Oxidation-Reaction Reactions

1) What is oxidation?
2) What is reduction?
3) What are the oxidation numbers in hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$?
4) What are the oxidation numbers in sulfite, $\mathrm{SO}_{3}{ }^{2-}$?
5) What determines whether a chemical reaction is a redox reaction?
6) (a) What effect does oxidation have on the oxidation number of a substance?
(b) What effect does reduction have on the oxidation number of a substance?
7) What is the difference between an oxidizing agent and a reducing agent?
8) Why are the Group I elements (alkali metals) very strong reducing agents?
9) Why are the Group VII elements (halogens) very strong oxidizing agents?
10) What is the relationship between the strength of an oxidizing agent and its corresponding reducing agent?
11) In the reaction, $\mathrm{O}_{2}+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{O}^{2-}$, is O_{2} oxidized or reduced?
12) In the reaction, $2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}$, which species is reduced?
13) In the reaction, $\mathbf{M g}+\mathrm{F}_{2} \rightarrow \mathrm{MgF}_{2}$, which species is oxidized?
14) In a redox reaction, $\mathrm{MnO}_{4}{ }^{-}$is changed to Mn^{2+}. How many electrons must be lost or gained by Mn?
15) In a redox reaction, $\mathrm{MnO}_{4}{ }^{-}$is changed to $\mathrm{MnO}_{4}{ }^{2-}$. How many electrons must be lost or gained by Mn?
16) In a balanced redox equation, how does the total number of reactant molecules compare with the total number of product molecules?
17) What is the strongest reducing agent among the elements?
18) What is the strongest oxidizing agent among the elements?
19) Balance the following redox reaction using the oxidation number method.

$$
\mathbf{A l}+\mathbf{C u}^{2+} \rightarrow \mathbf{A l}^{3+}+\mathbf{C u}
$$

20) Balance the following redox reaction using the oxidation number method. copper + nitric acid \rightarrow copper(II) nitrate + nitrogen monoxide + water

Solutions

1) Oxidation is a chemical reaction in which the atoms or ions of an element acquire a more positive oxidation state by losing electrons.
2) Reduction is a chemical reaction in which the atoms or ions of an element acquire a more negative oxidation state by gaining electrons.
3) $+\mathbf{1}-1$
$\mathrm{H}_{2} \mathrm{O}_{2}$
4) $+4-6$
$\mathrm{SO}_{3}{ }^{-2}$
5) Only those reactions in which elements undergo a change in oxidation number (state).
6) (a) The oxidation number becomes more positive even though it may remain negative.
(b) The oxidation number becomes more negative even though it may remain positive.
7) The oxidizing agent is reduced or acquires a more negative oxidation state and the reducing agent is oxidized or acquires a more positive oxidation state.
8) The relatively large atomic radii of the alkali metals results in a weak force of attraction between the positive nuclei and the one valence electron.
9) The relatively small atomic radii of the halogens results in a strong force of attraction between the positive nuclei and the seven valence electrons.
10) The stronger an oxidizing agent, the weaker its corresponding reducing agent.
11) O_{2} is reduced because its oxidation state becomes more negative by changing from 0 to -2.
12) Cl_{2} is reduced because its oxidation state becomes more negative by changing from 0 to-1.
13) Mg is oxidized because its oxidation state becomes more positive by changing from 0 to +2.
+7 -8
14) $\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}$, therefore $\mathbf{M n}$ must gain five electrons.
$\begin{array}{llll}+7 & -8 & \text {-8 }\end{array}$
$-2 \quad-2$
15) $\mathrm{MnO}_{4}{ }^{-} \rightarrow \mathrm{MnO}_{4}{ }^{2-}$, therefore $\mathbf{M n}$ must gain one electron.
16) As in all chemical reactions, there is no relationship that exists between the number of reactant and product molecules.
17) Lithium.
18) Fluorine.
19) $\mathrm{Al}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Al}^{3+}+\mathrm{Cu}$

$$
\stackrel{0}{\mathbf{A l}+\mathbf{C u}^{+2}} \rightarrow \stackrel{+3}{\mathbf{A l}^{3+}}+\stackrel{\mathbf{C u}}{\mathbf{C}}
$$

oxidation:

$$
\mathbf{A l} \rightarrow \mathbf{A l}^{3+}+3 \mathbf{e}^{-}
$$

reduction:

$$
\begin{aligned}
& \mathrm{Cu}^{2+}+2 \mathbf{e}^{-} \rightarrow \mathbf{C u} \\
& 2 \mathrm{Al} \rightarrow 2 \mathrm{Al}^{3+}+6 \mathbf{e}^{-} \\
& 3 \mathrm{Cu}^{2+}+6 \mathbf{e}^{-} \rightarrow 3 \mathrm{Cu} \\
& 2 \mathrm{Al}+3 \mathrm{Cu}^{2+} \rightarrow 2 \mathrm{Al}^{3+}+3 \mathrm{Cu} \\
& 2 \mathbf{A l (s)}+3 \mathbf{C u}^{2+}(\mathbf{a q}) \rightarrow 2 \mathbf{A l}^{3+}(\mathbf{a q})+3 \mathbf{C u}(\mathbf{s})
\end{aligned}
$$

20) copper + nitric acid $\rightarrow \operatorname{copper}($ II) nitrate + nitrogen monoxide + water

$$
\mathrm{Cu}+\mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NO}+\mathrm{H}_{2} \mathrm{O}
$$

```
        +5 -6
    0 +1 -2 +2 +5 -2 +2-2 +1-2
Cu+ HNO
```

oxidation:

$$
\mathbf{C u} \rightarrow \mathbf{C u}^{2+}+2 \mathbf{e}^{-}
$$

reduction:
$\mathbf{N}^{5+}+3 \mathrm{e}^{-} \rightarrow \mathrm{N}^{2+}$
$3 \mathrm{Cu} \rightarrow 3 \mathrm{Cu}^{2+}+6 \mathrm{e}^{-}$

$$
2 \mathbf{N}^{5+}+6 \mathbf{e}^{-} \rightarrow 2 \mathbf{N}^{2+}
$$

$$
3 \mathrm{Cu}+2 \mathbf{N}^{5+} \rightarrow 3 \mathrm{Cu}^{2+}+2 \mathbf{N}^{2+}
$$

$$
3 \mathrm{Cu}+2 \mathrm{HNO}_{3} \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}
$$

$$
3 \mathrm{Cu}+8 \mathrm{HNO}_{3} \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}
$$

$$
3 \mathrm{Cu}(\mathrm{~s})+8 \mathbf{H N O}_{3}(\mathbf{a q}) \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathbf{a q})+2 \mathrm{NO}(\mathrm{~g})+4 \mathbf{H}_{2} \mathrm{O}(\mathbf{l})
$$

