduces the unsorted set to size u ′
1 = u1 − s+1

2
; now

the call (s ′1, u
′

1) = (s, u1 −
s+1
2

) is generated.

14

The subcalls of the call (s ′1, u
′
1) are of the form (s−1

2
, u3) and (s−1

2
, u4), with u3 + u4 = u1 −

s+1
2

, and

thus s−1
2

≥ u3 − 1 and s−1
2

≥ u4 − 1, showing the balanced property for the subcalls at the fringe of the
call tree at this stage. Further, in all these subcalls, the size of the sorted subarray has essentially halved
relative to the root.

We now prove, for balanced inputs of size (s, u), a bound on the worst case number of comparisons,
B(s, u). Clearly, B(1, 1) = 1, B(1, 2) = 3, and

B(s, u) = max

u+ B
(

s−1
2

, u1

)

+ B
(

s−1
2

, u2

)

if s1 ≥ u1 − 1

u+ u ′
1 + B

(

s−1
2

, s+1
2

)

+ B
(

s−1
2

, u2

)

+ B
(

s−1
2

, u3

)

+ B
(

s−1
2

, u4

)

otherwise

≤ 3

2
u+ B

(

s− 1

2
,
s+ 1

2

)

+ B

(

s− 1

2
, u2

)

+ B

(

s− 1

2
, u3

)

+ B

(

s− 1

2
, u4

)

Since s+1
2

+ u2 + u3 + u4 = u, it follows that B(s, u) ≤ 3
2
u log(s + 1).

Let C(n) be the worst case comparison cost for Chen’s algorithm for inputs of size n. Let ŝ = 2⌈log n+1
2 ⌉−

1. Clearly, C(1) = 0, and, for ŝ > 1:

C(ŝ) = B

(

ŝ− 1

2
,
ŝ + 1

2

)

+ C

(

ŝ − 1

2

)

≤ 3

2

ŝ + 1

2
log

(

ŝ + 1

2

)

+ C

(

ŝ − 1

2

)

Hence, C(ŝ) ≤ 3
2
(ŝ+ 1) log(ŝ + 1) − 3ŝ +O(log ŝ).

For arbitrary n, we need to consider the final sort completion (ŝ, û). This gives:

C(n) ≤ 3

2
(ŝ+ 1) log(ŝ + 1) − 3ŝ +O(log(ŝ+ 1)) + B (ŝ, û)

≤ 3

2
(ŝ+ 1) log(ŝ + 1) − 3ŝ +O(log(ŝ+ 1)) +

3

2
û log(ŝ + 1)

≤ 3

2
n

⌈

log
n + 1

2

⌉

− 3ŝ +O(logn)

It is easy to construct an input meeting this bound, i.e., this bound is tight. Thus, we have shown:

Lemma 8 Chen’s algorithm, with (λ, µ, γ) = (2, 2, 2), performs

3

2
n

⌈

log
n+ 1

2

⌉

− 3.2⌈log n+1
2 ⌉ +O(logn)

comparisons in the worst case.

The argument generalises for all larger λ, µ, and γ. The bound for B(s, u) may be obtained as follows.
To begin, at most one subcall (s1, u1) of a call (s, u) having the balanced property (µ − 1)(s + 1) ≥ u

could become unbalanced. If it is unbalanced, as u1 ≤ u:

(µ− 1)(s1 + 1) < u1 ≤ u ≤ (µ− 1)(s + 1) = (µ− 1)(2s1 + 2) = 2(µ − 1)(s1 + 1)

and hence (s1, u1) = (s1, Θ(u)).
For λ = µ, recalling that λ is a power of 2, we use an argument similar to the one above. This gives, for

s > 1:

B(s, u) ≤ u+ B(s2, u2) + B (s1, (λ− 1)(s1 + 1)) + log λ (λ − 1)(s1 + 1) +

λ+2∑

k=3

B (sk, uk)

15

where
∑λ+2

k=2 uk = u − (λ − 1)(s1 + 1), sk = s1, and all (sk, uk) are balanced, for k ≥ 2. Thus B(s, u) ≤
log λ u log(s + 1). For arbitrary γ, this yields C(n) = Θ(log λ n logn), since the bound is easily seen to be
tight.

For λ < µ, if µ− 1 is an integer multiple of λ− 1, we obtain:

B(s, u) ≤ µ− 1

λ− 1
log λ Θ(u) +

λµ−1
λ−1∑

k=1

B(sk, uk)

where
∑

uk = u, sk = s1, and all (sk, uk) are balanced. To obtain this, suppose the initial halving results
in an unbalanced call (s1, u1). The halvings proceed as in the case λ = µ. The one change is that, following
these halvings, at most one call at the fringe may be unbalanced, and the process can iterate. But in each
iteration, the size of the largest unsorted set decreases by at least (λ−1)(s1+1) and thus there are at most µ−1

λ−1

iterations. Thus B(s, u) ≤ µ−1
λ−1

log λ u log(s + 1). For arbitrary γ, this yields C(n) = Θ(µ−1
λ−1

log λ n logn),
since again it is not hard to show the tightness of the bound.

Finally we can generalise this to all 2 ≤ λ < µ, again obtaining a bound Θ(µ−1
λ−1

log λ n logn) for C(n).
We have shown Theorem 4.

B.2 Worst Case Analysis of Exchanges

We analyse the case (λ, µ, γ) = (2, 2, 2) in detail.
Since the number of partition exchanges is bounded by the number of comparisons, it suffices to analyse

the exchanges occurring in block swaps, which we call block exchanges.

B.2.1 An upper bound

First we analyse top level calls of the form (m, v), where m = 2k − 1 and k ≥ 1.
Let D(s, u) be the worst case number of block exchanges for calls of the form (s, u).
Consider the call tree with (m, v) as root, truncated at those calls which occur due to doubling, i.e., calls

of the form (s, s + 1) generated by an unbalanced parent call (s, u). We call these calls (which are always
balanced) doubling calls, and we call the remaining calls (s, u) with the balanced property, non-doubling
calls. (No block exchanges occur within unbalanced calls exclusive of inner calls, and hence they play no
role in the analysis.)

The non-doubling calls (s, u) may be partitioned into collections based on the values of s; the possible
values are m, m−1

2
, m−3

4
, · · · . We say an item in a sorted subarray is stale with respect to the truncated

call tree if it has already been in the sorted subarray of a doubling call at a leaf of the truncated call tree;
otherwise it is fresh. For each collection, the number of fresh items in the S sets is at least the number of
stale items. Further, for each collection, the fresh items in each call are distinct and hence number O(m+v).
Each non-doubling call (s, u) performs at most s

2
block exchanges. Thus the total number of block exchanges

occurring within all non-doubling calls is at most Θ((m + v) logm).
The unsorted sets in the doubling calls are disjoint, thus the sum of the sizes of the unsorted sets for the

doubling calls is at most v.
Clearly, D(1, 1) = 1, D(1, 2) = 2, and, for m > 1:

D(m, v) ≤ Θ((m + v) logm) +
∑

k

D(sk, sk + 1)

where sk ≤ m−1
2

and
∑

k(sk + 1) ≤ v. Hence D(m, v) = O((m + v) log2m).

We now bound E(n), the worst case number of block exchanges for Chen’s algorithm. Let ŝ = 2⌈log n+1
2 ⌉−

16

1 and û = n− ŝ. Clearly, E(1) = 0, and, for ŝ > 1:

E(ŝ) = D

(

ŝ− 1

2
,
ŝ+ 1

2

)

+ E

(

ŝ− 1

2

)

≤ O(ŝ log2ŝ) + E

(

ŝ− 1

2

)

yielding E(ŝ) = O(ŝ log2ŝ). Clearly, for û ≤ ŝ, D(ŝ, û) = O(ŝ log2ŝ), yielding E(n) = O(n log2n).
The argument is unchanged for the case λ = µ (recall that λ is a power of 2). If λ < µ, then, using similar

arguments, we get:

D(m, v) ≤ Θ(v logm) +
∑

k

D(sk, (λ − 1)(sk + 1))

where sk ≤ m−1
2

, sk < λ−1
µ−1

(m+ 1) − 1 , and
∑

k(λ − 1)(sk + 1) ≤ v. Hence D(m, v) = O(v log2m

log2 µ
λ

).

B.2.2 An input meeting the upper bound

We now consider a particular input to the algorithm which shows that this bound is tight.
Consider a call (m,m+ 1) (where m = 2k − 1 and k ≥ 1) which generates (s1, u1) and (s2, u2) such that

u1 = m+ 1−
√
m+ 1 and u2 =

√
m + 1.

The balanced call (s2, u2) can be made to perform m
4
log(m+1) block exchanges, by having the unsorted

array split evenly in subsequent calls.
In the call (s1, u1) = (m−1

2
,m + 1 −

√
m + 1), since s1 < u1 − 1, s1 doubles by means of a call of the

form (m−1
2

, m+1
2

), to yield s ′1 = 2s1 + 1 = m and u ′

1 = u1 − m+1
2

= m+1
2

−
√
m + 1.

The call (s ′1, u
′

1) can be made to generate subcalls (m−1
2

, m+1
2

−
√
m + 1) and (m−1

2
, 0), (with no block

exchanges being expended).
The call (m−1

2
, m+1

2
−
√
m + 1) can be made to generate subcalls (m−3

4
, m+1

2
−
√
m + 1) and (m−3

4
, 0),

(with no block exchanges being expended).
The call (m−3

4
, m+1

2
−

√
m + 1) can be made to generate a series of calls similar to that generated by

(s1, u1), and to repeat essentially the same pattern, i.e., a doubling call followed by two halvings, yielding

calls of the form (m−2i+1
2i , m+1

2i−1 −
√
m+ 1), for i = 1, 2, · · · , 1

2
log(m+ 1).

If D(m,m+ 1) is the number of block exchanges for such a call (m,m+ 1), then, for m > 1:

D(m,m+ 1) ≥ m

4
log(m + 1) +D

(

m− 1

2
,
m+ 1

2

)

+D

(

m− 3

4
,
m+ 1

4

)

+

· · ·+D(
√
m+ 1− 1,

√
m + 1)

≥ m

4
log(m + 1) −m +D

(

m− 1

2
,
m+ 1

2

)

+D

(

m − 3

4
,
m + 1

4

)

+

· · ·+D(1, 2)

Thus, D(m,m) = Θ(m log2m) and we have:

Lemma 9 Chen’s algorithm, with (λ, µ, γ) = (2, 2, 2), performs Θ(m log2m) exchanges in the worst case.

The construction can be generalised when λ and µ−1
λ−1

are powers of 2.

We start with a call of the form (m, (µ − 1)(m + 1)), which is used to generate the call (m+1
2

− 1, (µ −

1)(m + 1)). There is then an expansion yielding a new call (λm+1
2

− 1, [2(µ − 1) − (λ − 1)]m+1
2

). The

halving here creates two subcalls, a terminal subproblem (λm+1
4

− 1,
√
m + 1) and a continuing subproblem

(λm+1
4

− 1, (2µ − λ − 1)m+1
2

−
√
m+ 1). For λ a power of 2, the latter problem, by repeated halving,

becomes (m+1
2

− 1, (2µ − λ − 1)m+1
2

−
√
m + 1) which induces an expansion. The process is iterated, each

time generating a terminal subproblem of the same size and continuing subproblems with successively smaller

17

unsorted subarrays, until a subproblem (m+1
2

−1, [2(µ−1)− µ−1
λ−1

(λ−1)]m+1
2

− µ−1
λ−1

√
m+ 1) is generated. But

this is (m+1
2

−1, 2(µ−1)m+1
4

− µ−1
λ−1

√
m+ 1), from which we generate (m+1

4
−1, 2(µ−1)m+1

4
− µ−1

λ−1

√
m + 1).

We now continue the above process, generating continuing subproblems but no more terminal subproblems.
Each terminal subproblem can be made to perform Θ(λ m logm) block exchanges. Each expansion (m+1

2i −

1, (λ−1)m+1
2i), by repeated halving, generates a subproblem (m+1

2i
λ−1
µ−1

−1, (λ−1)m+1
2i), which has the same

form as the initial problem. We obtain the recurrence:

D(m, (µ− 1)(m + 1)) ≥ Θ

(

λ
µ− 1

λ− 1
m logm

)

+
µ− 1

λ− 1
D

(

λ− 1

µ− 1

m+ 1

2
− 1, (λ − 1)

m + 1

2

)

+
µ− 1

λ− 1
D

(

λ− 1

µ− 1

m+ 1

4
− 1, (λ − 1)

m + 1

4

)

+ · · ·

+
µ− 1

λ− 1
D(2

√
m+ 1

λ
− 1, 2

µ− 1

λ

√
m + 1)

Thus D(m, (µ− 1)(m + 1)) ≥ Θ(µ m log2m

log2 µ
λ

) and we have Theorem 5.

The construction extends to all other values λ < µ also.

Remark 6 One nice feature of Chen’s algorithm is that it runs in Θ(n logn) operations on natural orderings
such as sorted and reverse sorted inputs, that are bad for quicksort and partition sort. Its worst case be-
haviour, however, arises on near sorted inputs. Specifically, imagine an input sorted apart from k arbitrarily
placed items. In the worst case, Chen’s algorithm will take Θ(n logn log k) time on such an input. Thus it
is plausible that Chen’s algorithm has the potential for somewhat slow operation on occasion in practice.

B.3 Average Case Analysis of Exchanges

We analyse the algorithm for the case λ(1+ ǫ) ≤ µ, where ǫ > 0 is a constant.
We analyse top level calls of the form (m, (γ−1)(m+1)). Consider the call tree with (m, (γ−1)(m+1))

as the root, truncated at unbalanced calls, i.e., calls of the form (s, u) with (µ−1)(s+1) < u ≤ 2(µ−1)(s+1).
Again, it suffices to analyse the block exchanges. Further it suffices to analyse block exchanges occurring

within unbalanced calls (s, u), since the total number of block exchanges occurring within the non-truncated
portion of the call tree is at most Θ(γ m logm).

We note that balanced calls occurring within the unbalanced call (s, u), but outside inner unbalanced
calls (s ′, u ′), expend at most Θ(u log s) exchanges. Since unbalanced calls (s, u) are disjoint within (m, (γ−

1)(m + 1)), the total number of block exchanges occurring within unbalanced calls (s, u), but outside inner
unbalanced calls (s ′, u ′), is at most Θ(γ m logm).

Thus, we seek to bound, within an unbalanced call of the form (s, u), the total number of block exchanges
done on average by inner unbalanced calls (s ′, u ′) with no intermediate unbalanced call ancestors.

Consider the unbalanced call (s, u). It generates an expanding call C1 = (s, (λ − 1)(s + 1)), followed
by a balanced call C2 = (λ(s + 1) − 1, u − (λ − 1)(s + 1)). An unbalanced call (s ′, u ′) inside (s, u) must
be inside C1 or C2. We shall show that the probability that a particular call (s ′, u ′) occurs is negl (s ′) in
the following sense5: let l = s ′ + u ′; then the probability that there is a call (s ′, u ′) for any given set of l
contiguous items (in the sorted order) among the s + u items in the unbalanced call (s, u) is negl (s ′). We
set u ′ = (ν− 1)(s ′ + 1), and so µ < ν ≤ 2µ − 1.

Lemma 10 The probability that a particular call (s ′, u ′) occurs inside C1 is negl (s ′).

5 negl (x)
def
= o

(

1

xO(1)

)

.

18

Proof : Given a segment of size l items in the sorted order, the probability that it gives rise to a call of the
form (s ′, u ′) = (s ′, (ν − 1)(s ′ + 1)) (where µ < ν ≤ 2µ− 1) is:

f(l, ν)
def
=

(

l
l+1
ν

− 1

)(

λ(s+ 1) − 1− l

s − (l+1
ν

− 1)

)

(

λ(s + 1) − 1

s

)

= g(s ′, ν)
def
=

(

ν(s ′ + 1) − 1

s ′

)(

λ(s + 1) − ν(s ′ + 1)

s− s ′

)

(

λ(s + 1) − 1

s

)

We define f1(x) ≃ f2(x) if and only if f1(x)

f2(x)
= x±O(1).

We use Stirling’s approximation and obtain:

g(s ′, ν) ≃
(

ν+ ν−1
s ′

)ν(s ′+1)−1

[

(ν− 1) + ν−1
s ′

](ν−1)(s ′+1)
.

[

(λ− 1) + λ−1
s

](λ−1)(s+1)

(

λ + λ−1
s

)λ(s+1)−1
.

(

λ − ν s ′

s
+ λ−ν

s

)λ(s+1)−ν(s ′+1)

(

1− s ′

s

)s−s ′ [

(λ − 1) − (ν − 1)s
′

s
+ λ−ν

s

](λ−1)(s+1)−(ν−1)(s ′+1)

≃ ννs ′

(ν− 1)(ν−1)s ′
.
(λ − 1)(ν−1)s ′

λνs
′

.

(

1− νs ′

λs

)λs−νs ′

(

1− s ′

s

)s−s ′ (

1− ν−1
λ−1

s ′

s

)(λ−1)s−(ν−1)s ′

∼

[

ν

ν− 1

](ν−1)s ′

.
[ν

λ

]s ′

.

[

λ− 1

λ

](ν−1)s ′

.
e−

νs ′

λs
(λs−νs ′)

e−
s ′

s
(s−s ′)e−

ν−1
λ−1

s ′

s
((λ−1)s−(ν−1)s ′)

∼

[

ν

λ
.

(

ν(λ − 1)

λ(ν − 1)

)ν−1
]s ′

.e
s ′2

s

(

ν2

λ
−

(ν−1)2

λ−1
−1

)

=

[

ν

λ

(

1−
ν
λ
− 1

ν− 1

)ν−1
]s ′

.e
− s ′2

s

(ν−λ)2

λ(λ−1)

≤
[ν

λ
e−(ν

λ
−1)
]s ′

negl (s ′)

= negl (s ′)

Q. E. D.

A similar argument shows that the probability of such a call inside C2 is also negl (s ′).

Lemma 11 The average number of exchanges performed by inner unbalanced calls is O(n).

Proof : Inside C1 the number of distinct unbalanced calls (s ′, u ′) for each fixed value of s ′ is at most

[λ(s + 1) − 1](2µ − 1)s ′. The number of exchanges done in each call is at most (2µs ′)2

2
. Thus the average

number of exchanges occurring inside C1 is bounded by

O

(

∑

s ′<s

(µs ′)3 λ(s + 1) negl (s ′)

)

= O(λs)

Similarly, inside C2 the average number of exchanges is O(u− (λ − 1)(s + 1)). Q. E. D.

We have shown Theorem 6.

19

B.4 Notes

Remark 7 We comment on the slightly mysterious expansion law in Chen’s algorithm, the conditions for
the two cases, and the choice of the input sizes for the top level sort completions. We would like to consider

an input unbalanced when s <
⌊

s+u
µ

⌋

. We would, however, also like to guarantee that s is invariably odd,

to facilitate even splitting about the median of S. This is ensured by the expansion law s ′ = λ(s + 1) − 1,
provided λ and γ are powers of 2. In order to enforce consistency between the meanings of λ and µ, we
approximate the unbalanced property by µ(s+ 1) − 1 < (s+ u). The top level sort completions are such that
they satisfy the balanced property.

Remark 8 Binary insertion sort and quicksort are similar to extreme cases of Chen’s family of algorithms,
namely with (λ, µ, γ) = (1+ 1

s+1
, 1+ 1

s+1
, n+ 1) and (λ, µ, γ) = (s + u, s+ u,n+ 1) respectively.

C Addendum to Section 4

Running times were measured using the gethrtime function; pseudo-random numbers were generated using
the C library function random.

Comparison Counts Cn ± σ(Cn)

n Partition Chen Quasi-best-of-9 Best-of-3
20000 305546 ± 1097 302150 ± 1002 309561 ± 3865 320564 ± 5033
25000 390220 ± 1657 386222 ± 874 395630 ± 5249 411489 ± 5164
30000 476495 ± 1784 471470 ± 1148 484372 ± 4555 501055 ± 9000
35000 563975 ± 2188 557102 ± 1038 573429 ± 6294 597101 ± 11042
40000 652301 ± 2443 644593 ± 1671 665629 ± 8360 690239 ± 12494

200000 3717621 ± 4381 3692109 ± 4196 3836652 ± 35762 3985199 ± 55805
250000 4733552 ± 6244 4691273 ± 2794 4860636 ± 29934 5113716 ± 116504
300000 5764341 ± 6101 5708190 ± 3749 5903429 ± 35349 6179035 ± 70063
350000 6801929 ± 5976 6742757 ± 3793 6979691 ± 52562 7353966 ± 122661
400000 7838234 ± 8193 7781411 ± 4596 8061647 ± 59833 8479922 ± 147614
2000000 43876624 ± 16728 43521794 ± 6941 45377851 ± 318857 47963454 ± 758987
2500000 55689824 ± 17973 55221048 ± 10036 57690500 ± 593030 60870331 ± 863631
3000000 67550833 ± 16611 67096293 ± 10638 70239232 ± 577638 73948489 ± 1005341
3500000 79610371 ± 18565 79048824 ± 13626 82516974 ± 446344 87170240 ± 1343546
4000000 91750180 ± 22272 91049235 ± 14761 94998765 ± 567395 100124345 ± 1278447

20

Move Counts Mn ± σ(Mn)

n Partition Chen Quasi-best-of-9 Best-of-3
20000 238620 ± 486 240568 ± 415 236998 ± 861 234812 ± 966
25000 304218 ± 643 306521 ± 632 302076 ± 1065 298977 ± 1111
30000 371405 ± 696 374208 ± 648 368445 ± 1204 364994 ± 1350
35000 438857 ± 1000 442895 ± 884 435344 ± 1517 430722 ± 1956
40000 507520 ± 829 511538 ± 714 502487 ± 1670 497986 ± 2422

200000 2889652 ± 1702 2907694 ± 2350 2850238 ± 6599 2823552 ± 8165
250000 3673333 ± 2210 3703661 ± 3230 3627016 ± 6476 3585593 ± 14476
300000 4468240 ± 2344 4503491 ± 2779 4412779 ± 8142 4361515 ± 12100
350000 5270988 ± 2519 5306375 ± 2389 5205095 ± 10217 5135099 ± 20834
400000 6083693 ± 2689 6119882 ± 2661 6001817 ± 13614 5928101 ± 25557
2000000 33935685 ± 7805 34190863 ± 6099 33396794 ± 70902 32937251 ± 128283
2500000 43016274 ± 6590 43351769 ± 6378 42313581 ± 112009 41759063 ± 145696
3000000 52230311 ± 5860 52539053 ± 6584 51320739 ± 108955 50665544 ± 164316
3500000 61528422 ± 5947 61874851 ± 7843 60499358 ± 97468 59690058 ± 211206
4000000 70904440 ± 8625 71415113 ± 13125 69735446 ± 129138 68844177 ± 200174

We remark that there does not seem to exist a theory for choosing in an objective manner the number of
times the trials are to be repeated to achieve a specified degree of confidence. The difficulty is that we lack
estimates for the standard deviations σ of the quantities being measured, and hence it is difficult to predict
the standard deviation of the computed sample mean after a specified number of trials. In practice, however,
this does not seem to entail any difficulty in estimating the accuracy of the computed sample mean.

21

