Nuclear Chemistry Worksheet

1) The decay constant for I-131 is $3.59 \times 10^{-3} \mathrm{~h}^{-1}$. How much I-131 remains after a week if the initial mass was 15.0 g ?
2) The decay constant for Sr - 90 is $1237 \mathrm{~min}^{-1}$. If after one year \mathbf{k} is found to be $937 \mathrm{~min}^{-1}$, what is the half-life of $\mathbf{S r}-\mathbf{9 0}$?
3) Calculate the binding energy of ${ }^{55}{ }_{25} \mathrm{Mn}$. (${ }^{1}{ }_{0} \mathrm{n}=1.00867 \mathrm{u},{ }_{1}^{1} \mathrm{H}=1.00782 \mathrm{u}$, ${ }_{55}{ }_{25} \mathbf{M n}=54.9381 \mathbf{u}$)
4) Balance the following nuclear equations.
(a) ${ }^{218}{ }_{84} \mathrm{Po} \quad \rightarrow \quad$? $\quad+\quad{ }_{82}^{214} \mathrm{~Pb}$
(b) ${ }_{83}^{212} B i \quad \rightarrow \quad{ }_{-1}^{0} \beta \quad+\quad$?
(c) \quad ? $\quad \rightarrow \quad{ }_{2}{ }_{2} \alpha \quad+\quad{ }^{207}{ }_{81} \mathrm{Tl}$
(d) ${ }_{4}^{9} \mathrm{Be}+\quad{ }_{2}^{4} \mathrm{He} \rightarrow \quad$? $\quad+\quad{ }_{0} \mathrm{n}$
(e) ? $\quad+\quad{ }_{2}^{4} \mathrm{He} \rightarrow \quad{ }_{6}^{12} \mathrm{C} \quad+\quad{ }_{3}^{6} \mathrm{Li}$
(f) $\quad{ }_{12}^{12} \mathrm{C} \quad+\quad$? $\quad \rightarrow \quad{ }_{1} \mathrm{H} \quad+\quad{ }_{6}^{13} \mathrm{C}$
5) A sample of C-14 has an activity of $\mathbf{1 0}$ disintegrations per minute and a half-life of 5730 yr .
(a) How many C-14 atoms are there in this sample?
(b) How many grams are there?
6) For each pair of isotopes, tell which isotope is more stable and why.
(a) ${ }^{23}{ }_{11} \mathrm{Na}$ or ${ }^{22}{ }_{11} \mathrm{Na}$
(b) ${ }^{58}{ }_{27} \mathrm{Co}$ or ${ }^{59}{ }_{27} \mathrm{Co}$
(c) ${ }_{6}^{12} \mathrm{C}$ or ${ }_{6}^{11} \mathrm{C}$
(d) $\quad{ }_{20}{ }_{20} \mathrm{Ca}$ or ${ }^{44}{ }_{20} \mathrm{Ca}$
(e) ${ }_{92}^{96} \mathrm{Mo}$ or ${ }^{96}{ }_{43} \mathrm{Tc}$

Solutions

1) $\mathrm{k}=3.59 \times 10^{-3} \mathrm{~h}^{-1} \quad \mathrm{t}=7$ days
$\mathrm{m}_{0}=15.0 \mathrm{~g}$
$\ln \left(m_{t} / m_{0}\right)=-k x t$
$\ln \left(m_{t} / 15.0 \mathrm{~g}\right)=-3.59 \times 10^{-3} / \mathrm{h} \times 24 \mathrm{~h} / 1$ day $\times 7$ days $=-\mathbf{0 . 6 0 3}$
$\mathrm{m}_{\mathrm{t}} / \mathbf{1 5 . 0} \mathrm{g}=\mathrm{e}^{-0.603}$
$\mathrm{m}_{\mathrm{t}}=8.21 \mathrm{~g}$
2) $\mathrm{k}_{0}=1237 \mathrm{~min}^{-1} \quad \mathrm{t}=1 \mathrm{yr}$

$$
k_{t}=937 \min ^{-1} \quad t_{1 / 2}=\text { ? }
$$

$\ln \left(k_{t} / k_{0}\right)=-k_{x t}$ $\ln \left(937 \min ^{-1} / 1237 \min ^{-1}\right)=-k \times 1 \mathbf{y r}$
$\mathrm{k}=0.277 \mathrm{yr}^{-1}$
$k=0.693 / \mathbf{t}_{1 / 2}$
$\mathrm{t}_{1 / 2}=0.693 / \mathrm{k}=0.693 / 0.277 \mathrm{yr}^{-1}=2.50 \mathrm{yr}$
3) $\quad \mathrm{m}_{\mathrm{Mn}}=54.9381 \mathrm{u}$

$$
{ }^{1} \mathrm{H}=1.00782 \mathrm{u}
$$

${ }^{1}{ }_{0} n=1.00867 \mathbf{u}$ $\mathrm{c}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$m_{T}=25 \times 1.00782 \mathbf{u}+30 \times 1.00867 \mathbf{u}=55.4556 \mathbf{u}$
$\Delta \mathrm{m}=\mathrm{m}_{\mathrm{T}}-\mathrm{m}_{\mathrm{Mn}}=54.9381 \mathbf{u}-55.4556 \mathbf{u}=\mathbf{- 0 . 5 1 7 5} \mathbf{u}$
$\Delta E=\Delta \mathrm{mx} \mathrm{c}^{2}$
$\Delta E=-0.5175 \mathrm{~g} \mathrm{x} 1 \mathrm{~kg} / 10^{3} \mathrm{gx}\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}=-4.66 \times 10^{13} \mathrm{~J}$
$\Delta E=-4.66 \times 10^{13} \mathrm{~J}$ or $4.66 \times 10^{13} \mathrm{~J}$ released per mole
4)
(a) $\quad{ }^{218}{ }_{84} \mathrm{Po} \quad \rightarrow \quad{ }_{2}^{4} \mathrm{He} \quad+\quad{ }_{82}^{214} \mathbf{P b}$
(b) $\quad{ }_{212}^{212} B i \quad \rightarrow \quad{ }_{83}^{0} \beta \quad+\quad{ }_{-1}^{212}{ }_{84} \mathrm{Po}$
(c) $\quad{ }_{211}{ }_{83} \mathrm{Bi} \quad \rightarrow \quad{ }_{2}{ }_{2} \alpha \quad+\quad{ }^{207}{ }_{81} \mathrm{Tl}$
(d) ${ }_{4}^{9} \mathrm{Be}+\quad{ }_{2}^{4} \mathrm{He} \rightarrow \quad{ }_{6}^{12} \mathrm{C} \quad+\quad{ }_{0} \mathrm{n}$
(e) ${ }_{7}^{14} \mathrm{~N}+{ }_{2}^{4} \mathrm{He} \rightarrow \quad{ }_{6}^{12} \mathrm{C} \quad+\quad{ }_{3}^{6} \mathrm{Li}$
(f) ${ }_{12}^{12} \mathrm{C}+{ }_{1}^{2} \mathrm{H} \quad \rightarrow \quad{ }_{1} \mathrm{H} \quad+\quad{ }_{6}^{13} \mathrm{C}$
5) $k=10 \mathrm{dis} / \mathrm{min} \quad \mathbf{t}_{1 / 2}=5730 \mathrm{yr}$
(a) $t_{1 / 2}=5730$ yr $\times 365$ days $/ y \mathbf{y x} 24 \mathrm{~h} / 1$ day $\times 60 \mathrm{~min} / 1 \mathrm{~h}=3.01 \times 10^{9} \mathrm{~min}$ $k=0.693 / t_{1 / 2}=0.693 /\left(3.01 \times 10^{9} \mathrm{~min}\right)=2.30 \times 10^{-10} \mathrm{~min}^{-1}$

Rate $=\mathbf{k} \mathbf{x}$
$10 \mathrm{C}-14$ atoms $/ \min =2.30 \times 10^{-10} \min ^{-1} \times \mathrm{N}$
$\mathrm{N}=10 \mathrm{C}-14$ atoms $/\left(2.30 \times 10^{-10}\right)=4.35 \times 10^{10} \mathrm{C}-14$ atoms
(b) $\quad \mathrm{m}=4.35 \times 10^{10} \mathrm{G}-14$ atoms $\times 1 \mathrm{molG}-14 /\left(6.02 \times 10^{23} \mathrm{G}-14\right.$ atoms) x
$14.00 \mathrm{~g} \mathrm{C}-14 / 1 \mathrm{~mol} \mathrm{G}-14=1.01 \times 10^{-12} \mathrm{~g} \mathrm{C}-14$
6) (a) ${ }^{23}{ }_{11} \mathrm{Na}$ or ${ }^{22}{ }_{11} \mathrm{Na}$ because $\mathrm{Na}-23$ has an even number of neutrons. Odd numbers of both protons and neutrons usually produce unstable nuclei.
(b) $\quad{ }_{27}{ }_{27} \mathrm{Co}$ or ${ }^{59}{ }_{27} \mathrm{Co}$ because $\mathbf{C o}-59$ has an even number of neutrons.
(c) ${ }^{12}{ }_{6} \mathrm{C}$ or ${ }_{6}^{11} \mathrm{C}$ because $\mathrm{C}-12$ has an even number of protons and neutrons.
(d) $\quad{ }_{20}{ }_{20} \mathrm{Ca}$ or ${ }^{44} \mathrm{Ca}$ because $\mathrm{Ca}-44$ has an even number of protons and neutrons.
(e) ${ }^{96}{ }_{42} \mathrm{Mo}$ or ${ }^{96}{ }_{43} \mathrm{Tc}$ because Mo-96 has an even number of protons and neutrons.

