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a mechanical explanation of the cause was to be had on some 
such principles as the ibllowing :--Vapour of sodium must pos- 
sess by its molecular structure a tendency to vibrate in the 
periods corresponding to the degrees of refrangibility of the double 
line D. Hence the presence of sodium in a source of light must 
tend to originate light of that quality. On the other hand, 
vapour of sodium in an atmosphere round a source, must have a 
great tendency to retain in itself, i. e. to absorb and to have its 
temperature raised by light from the source, of the precise qua- 
lity in question. In the atmosphere around the sun, therefore, 
there must be present vapour of sodium, which, according to the 
mechanical explanation thus suggested, being particularly opake 
for light of that quality, prevents such of it as is emitted from 
the sun from penetrating to any considerable distance through 
the surrounding atmosphere. The test of tfais theory must be 
had in ascertaining whether or not vapour of sodium has the 
special absorbing power anticipated. I have the impression that 
some Frenchman did make this out by experiment, but I can 
find no reference on the point. 

" I  am not sure whether Professor Stokes's suggestion of a me- 
chanical theory has ever appeared in print. I have given it iu 
my lectures regularly for many years, always pointing out along 
with it that solar and stellar chemistry were to be studied by 
investigating terrestrial substances giving bright lines in the 
spectra of artificial flames corresponding to the dark lines of the 
solar and stellar spectra." 

II. Illustrations of the Dynamical Theory of Gases. By J. C. 
MAXWELL, M.A., Professor of Natural Philosophy in Marischal 
College and University of Aberdeen. 

[Concluded from vol. xix. p. 32.] 

PAST II.  On the Process of Diffusion of two or more kinds of 
moving particles among one another. 

W E have shown, in the first part of this paper, that the 
motions of a system of many small elastic particles are 

of two kinds : one, a general motion of translation of the whole 
system, which may be called the motion in mass ; and the other 
a motion of agitation, or molecular motion, in virtue of which 
velocities in all directions arc distributed among the particles 
according to a certain law. In the eases we are considering, the 
collisions are so Trequent that the law of distribution of the mole- 
cular velocities, if disturbed in any way, will be re-established in 
an inappreciably short time ; so that the motion will always con- 
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22 Prof. Maxwell on the Process of Diffusion of two or 

sist of this definite motion of agitation, combined with the general 
motion of translation. 

When two gases are in communication, streams of the two 
gases might run freely in opposite directions, if it were not for 
the collisions which take place between the particles. The rate 
at which the actually interpenetrate each other must be investi- y . . . .  " 

gated. The &ffuslon is due partly to the spreading of the par- 
ticles by the molecular agitation, and partly to the actual motion 
of the two opposite currents in mass, produced by the pressure 
behind, and resisted by the collisions of the opposite stream. 
When the densities are equal, the diffusions due to these two 
causes respectively are as 2 to 3. 

Prop. XIV. In a system of particles whose density, velocity, 
$;c. are functions of x, to find the quantity of matter transJerred 
across the plane o f  yz, due to the motion of agitation alone. 

I f  the number of particles, their velocity, or their length of 
path is greater on one side of this plane than on the other, then 
more particles will cross the plane in one direction than in the 
other ; and there will be a transference of matter across the 
plane, the amount of which may be calculated. 

Let there be taken a stratum whose thick- t II 
hess is dx, and area unity, at a distance x from 
the origin. The number of collisions taking 
place in this stratum in unit of time will be 

N / da:. 

The proportion of these which reach a distance between nl and 
(n + dn)l before they strike another particle is 

e-,~dn. 
The proportion of these which pass through the plane yz is 

nl+x  
2nl- when x is between --nl and 0, 

and nl-- x 
- - ~  when x is between 0 and +nl; 

'2nl 
the sign being negative in the latter ease, because the particles 
cross the plane in the negative direction. The mass of each 
particle is M ; so that the quantity of matter which is projected 
from the stratum dx, crosses the plane yz in a positive direction, 
an d strikes other particles at distances between nl and (n + dn) l is 

MNv(x-T- nl) dx e-'dn, (26) 
2nl ~ . . . . .  

where x must be between ___ nl, and the upper or lower sign is 
to be taken according as x is positive or negative. 
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more kinds of Moving Particles among one another. 23 

In integrating this expression, we must remember that N, v, 
and 1 are functions of x, not vanishing with x, and of which the 
variations are very small between the limits x----~ nl and 
x =  +nl. 

As we may have occasion to perform similar integrations, we 
may state here, to save trouble, that if U and r are functions of 
x not vanishing with x, whose variations are very small between 
the limits x =  + r  and x =  --r ,  

+Ux'~dx= Urm+' ) . .  (27) 
• ~-r m + 2  

When m is an odd number, the upper sign only is to be con- 
sidered ; when m is even or zero, the upper sign is to be taken 
with positive values of x, and the lower with negative values. 
Applying this to the case before us, 

~f_+.t MNvx dx ~ d ,,z ~ = ~ a~x (MNvn 1), 

.f+'~ MNv 1 d ,a T ~ dx= --~ dx (MNvn l). 

We have now to integrate 

-~x (MNvl)n e- dn, 

n being taken from 0 to ~ .  We thus find for the quantity of 
matter transferred across unit of area by the motion of agitation 
in unit of time, 

d 
= - ~ d~ (p~l), . . . . . .  (28) 

where p = M N  is the density, v the mean velocity of agitation, 
and I the mean length of path. 

Prop. XV. The quantity transferred, in consequence of a mean 
motion of translation V, would obviously be 

Q ' -Vp . . . . . . . . . . .  (29) 

Prop. XVI. To find the resultant dynamical effect of all the 
collisions which take place in a given stratum. 

Suppose the density and velocity of the particles to be func- 
tions of x, then more particles will be thrown into the given 
stratum from that side on which the density is greatest ; and 
those particles which have greatest velocity will have the great- 
est effect, so that the stratum will not be generally in equilibrium, 
and the dynamical measure of the force exerted on the stratum 
will be the resultant momentum of all the particles which lodge 
in it during unit of time. We shall first take the case in which 
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24 Prof. Maxwell on the Process o f  Diffusion of  two or 

there is no mean motion of translation, and then consider the 
effect of such motion separately. 

Let a stratum whose thickness is a (a small 
quantit compared with l), and area unity, I I  t ] 

Y . . . 

be taken at the origin, perpendicular to the 
axis of x ;  and let another stratum, of thick- 
ness dx, and area unity, be taken at a distance 
x from the first. 

I f  M 1 be the mass of a particle, N the number in unit of 
volume, v the velocity of agitation, t the mean length of path, 
then the number of collisions which take place in the stratum 
dx is 

1) NTa~. 
The proportion of these which reach a distance between nl and 
(n + dn)l is 

e-ndn. 

The proportion of these which have the extremities of their paths 
in the stratum a is 

The velocity of these particles, resolved in the direction of x, is 

nl' 

and the mass is M ; so that multiplying all these tel~as together, 
we get 

NMv~ax _.  • • 
2n---~-[ff-ls e ax an . . . . .  (30) 

for the momentum of the particles fulfilling the above conditions. 
To get the whole momentum, we must first integrate with 

respect to x from x =  - -n l  to x---- +nl ,  "remembering that l may 
be a function of x, and is a very small quantity. The result is 

d / N M v ~ \  

Integrating with respect to n from n - - 0  to n =  0% the result is 

d / N M v ~ \  

as the whole resultant force on the stratum a arising from these 
NMv ~ 

collisions. N o w - - g -  --P by Prop. XII.,  and therefore we 
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more kinds of Moving Particles among one another. 25 

may write the equation 

- ~ = x p ,  . . . . . . .  (32 )  

the ordinary hydrodynamieal equation. 
Prop. XVII. To find the resultant effect of the collisions upon 

each of several different systems of particles mixed together. 
Let Mr, Me, &c. be the masses of the different kinds of par- 

tides, N v N~, 8~e. the number of each kind in unit of volume, 
vl, v2, &c. their velocities of agitation, I l, I~ their mean paths, 
Pt, Pu, gxe. the pressures due to each system of particles ; then 

1 =Api + Bp~+ 8~e. } 
z, . . . .  (83) 
- = Col +Dp~+ &c. 

The number of collisions of the first kind of particles with each 
other in unit of time will be 

N~vlApz. 
The number of collisions between particles of the first and second 
kinds will be 

NivlBp~, or N~v2CpI , because vlsB=~sC. 

The number of collisions between particles of the second kind 
will be N~v~Dpe, and so on, if there are more kinds of particles. 

Let us now consider a thin stratum of the mixture whose 
volume is unity. 

The resultant momentum of the particles of the first kind 
which lodge in it during unit of time is 

_ dp._~l 
dx" 

The proportion of these which strike particles of the first kind is 

The whole momentum of these remains among the particles of 
the first kind. The proportion which strike particles of the 
second kind is 

Bp~ l I. 

The momentum of these is divided between the striking particles 
MI 

in the ratio of their masses ; so that MI + Mi of the whole goes 

to particles of the first kind, and M~ M i + M  ~ to particles of the 

second kind. 
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26 Prof. Maxwell on the Process of  Diffusion of  two or 

The effect of these collisions is therefore to produce a fbrce 

dp~ l Mi -- ~ -  (APl ll + Bps ~ ~ ]  

on particles of the first system, and 

dpl Ms 
--  - ~  BPs II M l + Ms 

on particles of the second system. 
The effect of the collisions of those particles of the second 

system which strike into the stratum, is to produce a force 

__  l _ M ~  -- dPs Cpj 
dx S M l + M  s 

on the first system, and 

s Mj +M~ +Dp~ 
on the second. 

The whole effect of these collisions is therefore to produce a 
resultant force 

--~(Ap'I'+BpsIIM--MI--~-M.) -dpsCp'l~'-M-3"~ M,+Iv l .  ~-,~c. (34) 

on the first system, 
ep, oA _ _Ms, ep,, M, 
ax M, + lvls -- d-'xx ~CP' l s ~  M, +DP '  

on the second, and so on. 
Prop. XVIII. To find the mechanical effect of  a difference in 

the mean velocity of translation of  two systems of moving particles. 
Let V1, V s be the mean velocities of translation of the two 

systems respectively, then MIM~ (Vl--Vs) is the mean mo- 
MI+M~ 

mentum lost by a particle of the first, and gained by a particle 
of the second at collision. The number of such collisions in unit 
of volume is 

N l Bps vl, or N s Cpl v s 

therefore the whole effect of the collisions is to produce a force 

M1M~ (VI--V s) (36) = -- N 1 Bps v~ M! + M~ 

on the first system, and an equal and opposite force 

MIM~ 'V 
---- + Nt Cpl vt MI--+--M~ t l-V~) 

on unit of volume of the second system. 

(az) 
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more kinds of Movin 9 Particles among one another. 27 

Prop. XIX. To find the law of diffusion in the case of two gases 
diffusin 9 into each other through a plug made of a porous material, 
as in the case of the experiments of" Graham. 

The pressure on each side of the plug being equal, it was 
found by Graham that the quantities of the gases which passed 
in opposite directions through the plug in the same time were 
directly as the square roots of their specific gravities. 

We may suppose the action of the porous material to be similar 
to that of a number of particles fixed in space, and obstructing 
the motion of the particles of the moving systems. If  L l is the 
mean distance a particle of the first kind would have to go before 
striking a fixed particle, and L~ the distance for a particle of the 
second kind, then the mean paths of particles of each kind will 
be given by the equations 

1 1 _ C p I + D p ~ +  1 ¼=Ap  + + (38) L~' 
The mechanical effect upon the plug of the pressures of the gases 
on each side, and of the percolation of the gases through it, may 
be found by Props. XVII. at.d XVIII. to be 

MlNlv~Vt M2N~v~V~ @1 II @2 l~- -0  
L~ -k L~ dx L 1 -~x L~-- i . (39) 

and this must be zero, if the pressures are equal on each side of 
the plug. Now if QI, Q~ be the quantities transferred through 
the plug by the mean motion of translation, Q ! -  PlVl = M1N iVl; 
and since by Graham's law 

v2 Q =-v 
we shall have 

MtNlvlV t = - M~N~v~V~= U suppose; 
@8 @, 

and since the pressures on the two sides are equal, Txx ---- -- ~x '  

and the only way in which the equation of equilibrium of the 
plug can generally subsist is when L1----L 2 and ll--1 ~. This 
implies that A--C and B----D. Now we know that vlSB=v~C. 

l 

Let K----3:-~a, then we shall have 
V 1 

A----C----½Kv, s, B = D = ~ K v g ,  (40) 
and 

1 l 1 (41) 

The diffusion is due partly to the motion of translation, and 
partly to that of agitation. Let us find the part due to the 
motion of translation. 
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28 Prof. Maxwell on the Process of  Diff~ion of two or 

The equation of motion of one of the gases through the plug 
is found by adding the forces due to pressures to those due to 
resistances, and equating these to the moving force, which in 
the case of slow motions may be neglected altogether. The 
result for the first is 

Mi 
MI + M2 

MIM~ P ~  =0.  (42) + NiBp~v, M----T-M~ ~ (V,--V 0 + 

Making use of the simplifications we have just discovered, this 
b e c o m e s  

dp Kl , s 
v ,-~-v~ ~ (v, 'p, + v~p~) + K ~ 1 ~, +,,~ (p,v~+~v,)O +Tv,  (43) 

whence 
U-" -- dp Xl(v,Spl + v~Sp~) 

dx v~ ~ + v~ 2' (44) 
Kvlv~(Pl% +P2Vt) +" L 

whence the rate of diffusion due to the motion of translation 
may be found; for 

Qt = U and Qa-- U (45) 
V l ' V~ 

To find the diffusion due to the motion of agitation, we must 
find the value of q~. 

l d .  

L d Pt 
v 1 dx 1 + KL(vlp I +v~pa' 

+ XLv (p, (46) 
ql-" - - v ~  

Similarly, 

q , =  . . (47)  

The whole diffusions arc Q1 + ql and Qa + q~. The values of ql 
and qi have a term not following Oraham's law of the square 
roots of the specific gravities, but following the law of equal 
volumes. The closer the material of the plug, the less will this 
term affect the result. 

Our assumptions that the porous plug acts like a system of 
fixed particles, and that Graham's law is fulfilled more accurately 
the more compact the material of the plug, are scarcely suffi- 
ciently well verified for the foundation of a theory of gases ; and 
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more kin& of Moving Particles among one another. 29 

even if we admit the original assumption that they are systems 
of moving elastic particles, we have not very good evidence as 
yet for the relation among the quantities A, B, C, and D. 

Prop. XX. To find the rate of diffusion between two vessels 
connected by a tube. 

When diffusion takes place through a large opening, such as 
a tube connecting two vessels, the question is simplified by the 
absence of the porous diffusion plug; and since the pressure is 
constant throughout the apparatus , the volumes of the two gases 
passing opposite ways through the tube at the same time must 
be equal. Now the quantity of gas which passes through the 
tube is due partly to the motion of agitation as in Prop. XIV., 
and partly to the mean motion of translation as in Prop. XV. 

Let us suppose the 
volumes of the two ves- 
sels to be a and b, and 
the length of the tube 
between them c, and its 
transverse section s. Let 
a be filled with the first 
gas, and b with the second 
at the commencement of 
the experiment, and let 
be P. 

the pressure throughout the apparatus 

Let a volume y of the first gas pass from a to b, and a volume 
yl of the second pass from b to a ; then if Pi and p~ represent 
the pressures in a due to the first and second kinds of gas, and 
pl I and p l  the same in the vessel b, 

b--yt 
p~=a--yp ,  p 2 = _ p ,  pr l ._yp ,  pw= b P . .  (48) 

a 

Since there is still equilibrium, 

Pl +P~----IJl +pl , 
which gives 

y=y t  and Pl +Pa=P=Plx +pS. (49) 

dy for the one gas, and - - ~  for The rate of diffusion will be + 

the other, measured in volume of gas at pressure P. 
Now the rate of diffusion of the first gas will be 

1 d 
dy =ski ql +PIVI -- sVl~x (Pill) +PIVI 
-Ji p = s  p ; . .  (50)  
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30 Prof. Maxwell on the Process of Diffusion of two or 

and that of the second, 

l d @ - ~ v ~  (pd~) +p~v~ 
- ~ / = s  p . . . . .  ( 51 )  

We have also the equation, derived fi'om Props. XVI. and XVII., 

dp__j (Aptlt(M ~ + M~) + Bp~IjM~-- CpI/~M~) 
dx 

+ Bp,O~v,M~(V,--V~) = 0  . . . . . .  (52) 

From these three equations we can eliminate V l and V~, and 

find dy in terms ofp  and dp dTx' so that we may write 

. . . . . .  

Since the capacity of the tube is small compared with that of 

the vessels, we may consider dy constant through the whole 

length of the tube. We may then solve the differential equation 
in p and x ;  and then making P----Pl when x = 0 ,  and P=ff l  
when x =  c, and substituting for Pl and pl I their values in terms 
of y, we shall have a differential equation in y and t, which being 
solved, will give the amount of gas diffused in a given time. 

The solution of these equations would be difficult unless we 
assume relations among the quantities A, B, C, D, which are 
not yet sufficiently established in the case of gases of different 
density. Let us suppose that in a particular case the two gases 
have the same density, and that the four quantities A, B, C, D 
are all equal. 

The volume diffused, owin~g to the motion of agitation of the 
particles, is then 

-~. ~ vl, 

and that due to the motion of translation, or the interpenetration 
of the two gases in opposite streams, is 

s dpM 
P d~v" 

The values of v are distributed according to the law of Prop. IV., 

so that the mean value of v is 2~t and that of 1 2 C ~ '  v is ~ ,  that 

of k being {a~. The diffusions due to these two causes are 
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more kinds of Moving Particles among one anothev. 31 

therefore in the ratio of 2 to 3, and their sum is 

_ st dp (5¢) dy 

-d i -  V P az . . . . . .  

dy 
If we suppose ~ constant throughout the tube, or, in other 

words, if we regard the motion as steady for a short time, then 
dp will be constant and equal to Pll--Pl ; or substituting from 
dx c 
(48), 

whence 

Y = a +----b ~ -- . . . . .  )" (56) 

By choosing pairs of gases of equal density, and ascertaining 
the amount of diffusion in a given time, we might determine the 
value of 1 in this expression. The diffusion of nitrogen into 
carbonic oxide or of deutoxidc of nitrogen into carbonic acid, 
would be suitable cases for experiment. The only existing ex- 
periment which approximately fulfils the conditions is one by 
Graham, quoted by Herapath from Brande's Quarterly Journal 
of Science, vol. xviii, p. 76. 

A tube 9 inches long and 0"9 inch diameter, communicated 
with the atmosphere by a tube 2 inches long and 0"12 inch dia- 
meter; 152 parts of olefiant gas being placed in the tube, the 
quantity remaining after four hours was 99 parts. 

In this case there is not much difference of specific gravity 

between the gases, and we have a = 9  x (0"9)~-~ cubic inches, 

b--  Qo, c = 2  inches, and s = ( 0 " 1 2 ) ~  - square inches 

l =  rr ¼ s log~ 10 "7" l°gw ; 

.." 1=0"(i0000256 inch = ~ inch . .  (58) 

Prop. XXI. ~ o find the amount of energy which crosses unit of 
area in unit of  time when the velocity of agitation is greater on 
one side of the area than on the other. 

The energy of a single particle is composed of two parts,--the 
vis viva of the centre of gravity, and the vis viva of the various 
motions of rotation round that centre, o 5 if the particle be 
capable of internal motions, the vis viva of these. We shall sup- 
pose that the whole vis viva bears a constant proportion to that 
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32 Prof. Maxwell on the Process of Diffusion of two or 

due to the motion of the ~entre of gravity, or 

E f ½B MvL 

where f~ is a coefficient, the experimental value of which is 1'63~. 
Substituting E for M in Prop. XIV., we get for the transference 
of energy across unit of area in unit of time, 

td Jgq= --~ aTx (~Mv~Nvl) ,  

where J is the mechanical equivalent of heat in foot-pounds, and 
q is the transfer of heat in thermal units. 

1 1 
Now M N = p ,  and l =  ~p, so that M N / =  ~- ; 

.'. sgq = -½ ~ dv 
A ~ ,  . . . . . . .  (59) 

Also, if T is the absolute temperature, 

1 dT 2 dv 
T d x = ' ; - ~ ;  

1 dT 
• ". Jgq-- --~ tgplv T dx' . . . . .  (60) 

where ? must be measured in dynamical units of force. 
Let J = 7 7 2  foot-pounds, p----2116 pounds to square foot, 

l =  4oTooo inch, v =  1505 feet per second, T = 5 2 2  or 62 ° Fahren- 
heit ; then 

Tt - -T  
q =  4 o o o o x '  . . . . . . . . .  (61) 

where q is the flow of heat in thermal units per square foot of 
area; and T I, and T are the temperatures at the two sides of 
a stratum of air x inches thick. 

In Prof. Rankine's work on the Steam-engine, p. 259, values 
of the thermal resistance, or the reciprocal of the conductivity, 
are given for various substances as computed from a Table of 
eonduetivities deduced by M. Peelet from experiments by M. 
Despretz : -  

Resistance. 
Gold, Platinum, Silver. 0"0036 
Copper . . . . . .  0"0040 
Iron . . . . . . .  0"0096 
Lead . . . . . . .  0"0198 
Brick . . . . . . .  0"3306 

Air by our calculation . . 40000 

It  appears, therefore, that the resistance of a stratum of air 
to the conduction of heat is about 10,000,000 times greater than 
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more kinds of Moving Particles among one another. 33 

that of a stratum of copper of equal thickness. It would be almost 
impossible to establish the value of the conductivity of a gas by 
direct experiment, as the heat radiated from the sides of the vessel 
would be far greater than the heat conducted through the air, 
even if currents could be entirely prevented. 

Pxar III .  On the Collision of Perfectly Elastic Bodies of any 
Form. 

When two perfectly smooth spheres strike each other, the 
force which acts between them always passes through their een- 
tres of gravity ; and therefore their motions., of rotation, if the. y 
have any, are not affected by the eolhslon, and do not enter into 
our calculations. But, when the bodies are not spherical, the 
force of compact will not, in general, be in the line joining 
their eentres of gravity ; and therefore the force of impact will 
depend both on the motion of the eentres and the mbtions of 
rotation before impact, and it will affect both these motions after 
impact. 

In this way the velocities of the eentres and the velocities of 
rotation will act and react on each other, so that finally there 
will be some relation established between them ; and since the 
rotations of the particles about their three axes are quantities 
related to each other in the same way as the three velocities of 
their eentres, the reasoning of Prop. IV. will apply to rotation 
as well as velocity, and both will be distributed according to tile 
law 

d N = N  1 _ ~2 

Also, by Prop. V., if x be the average velocity of one set of par- 
tides, and y that of another, then the average value of the sum 
or difference of the veloeities is 

v/x2 + y2., 

from which it is easy to see that, if in each individual case 

u-- ax + by + cz, 

where x, y, z are independent quantities distributed according to 
the law above stated, then the average values of these quantities 
will be connected by the equation 

u~ - -  a~a,~ + b~y ~ + c~z ~. 

Prop. XXII. Two perfectly elastic bodies of any form strike 
each other : given their motions before impact, and the line of im- 
pact, to find their motions after impact. 

Phil. Mat. S. 4. Vol. 20. No. 130. July 1860. D 
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Let M l and M~ be the centres 
of gravityof the two bodies. M ! Xl, 
MIYI, and M 3 Z l the principal axes 
of the first; and M~ X~, M~, Y~, 
and M~Zu those of the second. 
Let I be the point of impact, and 
R~ I R~ the line of impact. 

Let the coordinates of I with 
respect to M~ be x~ y~ zp and with 

Prof. Maxwell on the Collision of 

respect to M~ let them be x~ y~ z~. 
Let the direction-cosines of the line of impact R~ I R~ be 

l I m 1 n I with respect to MI, and l~ m~ n~ with respect to M~. 

Let M i and M~ be the masses, and A 1 B l C l and A~ B~ C~ the 
moments of inertia of the bodies about their principal axes. 

Let the velocities of the centres of gravity, resolved in the 
direction of the principal axes of each body, be 

U1 Yl Wl and U~ V~ W~ before impact, 
and 

Utl VIi Wtl and Ut~ W~ WI~ after impact. 

Let the angular velocities round the same axes be 

Pl ql r~ and p~ q~ r~ before impact, 
and 

pt 1 qt 1 d I and p t  qt  r t  after impact. 

Let R be the impulsive force between the bodies, measured by 
the momentum it produces in each. 

Then, for the velocities of the eentres of gravity, we have the 
following equations : 

"'~, C , = V 2  - al2 (62) U ' I = U I +  
M 2 ,  • . , o 

with two other pairs of equations in V and W. The equations 
for the angular velocities are 

R R 

with two other pairs of equations for q and r. 
The condition of perfect elasticity is that the whole vis viva 

shall be the same after impact as before, which gives the equation 

MI(U,~_U~) ,~ 2 a ~ ,2 ~ 0 +M2(U ~--U2) -I-A~(p ~--p~)+A2(p ~--p2)+&c.= . (64) 

The terms relating to the axis of x are here given ; those relating 
to y and z may be easily written down. 

Substituting the values of these terms, as given by equations 
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Perfectly Elagtic Bodies o f  any Form. 35 

(62) and (63), and dividing by R, we find 

ll(U'l + U1) -- I~(U'2 + V2) + (ylnl--z lml)(P' ,  +P,) 
--(y2n2--z2m~)(pt2+p2) + &e. = 0  . . . . .  (65) 

Now if v I be the velocity of the striking-point of the first body 
before impact, resolved along the line of impact, 

vl----llU I + (ylnl--z~ml)pl + &c. ; 

and if we put v~ for the velocity of the other striking-point 
resolved along the same line, and vsl and vl~ the same quantities 
after impact, we may write equation (65), 

v 1 + VIi -- V~-- d 2 = 0, . . . . .  (66) 
or 

v l - - v ~ = d ~ - d  l, . . . . . . .  (67) 
which shows that the velocity of separation of the striking-points 
resolved in the line of impact is equal to that of approach. 

Substituting the values of the accented quantities in equa- 
tion (65) by means of equations (63) and (6¢), and transposing 
terms in R, we find 
2 ( U~ll - -  U fl~ + p,  (y~ni --  z~m~) .-p~(y~n2- z~rn~) } + &c. 

=--R { l_~, + ~l~ + (Y'n'--~'m')~A, + (Y~n"--~'~)~A, + &c., (68) 
the other terms being related to y and z as these are to x. From 
this equation we may find the value of R;  and by substi- 
tuting this in equations (63), (64), we may obtain the values of 
all the velocities after impact. 

We may, for example, find the value of Ull from the equation 

U , f &  l; ~ ( y , n , - - z l m , )  ~ (Y,ns -- zsm2)' {_ &c. ) ~ll ] ' k ~ ,  + ~-~ + a, ~ 
(Y~n=--z~m~)2 & c - / M l  ~ (69) m'~Vl~--  ~12 "~ 122 "~ (ylnl--Zlml)2 "3v 3w "~ ~1"  

! 
+ 2U,12-- 2p, (y,n, --  z,m,) 4,- 2p, (y2n~ -- zsms) - &;e. J 

Prop. XXIII .  To find the relations between the average velocities 
of  translation and rotation after many collisions among many bodies. 

Taking equation (69), which applies to an individual collision, 
we see that Url is expressed as a linear function of Ul, U~,p~,p~, 
~c., all of which are quantities of which the values are distributed 
among the different particles according to the law of Prop. IV. 
It  follows from Prop. V., that if we square every term of the 
equation, we shall have a new equation between the average 
values of the different quantities. It is plain that, as soon as the 
required relations have been established, they will remain the 

D 2  
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36 On the Collision of Perfectly Elastic Bodies of any Form. 

same after collision, so that we may put UlI~----Ut ~ in the equa- 
tion of averages. The equation between the average values may 
then be written 

(M,U, *-M2U~2)~q-l' (M~Ul~_A~plg.)(y,n,~sz~ml)'.., 

Now since there are collisions in every possible way, so that the 
values of 1, m, n, &e. and x,y, z, &e. are infinitely varied, this 
equation cannot subsist unless 

MaUl ~ = MzU2 ~ = Aa pa ~ = k~p~ ~ = &e. 

The final state, therefore, of any number of systems of moving 
particles of any form is that in whieh the average vis viva of 
translation along each of the three axes is the same in all the 
systems, and equal to the average vis viva of rotation about each 
of the three principal axes of each particle. 

Adding the vires viwe with respect to the other axes, we find 
that the whole vis viva of translation is equal to that o f  rotation 
in each system of particles, and is also the same for different 
systems, as was proved in Prop. VI. 

This result (which is true, however nearly the bodies approach 
the spherical form, provided the motion of rotation is at all 
affected by the collisions) seems decisive against the unqualified 
acceptation of the hypothesis that gases are such systems of hard 
elastic particles. For the ascertained fact that ~, the ratio of the 
specific heat at constant pressure to that at constant volume, is 
equal to 1"44)8, requires that the ratio of the whole vis viva to 
the vis viva of translation should be 

2 
= 1 . 6 a 4 ;  

whereas, according to our hypothesis, B = 2 .  
We have now followed the mathematical theory of the col- 

lisions of hard elastic particles through various eases, in which 
there seems to be an analogy with the ph~enomena of gases. We 
have deduced, as others have done already, the relations of pres- 
sure, temperature, and density of a single gas. We have also 
proved that when two different gases act freely on each other 
(that is, when at the same temperature), the mass of the single 
particles of each is inversely proportional to the square of the 
molecular velocity; and therefore, at equal temperature and 
pressure, the number of particles in unit of volume is the same. 

We then offered an explanation of the internal friction of 
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On the Velocity of the Sound of Thunder. 37 

gases, and deduced frmn experiments a value of the mean length 
of path of a particle between successive collisions. 

We have applied the theory to the law of diffusion of gases, 
and, from an experiment on olefiant gas, we have deduced a 
value of the length of path not very different from that deduced 
from experiments on friction. 

Using this value of the length of path between collisions, we 
found that the resistance of air to the conduction of heat is 
10,000,000 that of eopper~ a result in accordance with experience. 

Finally, by establishing a necessary relation between the mo- 
tions of translation and rotation of all particles not spherical, we 
proved that a system of such particles could not possibly satisfy 
the known relation between the two specific heats of all gases. 

III. On a New Theoretical Determination of the Velocity of 
Sound. By the Rev. S. I~ARNS~AW, M.A., Shejfield. 

[Continued from vol. xix. p. 455.] 
On the Velocity of the Sound of Thunder. 

r ~ H E R E  yet remains to be considered a case of sound-velocity 
J -  to which the investigations of Newton and the suggestion 

of Laplace are totally inadequate, which nevertheless is naturally 
suggested, by what has been done in the preceding articles, as 
necessary to complete the theory of sound=velocity : I allude to 
the propagation of the sound of a clap of thunder. The con- 
sideration of this case will strengthen the evidence of the sound- 
ness of the preceding investigations. 

Before it was announced by myself at the Meeting of the 
British Association at Leeds in 1858, that according to theory 
violent sounds are propagated more rapidly than gentle sounds, 
I believe the fact was not suspected by philosophers. I was led 
to this result by a careful discussion of the integral of the 
well-known equation of motion of an elastic fluid in a horizontal 
tube. I was, however, not able to bring forward any instance 
of the fact having been observed, except a single one, recorded 
in one of Party's Voyages to the North. The records of 
experimentalists agreed in stating, on the contrary, that all sounds 
travel at the same rate. Since that time the subject has rested. 
A few weeks ago, however, my attention was recalled to it by the 
receipt of a memoir printed in the Bulletins de l'~'lcade'mie Royale 
de Belgique, kindly forwarded to me by its author, Professor 
Ch. Montigny oF Antwerp, which has satisfied me that, in the 
case of a thunder-clap, sound is sometimes propagated with a 
velocity far greater than I had ever imagined, and that the 
problem of the propagation of sound is yet far from having been 
fully solved. 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
r
i
n
c
e
t
o
n
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
0
5
:
1
5
 
2
1
 
M
a
r
c
h
 
2
0
1
0




