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Plan of the Investigation

It is known that geometry assumes, as things given, both the notion of space and
the first principles of constructions in space. She gives definitions of them which are
merely nominal, while the true determinations appear in the form of axioms. The
relation of these assumptions remains consequently in darkness; we neither perceive
whether and how far their connection is necessary, nor a priori, whether it is possible.

From Euclid to Legendre (to name the most famous of modern reforming geome-
ters) this darkness was cleared up neither by mathematicians nor by such philoso-
phers as concerned themselves with it. The reason of this is doubtless that the general
notion of multiply extended magnitudes (in which space-magnitudes are included)
remained entirely unworked. I have in the first place, therefore, set myself the task
of constructing the notion of a multiply extended magnitude out of general notions
of magnitude. It will follow from this that a multiply extended magnitude is capable
of different measure-relations, and consequently that space is only a particular case
of a triply extended magnitude. But hence flows as a necessary consequence that the
propositions of geometry cannot be derived from general notions of magnitude, but
that the properties which distinguish space from other conceivable triply extended
magnitudes are only to be deduced from experience. Thus arises the problem, to dis-
cover the simplest matters of fact from which the measure-relations of space may be
determined; a problem which from the nature of the case is not completely determi-
nate, since there may be several systems of matters of fact which suffice to determine
the measure-relations of space— the most important system for our present purpose
being that which Euclid has laid down as a foundation. These matters of fact are—
like all matters of fact— not necessary, but only of empirical certainty; they are
hypotheses. We may therefore investigate their probability, which within the limits
of observation is of course very great, and inquire about the justice of their extension
beyond the limits of observation, on the side both of the infinitely great and of the
infinitely small.

I Notion of an n-ply extended magnitude

1

In proceeding to attempt the solution of the first of these problems, the develop-
ment of the notion of a multiply extended magnitude, I think I may the more claim
indulgent criticism in that I am not practised in such undertakings of a philosophical

1Article I serves equally as a preface for contributions to analysis situs.
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nature where the difficulty lies more in the notions themselves than in the construc-
tion; and that besides some very short hints on the matter given by Privy Councillor
Gauss in his second memoir on Biquadratic Residues, in the Göttingen Gelehrte
Anzeige, and in his Jubilee-book, and some philosophical researches of Herbart, I
could make use of no previous labours.

1 Continuous and discrete manifoldnesses. Defined parts of
a manifoldness are called Quanta. Division of the theory
of continuous magnitude into the theories, (1) Of mere
region-relations, in which an independence of magnitudes
from position is not assumed; (2) Of size-relations, in
which such an independence must be assumed.

Magnitude-notions are only possible where there is an antecedent general notion
which admits of different specialisations. According as there exists among these spe-
cialisations a continuous path from one to another or not, they form a continuous
or discrete manifoldness; the individual specialisations are called in the first case
points, in the second case elements, of the manifoldness. Notions whose speciali-
sations form a discrete manifoldness are so common that at least in the cultivated
languages any things being given it is always possible to find a notion in which they
are included. (Hence mathematicians might unhesitatingly found the theory of dis-
crete magnitudes upon the postulate that certain given things are to be regarded as
equivalent.) On the other hand, so few and far between are the occasions for form-
ing notions whose specialisations make up a continuous manifoldness, that the only
simple notions whose specialisations form a multiply extended manifoldness are the
positions of perceived objects and colours. More frequent occasions for the creation
and development of these notions occur first in the higher mathematic.

Definite portions of a manifoldness, distinguished by a mark or by a boundary,
are called Quanta. Their comparison with regard to quantity is accomplished in
the case of discrete magnitudes by counting, in the case of continuous magnitudes by
measuring. Measure consists in the superposition of the magnitudes to be compared;
it therefore requires a means of using one magnitude as the standard for another.
In the absence of this, two magnitudes can only be compared when one is a part of
the other; in which case also we can only determine the more or less and not the
how much. The researches which can in this case be instituted about them form a
general division of the science of magnitude in which magnitudes are regarded not
as existing independently of position and not as expressible in terms of a unit, but
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as regions in a manifoldness. Such researches have become a necessity for many
parts of mathematics, e.g., for the treatment of many-valued analytical functions;
and the want of them is no doubt a chief cause why the celebrated theorem of Abel
and the achievements of Lagrange, Pfaff, Jacobi for the general theory of differential
equations, have so long remained unfruitful. Out of this general part of the science of
extended magnitude in which nothing is assumed but what is contained in the notion
of it, it will suffice for the present purpose to bring into prominence two points;
the first of which relates to the construction of the notion of a multiply extended
manifoldness, the second relates to the reduction of determinations of place in a given
manifoldness to determinations of quantity, and will make clear the true character
of an n-fold extent.

2 Construction of the notion of a one-fold, two-fold, n-fold
extended magnitude.

If in the case of a notion whose specialisations form a continuous manifoldness, one
passes from a certain specialisation in a definite way to another, the specialisations
passed over form a simply extended manifoldness, whose true character is that in
it a continuous progress from a point is possible only on two sides, forwards or
backwards. If one now supposes that this manifoldness in its turn passes over into
another entirely different, and again in a definite way, namely so that each point
passes over into a definite point of the other, then all the specialisations so obtained
form a doubly extended manifoldness. In a similar manner one obtains a triply
extended manifoldness, if one imagines a doubly extended one passing over in a
definite way to another entirely different; and it is easy to see how this construction
may be continued. If one regards the variable object instead of the determinable
notion of it, this construction may be described as a composition of a variability
of n + 1 dimensions out of a variability of n dimensions and a variability of one
dimension.

3 Reduction of place-fixing in a given manifoldness to quantity-
fixings. True character of an n-fold extended magnitude.

I shall show how conversely one may resolve a variability whose region is given into
a variability of one dimension and a variability of fewer dimensions. To this end let
us suppose a variable piece of a manifoldness of one dimension— reckoned from a
fixed origin, that the values of it may be comparable with one another— which has
for every point of the given manifoldness a definite value, varying continuously with
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the point; or, in other words, let us take a continuous function of position within
the given manifoldness, which, moreover, is not constant throughout any part of
that manifoldness. Every system of points where the function has a constant value,
forms then a continuous manifoldness of fewer dimensions than the given one. These
manifoldnesses pass over continuously into one another as the function changes; we
may therefore assume that out of one of them the others proceed, and speaking
generally this may occur in such a way that each point passes over into a definite
point of the other; the cases of exception (the study of which is important) may here
be left unconsidered. Hereby the determination of position in the given manifoldness
is reduced to a determination of quantity and to a determination of position in a
manifoldness of less dimensions. It is now easy to show that this manifoldness has
n− 1 dimensions when the given manifold is n-ply extended. By repeating then this
operation n times, the determination of position in an n-ply extended manifoldness is
reduced to n determinations of quantity, and therefore the determination of position
in a given manifoldness is reduced to a finite number of determinations of quantity
when this is possible. There are manifoldnesses in which the determination of position
requires not a finite number, but either an endless series or a continuous manifoldness
of determinations of quantity. Such manifoldnesses are, for example, the possible
determinations of a function for a given region, the possible shapes of a solid figure,
&c.

II Measure-relations of which a manifoldness of n

dimensions is capable on the assumption that

lines have a length independent of position, and

consequently that every line may be measured

by every other

2

Having constructed the notion of a manifoldness of n dimensions, and found
that its true character consists in the property that the determination of position
in it may be reduced to n determinations of magnitude, we come to the second of
the problems proposed above, viz. the study of the measure-relations of which such
a manifoldness is capable, and of the conditions which suffice to determine them.

2The investigation into the possible metric relations of an n-dimensional manifold is very far
from complete, but probably sufficient for our present purposes.
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These measure-relations can only be studied in abstract notions of quantity, and
their dependence on one another can only be represented by formulæ. On certain
assumptions, however, they are decomposable into relations which, taken separately,
are capable of geometric representation; and thus it becomes possible to express
geometrically the calculated results. In this way, to come to solid ground, we cannot,
it is true, avoid abstract considerations in our formulæ, but at least the results of
calculation may subsequently be presented in a geometric form. The foundations of
these two parts of the question are established in the celebrated memoir of Gauss,
Disqusitiones generales circa superficies curvas.

1 Expression for the line-element. Manifoldnesses to be
called Flat in which the line-element is expressible as the
square root of a sum of squares of complete differentials.

Measure-determinations require that quantity should be independent of position,
which may happen in various ways. The hypothesis which first presents itself, and
which I shall here develop, is that according to which the length of lines is inde-
pendent of their position, and consequently every line is measurable by means of
every other. Position-fixing being reduced to quantity-fixings, and the position of a
point in the n-dimensioned manifoldness being consequently expressed by means of
n variables x1, x2, x3, . . . , xn, the determination of a line comes to the giving of these
quantities as functions of one variable. The problem consists then in establishing a
mathematical expression for the length of a line, and to this end we must consider
the quantities x as expressible in terms of certain units. I shall treat this problem
only under certain restrictions, and I shall confine myself in the first place to lines in
which the ratios of the increments dx of the respective variables vary continuously.
We may then conceive these lines broken up into elements, within which the ratios
of the quantities dx may be regarded as constant; and the problem is then reduced
to establishing for each point a general expression for the linear element ds starting
from that point, an expression which will thus contain the quantities x and the quan-
tities dx. I shall suppose, secondly, that the length of the linear element, to the first
order, is unaltered when all the points of this element undergo the same infinitesi-
mal displacement, which implies at the same time that if all the quantities dx are
increased in the same ratio, the linear element will vary also in the same ratio. On
these suppositions, the linear element may be any homogeneous function of the first
degree of the quantities dx, which is unchanged when we change the signs of all the
dx, and in which the arbitrary constants are continuous functions of the quantities x.
To find the simplest cases, I shall seek first an expression for manifoldnesses of n− 1
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dimensions which are everywhere equidistant from the origin of the linear element;
that is, I shall seek a continuous function of position whose values distinguish them
from one another. In going outwards from the origin, this must either increase in all
directions or decrease in all directions; I assume that it increases in all directions,
and therefore has a minimum at that point. If, then, the first and second differential
coefficients of this function are finite, its first differential must vanish, and the second
differential cannot become negative; I assume that it is always positive. This differ-
ential expression, of the second order remains constant when ds remains constant,
and increases in the duplicate ratio when the dx, and therefore also ds, increase in
the same ratio; it must therefore be ds2 multiplied by a constant, and consequently
ds is the square root of an always positive integral homogeneous function of the sec-
ond order of the quantities dx, in which the coefficients are continuous functions of
the quantities x. For Space, when the position of points is expressed by rectilinear
co-ordinates, ds =

√∑
dx2; Space is therefore included in this simplest case. The

next case in simplicity includes those manifoldnesses in which the line-element may
be expressed as the fourth root of a quartic differential expression. The investigation
of this more general kind would require no really different principles, but would take
considerable time and throw little new light on the theory of space, especially as
the results cannot be geometrically expressed; I restrict myself, therefore, to those
manifoldnesses in which the line element is expressed as the square root of a quadric
differential expression. Such an expression we can transform into another similar
one if we substitute for the n independent variables functions of n new independent
variables. In this way, however, we cannot transform any expression into any other;
since the expression contains 1

2
n(n + 1) coefficients which are arbitrary functions of

the independent variables; now by the introduction of new variables we can only
satisfy n conditions, and therefore make no more than n of the coefficients equal
to given quantities. The remaining 1

2
n(n − 1) are then entirely determined by the

nature of the continuum to be represented, and consequently 1
2
n(n − 1) functions

of positions are required for the determination of its measure-relations. Manifold-
nesses in which, as in the Plane and in Space, the line-element may be reduced to
the form

√∑
dx2, are therefore only a particular case of the manifoldnesses to be

here investigated; they require a special name, and therefore these manifoldnesses in
which the square of the line-element may be expressed as the sum of the squares of
complete differentials I will call flat. In order now to review the true varieties of all
the continua which may be represented in the assumed form, it is necessary to get
rid of difficulties arising from the mode of representation, which is accomplished by
choosing the variables in accordance with a certain principle.
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2 Investigation of the manifoldness of n-dimensions in which
the line element may be represented as the square root of a
quadric differential. Measure of its deviation from flatness
(curvature) at a given point in a given surface-direction.
For the determination of its measure-relations it is allow-
able and sufficient that the curvature be arbitrarily given
at every point in 1

2n(n− 1) surface directions.

For this purpose let us imagine that from any given point the system of shortest
limes going out from it is constructed; the position of an arbitrary point may then
be determined by the initial direction of the geodesic in which it lies, and by its
distance measured along that line from the origin. It can therefore be expressed in
terms of the ratios dx0 of the quantities dx in this geodesic, and of the length s
of this line. Let us introduce now instead of the dx0 linear functions dx of them,
such that the initial value of the square of the line-element shall equal the sum
of the squares of these expressions, so that the independent varaibles are now the
length s and the ratios of the quantities dx. Lastly, take instead of the dx quantities
x1, x2, x3, . . . , xn proportional to them, but such that the sum of their squares = s2.
When we introduce these quantities, the square of the line-element is

∑
dx2 for

infinitesimal values of the x, but the term of next order in it is equal to a homogeneous
function of the second order of the 1

2
n(n− 1) quantities (x1 dx2 − x2 dx1), (x1 dx3 −

x3 dx1) . . . an infinitesimal, therefore, of the fourth order; so that we obtain a finite
quantity on dividing this by the square of the infinitesimal triangle, whose vertices
are (0, 0, 0, . . .), (x1, x2, x3, . . .), (dx1, dx2, dx3, . . .). This quantity retains the same
value so long as the x and the dx are included in the same binary linear form, or
so long as the two geodesics from 0 to x and from 0 to dx remain in the same
surface-element; it depends therefore only on place and direction. It is obviously
zero when the manifold represented is flat, i.e., when the squared line-element is
reducible to

∑
dx2, and may therefore be regarded as the measure of the deviation

of the manifoldness from flatness at the given point in the given surface-direction.
Multiplied by −3

4
it becomes equal to the quantity which Privy Councillor Gauss

has called the total curvature of a surface. For the determination of the measure-
relations of a manifoldness capable of representation in the assumed form we found
that 1

2
n(n − 1) place-functions were necessary; if, therefore, the curvature at each

point in 1
2
n(n−1) surface-directions is given, the measure-relations of the continuum

may be determined from them— provided there be no identical relations among
these values, which in fact, to speak generally, is not the case. In this way the
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measure-relations of a manifoldness in which the line-element is the square root of a
quadric differential may be expressed in a manner wholly independent of the choice
of independent variables. A method entirely similar may for this purpose be applied
also to the manifoldness in which the line-element has a less simple expression, e.g.,
the fourth root of a quartic differential. In this case the line-element, generally
speaking, is no longer reducible to the form of the square root of a sum of squares, and
therefore the deviation from flatness in the squared line-element is an infinitesimal
of the second order, while in those manifoldnesses it was of the fourth order. This
property of the last-named continua may thus be called flatness of the smallest parts.
The most important property of these continua for our present purpose, for whose
sake alone they are here investigated, is that the relations of the twofold ones may be
geometrically represented by surfaces, and of the morefold ones may be reduced to
those of the surfaces included in them; which now requires a short further discussion.

3 Geometric illustration.

In the idea of surfaces, together with the intrinsic measure-relations in which only
the length of lines on the surfaces is considered, there is always mixed up the position
of points lying out of the surface. We may, however, abstract from external relations
if we consider such deformations as leave unaltered the length of lines— i.e., if we
regard the surface as bent in any way without stretching, and treat all surfaces so
related to each other as equivalent. Thus, for example, any cylindrical or conical
surface counts as equivalent to a plane, since it may be made out of one by mere
bending, in which the intrinsic measure-relations remain, and all theorems about
a plane— therefore the whole of planimetry— retain their validity. On the other
hand they count as essentially different from the sphere, which cannot be changed
into a plane without stretching. According to our previous investigation the intrinsic
measure-relations of a twofold extent in which the line-element may be expressed
as the square root of a quadric differential, which is the case with surfaces, are
characterised by the total curvature. Now this quantity in the case of surfaces is
capable of a visible interpretation, viz., it is the product of the two curvatures of
the surface, or multiplied by the area of a small geodesic triangle, it is equal to
the spherical excess of the same. The first definition assumes the proposition that
the product of the two radii of curvature is unaltered by mere bending; the second,
that in the same place the area of a small triangle is proportional to its spherical
excess. To give an intelligible meaning to the curvature of an n-fold extent at a given
point and in a given surface-direction through it, we must start from the fact that
a geodesic proceeding from a point is entirely determined when its initial direction
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is given. According to this we obtain a determinate surface if we prolong all the
geodesics proceeding from the given point and lying initially in the given surface-
direction; this surface has at the given point a definite curvature, which is also the
curvature of the n-fold continuum at the given point in the given surface-direction.

4 Flat manifoldnesses (in which the curvature is everywhere
= 0) may be treated as a special case of manifoldnesses
with constant curvature. These can also be defined as
admitting an independence of n-fold extents in them from
position (possibility of motion without stretching).

Before we make the application to space, some considerations about flat manifoldness
in general are necessary; i.e., about those in which the square of the line-element is
expressible as a sum of squares of complete differentials.

In a flat n-fold extent the total curvature is zero at all points in every direction; it
is sufficient, however (according to the preceding investigation), for the determination
of measure-relations, to know that at each point the curvature is zero in 1

2
n(n − 1)

independent surface directions. Manifoldnesses whose curvature is constantly zero
may be treated as a special case of those whose curvature is constant. The common
character of those continua whose curvature is constant may be also expressed thus,
that figures may be viewed in them without stretching. For clearly figures could not
be arbitrarily shifted and turned round in them if the curvature at each point were
not the same in all directions. On the other hand, however, the measure-relations
of the manifoldness are entirely determined by the curvature; they are therefore
exactly the same in all directions at one point as at another, and consequently the
same constructions can be made from it: whence it follows that in aggregates with
constant curvature figures may have any arbitrary position given them. The measure-
relations of these manifoldnesses depend only on the value of the curvature, and in
relation to the analytic expression it may be remarked that if this value is denoted
by α, the expression for the line-element may be written:

1

1 + 1
4
α
∑

x2

√∑
dx2

5 Surfaces with constant curvature.

The theory of surfaces of constant curvature will serve for a geometric illustration. It
is easy to see that surface whose curvature is positive may always be rolled on a sphere
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whose radius is unity divided by the square root of the curvature; but to review the
entire manifoldness of these surfaces, let one of them have the form of a sphere and
the rest the form of surfaces of revolution touching it at the equator. The surfaces
with greater curvature than this sphere will then touch the sphere internally, and
take a form like the outer portion (from the axis) of the surface of a ring; they may
be rolled upon zones of spheres having new radii, but will go round more than once.
The surfaces with less positive curvature are obtained from spheres of larger radii, by
cutting out the lune bounded by two great half-circles and bringing the section-lines
together. The surface with curvature zero will be a cylinder standing on the equator;
the surfaces with negative curvature will touch the cylinder externally and be formed
like the inner portion (towards the axis) of the surface of a ring. If we regard these
surfaces as locus in quo for surface-regions moving in them, as Space is locus in quo
for bodies, the surface-regions can be moved in all these surfaces without stretching.
The surfaces with positive curvature can always be so formed that surface-regions
may also be moved arbitrarily about upon them without bending, namely (they may
be formed) into sphere-surfaces; but not those with negative-curvature. Besides this
independence of surface-regions from position there is in surfaces of zero curvature
also an independence of direction from position, which in the former surfaces does
not exist.

III Application to Space

1 System of facts which suffice to determine the measure-
relations of space assumed in geometry.

By means of these inquiries into the determination of the measure-relations of an
n-fold extent the conditions may be declared which are necessary and sufficient to
determine the metric properties of space, if we assume the independence of line-
length from position and expressibility of the line-element as the square root of a
quadric differential, that is to say, flatness in the smallest parts.

First, they may be expressed thus: that the curvature at each point is zero in
three surface-directions; and thence the metric properties of space are determined if
the sum of the angles of a triangle is always equal to two right angles.

Secondly, if we assume with Euclid not merely an existence of lines independent
of position, but of bodies also, it follows that the curvature is everywhere constant;
and then the sum of the angles is determined in all triangles when it is known in one.

Thirdly, one might, instead of taking the length of lines to be independent of
position and direction, assume also an independence of their length and direction
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from position. According to this conception changes or differences of position are
complex magnitudes expressible in three independent units.

2 How far is the validity of these empirical determinations
probable beyond the limits of observation towards the in-
finitely great?

In the course of our previous inquiries, we first distinguished between the relations
of extension or partition and the relations of measure, and found that with the same
extensive properties, different measure-relations were conceivable; we then investi-
gated the system of simple size-fixings by which the measure-relations of space are
completely determined, and of which all propositions about them are a necessary
consequence; it remains to discuss the question how, in what degree, and to what
extent these assumptions are borne out by experience. In this respect there is a real
distinction between mere extensive relations, and measure-relations; in so far as in
the former, where the possible cases form a discrete manifoldness, the declarations
of experience are indeed not quite certain, but still not inaccurate; while in the lat-
ter, where the possible cases form a continuous manifoldness, every determination
from experience remains always inaccurate: be the probability ever so great that it
is nearly exact. This consideration becomes important in the extensions of these
empirical determinations beyond the limits of observation to the infinitely great and
infinitely small; since the latter may clearly become more inaccurate beyond the
limits of observation, but not the former.

In the extension of space-construction to the infinitely great, we must distinguish
between unboundedness and infinite extent, the former belongs to the extent rela-
tions, the latter to the measure-relations. That space is an unbounded three-fold
manifoldness, is an assumption which is developed by every conception of the outer
world; according to which every instant the region of real perception is completed
and the possible positions of a sought object are constructed, and which by these
applications is for ever confirming itself. The unboundedness of space possesses in
this way a greater empirical certainty than any external experience. But its infinite
extent by no means follows from this; on the other hand if we assume independence
of bodies from position, and therefore ascribe to space constant curvature, it must
necessarily be finite provided this curvature has ever so small a positive value. If
we prolong all the geodesics starting in a given surface-element, we should obtain an
unbounded surface of constant curvature, i.e., a surface which in a flat manifoldness
of three dimensions would take the form of a sphere, and consequently be finite.
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3 How far towards the infinitely small? Connection of this
question with the interpretation of nature.

3

The questions about the infinitely great are for the interpretation of nature useless
questions. But this is not the case with the questions about the infinitely small. It
is upon the exactness with which we follow phenomena into the infinitely small that
our knowledge of their causal relations essentially depends. The progress of recent
centuries in the knowledge of mechanics depends almost entirely on the exactness of
the construction which has become possible through the invention of the infinitesimal
calculus, and through the simple principles discovered by Archimedes, Galileo, and
Newton, and used by modern physic. But in the natural sciences which are still
in want of simple principles for such constructions, we seek to discover the causal
relations by following the phenomena into great minuteness, so far as the microscope
permits. Questions about the measure-relations of space in the infinitely small are
not therefore superfluous questions.

If we suppose that bodies exist independently of position, the curvature is every-
where constant, and it then results from astronomical measurements that it cannot
be different from zero; or at any rate its reciprocal must be an area in comparison
with which the range of our telescopes may be neglected. But if this independence of
bodies from position does not exist, we cannot draw conclusions from metric relations
of the great, to those of the infinitely small; in that case the curvature at each point
may have an arbitrary value in three directions, provided that the total curvature of
every measurable portion of space does not differ sensibly from zero. Still more com-
plicated relations may exist if we no longer suppose the linear element expressible as
the square root of a quadric differential. Now it seems that the empirical notions on
which the metrical determinations of space are founded, the notion of a solid body
and of a ray of light, cease to be valid for the infinitely small. We are therefore quite
at liberty to suppose that the metric relations of space in the infinitely small do not
conform to the hypotheses of geometry; and we ought in fact to suppose it, if we can
thereby obtain a simpler explanation of phenomena.

The question of the validity of the hypotheses of geometry in the infinitely small
is bound up with the question of the ground of the metric relations of space. In
this last question, which we may still regard as belonging to the doctrine of space,
is found the application of the remark made above; that in a discrete manifoldness,
the ground of its metric relations is given in the notion of it, while in a continuous
manifoldness, this ground must come from outside. Either therefore the reality which

3This section requires reworking and further development.
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underlies space must form a discrete manifoldness, or we must seek the ground of its
metric relations outside it, in binding forces which act upon it.

The answer to these questions can only be got by starting from the conception
of phenomena which has hitherto been justified by experience, and which Newton
assumed as a foundation, and by making in this conception the successive changes
required by facts which it cannot explain. Researches starting from general notions,
like the investigation we have just made, can only be useful in preventing this work
from being hampered by too narrow views, and progress in knowledge of the inter-
dependence of things from being checked by traditional prejudices.

This leads us into the domain of another science, of physic, into which the object
of this work does not allow us to go to-day.
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