Specific Heat Problems

1) How much heat must be absorbed by 375 grams of water to raise its temperature by $25^{\circ} \mathrm{C}$?
2) What mass of water can be heated from $25.0^{\circ} \mathrm{C}$ to $50.0^{\circ} \mathrm{C}$ by the addition of 2825 J?
3) What is the final temperature when 625 grams of water at $75.0^{\circ} \mathrm{C}$ loses $7.96 \times 10^{4} \mathrm{~J}$?
4) A copper cylinder has a mass of 76.8 g and a specific heat of $0.092 \mathrm{cal} / \mathrm{g} \cdot \mathrm{C}$. It is heated to $86.5^{\circ} \mathrm{C}$ and then put in 68.7 g of turpentine whose temperature is $19.5^{\circ} \mathrm{C}$. The final temperature of the mixture is $31.9^{\circ} \mathrm{C}$. What is the specific heat of the turpentine?
5) A 65.0 g piece of iron at $525^{\circ} \mathrm{C}$ is put into 635 grams of water at $15.0^{\circ} \mathrm{C}$. What is the final temperature of the water and the iron?

Solutions

1) $\quad \mathbf{m}_{w}=375 \mathbf{g}$

$$
c_{w}=4.18 \mathrm{~J} / \mathrm{g} \cdot \mathrm{~K}
$$

$$
\Delta \mathrm{T}=25^{\circ} \mathrm{C}=25 \mathrm{~K}
$$

$$
\mathbf{q}_{\mathrm{g}}=\mathbf{m}_{\mathrm{w}} \mathbf{c}_{\mathrm{w}} \Delta \mathbf{T}_{\mathrm{w}}
$$

$$
\mathbf{q}_{\mathrm{g}}=375 \mathrm{~g} \mathrm{x} 4.18 \mathrm{~J} / \mathrm{g} \cdot \mathrm{~K} \times 25 \mathrm{~K}=3.9 \times 10^{4} \mathrm{~J}
$$

2) $\quad m_{w}=$?

$$
\begin{aligned}
& \mathrm{c}_{\mathrm{w}}=4.18 \mathrm{~J} / \mathrm{g} \cdot \mathrm{~K} \\
& \Delta \mathrm{~T}=50.0^{\circ} \mathrm{C}-25.0^{\circ} \mathrm{C}=25.0 \mathrm{~K} \\
& \mathrm{q}_{\mathrm{g}}=\mathrm{m}_{\mathrm{w}} \mathrm{c}_{\mathrm{w}} \Delta \mathrm{~T}_{\mathrm{w}} \\
& \mathrm{~m}=\mathrm{q}_{\mathrm{g}} / \mathrm{c} \Delta \mathrm{~T} \\
& \mathrm{~m}=2825 \mathrm{~J} /(4.18 \mathrm{~J} / \mathrm{g} \cdot \mathrm{~K} \times 25.0 \mathrm{~K})=27.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

3) $\mathrm{m}_{\mathrm{w}}=625 \mathrm{~g}$

$$
\mathrm{c}_{\mathrm{w}}=4.18 \mathrm{~J} / \mathrm{g} \cdot \mathrm{~K}
$$

$$
\mathrm{T}_{\mathrm{i}}=75.0^{\circ} \mathrm{C}
$$

$$
\mathbf{q}_{\mathrm{I}}=7.96 \times 10^{4} \mathrm{~J}
$$

$$
\mathbf{q}_{\mathrm{t}}=\mathbf{m}_{\mathrm{w}} \mathbf{c}_{\mathbf{w}} \Delta \mathbf{T}_{\mathrm{w}}
$$

$$
\Delta T_{w}=q_{1} /\left(\mathrm{m} \mathrm{x} \mathrm{c}^{2}\right)
$$

$$
\Delta \mathrm{T}_{\mathrm{w}}=7.96 \times 10^{4} \mathrm{~J} /(625 \mathrm{~g} \mathrm{x} 4.18 \mathrm{~J} / \mathrm{g} \cdot \mathrm{~K})=30.5 \mathrm{~K}=30.5^{\circ} \mathrm{C}
$$

$$
\Delta T=T_{i}-T_{f}
$$

$$
\mathrm{T}_{\mathrm{f}}=\mathrm{T}_{\mathrm{i}}-\Delta \mathrm{T}=75.0^{\circ} \mathrm{C}-30.5^{\circ} \mathrm{C}=44^{\circ} \mathrm{C}
$$

4)

$$
\begin{array}{ll}
\mathrm{m}_{\mathrm{c}}=76.8 \mathrm{~g} & \mathrm{~m}_{\mathrm{t}}=68.7 \mathrm{~g} \\
\mathrm{c}_{\mathrm{c}}=0.092 \mathrm{cal} / \mathrm{g} \cdot \mathrm{C} & \mathrm{c}_{\mathrm{t}}=? \\
\Delta \mathrm{~T}=\mathrm{T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{f}} & \Delta \mathrm{~T}=\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}} \\
\Delta \mathrm{~T}=86.5^{\circ} \mathrm{C}-31.9^{\circ} \mathrm{C}=54.6^{\circ} \mathrm{C} & \Delta \mathrm{~T}=31.9^{\circ} \mathrm{C}-19.5^{\circ} \mathrm{C}= \\
\Delta \mathrm{q}=0 & \\
\mathbf{q}_{\mathrm{l}}=\mathbf{q}_{\mathrm{g}} & \\
\mathbf{m}_{\mathrm{c}} \mathbf{c}_{\mathrm{c}} \Delta \mathrm{~T}_{\mathrm{c}}=\mathrm{m}_{\mathrm{t}} \mathrm{c}_{\mathrm{t}} \Delta \mathrm{~T}_{\mathrm{t}} & \\
\mathrm{c}_{\mathrm{t}}=\mathbf{m}_{\mathrm{c}} \mathbf{c}_{\mathrm{c}} \Delta \mathrm{~T}_{\mathrm{c}} / \mathrm{m}_{\mathrm{t}} \Delta \mathrm{~T}_{\mathrm{t}} & \\
\mathrm{c}_{\mathrm{t}}=76.8 \mathrm{~g} \times 0.092 \mathrm{cal} / \mathrm{g} \cdot \mathrm{C} \times 54.6^{\circ} \mathrm{G} /\left(68.7 \mathrm{~g} \times 12.4{ }^{\circ} \mathrm{G}\right)=0.45 \mathrm{cal} / \mathrm{g} \cdot \mathrm{C}
\end{array}
$$

5) $\quad m_{\text {iron }}=65.0 \mathrm{~g}$

$$
m_{w}=635 \mathrm{~g}
$$

$$
c_{\text {iron }}=0.451 \mathrm{~J} / \mathrm{g} \cdot \mathrm{~K}
$$

$$
\mathrm{c}_{\mathrm{w}}=4.18 \mathrm{~J} / \mathrm{g} \cdot \mathrm{~K}
$$

$$
\mathrm{T}_{\mathrm{i}}=525^{\circ} \mathrm{C}
$$

$$
\mathrm{T}_{\mathrm{i}}=15^{\circ} \mathrm{C}
$$

$\Delta q=0$
$\mathbf{q}_{\mathbf{I}}=\mathbf{q}_{\mathbf{g}}$
$m_{i} \mathbf{c}_{\mathbf{i}} \Delta \mathrm{T}_{\mathbf{i}}=\mathbf{m}_{\mathrm{w}} \mathbf{c}_{\mathrm{w}} \Delta \mathrm{T}_{\mathrm{w}}$
$65.0 \mathrm{~g} \mathrm{x} 0.451 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K} \times\left(525^{\circ} \mathrm{C}-\mathrm{T}_{\mathrm{f}}\right)=635 \mathrm{~g} \mathrm{x} 4.18 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K} \times\left(\mathrm{T}_{\mathrm{f}}-15^{\circ} \mathrm{C}\right)$

$$
\mathrm{T}_{\mathrm{f}}=20.6^{\circ} \mathrm{C}
$$

