Stoichiometry Problems

1) How many grams of magnesium carbonate can be produced by reacting 1.75 g of magnesium nitrate with sodium carbonate? The balanced equation is:
$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{NaNO}_{3}(\mathrm{aq})+\mathbf{M g C O}_{3}(\mathrm{~s})$
2) What mass of magnesium hydroxide will precipitate if 3.09 g of potassium hydroxide are added to a magnesium nitrate solution?
3) The reaction of a dry cell may be represented by:
$\mathbf{Z n}(\mathrm{s})+2 \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+2 \mathrm{NH}_{3}(\mathrm{aq})+\mathbf{H}_{2}(\mathrm{~g})$
Determine the mass of the zinc consumed during the release of 6.03 g of anmmonia.
4) How many grams of zinc chloride, $\mathbf{Z n C l}_{2}$, are required to completely react with 17.0 g of aluminum metal, Al ? The balanced equation is:

$$
2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{ZnCl}_{2}(\mathrm{aq}) \rightarrow 3 \mathrm{Zn}(\mathrm{~s})+2 \mathrm{AlCl}_{3}(\mathrm{aq})
$$

5) What mass of oxygen can be produced by reacting $125 \mathrm{~g} \mathrm{KO}_{2}$ according to the reaction below:
$\mathrm{KO}_{2}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})$
6) Calculate the volume of oxygen produced when 3.5 g of potassium chlorate are decomposed by heat. The balanced equation for this reaction is:
$2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow \mathbf{2 K C l}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$

Solutions

1) $\quad 1.75 \mathrm{~g} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \times 1 \mathrm{~mol} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} / 148.32 \mathrm{~g} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \times$

2) Must balance the chemical equation first.
$2 \mathrm{KOH}(\mathrm{aq})+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{KNO}_{3}(\mathrm{aq})+\mathbf{M g}(\mathrm{OH})_{2}(\mathrm{~s})$
$3.09 \mathrm{~g} \mathrm{KOH} \times 1 \mathrm{~mol} \mathrm{KOH} / 56.11 \mathrm{~g} \mathrm{KOH} \times 1 \mathrm{~mol} \mathrm{Mg}(\mathrm{OH})_{2} / 2 \mathrm{~mol} \mathrm{KOH} x$ $\left.58.32 \mathrm{~g} \mathrm{Mg}(\mathrm{OH})_{2} / 1 \mathrm{~mol} \mathrm{Mg}_{(\mathrm{OH}}\right)_{2}=1.61 \mathrm{~g} \mathrm{Mg}(\mathrm{OH})_{2}$
3) $\quad 6.03 \mathrm{~g} \mathrm{NH}_{3} \times 1 \mathrm{~mol} \mathrm{NH}_{3} / 17.04 \mathrm{~g} \mathrm{NH}_{3} \times 1 \mathrm{~mol} \mathrm{Zm} / 2 \mathrm{~mol} \mathrm{NH}_{3} \mathrm{x}$ $65.39 \mathrm{~g} \mathrm{Zn} / 1 \mathrm{~mol} \mathbf{Z n}=11.6 \mathrm{~g} \mathrm{Zn}$
4) $\quad 17.0 \mathrm{~g} \mathrm{Al} \times 1 \mathrm{~mol} \mathrm{Al} / 26.98 \mathrm{~g} \mathrm{Al} \times 3 \mathrm{~mol} \mathrm{ZnCl}_{2} / 2 \mathrm{~mol} \mathrm{Al} \mathrm{x}$ $136.29 \mathrm{~g} \mathrm{ZnCl}_{2} / \mathbf{1} \mathbf{m o l} \mathbf{Z n C l}_{2}=129 \mathrm{~g} \mathrm{ZnCl}_{2}$
5) $\quad 125 \mathrm{~g} \mathrm{KO}_{z} \times 1 \mathrm{~mol} \mathrm{KO} / 71.10 \mathrm{~g} \mathrm{KO}_{z} \times 3 \mathrm{~mol} \mathrm{O}_{z} / 4 \mathrm{~mol} \mathrm{KO}_{z} \mathrm{x}$ $32.00 \mathrm{~g} \mathrm{O}_{2} / 1 \mathrm{~mol} \mathrm{O}_{\mathbf{z}}=42.2 \mathrm{~g} \mathrm{O}_{2}$
6) $\quad 3.5 \mathrm{~g} \mathrm{KClO}_{3} \times 1 \mathrm{~mol} \mathrm{KClO}_{3} / 122.55 \mathrm{~g} \mathrm{KGIO}_{3} \times 3 \mathrm{~mol} \mathrm{O}_{2} / 2 \mathrm{~mol} \mathrm{KGIO}_{3} \times$ $22.4 \mathrm{~L} \mathrm{O}_{2} / \mathbf{1} \mathrm{mol} \mathrm{O}_{2}=0.96 \mathrm{~L} \mathrm{O}_{2}$
