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I believe that I can best convey my gratitude for the honour which the Academy
has to a degree conferred on me, through naming me as one of its correspondents,
if I immediately avail myself of the privilege thereby received to communicate an
investigation into the accumulation of the prime numbers; a subject which perhaps
seems not wholly unworthy of such a communication, given the interest which Gauss
and Dirichlet have themselves shown in it over a long period.

In this investigation my point of departure is provided by the observation of Euler
that the product: ∏ 1

1− 1
ps

=
∑ 1

ns

where one substitutes for p all prime numbers, and for n all whole numbers. The
function of the complex variable s which is represented by these two expressions,
wherever they converge, I denote by ζ(s). They converge only when the real part of
s is greater than 1; at the same time it is easy to find an expression for the function
which always remains valid. Applying the equation:

∞∫
0

e−nxxs−1dx =
Π(s− 1)

ns

one first sees that:

Π(s− 1)ζ(s) =

∞∫
0

xs−1dx

ex − 1

If one now considers the integral: ∫
(−x)s−1dx

ex − 1

from +∞ to +∞ taken in the positive sense around the boundary of a domain which
includes the value 0 but no other singularity of the integrand in its interior, then this
is easily seen to be equal to:

(e−πsi − eπsi)

∞∫
0

xs−1dx

ex − 1

provided that, in the many-valued function (−x)s−1 = e(s−1) log(−x), the logarithm of
−x is determined so as to be real when x is negative. Thus:

2 sin πs Π(s− 1)ζ(s) = i

∞∫
∞

(−x)s−1dx

ex − 1
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where the integral has the meaning just stated.
This equation now gives the value of the function ζ(s) for all complex numbers s

and shows that it is single-valued and finite for all finite values of s with the exception
of 1, and also that it vanishes if s is a negative even integer.

If the real part of s is negative, then, instead of being taken in the positive sense
around the boundary of the given domain, this integral can also be taken in the
negative sense around that domain containing all the remaining complex numbers,
because then the integral taken through values with infinitely large modulus is in-
finitely small. But, in the interior of this domain, the integrand has singularities
only where x becomes equal to a whole multiple of ±2πi, and the integral is there-
fore equal to the sum of the integrals taken in the negative sense around these values.
Because the integral around the value n2πi is = (−n2πi)s−1(−2πi), one obtains:

2 sin πs Π(s− 1)ζ(s) = (2π)s
∑

ns−1((−i)s−1 + is−1)

and therefore a relation between ζ(s) and ζ(1−s), which, by using known properties
of the function Π, can be formulated as the statement:

Π
(s
2
− 1
)
π− s

2 ζ(s)

remains unchanged when s is replaced by 1− s.
This property of the function animated me to consider, in place of Π(s− 1), the

integral Π
(
s
2
− 1
)
in the general term of the series

∑
1
ns , whereby one obtains a very

convenient expression for the function ζ(s). In fact:

1

ns
Π
(s
2
− 1
)
π− s

2 =

∞∫
0

e−n2πxx
s
2
−1dx

and thus, if one sets:
∞∑
1

e−n2πx = ψ(x)

then it follows that:

Π
(s
2
− 1
)
π− s

2 ζ(s) =

∞∫
0

ψ(x)x
s
2
−1dx

or because:

2ψ(x) + 1 = x−
1
2

(
2ψ

(
1

x

)
+ 1

)
(Jacobi, Fund. S. 184)
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that:

Π
(s
2
− 1
)
π− s

2 ζ(s) =

∞∫
1

ψ(x)x
s
2
−1dx+

∞∫
1

ψ

(
1

x

)
x

s−3
2 dx+

1

2

1∫
0

(
x

s−3
2 − x

s
2
−1
)
dx

=
1

s(s− 1)
+

∞∫
1

ψ(x)
(
x

s
2
−1 + x−

1+s
2

)
dx

I now set s = 1
2
+ ti and:

Π
(s
2

)
(s− 1)π− s

2 ζ(s) = ξ(t)

so that:

ξ(t) =
1

2
− (t2 +

1

4
)

∞∫
1

ψ(x)x−
3
4 cos

(
1

2
t log x

)
dx

or, in addition:

ξ(t) = 4

∞∫
1

d(x
3
2ψ′(x))

dx
x−

1
4 cos

(
1

2
t log x

)
dx

This function is finite for all finite values of t, and allows itself to be developed
as a very rapidly converging power series in t2. Now, since for a value of s whose
real part is greater than 1, log ζ(s) = −

∑
log(1− p−s) is finite, and since the same

holds for the logarithms of the other factors of ξ(t), it follows that the function ξ(t)
can only vanish if the imaginary part of t lies between 1

2
i and −1

2
i. The number of

roots of ξ(t) = 0, whose real parts lie between 0 and T is approximately:

=
T

2π
log

T

2π
− T

2π

because the integral
∫
d log ξ(t), taken in the positive sense around the region con-

sisting of the values of t whose imaginary parts lie between 1
2
i and −1

2
i and whose

real parts lie between 0 and T , is (up to a fraction of the order of magnitude of the
quantity 1

T
) equal to

(
T log T

2π
− T

)
i; this integral is however equal to the number of

roots of ξ(t) = 0 lying within this region, multiplied by 2πi. One now finds indeed
approximately this number of real roots within these limits, and it is very likely that
all the roots are real. Certainly one would desire a more rigorous demonstration here;
I have meanwhile temporarily put aside the search for this after some fleeting futile
attempts, as it appears unnecessary for the impending objective of my investigation.
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If one denotes by α all the roots of the equation ξ(α) = 0, then one can express
log ξ(t) as: ∑

log

(
1− t2

α2

)
+ log ξ(0)

because, since the density of the roots of the quantity t grows with t only as log t
2π
,

it follows that this expression converges and becomes for an infinite t only infinite
like t log t; thus it differs from log ξ(t) by a function of t2, which for a finite t remains
continuous and finite and which, when divided by t2, becomes infinitely small for
infinite t. This difference is therefore a constant, whose value can be determined by
setting t = 0.

With these methods, the number of prime numbers that are smaller than x can
now be determined.

Let F (x) be equal to this number when x is not exactly equal to a prime number;
but let it be greater by 1

2
when x is a prime number, so that, for any x at which

there is a jump in the value in F (x):

F (x) =
F (x+ 0) + F (x− 0)

2

If in the identity:

log ζ(s) = −
∑

log(1− p−s) =
∑
p−s + 1

2

∑
p−2s + 1

3

∑
p−3s + · · ·

one now replaces:

p−s by s

∞∫
p

x−s−1 ds, p−2s by s

∞∫
p2

x−s−1 ds, . . .

one obtains:

log ζ(s)

s
=

∞∫
1

f(x)x−s−1 dx

if one denotes:
F (x) + 1

2
F (x

1
2 ) + 1

3
F (x

1
3 ) + · · ·

by f(x).
This equation is valid for each complex value a + bi of s for which a > 1. If,

though, the equation:

g(s) =

∞∫
0

h(x)x−s d log x
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holds within this range, then, by making use of Fourier ’s theorem, one can express
the function h in terms of the function g. The equation decomposes, if h(x) is real
and:

g(a+ bi) = g1(b) + ig2(b)

into the two following:

g1(b) =

∞∫
0

h(x)x−a cos(b log x) d log x

ig2(b) = −i
∞∫
0

h(x)x−a sin(b log x) d log x

If one multiplies both equations with:

(cos(b log y) + i sin(b log y)) db

and integrates them from −∞ to +∞, then one obtains πh(y)y−α on the right hand
side in both, on account of Fourier ’s theorems; thus, if one adds both equations and
multiplies them by iyα, one obtains:

2πih(y) =

a+∞i∫
a−∞i

g(s)ys ds

where the integration is carried out so that the real part of s remains constant.
For a value of y at which there is a jump in the value of h(y), the integral takes

on the mean of the values of the function h on either side of the jump. From the
manner in which the function f was defined, we see that it has the same property,
and hence in full generality:

f(y) =
1

2πi

a+∞i∫
a−∞i

log ζ(s)

s
ys ds

One can substitute for log ζ the expression:

s

2
log π − log(s− 1)− log Π

(s
2

)
+
∑α log

(
1 +

(s− 1
2
)2

αα

)
+ log ξ(0)
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found earlier; but the integrals of the individual terms of this expression do not
converge, when extended to infinity, for which reason it is appropriate to convert the
previous equation by means of integration by parts into:

f(x) = − 1

2πi

1

log x

a+∞i∫
a−∞i

d
log ζ(s)

s
ds

xs ds

Since:

− log Π
(s
2

)
= lim

(
n=m∑
n=1

log
(
1 +

s

2n

)
− s

2
logm

)
for m = ∞ and therefore:

−
d
1

s
log Π

(s
2

)
ds

=
∞∑
1

d
1

s
log
(
1 +

s

2n

)
ds

it then follows that all the terms of the expression for f(x), with the exception of:

1

2πi

1

log x

a+∞i∫
a−∞i

1

ss
log ξ(0)xs ds = log ξ(0)

take the form:

± 1

2πi

1

log x

a+∞i∫
a−∞i

d

(
1

s
log

(
1− s

β

))
ds

xs ds

But now:

d

(
1

s
log

(
1− s

β

))
dβ

=
1

(β − s)β

and, if the real part of s is larger than the real part of β:

− 1

2πi

a+∞i∫
a−∞i

xs ds

(β − s)β
=
xβ

β
=

x∫
∞

xβ−1 dx

or:

=

x∫
0

xβ−1 dx
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depending on whether the real part of β is negative or positive. One has as a result:

1

2πi

1

log x

a+∞i∫
a−∞i

d

(
1

s
log

(
1− s

β

))
ds

xs ds = − 1

2πi

a+∞i∫
a−∞i

1

s
log

(
1− s

β

)
xs ds

=

x∫
∞

xβ−1

log x
dx+ const.

in the first, and:

=

x∫
0

xβ−1

log x
dx+ const.

in the second case.
In the first case the constant of integration is determined if one lets the real part

of β become infinitely negative; in the second case the integral from 0 to x takes
on values separated by 2πi, depending on whether the integration is taken through
complex values with positive or negative argument, and becomes infinitely small, for
the former path, when the coefficient of i in the value of β becomes infinitely positive,
but for the latter, when this coefficient becomes infinitely negative. From this it is

seen how on the left hand side log

(
1− s

β

)
is to be determined in order that the

constants of integration disappear.
Through the insertion of these values in the expression for f(x) one obtains:

f(x) = Li(x)−
∑α

(
Li
(
x

1
2
+αi
)
+ Li

(
x

1
2
−αi
))

+

∞∫
x

1

x2 − 1

dx

x log x
+ log ξ(0)

if in
∑α one substitutes for α all positive roots (or roots having a positive real part)

of the equation ξ(α) = 0, ordered by their magnitude. It may easily be shown, by
means of a more thorough discussion of the function ξ, that with this ordering of
terms the value of the series:∑(

Li
(
x

1
2
+αi
)
+ Li

(
x

1
2
−αi
))

log x

agrees with the limiting value to which:

1

2πi

a+bi∫
a−bi

d
1

s

∑
log

(
1 +

(s− 1
2
)2

αα

)
ds

xs ds
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converges as the quantity b increases without bound; but when re-ordered it can take
on any arbitrary real value.

From f(x) one obtains F (x) by inversion of the relation:

f(x) =
∑ 1

n
F
(
x

1
n

)
to obtain the equation:

F (x) =
∑

(−1)µ
1

m
f
(
x

1
m

)
in which one substitutes for m the series consisting of those natural numbers that
are not divisible by any square other than 1, and in which µ denotes the number of
prime factors of m.

If one restricts
∑α to a finite number of terms, then the derivative of the expres-

sion for f(x) or, up to a part diminishing very rapidly with growing x:

1

log x
− 2
∑α cos(α log x)x−

1
2

log x

gives an approximating expression for the density of the prime number + half the
density of the squares of the prime numbers + a third of the density of the cubes of
the prime numbers etc. at the magnitude x.

The known approximating expression F (x) = Li(x) is therefore valid up to quan-

tities of the order x
1
2 and gives somewhat too large a value; because the non-periodic

terms in the expression for F (x) are, apart from quantities that do not grow infinite
with x:

Li(x)− 1
2
Li(x

1
2 )− 1

3
Li(x

1
3 )− 1

5
Li(x

1
5 ) + 1

6
Li(x

1
6 )− 1

7
Li(x

1
7 ) + · · ·

Indeed, in the comparison of Li(x) with the number of prime numbers less than x,
undertaken by Gauss and Goldschmidt and carried through up to x = three million,
this number has shown itself out to be, in the first hundred thousand, always less than
Li(x); in fact the difference grows, with many fluctuations, gradually with x. But
also the increase and decrease in the density of the primes from place to place that
is dependent on the periodic terms has already excited attention, without however
any law governing this behaviour having been observed. In any future count it would
be interesting to keep track of the influence of the individual periodic terms in the
expression for the density of the prime numbers. A more regular behaviour than that
of F (x) would be exhibited by the function f(x), which already in the first hundred
is seen very distinctly to agree on average with Li(x) + log ξ(0).
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