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Sir Edmund Taylor Whittaker

Sir Edmund Whittaker, one of the world's foremost mathematicians,

has had a distinguished professional career reaching back into the

last century. Few men still living have known intimately and worked

together with so many of those who made the revolution of modern

science. The following autobiographical sketch contains historical

side lights which will, I believe, delight the reader and give him in-

formation not otherwise obtainable.

"I was born at Southport, England, on October 24, 1873, the son

of John Whittaker and Selina, daughter of Edmund Taylor, M.D. At

the age of eleven I was sent away from home to the Manchester

Grammar School. I was on the classical side, which meant that three-

fifths of my time was devoted to Latin and Greek. In the lower forms,

where the study was purely linguistic, I did well, but my lack of

interest in poetry and drama caused a falling-off when I was pro-

moted to the upper school, and I was glad to escape by electing to

specialize in mathematics. Only after I had left school did I discover

the field of Latin and Greek learning that really appealed to me
ancient and medieval theology, philosophy and science.

"I gained an entrance scholarship to Trinity College, Cambridge
in 1891, and was elected a Fellow of Trinity in 1896 and put on the

lecturing staff. Among my pupils at Trinity in 1896-1906 were the

well-known mathematicians G. H. Hardy, Sir fames Jeans, Harry
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Bateman, Sir Arthur Eddington, J.
E. Littlewood, G. N. Watson,

H. W. Turnbull, and Sir Geoffrey Taylor.

"The professor of pure mathematics at this time v^as A. R.

Forsyth, a sociable and hospitable man who liked entertaining

mathematicians from the continent of Europe. I lived in the next

rooms to him in college and was always invited to meet them: and

in this way I came to know Felix Klein, who was a frequent visitor

and for whom I had a great admiration and affection, and also Henri

Poincart and G. Mittag-Leffler.

"In 1898, 1899 and 1900 I acted as one of the secretaries of the

mathematical and physical section of the British Association for the

Advancement of Science. This was a valuable experience for such a

young man, for I was brought into close contact with the great math-

ematical and experimental physicists of the older generation Lord

Kelvin, Lord Rayleigh, Sir George Stokes and G. F. FitzGerald; and

those of the generation still in its prime Sir /. /. Thomson, Sir

Joseph Larmor, Sir Arthur Schuster and Sir Oliver Lodge; and my
own contemporaries, such as Lord Rutherford.

"I became a Fellow of the Royal Astonomical Society in 1898

and was appointed one of its secretaries in 1901. Here again I was

brought into contact with many senior men of great distinction, par-

ticularly Sir William Huggins, who first applied spectroscopy to the

stars, and Sir Norman Lockyer, and with others who though not

famous astronomers were celebrated in other ways notably Admiral

Sir Erasmus Ommaney, who was a very old man when I knew him

but attended the meetings regularly; he had fought (I presume as a

midshipman) at the battle of Navarino in 1827, when the Turkish

fleet was destroyed by an allied fleet under Codrington, and Greece

was liberated.

"I left Trinity in 1906 on being appointed Royal Astronomer of

Ireland the office held in 1827-1865 by Sir William Rowan Hamil-

ton, the discoverer of quaternions and 4)f Hamiltonian methods in

optics and dynamics. My most distinguished pupil in Dublin was

Eamon de Valera, who has never ceased to follow mathematics as a

recreation from his political activities. About the end of my time in

Ireland he was a candidate for a vacant chair of mathematics in

Galway: I was asked my opinion and said that he was a man who
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would go far a prediction fulfilled in a way I did not at the time

anticipate.

"In 1912 I 'was elected to the historic chair of mathematics in the

University of Edinburgh, which had been occupied in 1674-1675 by

Gregory and in 1725-1746 by Maclaurin. The epitaph composed

for Maclaurin by Johnson when he and Boswell visited Scotland is

still to be read in Greyfriars Kirkyard, and tells how Maclaurin was

elected to the chair electus ipso Newtono suadente.

"In Edinburgh from 1912 to 1946 I had many undergraduate and

postgraduate pupils who afterwards rose to distinction; two boys who

came up from school together one year, and later became Fellows of

the Royal Society, were W. V. D. Hodge, who now holds the

Lowndean chair of Geometry at Cambridge, and my son J.
M. W/iit-

taker, now vice-chancellor of the University of Sheffield. I gave many
lectures or courses of lectures at other universities which were after-

wards printed: The Rouse Ball and Tamer lectures at Cambridge,
the Herbert Spencer lectureship at Oxford, the Donnellan lecture-

ship in Dublin, the Riddell lectureship at Durham (Newcastle), the

Selby lectureship at Cardiff, the Hitchcock professorship at the Uni-

versity of California, the Bruce-Preller lectureship at the Royal

Society of Edinburgh, the Larmor lectureship at the Royal Irish

Academy, and the Guthrie lectureship of the Physical Society.

"In connection with the Edinburgh chair, I may mention the in-

stitution in 1914 of what was, so far as I know, the first university

mathematical laboratory, which incorporated in mathematical teach-

ing the theory of computation as known to professional astronomers.

"From other universities I received the honorary degrees of LL. D.

(St. Andrews and California) and Sc. D. (Dublin, National Uni-

versity of Ireland, Manchester, Birmingham and London).
"I was elected F.R.S. in 1905, served on the Council and was

awarded the Sylvester and Copley medals. With the Royal Society of

Edinburgh I had continuous contact, being president in 1939-1944.

At the end of my tenure of the presidency, a bronze portrait head,

executed by Mr. Benno Schotz, R.S.A., was subscribed for by the

Fellows and placed in the Society's house. I was president of the

Mathematical Association in 1920-21, of the Mathematical and

Physical Section of the British Association in 1927, and of the Lon-
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don Mathematical Society in 1928-1929, being awarded its De

Morgan Medal in 1935.

"I am an Honorary Fellow or Foreign Member of many national

academies or mathematical societies and of my old college, Trinity,

and H. H. Pope Pius XI appointed me a member of the pontifical

Academy of Sciences and conferred on me the Cross pro Ecclesia et

Pontifice."

Sir Edmund's many writings include Modern Analysis (in collab-

oration with G. N. Watson), Treatise on Analytical Dynamics, The-

ory of Optical Instruments, History of the Theories of Aether and

Electricity, The Calculus of Observations, The Beginning and End
of the World, and his Tamer Lectures, From Euclid to Eddington.
He is held in as high regard for his works on the philosophy and

history of science as for those on purely mathematical subjects.

Whittaker was knighted in 1945. Now in his 82nd year he con-

tinues with remarkable vigor to pursue his writings and researches.

The second volume of his History of the Theories of Aether and

Electricity, a monumental history of the whole of theoretical physics

was published in 1953. He is at work on the third volume which will

take the story up to 1950. The following essay is a tour de force,

surveying modern mathematics and logic, showing how they evolved

from the mathematical interests of the past and describing some of

the main problems mathematicians are working on today. I know of

no one else who could have covered this vast field in such brief space,

much less have made the discussion accessible in large part to the

ordinary intelligent reader.



MATHEMATICS AND LOGIC
SIR EDMUND TAYLOR WHITTAKER

The First Mathematicians

Mathematics is in this book regarded as a kind of science. But there

is a great difference between mathematics and the other recognized

branches of science, as can be seen when we examine the nature of a

typical mathematical theorem. Take for instance this, which was orig-

inally enunciated in the eighteenth century by Edward Waring of

Cambridge: "Every positive whole number can be represented as the

sum of at most nine cubes." With Waring this was really no more

than a guess based on observation of a great number of particular

cases; but evidently mere observation cannot furnish a proof that the

theorem is true in general, and indeed a strict proof of this theorem

was not known until more than a century later. Let us see how the

notion of a science that depends on logical proof came into being.

Historians are generally agreed that this development originated

with the Greek philosophers of the sixth and fifth centuries before

Christ. To be sure, the arts of calculation and measurement had

made considerable progress before this, amongst the ancient Baby-
lonians and Egyptians, who were able to solve numerical problems

beyond the powers of most modern schoolboys; but the procedure
which is characteristic of mathematics as we know it, the proving of

theorems, was introduced by the Greeks.

The records are scanty, and generally later in date by some centu-
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ries than the events referred to. But there can be no doubt that the

movement began in the fringe cf Greek settlements along the coast

of Asia Minor, which were in contact with the older civilizations of

the East, and were at the time enjoying peace and prosperity. The

new principle that was central in their philosophy was the conviction

that the world has a unity; in a polytheistic society they were essen-

tially monotheists, and they held that science is of one pattern. The

first of them whose name has come down to us, Thales of Miletus

(6407-546 B.C.) taught that all matter is essentially one, that it con-

sists, in fact, of modifications of water. His successor, Anaximander,

the second head of the school, opened wider possibilities by asserting

only that there is one primitive formless substance everywhere pres-

ent, out of which all things were made.

Thales is credited with the discovery of the mathematical theorem

that "the angle in a semicircle is a right angle." This differs in char-

acter from the geometrical facts known to the ancient Egyptians,

which had been concerned with areas. Thales seems to have been the

first thinker to make lines and curves (which are abstractions) funda-

mental. For him, the theorem was probably a simple fact of observa-

tion. He would be familiar with wall decorations in which rectangles

were inscribed in circles: a diagonal of a rectangle is also a diagonal

of the corresponding circle, and the right angle formed by two sides

of the rectangle is therefore the angle standing on a diameter, i.e.,

it is the angle in a semicircle.

The Place of Logic in Geometry

The disciples of Thales based their doctrine of physics on the assump-
tion of a single ever-present medium which could undergo modifica-

tions. So far as the relations of physical objects with each other were

concerned, they knew little beyond the experimental arts of survey-

ing and measuring which they had inherited from the Egyptians and

Babylonians. The Greeks of the next generation, however, developed
this primitive geometry into an independent science, in which the

whole corpus of the properties of figures in space, such as the theo-

rem that the angle in a semicircle is a right angle, were deduced
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logically from a limited number of principles which were regarded as

obviously true and so could be assumed: such as that if equals are

added to equals, the sums are equal and the -whole is greater than its

parts. These principles were given the name of common notions

(koinai ennoiai), and later of axioms (axiomata).

This rational geometry was discovered not by the philosophers of

Asia Minor (who disappear from history no't long afrcr rhe fall of

Miletus in 494 B.C., but by another school which sprang up in the

Greek settlements in southern Italy, and which took the name of

Pythagoreans from its founder Pythagoras (582?-aft. 507 B.C.). The

famous theorem, that in a right-angled triangle the sum of the squares

of the sides containing the right angle is equal to the square of the

hypotenuse, is called by his name, probably with justice, though the

Babylonians had methods of finding the length of the hypotenuse
which doubtfully suggest some knowledge of it. It may seem strange

that a proposition whose proof (as given in modern textbooks) is

comparatively difficult, should have become known at such an early

stage in the history of the subject; but it must be explained that the

Pythagoreans had inherited from the pyramid-builders of Egypt the

notion of similarity in figures, and that Pythagoras' theorem can be

proved very easily when this notion is used. Thus, if ACB is a trian-

gle right-angled at C, and CK is perpendicular to AB, then the tri-

angle ACB is the sum of the triangles ACK and CKB. But these are

three similar triangles, and their areas are proportional to the areas of

any other figures erected on the corresponding sides, which are sim-

ilar to each other, in particular to the squares on these sides: whence

immediately we have AC2 + CB2 = AB2
.



Mathematics and Logic 27

The new field of rational geometry was recognized as one in which

progress was possible indefinitely; and practically the whole of the

geometry now studied in schools was discovered by the Pythagoreans

between 550 B.C. and 400 B.C.

To Thales' principle, that different kinds of matter are portions of

a primitive universal matter, Pythagoras adjoined another principle,

namely that the differences between different kinds of matter ate due

to differences in geometrical structure, or form. Thus the smallest

constituent elements of fire, earth, air, and water, were respectively

a tetrahedron, a cube, an octahedron, and an icosahedron. This be-

lief led to much investigation on the theory of the regular solid bod-

ies, which is the underlying subject of the great work in which the

Pythagorean geometry was eventually set forth, the Elements of Eu-

clid.*

The Discovery of Irrationals

The Pythagoreans held that the principles of unity, in terms of which

the cosmos was explicable, were ultimately expressible by means of

numbers; and they attempted to treat geometry numerically, by re-

garding a geometrical point as analogous to the unit of number

a unit which has position^ as they put it. A point differs from the unit

of number only in the additional characteristic that it has location;

a line twice as long as another line was supposed to be formed of

twice as manv points. Thus space was regarded as composed of sep-

arate indivisible points, and time of separate instants; for when the

Greeks spoke of number, they always meant whole number. A pros-

pect was now opened up of understanding all nature under the as-

pect of countable quantity. This view was confirmed by a striking

discovery made by Pythagoras himself, namely that if a musical note

is produced by the vibration of a stretched string, then by halving

the length of the string we obtain a note which is an octave above

* For the important contributions made by the Babylonians to algebra and geom-
etry the reader is referred to an admirable survey of ancient mathematics incorpo-

rating the researches of the past 25 years, especially on cuneiform tablets: B. L.

Van der Waerden, Science Awakening, Groningen (Holland), 1955. Ed.
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the first note, and by reducing the length to two-thirds of its original

value we obtain a note which is at an interval of a fifth above it.

Thus structure, expressible by numerical relations, came to be re-

garded as the fundamental principle of the universe.

In carrying out the program based on this idea, however, the Py-

thagoreans came upon difficulties. For instance, they asked, what is

the ratio of the number of points in the side of a square to the num-

ber of points in the diagonal? Let this ratio be m : n where m and n

are whole numbers having no common factor. Then since the square

of the diagonal is, by Pythagoras' theorem, twice the square of the

side, we have n 2 = 2m2
. From this equation it follows that n is an

even number, say n
2/>, where p is a whole number. Therefore

m2 = 2p
2

, so m also is even, and therefore m and n have a common

factor, contrary to hypothesis. Hence the ratio of the number of

points in the side of a square to the number of points in the diago-

nal cannot be expressed as a ratio of whole numbers: we have made

the discovery of irrational numbers. Since ratios such as this could

exist in geometry but could not exist in the arithmetic of whole num-

bers, the Pythagoreans concluded that continuous magnitude cannot

be composed of units of the same character as itself, or in other

words, that geometry is a more general science than arithmetic.

The Paradoxes of Zeno

The logical difficulty created by the discovery of irrationals was soon

supplemented by others, which the Greek philosophers of the fifth

century B.C. constructed in their attempts to understand some of the

fundamental notions of mathematics.

Let a ball be bouncing on a floor, and suppose that whenever it

hits the floor it bounces back again, and remains in the air for half

as long a time as on the preceding bounce. Will it ever stop bounc-

ing?

If the duration of the first bounce is taken as 1, then the durations

of the succeeding bounces are }/2,
!
/4, Vs, etc., and the sum of these

durations is 1 -f Yi + 1A -f- Ys + . Now let these durations be

represented on a line: if C is the middle point of a line AB and if D
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is the middle point of CB, E the middle point of DB, F the middle

point of EB, and so on, then if AC = 1,

A C D E F B

we have CD = Vi, DE = V*, EF = V&, etc., and the whole length

AB is

1 + i/2 + y4 + i/8 + . . .
.

But the whole length is 2. So after a time 2, the bouncing mil have

stopped, a fact which is perhaps at first sight difficult to understand

when we reflect that whenever the ball comes down, it goes up again.

A famous paradox, due to Zeno (4907-435 B.C.) is that of the

race between Achilles and the tortoise. The tortoise runs (say) one-

tenth as fast as Achilles, but has a start of (say) 100 yards. By the

time Achilles has run this 100 yards and is at the place the tortoise

started from, the tortoise is 10 yards ahead: when Achilles has cov-

ered this 10 yards, the tortoise is 1 yard ahead: and so on forever

Achilles never catches up. This conclusion is obviously contrary to

common sense. But we may remark that if Achilles is required to ring

a bell every time he reaches the spot last occupied by the tortoise,

then there will be an infinite number of such occasions, and the

time required for the overtaking will indeed be infinite. The point is,

that a finite stretch of space can be divided into an infinite number

of intervals, and if those intervals are noted in review one by one,

then the time required for the review is infinite.

The Beginnings of Solid Geometry in the Atomistic School

About the end of the fifth century B.C., some philosophers, of whom
the most celebrated was a Thracian named Democritus, accepted the

existence of empty space (which had been denied by the school to

which Zeno belonged) and taught that the physical world is com-

posed of an infinite number of small hard indivisible bodies (the

atoms) which move in the void. All sensible bodies are composed of

groupings of atoms. This notion was applied in order to calculate the

volume of a cone or pyramid. The pyramid was conceived as a pile
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of shot, arranged in layers parallel to the base, the quantity of shot

in any layer being proportional to the area of the layer and so to the

square of the distance of the layer from the vertex of the pyramid.

Then by summing the layers, it was found that the volume of the

cone or pyramid is one-third the volume of a prism of the same height

and base.

The Parallel Axiom

When the Greek philosophers based mathematics on axioms, they be-

lieved axioms to be true statements, whose truth was so obvious that

they could be accepted without proof. One of the axioms they used,

however, was felt to be not perfectly obvious, and for over twenty

centuries attempts were made to prove it, by deducing it from other

axioms which could be more readily admitted. This parallel axiom, as

it is called, was stated by Euclid thus: if a straight line falling on two

straight lines makes the interior angles on the same side less than two

right angles, the two straight lines, if produced indefinitely, meet on

that side on which are the angles less than two right angles.

Euclid himself seems to have had some hesitation about it, for he

avoided using it in his first 28 propositions. He wished, however, to

study parallel lines (that is, lines which are in the same plane, and,

being produced ever so far both ways, do not meet), and he found

that a theory of parallel lines could not be constructed without this

axiom or something equivalent to it.

The Greeks, although they did not really doubt the truth of the

parallel axiom, constructed arguments which seemed to disprove it.

Thus, let AB be a straight line falling on two straight lines AK, BL,
and making the interior angles on the same side KAB, LBA, to-

gether less than two right angles. On AK take AC = 1/2 AB and

on BL take BD = 1/2 AB. Then the lines AK, BL, cannot meet
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within the ranges AC, BD, since if they did, two sides of a triangle

would be less than the third side. We now have the line CD falling

on the two straight lines CK, DL, and making the interior angles on

the same side less than two right angles, so we can repeat the argu-

ment. By repeating it indefinitely often, we can conclude that the

two lines AK, BL, will never meet. The fallacy in the argument is of

course the same as in the paradox of Achilles and the tortoise.

Namely, the distance from A to the meeting-point is by this process

divided into an infinite number of segments; if we consider the oper-

ation of forming these segments one by one in turn, we shall never

come to the end of the process.

Many axioms have been proposed at different times as substitutes

for the parallel axiom, capable of leading logically to the theory of

parallels; one such axiom consists in affirming the existence of trian-

gles similar to each other, but of different sizes; and another axiom

consists in the statement that two straight lines which intersect one

another cannot both be parallel to the same straight line. Either of

these two substitutes seems to be more obviously true than Euclid's

parallel axiom; but early in the eighteenth century an Italian Jesuit

named Saccheri (1667-1733) thought of what seemed a still better

plan, namely to prove Euclid's original parallel axiom by showing
that a denial of its truth leads to a reductio ad absurdum. He carried

out this program and showed that when the parallel axiom is not as-

sumed, a logical system of geometry can be obtained, which however

differs in many respects from the geometry universally believed to be

true: for instance, the sum of the angles of a triangle is not equal to

two right angles. Saccheri considered that by arriving at this result

he had achieved his aim of obtaining a reductio ad absurdum and

thereby had shown that the parallel axiom is true. He never for one

moment imagined that the system he had found could be proposed
as an alternative to Euclidean geometry for the description of actual

space.

The Geometry of Astronomical Space

In the nineteenth century however, some doubts were expressed as to

whether the properties of space were represented everywhere and at
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all times by the geometry of Euclid. "The geometer of to-day," wrote

W. K. Clifford (1845-1879), "knows nothing about the nature of the

actually existing space at an infinite distance: he knows nothing

about the properties of the present space in a past or future eternity."

Let us look into this question by considering a triangle in astro-

nomical space, having its vertices, say, at the sun and two of the most

distant nebulae, and having as its sides the paths of light-rays be-

tween these vertices. Then at each of the three vertices there will be

an angle between the two sides that meet there. Have we any rea-

son to believe that the sum of these three angles at the vertices will

be equal to two right angles? Obviously it is not practicable to sub-

mit the matter to the test of observation; and we can find no logical

reason for believing that the sum must necessarily be two right an-

gles, since Saccheri's work showed that Euclidean geometry is not a

logical necessity. Euclidean geometry is certainly valid, to a very close

degree of approximation, for the triangles that we can observe in the

limited space of a terrestrial laboratory. In their case its departure

from truth is imperceptible, but for much larger triangles we must

admit that neither logic nor observation gives us any decision.

We must therefore regard it as possible that in the astronomical

triangle the sum of the three angles may be different from two right

angles. We must recognize that empty space may have properties af-

fecting measurements of size, distance, and the like: in astronomical

space the geometry is possibly not Euclidean.

A language has been invented by mathematicians to describe this

state of affairs. We know that the geometry of figures drawn on a

curved surface, for instance the surface of a sphere, is different from

the geometry of figures drawn in a plane, which is Euclidean; and

this suggests a way of speaking about a three-dimensional space in

which the geometry of solid bodies is not Euclidean: we say that in

such a case, the space is curved. Astronomical space, then, may have

a small curvature. This has long been recognized as a possibility, but

it was not until the present century that the idea was developed into

a definite quantitative theory. In 1929 the American astronomer

E. P. Hubble announced as an observational fact that the spectral

lines of the most distant nebulae are displaced toward the red end
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of the spectrum, by amounts which are proportional to the distance

of the nebulae. This red-displacement was interpreted to mean that

the nebulae were receding from us with velocities proportional to

their distances; in fact, that the whole universe was expanding, all

distances continually increasing proportionally to their magnitudes.

Combining this with the results of theoretical investigation, Edding-

ton in 1930 published a mathematical theory of the nature of space,

in which he supposed that astronomical space is not Euclidean, and

that the deviation from Euclidean character depends not only on the

size of the geometrical configuration considered, but also on the time

that has elapsed since the creation of the world. This, which is

known as the theory of the expanding universe, was generally ac-

cepted and developed for the next 23 years. Values were found for

the total mass, extent, and curvature of the universe; but in 1953 a

new explanation of the red-displacement was proposed by E. Finlay-

Freundlich, and the question is still under discussion.

General Relativity

The deviations from Euclidean properties which have just been con-

sidered have a uniform character over vast regions of space. Accord-

ing to the theory of General Relativity, there are also deviations

which vary considerably within quite small distances, and which are

due to the presence of ordinary gravitating matter. Something of the

kind was conjectured by the Irish mathematical physicist G. F. Fitz-

gerald when toward the end of the nineteenth century he said,

"Gravity is probably due to a change of structure in the ether, pro-

duced by the presence of matter." Perhaps he thought of the change
of structure as being something like change in specific inductive ca-

pacity or permeability. However, Einstein in 1915 published a defi-

nite mathematical theory, in which gravitational effects were attrib-

uted to a change in the curvature of the world, due to the presence of

matter; and he showed that by this hypothesis it was possible to ac-

count for a peculiarity of the orbit of the planet Mercury which was

not explained by the older Newtonian theory.
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The Non-Euclidean Geometries

We shall now describe some of the features of the non-Euclidean

geometries that are obtained by assuming the parallel axiom to be

untrue for geometry in the plane.

If we consider a straight line CD and a point P not on it, then

either:

(
1

)
it may be impossible to draw any straight line through P that

does not intersect CD. The geometry is then said to be elliptic.

(2) or it may be possible to draw an infinite number of straight

lines through P that do not intersect CD. The geometry is then said

to be hyperbolic.

Between these possibilities there is an intermediate case, in which it

is possible to draw one and only one line through P which does not

intersect CD: this case corresponds to ordinary Euclidean geometry.

In elliptic geometry the sum of the angles of a triangle is always

greater than two right angles. Every straight line, when it attains a

certain length, returns into itself like the equator on a sphere, so the

lengths of all straight lines are finite, and the greatest possible dis-

tance apart of two points is half this length. The perpendiculars to a

straight line at all the points on it meet in a point.

In hyperbolic geometry, the sum of the three angles of a triangle

is always less than two right angles; and indeed, the greater the area

of the triangle, the smaller is the sum of its angles. If we consider a

straight line CD, and a point P outside it, then we can draw two

straight lines through P, PA and PB, which are not in the same

straight line, with the properties that
(
1

) any line through P which

lies entirely outside the angle APB does not intersect the line CD,

(2) any line through P which is inside the angle APB intersects the

line CD at a point at a finite distance from P, (3) the two lines
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PA, PB, tend asymptotically at one end of the line CD at infinity,

so we may say they intersect it at infinity and are more or less

analogous to Euclidean parallels: they are, in fact, called parallels to

the line CD drawn through the point P. Lines which are parallel to

each other at any point are parallel along their whole length, but

parallels are not equidistant: the distance between them tends to

zero at one end and to infinity at the other.

Topology

The opinion that the material universe is formed of atoms, which

are eternal and unchangeable, had been held by many of the ancient

Greek philosophers and was generally accepted by European phys-

icists in the nineteenth century. An attempt to account for it mathe-

matically was made in 1887 by William Thomson (Lord Kelvin),

who after seeing a display of smoke-rings in a friend's laboratory,

pointed out that if the atoms of matter are constituted of vortex

rings in a perfect fluid, then the conservation of matter can be im-

mediately explained, and the mutual interaction of atoms can be

illustrated. In 1876 P. G. Tait of Edinburgh, having the idea that

different kinds of atoms might correspond to different kinds of

knotted vortex rings, took up the study of knots as geometrical forms.

This is a problem of a new kind, since we are not interested in the

precise description of the curve of the cord, but only in the essential

distinction between one kind of knot and another the reef-knot, the

bowline, the clove hitch, the fisherman's bend, etc. The transforma-

tions which change the curve of the cord but do not change the

essential character of the knot were specially studied. Relations of

this kind, i.e., relations which are described by such words as "external

to," "right-handed," "linked with," "intersecting," "surrounding,"

"connected by a channel with," etc., are called topological, and the

study of topological relations in general is called topology.

Another topological problem which was studied in the early days

of the subject arose in connection with the flow of an electric current

through a linear network of conductors. The network is a set of

points (vertices) connected together in pairs by conductors. We can

inquire what is the greatest number of conductors that can be re-
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moved from the network in such a way as to leave all the vertices

connected together in one linear series by the remaining conductors.

The number as obtained is of importance in the general problem of

flow through the network.

The New Views of Axioms

It has long been realized that the axioms stated by Euclid are in-

sufficient as a basis for Euclidean geometry; he tacitly assumes many
others which are not in his list. Among these may be mentioned

axioms of association, such as "if two different points of a straight

line are in a plane, then all the points of the straight line are in

the plane"; axioms of order, such as "of three different points lying

on a straight line, one and only one lies between the other two*';

and axioms of congruence, which assert the uniqueness of something
that there is only one distinct geometrical figure with certain prop-

erties: thus, a triangle is uniquely determined by two adjacent sides

and the included angle.

Questions arise also regarding the use made of diagrams in geo-

metrical proofs. In an edition of Euclid the diagrams are accurately

drawn, and their topological features, which may be seen by inspec-

tion, are often essential to the proof. Thus let a diagram be drawn

representing any triangle ABC with the line AE bisecting its angle

A and the line DE perpendicular to its side BC at its middle point;

if this is carelessly drawn, the point E of the intersection of AE and

DE might be placed inside the triangle a topological error. But in

that case, drawing perpendiculars EL to AB and EK to AC, we can
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easily show that the triangles LEB and KEC are equal in all respects,

and also the triangles EBD and ECD are equal in all respects, thus

the angles ABC and ACB are equal, and the triangle ABC is isosce-

les. Thus a wrong topological understanding has led to a proof that

every triangle is isosceles. The axioms must therefore be such as to

guard against any erroneous topological assumptions. A rigorously

logical deduction of Euclidean geometry is a formidable affair.

It is of course obvious that the theorems of geometry were dis-

covered long before strict logical proofs were found for them. Archi-

medes, the greatest of the Greek mathematicians, distinguishes be-

tween investigating theorems (theorem) and proving them rigorously

(apodeiknunai) .

When it was realized that the parallel axiom is not universally and

eternally true, opinion changed about the place of axioms in mathe-

matics. It now came to be accepted that the business of the mathe-

matician is to deduce the logical consequences of the axioms he as-

sumes at the basis of his work, without regard to whether these axioms

are true or not; their truth or falsehood is the concern of another

type of man of science a physicist or a philosopher. Thus the hori-

zon of the geometer was widened; instead of inquiring into the struc-

ture of actual space, he studied various different types of geometry
defined respectively by their axioms: Euclidean and non-Euclidean

geometries and also geometries with a finite total number of points,

and what are called non-Archimedean and non-Desarguesian geom-
etries. A non-Archimedean geometry is one which denies the "axiom

of Archimedes," namely that if two segments are given, there is al-

ways a multiple of the smaller that exceeds the larger. A non-

Desarguesian geometry is one in which the theorem of Desargues is

not true, namely that if two triangles be such that the straight lines

joining their vertices in pairs are concurrent, then the intersections

of pairs of corresponding sides lie on a straight line.

The Dangers of Intuition

The recognition that an axiom is a statement which is assumed,

without any necessary belief in its truth, brought a great relief to

mathematicians; for intuition had led the older workers to believe in
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the truth of many particular assertions which were shown in the latter

part of the nineteenth century to be false. The following is an ex-

ample. We may for the present purpose define a continuous plane

curve to be one in which, as we pass along the curve from a point

P to a neighboring point Q, the length of the perpendicular from a

point on the curve to any fixed straight line passes through all the

values intermediate between the values that it has at P and Q. Now
it is obvious that a continuous curve will, in general, have a tangent

at every point. But this is not always the case, as can be shown by

the following construction. Take a straight line of any length, divide

it into three equal parts, and on the middle part as base erect an

equilateral triangle. Delete the base of the triangle, so we are left

with four segments of equal length forming a broken line. Divide

each of these four segments into three equal parts, and as before

erect an equilateral triangle on the middle part of each segment, and

then delete the bases of these triangles, so now we have a broken

line of 16 segments. Repeating this process indefinitely, we arrive in

the limit at a broken line which is a definite curve, but has no tangent

at any point. Examples of this kind made it impossible to accept the

view generally held by Kantian philosophers, that mathematics is

concerned with those conceptions which are obtained by direct in-

tuition of space and time.

The Plan of a Rigorous Geometry

Euclid attempted to specify the subject matter of geometry by defi-

nitions such as "a point is that which has no parts/' and "a straight

line is a line which lies evenly with the points on itself/' Neither of

these definitions is made use of in his subsequent work; and indeed.



Mathematics and Logic 39

the first is clearly worthless, since there exist many things besides

points which have no parts, while the second is obscure.

In a modern rigorous geometry, the point and the straight line are

generally accepted as undefined notions, so that the pattern of a

branch of mathematics is now:

(
1

)
enumeration of the primitive concepts in terms of which all the

other concepts are to be defined

(2) definitions (i.e. short names for complexes of ideas)

(3) axioms, or fundamental propositions which are assumed with-

out proof. It is necessary to show that they are compatible with each

other (i.e. by combining them we cannot arrive at a contradiction)

and independent of each other (i.e. no one of them can be deduced

from the others). The compatibility is often proved by translating

the assumptions into the domain of numbers, when any inconsistency

would appear in arithmetical form; and the independence may be

proved (as the independence of the parallel axiom was proved) by

leaving out each assumption in turn and showing that a consistent

system can be obtained without it.

(4) existence-theorems. The discovery of irrationals led the Py-

thagoreans to see the necessity for these. Does there exist a five-sided

polygon whose angles are all right angles? The Greek method of

proving the existence of any particular geometrical entity was to give

a construction for it; thus, before making use of the notion of the

middle point of a line, Euclid proves, by constructing it, that a line

possesses a middle point. The "problems" of Euclid's Elements are

really existence-theorems.

(5) deductions, which are the body and purpose of the work.

Space Time

Until the end of the nineteenth century it was believed that the

universe was occupied by space, which had three dimensions, so that

a point of it was specified by the length, breadth and height of its

displacement from some point taken as origin. It was supposed that

space was always the same, consisting of the same points in the same

positions. Whoever might be observing it, two different observers, in
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motion relative to each other, would see precisely the same space. In

order to specify the position of a particle at any time, it was necessary

therefore to know only the three co-ordinates of the space-point at

which it was situated, and the time. The way of measuring time was

supposed to be the same for the whole universe. Events happening

at different points of space were said to be simultaneous if the time

co-ordinates of the two points were the same.

This scheme collapsed in the early years of the present century,

when the theory of relativity was discovered and it was shown that

observers who are in motion relative to each other do not see the

same space. If we consider a particular observer, moving in any way,

then for him each particle in the universe will have three definite

space co-ordinates and a definite time co-ordinate; but for a different

observer, moving relatively to him, both the space co-ordinates and

the time co-ordinates of the particle will in general be changed. When
we label every point-event of space with its co-ordinates (x, y, z) as

recognized by a particular observer, and also with its time t as rec-

ognized by this observer, then all point-events are specified by the

four co-ordinates (t, x, y, z), just as all points in ordinary space are

specified by three co-ordinates (x, y, z). We speak of this fourfold

aggregate of point-events as a four-dimensional manifold, which is

tailed space time. If a value of t is specified, the points (t, x, y, z)

which have this value of t form a three-dimensional manifold with

coordinates (x, y, z), and this manifold represents a space formed

of the points which are simultaneous for the observer whose time is

t . The problem is to find a set of equations

t' = t' (t,x,y,z): x' = x' (t,x,y,z): y' = Y (t,x,y,z): z' = z' (t,x,y,z)

which rearranges the fourfold of point-events (t,x,y,z) so as to con-

vert the spaces which are simultaneous for one observer into the

spaces which are simultaneous for another observer.

Numbers

Although numbers have been in use since the earliest ages, it was not

until the last quarter of the nineteenth century that any satisfactory

philosophical explanation was given of what they are.
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Number is a property not of physical objects in themselves, but of

collections or classes of objects. We must begin by explaining what

we mean by saying that two classes have the same ntimber. If we

have a group of husbands and wives, and if we know that each

husband has one wife and each wife has one husband, then we can

affirm that the number of husbands is the same as the number of

wives, even though we do not know what that number is. In other

words, two classes between whose respective members a one-to-one

correspondence can be set up, have the same number: to be precise,

the same cardinal number, for a distinction is drawn between cardinal

and ordinal numbers; ordinal numbers are defined only by reference

to sets whose elements are arranged in serial order. This definition

applies equally well whether the number is finite or not. Thus if

two rays OAC, OBD, proceeding from a point O, cut off segments
AB and CD from two straight lines, then we can set up a one-to-one

correspondence between the points P of AB and the points Q of CD
by radii OPQ, and we can say that AB has the same number of

points as CD.
We can, however, draw

lines from another point

Z to A and B; suppose

that these lines cut the

line CD in points E and

F. Then the number of

points in EF is the same

as the number of points

in AB, and therefore the

same as the number of

points in CD.
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We see therefore that in the case of infinite collections, the number

of the whole is not necessarily greater than the number of the parts;

and indeed, a transfinite number may be defined as the number of a

collection which can be put into one-to-one correspondence with a

part of itself: for example, the positive integers have a one-to-one

correspondence with their squares; and, therefore, the number of the

integers is equal to the number of their squares, although the squares

form only a part of the whole collection of integers.

The cardinal numbers can be arranged in order by use of the

notions of greater and less, which can be thus defined: a cardinal

m is greater than a cardinal n if there is a class which has m members

and has a part which has n members, but there is no class which

has n members and has a part which has m members.

The addition and multiplication of two numbers can be readily

defined. If A and B are two collections whose cardinal numbers are

a and b, then a class C formed by combining the collections A
and B has for cardinal number the sum a -f b. If we form a new

collection, of which each element consists of one element taken

from A, paired with one element taken from B, and if these pairs

are taken in all possible ways, then the cardinal number of the new

collection is the product ab. It is readily seen that sums and products

so defined satisfy

the associative law a (be) = (ab) c

the commutative law ab = ba

and the distributive law a (b + c) = ab + ac

Transfinite Numbers

Until seventy years ago, infinity was a somewhat vague, general con-

cept, and mathematicians did not know that transfinite numbers of

different magnitudes could be accurately defined and distinguished.

Let us consider some examples of them.

Take first the rational numbers, which are the fractions represent-

ing the ratio of one whole number to another. They can be written

in a rectangular array thus:
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They may now be arranged in a single order by taking the diagonals

of this array in turn, thus:

M, %, %, 91, %, %, %, %, %, %, %, 4
/3,

3
/4, %> %, ' ' '

When they are thus ordered, they can be put in a one-to-one corre-

spondence with the natural numbers

1, 2, \ 4, 5, 6, 7, .

Any collection which can be put in a one-to-one correspondence

with the natural numbers is said to be denumerable. Thus the ra-

tional numbers form a denumerable or countable set. The cardinal

number of a denumerable set is the smallest transfinite cardinal num-

ber, and is denoted by Aleph-zero,

Now let the rational numbers be arranged in order of magnitude
and suppose that at a certain place in the order a division or cut

is made, which causes the numbers to fall into two classes (e.g. all

the rational numbers whose squares are less than 2 and all the

rational numbers whose squares are greater than 2), which we shall

call the left class and the right class, such that every rational number

in the left class is smaller than every rational number in the right

class. It may be that the right class has a least member, which will

of course be a rational number, say p; or it may be that the left

class has a greatest number, which will be a rational number, say q.

In these cases the cut is said to be made by a rational number, p
or q as the case may be. But if the left class has no greatest mem-
ber and the right class has no least member, then the cut is still re-

garded as being made by a number; but this will be a number of a

new class, which is called an irrational number. Thus if the left and

right classes are the rational numbers whose squares are respectively

less and greater than 2, since there is no rational number whose square
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is exactly equal to 2, there will be an irrational number corresponding

to the cut, and this is the number commonly represented by \/2.

Rational and irrational numbers are both comprehended in the name

real numbers.

We have seen that the class of rational numbers is countable; but

the class of real numbers, composed of rationals and irrationals to-

gether, is not countable. To prove this, suppose it to be possible

that all the real numbers from to 1 could be arranged in order

as 1st, 2nd, 3rd, . . . etc., say n x ,
n2 , n3 , . . . Suppose that these

numbers are represented in the ordinary denary scale as decimals.

Then we can form a new decimal in the following way: take its first

digit to be any digit (from to 9) different from the first digit of

HI; take its second digit to be any digit different from the second digit

of n2 ;
take its third digit to be any digit different from the third

digit of n3 ;
and so on. The number thus formed differs from all

the numbers previously enumerated and it is a real number between

and 1; so the original enumeration cannot have contained all the

real numbers between and 1. By this reductio ad absurdum we see

that the set of real numbers from to 1 is not denumerable.

The set of real numbers is called the arithmetic continuum; by
what has just been proved, the transfinite cardinal number of the

arithmetic continuum is not Aleph-zero, but a greater transfinite

number, which is denoted by c.

The arithmetic continuum has been constructed arithmetically,

without any dependence on time and space, the two notions of the

continuum with which we are intuitively familiar. If we are to as-

sume that the arithmetic continuum is equivalent to the linear con-

tinuum, so that the motion of a particle along the line is an exact

image of a numerical variable increasing from one value to another,

it is evident that we must introduce an axiom, namely that there is

a single point on the line corresponding to every single real number.

Of course we are not bound to assume this axiom. We may assume

that several points, forming an infinitesimal segment, separate the

right and left classes in the proposition by which irrational numbers

were defined. On this assumption, the axiom of Archimedes, to which

reference was made on page 37, would not be true.

If the Pythagorean conception of the line as made up of unit
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points had been correct, the ratio of any two segments of the line

would have been a rational number, and there would have been no

room for irrationals.

The Number of Points in a Three-Dimensional Space

One would naturally expect that the number of points in a three-

dimensional region, such as the interior of a cube of side unity,

would be infinitely greater than the number of points on a segment
of a line, say one of the edges of the cube. But, surprisingly, this is

not the case: the points in the cube can be made to correspond,

point by point, with the points in its edge.

For take three of the edges, meeting at one comer, as axes of

co-ordinates x, y, z, so that for points in the cube we have three

co-ordinates all between and 1. A point on an edge can be speci-

fied by a single co-ordinate w between and 1. Now let the co-

ordinate w, which represents a particular point on the edge be ex-

pressed as a decimal, adding GTs at the end so as to make it an

unending decimal. Take the 1st, 4th, 7th, etc. digits of w, and write

down a decimal x of which these are the successive digits. Similarly

write down y, consisting of the 2nd, 5th, 8th, . . . digits of \v, and

write down z, consisting of the 3rd, 6th, 9th, . . . digits. The point

of space whose co-ordinates (x, y, z) are thus determined corresponds

uniquely to the value of w; thus, there is a one-to-one correspondence

between the points on the edge and the points inside the cube, and

therefore they have the same number.

Imaginary Quantities

A work written by an Egyptian priest more than a thousand years

before Christ, with the alluring title "Directions for knowing all dark

things," explains how to solve various numerical problems, such as

"What is the number which, when its seventh part is added to it,

becomes 24?" The ancient Babylonians also proposed arithmetical

puzzles, and were acquainted with arithmetic and geometric pro-
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gressions. But algebra as a science can scarcely be said to have existed

before the introduction of negative numbers in the early centuries

of the Christian era, although results that are now commonly ob-

tained by algebraic methods had long been known.

The solution of the quadratic equation in algebraic notation

ax2 + bx + c =

was achieved in geometrical form by the Greek mathematicians. If

the quadratic has no roots which are real numbers, it possesses alge-

braic roots of the form x + y V 1 where x and y are real: that is,

roots that are complex quantities. But the geometrical preoccupations

of the Greeks led to their attention being devoted entirely to real

roots, and solutions involving the "imaginary" quantity \/l were

dismissed by everybody before the sixteenth century as nonexistent.

In the Renaissance, however, the Italian mathematicians discovered

the solution of the cubic equation

their formula gave for instance the solution of the equation

x3 -15x-4 =

as

x = # (2 + 11 V-l) +#(2 -11 V-l).

In order to evaluate this, we note that

2 + 11 V-l = (2 + V-l) 8
,
and 2 -11 V-l = (2

- V-1) 8
-

So we have the root expressed in the form

or

x = 4.

We have thus found a real root of the cubic, by a calculation which

cannot avoid using \/l; and, this discovery compelled the mathema-

ticians to face the question of the status of imaginary quantities. For

a long time their attitude was one of mystification: the imaginary
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was, they said, inter Ens et non-Ens amphibium ("an amphibian
between Being and non-Being" )

.

Later it was shown to possess many important properties. Thus,

many theorems were found to be true only when the numbers con-

cerned were no longer restricted to be real: for instance, the theorem

that every algebraic equation of degree n has n roots is true in

general only when complex roots are taken into account. But con-

servatism died hard. In the latter part of the eighteenth century an

English mathematician, Francis Maseres, who had been senior wran-

gler at Cambridge in 1752, published several tracts on algebra and

theory of equations in which he refused to allow the use of "im-

possible" quantities.

Today, imaginary quantities are of great importance; in fact, the

extensive and most useful Theory of Functions of a Complex Variable

is wholly concerned with functions which depend on the quantity
x + yV 1- It is a strange fact that as mathematics grows more ab-

stract, it becomes more effective as a tool for dealing with the concrete

a point that was often stressed by the philosopher A. N. Whitehead.

As an example, one may cite the very abstract theory of groups, which

has many applications in the modern quantum-mechanical physics.

System of Numeration

The choice of the number 10 as the basis of our system of numera-

tion is due to our having ten fingers; among primitive peoples the

set of fingers, in which ten objects are presented in a definite order,

was the natural aid to counting. Modern systems of numeration de-

pend on the notion of place-value, with the use of the symbol zero,

a plan which seems to have been introduced about 500 A.D.: thus

the number 5207.345 means

5.10' + 2.10" + 0.10 + 7 + Ko + Mo2 + 6
/io

8
.

While the historical reason for the use of a decimal system is readily

intelligible, it must be said that an octonary system, based on the

number 8
(
so that 5207.345 would mean

5.8* + 2.8' + 0.8 + 7 + % + ys
2 + %')
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would be more convenient. The multiplication table of the octonary

system would call for only half as great an effort aj is required in

the decimal system; and, the most natural way of dealing with frac-

tions is to bisect again and again, as is done for instance with brokers'

prices on the stock exchange. It is perhaps unfortunate that our re-

mote ancestors, when using their fingers for counting, included the

thumbs.

Another system of numeration, which has become prominent in

recent years, owing to its use in the modern electronic calculating

machines, is to express numbers in "the scale of 2," or the "binary

scale," in which 10110.01101 would mean

24 22 2 y2 2 i/
2
3 + i/2 5.

Symbolic Logic

Long ago Leibnitz, in the course of his life as a diplomat, sometimes

found himself required to devise a formula for the settlement of a

dispute, such that each of the contending parties could be induced

to sign it, with the mental reservation that he was bound only by
his own interpretation of its ambiguities. Equivocation, such as was

practiced in this connection, was, as Leibnitz well knew, impossible

in mathematics, where every symbol and every equation has a unique
and definite meaning. And the contrast led him to speculate on the

possibility of constructing a symbolism or ideography, like that of

algebra, capable of doing what ordinary language cannot do, that is,

to represent ideas and their connections without introducing un-

detected assumptions and ambiguities. He therefore conceived the

idea of a logical calculus, in which the elementary operations of the

process of reasoning would be represented by symbols an alphabet

of thought, so to speak and envisaged a distant future when philo-

sophical and theological discussions would be conducted by its

means, and would reach conclusions as incontrovertible as those of

mathematics. Perhaps this was too much to hope, but the actual

achievements of mathematical logic have been amazing. Logic, when

its power has been augmented by the introduction of symbolic
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methods, is capable of leading from elementary premises of extreme

simplicity to conclusions far beyond the reach of the unaided reason.

The first outstanding contribution to the subject was made by

George Boole, for the latter part of his life, professor in Cork, who

published a sketch of his theory in 1847, and a fuller account in

1854, in his book An Investigation of the Laws of Thought. In this

system, a letter such as x denotes a class or collection of individual

things to which some common name can be applied: for instance,

x might represent the class of all doctors. We can also regard x as

a symbol of operation, namely, the operation which selects, from the

totality of objects in the world, those objects which are doctors. Now
let y denote some other class, say the class of all women. Then the

product xy must represent the result of first selecting all women, and

then selecting from them those who are doctors; that is, xy represents

all women doctors, all the individuals who belong both to the class x

and to the class y. When, in ordinary language, a noun is qualified

by an adjective, as in ''feminine doctor/' we must understand the

idea represented by this product.

Now consider the case when the class y is the same as the class x.

In this case, the combination xy expresses no more than either of the

symbols taken alone would do, so xy = x, or (since y is the same as x)

x2 = x. In ordinary algebra, the equation x2 = x is true when x has

either of the values zero and unity, but in Boolean algebra all symbols

obey this law.

Let us now take up the question of addition. The class x + y is

defined to consist of all the individuals who belong to one at least

of the classes x and y, whether the classes overlap or not.

The symbol used for zero in ordinary algebra is used in Boolean

algebra to denote the class that has no members, the null class: ob-

viously we must have

x = and x -f = x,

as in ordinary algebra.

The symbol 1 is used to denote the class consisting of everything,

or the "universe of discourse": it has the properties

x- 1 ~x and x-f- 1 = 1.
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Lastly, the minus sign must be introduced: the symbol x is de-

fined to be the class consisting of those members of 1 which do not

belong to x, so that

xxl and

So far, we have interpreted Boolean algebra as an algebra of classes;

but, we may take the classes to be classes of cases in which certain

propositions are true, and this led to an interpretation of it as an alge-

bra of propositions. If x and y are propositions, their product would

represent simultaneous affirmation, so xy would be the proposition

which asserts "both x and y": the sum would denote alternative af-

firmation, so x + y would be the proposition "either x or y or both."

The minus sign would represent "it is not true that," so x would

be the proposition contrary to x: the equation x ~ 1 would imply

that x is true, while the equation x =1, which is equivalent to

x = 0, would signify that x is false. The equation x -f- x = 1 would

now represent the logical principle of the excluded middle, that every

proposition is either true or false, and the equation x-
( x) ~0

would represent the principle of contradiction.

Peano's Symbolism

Boole used only the ordinary algebraic symbols: the symbol x, which

in ordinary algebra represents multiplication, may be said to corre-

spond in Boolean algebra to the word and, while the symbol of addi-

tion, -f-, corresponds to or, and the symbol of a negative quantity,

, corresponds to not. The great development of such ideas took

place in the last years of the nineteenth century, when Giuseppe

Peano, professor at the University of Turin, invented a new ideogra-

phy for use in symbolic logic. He introduced new symbols to rep-

resent other logical notions, such as "is contained in," "the aggregate

of all x's such that," "there exists," "is a," "the only," etc. For exam-

ple, the phrase "is the same thing as" is represented by the sign =,
while the symbol r\ between two classes indicates the aggregate of in-

dividuals who belong to both classes (the product of Boole's algebra).

One of the elementary processes of logic consists in deducing from
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two propositions, containing a common element or middle term, a

conclusion connecting the two remaining terms. This corresponds

to the process of elimination in algebra and may be performed in a

way roughly analogous to it. The parallelism of logic and algebra is

indeed far reaching: for instance, the logical distinction between

categorical propositions and conditional propositions corresponds

closely to the algebraical distinction between identities and equations.

Again, the inequalities of algebra have their analogues in logic. Con-

sider, for instance, the statement that if a proposition a implies a

proposition fc, and b implies a proposition c, then a implies c. This

bears an obvious resemblance to the algebraical theorem that if a is

less than ft, and b is less than c, then a is less than c. It is useful to have

a symbol which represents logical implication or inclusion, and all

modern forms of symbolic logic do in fact employ one or two, one in

the calculus of propositions and one in the calculus of classes. This

however, does not represent an independent concept, but can be de-

fined in terms of the logical product; for the statement that a is in-

cluded in, or implies, ft, is equivalent to the statement that the

logical product of a and b is equal to a.

Peano's ideograms represent the constitutive elements of all the

other notions in logic, just as the chemical atoms are the constitutive

elements of all substances in chemistry; and they are capable of re-

placing ordinary language completely for the purposes of any deduc-

tive theory.

The Developments of Whitehead and Russell

In 1900 A. N. Whitehead and Bertrand Russell, both of Cambridge,
went to Paris to attend the congresses in mathematics and philosophy

which were being held in connection with the International Exhibi-

tion of that year. At the Philosophical Congress they heard an ac-

count of Peano's system and saw that it was vastly superior to any-

thing of the kind that had been known previously. They resolved

to devote themselves for years to come to its development, and, in

particular, to try to settle by its means the vexed question of the

foundations of mathematics.
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The thesis which they now set out to examine, and if possible to

prove, was that mathematics is a part of logic: it is the science con-

cerned with the logical deduction of consequences from the general

premises of all reasoning, so that a separate "philosophy of mathemat-

ics" simply does not exist. This of course contradicts the Kantian doc-

trine that mathematical proofs depend on a priori forms of intuition,

so that, for example, the diagram is an essential part of geometrical

reasoning. Whitehead and Russell soon succeeded in proving that the

cardinal numbers 1, 2, 3, ... can be defined in terms of concepts

which belong to pure logic, such as class, implication, negation, and

which can be represented by Peano ideograms. From this first suc-

cess they advanced to the investigations published in the three colos-

sal volumes of Principia Mathematica, which appeared in 1910-1913

and contain altogether just under 2,000 pages.

It was admitted that for mathematical purposes certain axioms

must be adjoined to those that are usually found in treatises on logic,

e.g., the intuition of the unending series of natural numbers, which

leads to the principle of mathematical induction; but this extension

of logic did not affect the main position.

The growth of logic, which had been at a standstill for the two

thousand years from Aristotle to Boole, has progressed with amazing

vitality from Boole to the present day. It is remarkable that some of

the errors of Aristotle remained undetected until the recent develop-

ments. Consider, for instance, his doctrine that "in universal state-

ment the affirmative premise is necessarily convertible as a particular

statement, so that for example from the premise all dragons are

winged creatures, follows the consequence some winged creatures are

dragons. The premise is unquestioned, but Aristotle's deduction from

it asserts the existence of dragons. Now it is evident that the existence

of dragons cannot be deduced by pure reason and, therefore, Aris-

totle's general principle must be wrong. The most important advance,

however, was not the detection of the errors of the old logic, but the

removal of its limitations. The Aristotelian system in effect took into

account only subject-predicate types of propositions, and failed to

deal satisfactorily with reasoning in which relations were involved,

such as "If there is a descendant, there must be an ancestor/' It was
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not possible to reduce to an Aristotelian syllogism the inference that

if most have coats and most have waistcoats, then some must have

both coats and waistcoats. In this and other respects the subject has

become enlarged to such an extent that only a comparatively small

part of any modern treatise is devoted to the traditional logic.

Whitehead and Russell's work may without exaggeration be de-

scribed as the foundation of the modern renaissance in logic, which,

as the successive volumes of the Journal of Symbolic Logic show, is

now chiefly centered in America. A notable feature of it is the devel-

opment of what Hilbert has called metamathematics
y
that is, of the-

orems about theorems. An example is the result found in 1931 by

Godel, that there are some propositions of mathematics which, though

they have a meaning, cannot be either proved or disproved by means

of any system based on axioms, such as that of Principia Mathematica.

Russell's Paradox

The advantages of an ideography as compared with ordinary language

are strikingly evident in the discussion of certain contradictions which

have threatened to invalidate reasoning, such as a famous paradox

that was discovered fifty years ago by Bertrand Russell. He remarked

that in the case of e.g., the class whose members are all thinkable con-

cepts, the class, being itself a thinkable concept, is one of its own

members. This is not the case with e.g.,
the class of all blue objects,

since this class is not itself blue. We can therefore say that those

classes which do not contain themselves as one of their members form

a particular kind of classes. The aggregate of these classes constitutes

a new class which we shall call x. Let us put this definition in the two

forms:

Form A. A class which contains itself as a member is not a member

ofx.

Form B. A class which does not contain itself as a member is a

member of x. Now if x were a member of itself, then by A it would

not be a member of itself, so we should have a contradiction; while

if x were not a member of itself, then by P it would be a member

of itself, which is again a contradiction. Thus on either supposition
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we arrive at a contradiction, which appears to be insoluble by any
kind of verbal explanation.

Now let us look at the matter from the point of view of symbolism.
The contradiction that "x is an x" is equivalent to "x is not an x"

was obtained essentially by substituting x for y in the statement that

(1) y is a class (2) y is an x, is equivalent to "y is not a y." This

substitution, however, is not, as it stands, an operation performed on

the fundamental logical symbols in accordance with the rules which

are laid down for operating on them; for, x is not itself one of the

elementary ideograms, but is an abbreviation, a single letter standing

proxy for a complex of ideas. Now all abbreviations, however con-

venient, are from the logical point of view superfluous; and an argu-
ment involving them is not valid unless, at every stage of it, the

proxy symbols can be replaced by the full expressions for which they
stand. In order therefore to be sure that what has been done is cor-

rect from the point of view of symbolic logic, we must translate the

whole argument, and in particular the operation of substituting x for

y, into the language of the elementary ideograms and the operations
that are permissible with them, so that all explicit mention of x will

have been eliminated from the proof. When, however, we try to do

this, we find that we cannot. It is not possible to state Russell's para-
dox in the form of an assertion composed solely of the elementary

ideograms. This shows that if we had from the beginning avoided the

use of ordinary speech or of proxy symbols and conducted all our

investigations according to the strict precepts of ideography, then

Russell's paradox would never have emerged. It can be obtained by

argumentation in words, or it can be obtained by a quasi-symbolic

argument in which an operation is permitted which is untranslatable

into pure symbolic logic; but it cannot be obtained by any process
which is restricted to using throughout nothing but the elementary

ideograms and the operations that are recognized as permissible with

them, and which express both the final result and all intermediate

equations in terms of them exclusively. Thus Russell's paradox, being

inexpressible in symbolic logic, is really meaningless, and we need not

concern ourselves with it further. The contradiction which appears in

it is not inherent in logic, but originates in the imperfections of lan-

guage and of abbreviated symbolism.
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The Inflationists

The Whitehead-Russell doctrine that mathematics is based on logic

is opposed by a school led by the Dutch mathematician L. E.
J.

Brouwer and the German Hermann Weyl, and known as intuition-

ists, who maintain the contrary view, that logic is based on mathe-

matics. The series of natural numbers is held to be given intuitively

and to be the foundation of all mathematics, so that numbers are not

derived, as Russell supposed, from logic. Their system contains a new

feature which may be explained thus.

Let it be asked whether, in the development of * as a decimal frac-

tion, there is a place where a particular digit, say 5, occurs ten times

in succession. It is of course conceivable that by performing the

actual development we might come upon such a succession; or it is

conceivable that a general proof might show that it cannot happen;
but these two solutions evidently do not exhaust all the possibilities.

Under these circumstances, Brouwer and Weyl decline to pronounce
the disjunctive judgment of existence, that the development of v as

a decimal either does or does not include a succession of ten 5's; in

other words, they assert that the logical principle of the excluded mid-

dle, that every proposition is either true or false, is not valid in do-

mains where a conclusion one way or the other cannot be reached in

a finite number of steps. They replace the notion of true by verifiable

and call propositions false only if their contradictory is verifiable. This

position leads them to abandon the attempt to justify large parts of

traditional mathematics: in particular, they reject all proofs by re-

ductio ad absurdum (which generally depend on the law of the ex-

cluded middle) and all propositions involving infinite collections or

infinite series. The disastrous consequences to mathematical analysis

of adopting such a position have prevented it from gaining any gen-

eral acceptance, but it is not easy to disprove.

Probability

In 1654 some one proposed to Blaise Pascal the following problem:
a game between two players of equal skill is discontinued for some
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reason before it is finished: given the scores attained at the time of

the stoppage, and the full score required for a win, in what propor-

tion should the stakes be divided? Pascal communicated the prob-

lem to his friend Pierre de Fermat, and the two in finding the solu-

tion created the theory of probability.

Like any other branch of pure mathematics, the theory of proba-

bility begins with undefined notions, and axioms. We consider a

trial, such as drawing a card out of a pack, in which different possible

events (the drawing of particular cards) might occur, and we intro-

duce the undefined notion of probability, which may be described as

a numerical measure of quantity of belief that one particular event

will happen, i.e., that some named card will be drawn. The axiom

on which the theory is based may be stated thus: In a given trial let A
and B be two events -which cannot possibly happen together; then

the probability that either A or B will happen is the sum of the prob-

abilities of their happening separately.

Thus in tossing a coin, let x be the probability of heads and y the

probability of tails. Then on account of the symmetry of the coin

we may assume that x = y. Moreover, from the axiom we see that

x -\- y is the probability that cither heads or tails will fall; but this

latter is a certainty, to which we give our entire belief. It is convenient

to measure entire belief by the number unity: so we have

x ~ y x + 7 1

and therefore x y = %. The probability of heads in a single toss

of a coin is
l/2 .

In practically all the calculations that we can make, some use is

made of a property of symmetry: thus, a die is a cube, symmetrical

with respect to all its six faces, so the probability that when cast it

will show a particular specified face is %; a pack has 52 cards which

are equally likely to be drawn, so the probability of drawing, say, the

ace of spades, is % 2 -

The axiom can readily be extended in the form: the probability of

an event is the ratio of the number of favorable cases to the number

of possible cases, -when all cases are supposed (generally for reasons
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of symmetry) to be equally likely. Thus, suppose an old man has only

two teeth: what is the probability that they will meet? In this case,

whatever position one of the teeth occupies, there are 31 possible

positions for the other tooth, and of these only one is favorable. There-

the required probability is
3
/si.

It is, however, easy to make mistakes through not taking sufficient

care in enumerating the equally likely cases. Thus, take the follow-

ing argument, which appeared in a recent book: ''The sum of an

odd number and an even number is an odd number, while the sum

of two odd numbers is an even number, and so is the sum of two

even numbers. Hence if two numbers are chosen at random, the prob-

ability that their sum will be even is twice the probability that it will

be odd." The error here comes from not recognizing that there are

four equally likely cases, namely, OO, OE, EO, EE; of these, two are

favorable to an even sum and two to an odd sum, so the probabilities

of an odd and an even sum are really equal.

A well-known problem is that of the "Yarborough," i.e., the proba-

bility that a hand, which is obtained when an ordinary pack of cards

is dealt between four players, should contain no card higher than a

nine. The probability is
nearly-y^-;

a former Earl of Yarborough is

said to have done very well for himself by betting 1000 to 1 against

its happening.

Although the difficulty of probability problems as regards mathe-

matical symbolism is usually not great, they are often very puzzling

logically. The reader may like to try the following: given an assertion,

A, which has the probability a, what does that probability become,

when it is made known that there is a probability m that B is a

necessary consequence of A, B having the probability b? l

A problem which has some bearing on the credibility of evidence

is the following: let p be the a priori probability of an event which a

witness has asserted to have happened; and let the a priori probabil-

ities that he would choose to assert it be v on the supposition of its

being true, and \v on the supposition of its being false. What, after

'The answer is: a [1 m(l b)]

l-am(l-b)
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his assertion, is the probability that it really happened? The answer

is

pv

pv+ (1 p) w

We see that however small p may be, the value of this fraction may
approach indefinitely near to unity that is, the probability that the

event happened may approach certainty provided w be much less

than v: Hiat is, provided the fact of the assertion may be much
more easily accounted for by the hypothesis of its truth than of its

falsehood. We must not let ourselves be influenced unduly by the

antecedent improbability of an event but must think out the conse-

quences of the contrary hypothesis, which may be more improbable
still.

Statistics

One of the most important applications of the theory of probability
is to questions regarding statistics, which have to be dealt with

specially by actuaries, astronomers, and social workers. The connec-

tion between probability and statistics is indicated by a theorem es-

tablished in 1713 by James Bernoulli, which may be thus stated: let

p be the probability of the happening of an event in a single trial, and

let s be the number of times the event is observed to happen in n tri-

als, so
-^- may be called the statistical frequency; then as n increases

indefinitely, the probability approaches certainty that the statistical

frequency mil approach p.

This law suggests that we should study what happens when the

number of trials is limited, though great, and should calculate the

probability of the deviations of the statistical frequency from p which

then occur. The calculation is not difficult, and leads to definite laws

of frequency of error. These are the basis of the methods used e.g. in

astronomy for combining observations so as to find the most prob-
able value of a set of quantities from a number of discordant observa-

tions of them.

If an event happens only rarely, the formula for the probability of
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s occurrences in n trials is different. It has been verified by compari-

son with the statistical frequency in such different cases as the num-

ber of deaths from the kicks of horses in the Prussian Army, and the

number of alpha-particles falling on a screen in unit time in certain

experiments with radioactive substances.

The theory of statistics is much concerned with what is called

correlation, which may be explained thus. Consider a definite group

containing a large number of men and let x be some measurable at-

tribute of a man, say his height, while y is another measurable attri-

bute, say his weight. Let the values of these attributes for a man be

indicated by a dot whose co-ordinates are x and y in a diagram. The

dots corresponding to all the men will cluster round a certain point O
which represents the mean height and weight. Now take axes Ox , O7,

through O. We know that in general a tall man will also be a heavy

man, and therefore a positive deviation of x from the mean will most

often be associated with a positive deviation of y, and similarly a neg-

ative deviation of x will generally be associated with a negative devia-

tion of y.

V '/
*

>*

That is to say, the dots will lie chiefly in the first and third quadrants
of the diagram. In such a case we say that there is correlation be-

tween the two attributes x and y. It can be measured by a coefficient

of correlation, whose value can be calculated by forming the sums of

the values of xf
, y*, and xy, for all the points in the diagram.
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Stochastic Systems

The principle of causality is expressed by the assertion that whatever

has begun to be, must have had an antecedent or cause which ac-

counts for it. This principle is not violated by events of the kind that

has usually been studied in works on probability. Consider for in-

stance the tossing of a coin: we do not know on which side the coin

will come down, but that is because we do not know all the circum-

stances of its projection the mass and shape of the coin, the force

applied by the thumb of the operator, etc. We do not doubt that if

all these data were available to us, it would be theoretically possible

to calculate completely the behavior of the coin, and to predict the

side on which it would come down; and, therefore, our lack of ability

to make this prediction is due only to our ignorance and not to any

failure of determinism in nature. Systems whose working is really

governed by strict law, but whose performance we cannot foretell

for want of knowledge, are said to have hidden parameters: if we

knew all about the hidden parameters, we should be able to predict

everything.

In the newer physics, we have phenomena like the spontaneous

breakup of a radium atom, in which an alpha-particle is given off and

the atom is transformed into an atom of radium emanation. It is not

possible to foretell the instant when any particular radium atom will

disintegrate; and, it was formerly supposed that this is because a

radium atom contains hidden parameters perhaps the positions and

velocities of the neutrons and protons inside the nucleus which are

not known to us and which determine the time of the explosion. For

reasons which belong to physics and therefore would not be in place

here, it is now generally recognized that these hidden parameters

do not exist. The disintegrations do not occur in a deterministic

fashion, and the only knowledge which is even theoretically possible

regarding the time of disintegration is the probability that it will hap-

pen within (say) the next year. A system in which events such as

disintegrations take place according to a law of probability, but are

not individually determined in accordance with the principle of caus-

ality, is said to be a stochastic system. The fact that the systems coc-
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sidered in microphysics are largely stochastic systems make the the-

ory of probability of fundamental importance in the application of

mathematics to the study of nature.

Conclusion: The Philosophy of Mathematics and the

Philosophy of Science

This talk on mathematics may end with an attempt to answer the

question, how is progress in mathematics related to progress in the

other sciences?

We have seen that a very high standard was attained in mathe-

matics as early as the fourth and third centuries before Christ; the

Elements of Euclid are sufficient to carry the modern student of

geometry to the point where university courses begin. No comparable

development was reached in any other branch of science for 2000

years. Why was this?

In the generation immediately before Euclid, as we have seen, the

philosopher Aristotle, whose scientific interests were in biology rather

than in mathematics, tried to find a general method of adding to

knowledge, by creating the science of logic, which he brought to the

form in which it remained with little change until the present age. In

showing how logic might be used to advance discovery, Aristotle

relied chiefly on the syllogistic type of reasoning that had been so

successful in geometry. But syllogisms must start from certain basic

truths which are accepted as premises; and it was in the methods of

finding these basic truths that Aristotle's scheme was weakest. He
collected a great number of observations but does not seem to have

taken care to reject those that could not be verified, and he never

designed an experiment for the purpose of testing a hypothesis. Syl-

logisms are as a rule comparatively unimportant in the nonmathe-

matical sciences, and the great place given to them in logic led the

later Aristotelians to attach undue importance to mere words.

In the thirteenth century, the influence of Aristotle was greatly

increased by the work of St. Thomas Aquinas; but, so far as science

was concerned, Aristotelianism developed in a completely sterile form

and a violent reaction against it set in, the leaders of which were
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Galileo (1564-1642) and Bacon (1561-1626). Bacon emphasized

the importance of induction from observation and the necessity for

experiment, though even in Bacon we do not find any recognition of

the necessity for framing hypotheses and then designing experiments

to test them. This indeed can hardly be said to have figured as a

doctrine of philosophers until it had become the practice of the great

men of science of the seventeenth century, particularly of Isaac New-

ton (1642-1727). The outstanding characteristic of the Newtonian

philosophy was its focusing of interest on the changes that occur in

the objects considered. The Greek philosophers had marked the dis-

tinction between mathematics and physics by assigning to the mathe-

matician the study of entities which are conserved unchanged in

time, and to the physicist the study of those entities which undergo

variations; but Newton created a type of mathematics in which the

calculation of rates of change was fundamental. The rate of change
of position of a body moving in a straight line, which is called its

velocity, and the rate of change of the velocity, which is called its

acceleration, were now studied. Newton regarded a curve as gener-

ated by the motion of a point, a surface by the motion of a curve,

and so on. The quantity generated was called the fluent, and the

motion was defined by what he called the fluxion; and he showed

that when a relation was given between two fluents, the relation be-

tween their fluxions could be found, and conversely. This theory of

fluxions, known later as the infinitesimal calculus, became the major

occupation of the mathematicians of the eighteenth and nineteenth

centuries, and led to wonderful advances in the study of nature.


