Solution Concentration Problems

1) A solution is prepared by dissolving 26.7 g of NaOH in 650 g of water. What is the mole fraction of the sodium hydroxide?
2) A solution is prepared by dissolving $36.4 \mathrm{~g} \mathrm{CaI}_{2}$ in 750 mL of water. What is the molality of the solution?
3) Concentrated sulfuric acid has a density of $1.84 \mathrm{~g} / \mathrm{mL}$ and is 95.0% by mass $\mathrm{H}_{2} \mathrm{SO}_{4}$. What is the molarity of the acid?
4) What is the mass percent of $\mathrm{K}_{2} \mathrm{SO}_{4}$ in a 3.75 molal solution?
5) (a) If a solution is 0.638 molal in $\mathrm{Na}_{2} \mathrm{CO}_{3}$, how many grams of salt must be added to 250.0 g of water?
(b) What is the mole fraction of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the solution?
6) How many grams of lithium chloride are required to make 1.00 L of a 3.00 M solution?

Solutions

1) $\quad \mathrm{m}=26.7 \mathrm{~g} \mathrm{NaOH}$

$$
\mathrm{m}_{\mathrm{w}}=650 . \mathrm{g} \mathrm{H}_{2} \mathrm{O}
$$

$\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$n_{1}=26.7 \mathrm{~g} \mathrm{NaOH} \times 1 \mathrm{~mol} \mathrm{NaOH} / 40.00 \mathrm{~g} \mathrm{NaOH}=0.668 \mathrm{~mol} \mathrm{NaOH}$
$n_{2}=650 . \mathrm{g}_{2} \mathrm{O} \times 1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} / 18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=36.1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
$\mathbf{X}_{\mathbf{1}}=\mathbf{n}_{\mathbf{1}} / \mathbf{n}_{\mathrm{T}}$
$\mathrm{X}_{1}=0.668 \mathrm{~mol} /(0.668 \mathrm{~mol}+36.1 \mathrm{~mol})=0.0182$
2) $\quad \mathrm{m}=36.4 \mathrm{~g} \mathrm{CaI}_{2}$

$$
\mathrm{V}=750 \mathrm{~mL}
$$

$\mathrm{CaI}_{2}(\mathrm{~s}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq})$
$\mathbf{D}=\mathbf{M} / \mathbf{V}$
$M=D \times V=1.00 \mathrm{~g} / \mathrm{mL} \times 750 \mathrm{~mL}=750 \mathrm{~g} \mathrm{H} 2 \mathrm{O}$
$\mathrm{n}=36.4 \mathrm{~g} \mathrm{CaI}_{2} \times 1 \mathrm{~mol} \mathrm{CaI}_{2} / 293.88 \mathrm{~g} \mathrm{GaI}_{2}=0.124 \mathrm{~mol} \mathrm{CaI}_{2}$
$\mathrm{m}=\mathbf{n} / \mathrm{kg}=0.124 \mathrm{~mol} /\left(750 \mathrm{~g} \mathrm{x} 1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)=0.17 \mathrm{~m}$
3) $\quad \mathrm{D}=1.84 \mathrm{~g} / \mathrm{mL}$
$\mathbf{m} \%=95.0 \% \mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HSO}_{4}^{-}(\mathrm{aq})$

Assume 1.00 L of solution, therefore,

$$
\begin{aligned}
& \mathrm{D}=\mathrm{M} / \mathrm{V} \\
& \mathrm{~m}=\mathrm{D} \mathrm{X} \mathrm{~V}=1.84 \mathrm{~g} / \mathrm{mL} \times 1 \mathrm{~L} \times 10^{3} \mathrm{~mL} / \mathrm{L}=1840 \mathrm{~g} \text { solution } \\
& \mathrm{m} \%=\mathrm{m}_{\text {acid }} / \mathrm{m}_{\text {sol }} \times 100 \% \\
& \mathrm{~m}_{\text {acid }}=1840 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4} \times 0.950=1750 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4} \\
& \mathrm{n}=1750 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4} \times 1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4} / 98.09 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}=17.8 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4} \\
& {\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=\mathrm{n} / \mathrm{V}=17.8 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4} / 1.00 \mathrm{~L}=17.8 \mathrm{M}}
\end{aligned}
$$

4) $\quad \mathrm{m}=3.75 \mathrm{molal}$

$$
\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{~s}) \rightarrow 2 \mathrm{~K}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})
$$

Assume 1.00 kg of $\mathrm{H}_{\mathbf{2}} \mathrm{O}$, therefore,

$$
\begin{aligned}
& \mathrm{m}=\mathrm{n} / \mathrm{kg} \\
& \mathrm{n}=\mathrm{m} \times 1.00 \mathrm{~kg}=3.75 \mathrm{~m} \times 1.00 \mathrm{~kg}=3.75 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{SO}_{4} \\
& \mathrm{~m}=3.75 \mathrm{~mol}_{2} \mathrm{SO}_{4} \times 174.27 \mathrm{~g} \mathrm{~K}_{2} \mathrm{SO}_{4} / 1 \mathrm{molK}_{2} \mathrm{SO}_{4}=654 \mathrm{~g} \mathrm{~K}_{2} \mathrm{SO}_{4}
\end{aligned}
$$

$$
m \%=m_{1} / m_{T} \times 100 \%
$$

$$
m \%=654 g /(654 g+1000 . g) \times 100 \%=39.5 \%
$$

5) $\quad \mathrm{m}=0.638 \mathrm{~m}$ $\mathrm{m}_{\mathrm{w}}=250.0 \mathrm{~g}$
$\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$
(a)

$$
\begin{aligned}
& m=n / \mathrm{kg} \\
& \mathrm{n}=\mathrm{m} \times \mathrm{kg}=0.638 \mathrm{~m} \times 250.0 \mathrm{~g} \times 1 \mathrm{~kg} / 10^{3} \mathrm{~g}=0.160 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3} \\
& \mathrm{~m}=0.160 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3} \times 105.99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3} / 1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3} \\
& \mathrm{~m}=17.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& n_{\mathrm{w}}=250.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times 1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} / 18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=13.87 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{X}_{1}=\mathrm{n}_{1} / \mathrm{n}_{\mathrm{T}} \\
& \mathrm{X}_{1}=0.160 \mathrm{~mol} /(0.160 \mathrm{~mol}+13.87 \mathrm{~mol})=0.0114
\end{aligned}
$$

6) $[\mathrm{LiCl}]=3.00 \mathrm{M}$

$$
\mathrm{V}=1.00 \mathrm{~L}
$$

$\mathbf{L i C l}(\mathrm{aq}) \rightarrow \mathrm{Li}^{+}(\mathbf{a q})+\mathrm{Cl}^{-}(\mathrm{aq})$
$[\mathrm{LiCl}]=\mathbf{n} / \mathrm{V}$

$$
\begin{aligned}
& \mathrm{n}=[\mathrm{LiCl}] \times \mathrm{V} \\
& \mathrm{n}=3.00 \mathrm{~mol} \mathrm{LiCl} / \mathbf{L} \times 1.00 \mathrm{~L}=3.00 \mathrm{~mol} \mathrm{LiCl} \\
& \mathrm{~m}=3.00 \mathrm{~mol} \mathrm{LiCl} \times 42.39 \mathrm{~g} \mathrm{LiCl} / 1 \mathrm{~mol} \mathrm{LiCl}=127 \mathrm{~g} \mathrm{LiCl}
\end{aligned}
$$

