pH, pOH, [H⁺], [OH⁻] Worksheet

- 1) What is the $[H^+]$ for a one liter aqueous solution containing 5.73 x $10^{17} H^+$ ions?
- 2) A 0.23 M HClO₂ solution is 6.3% ionized. What is the $[H^+]$?
- 3) What is the pH of a 0.034 M Ba(OH)₂ solution?
- 4) What is the hydroxide concentration in 2.7×10^{-3} M HCl?
- 5) Calculate the hydrogen ion concentration for an aqueous solution whose pOH is 8.37.

Solutions

1)
$$n_{hyd} = 5.73 \times 10^{17} H^{+}$$

 $V = 1.00 L$
 $[H^{+}] = n/V$
 $[H^{+}] = (5.73 \times 10^{17} H^{+} \times 1 \text{ mol } H^{+}/(6.02 \times 10^{23} H^{+}))/1.00 L$
 $[H^{+}] = 9.52 \times 10^{-7} M$

2)
$$[HClO_2] = 0.23 M$$

%ion = 6.3%

HClO₂ (aq) \leftrightarrow H⁺(aq) + ClO₂ (aq) %ion = [H⁺]/[HClO₂] x 100% [H⁺] = 0.063 x 0.23 M = 1.4 x 10⁻² M

3) $[Ba(OH)_2] = 0.034 \text{ M}$

Ba(OH)₂ (aq) → Ba²⁺(aq) + 2OH⁻(aq) [OH⁻] = 0.034 mol Ba(OH)₂/L x 2 mol OH⁻/1 mol Ba(OH)₂ = 0.068 M pOH = -log[OH⁻] = -log[0.068] = 1.17 pH + pOH = 14.00

pH = 14.00 - pOH = 14.00 - 1.17 = 12.83

4) [HCl] = $2.7 \times 10^{-3} M$

5) **pOH = 8.37**

$$pH + pOH = 14.00$$

 $pH = 14.00 - pOH = 14.00 - 8.37 = 5.63$
 $[H^+] = 10^{-pH} = 10^{-5.63} = 2.3 \times 10^{-6} M$