Simple Cubic Lattice

Crystalline solids are those solids, unlike amorphous solids, that have a regular and repeating arrangement of atoms. Each of these crystalline solids consists of a unit cell which is a small group of atoms that contain unique features. When a large number of these unit cells are stacked together, they form a macroscopic crystal. The three cubic crystal types are the simple cubic lattice (primitive cubic), body-centered cubic, and the face-centered cubic. The simple cubic unit cell is shown below.

The length of each side is a (2r) where r is the radius of the atom at the lattice point.

The length of a side of the unit cell, \mathbf{a}, is called the lattice constant. An important feature of a crystal structure is the nearest distance between atomic centers (nearest-neighbor distance) and for the primitive cubic this distance is a.

A simple cubic lattice has eight lattice points where a lattice point is defined as a point of intersection of two or more grid lines. Each lattice point, eight in the diagram above, is a "site" for an atom to reside. However, the unit cell above does not contain 8 atoms but only 1 . When considering cubic lattices, one must always think in terms of 3-D. Atoms at the corners of any cube are shared by 8 contiguous units cells, so only $1 / 8$ of an atom is attributed to a single lattice point. Therefore,
$1 / 8$ atom/tattice point $\times 8$ tattice points $=1$ atom

An interesting property of primitive cubic cells is that of packing efficiency where $P E=V_{a} / V_{u c} \times 100 \%$
and V_{a} is the volume of the atoms occupying the interior of the cell and $V_{u c}$ is the volume of the unit cell.
$V_{a}=4 / 3 \cdot \pi \cdot r^{3} \cdot Z$ where r is the atomic radius and Z the number of atoms contained within the unit cell.
$\mathrm{V}_{\mathrm{r}}=\mathrm{l} \cdot \mathrm{w} \cdot \mathrm{h}=\mathrm{w} \cdot \mathrm{w} \cdot \mathrm{w}=(2 \mathrm{r})^{3}=8 \mathrm{r}^{3}$
$P E=4 / 3 \cdot \pi \cdot f^{3} \cdot Z / 8 r^{3} \times 100 \%=52 \%$ which applies to all primitive cubic cells.

The graphic used in this tutorial was taken from the Crystal Lattice Structures Web page, http://cst-www.nrl.navy.mil/lattice/ provided by the Center for Computational Materials Science of the United States Naval Research Laboratory.

