Nuclear Chemistry Worksheet

- 1) The decay constant for I-131 is 3.59 x 10⁻³ h⁻¹. How much I-131 remains after a week if the initial mass was 15.0 g?
- 2) The decay constant for Sr-90 is 1237 min⁻¹. If after one year k is found to be 937 min⁻¹, what is the half-life of Sr-90?
- 3) Calculate the binding energy of ${}^{55}{}_{25}$ Mn. (${}^{1}{}_{0}$ n = 1.00867 u, ${}^{1}{}_{1}$ H = 1.00782 u, ${}^{55}{}_{25}$ Mn = 54.9381 u)
- 4) **Balance the following nuclear equations.**

(a)	²¹⁸ ₈₄ Po	\rightarrow	?	+	²¹⁴ ₈₂ Pb	
(b)	²¹² ₈₃ Bi	→	⁰ .1β	+	?	
(c)	?	\rightarrow	$^{4}_{2}\alpha$	+	²⁰⁷ 81Tl	
(d)	⁹ ₄ Be +	⁴ ₂ He	\rightarrow	?	+ ¹ ₀ n	
(e)	? +	⁴ ₂ He	\rightarrow	¹² ₆ C	+ ⁶ ₃ Li	
(f)	¹² ₆ C +	?	\rightarrow	${}^{1}_{1}\mathbf{H}$	+ ¹³ ₆ C	

- 5) A sample of C-14 has an activity of 10 disintegrations per minute and a half-life of 5730 yr.
 - (a) How many C-14 atoms are there in this sample?
 - (b) How many grams are there?

- 6) For each pair of isotopes, tell which isotope is more stable and why.
 - (a) ²³₁₁Na or ²²₁₁Na
 - (b) ${}^{58}_{27}$ Co or ${}^{59}_{27}$ Co
 - (c) ${}^{12}{}_{6}C$ or ${}^{11}{}_{6}C$
 - (d) ${}^{45}_{20}$ Ca or ${}^{44}_{20}$ Ca
 - (e) ${}^{96}_{42}$ Mo or ${}^{96}_{43}$ Tc

Solutions

1) $k = 3.59 \times 10^{-3} h^{-1}$ t = 7 days $m_0 = 15.0 g$ $\ln(\mathbf{m}_t/\mathbf{m}_0) = -\mathbf{k} \mathbf{x} \mathbf{t}$ $\ln(m_t/15.0 \text{ g}) = -3.59 \text{ x } 10^{-3}/\text{h} \text{ x } 24 \text{ h}/1 \text{ day } \text{ x } 7 \text{ days} = -0.603$ $m_t/15.0 g = e^{-0.603}$ $m_t = 8.21 g$ $k_0 = 1237 \text{ min}^{-1}$ t = 1 yr 2) $k_t = 937 \text{ min}^{-1}$ $t_{1/2} = ?$ $\ln(\mathbf{k}_t/\mathbf{k}_0) = -\mathbf{k} \mathbf{x} \mathbf{t}$ $\ln(937 \text{ min}^{-1}/1237 \text{ min}^{-1}) = -k \ge 1 \text{ yr}$ $k = 0.277 \text{ yr}^{-1}$ $k = 0.693/t_{1/2}$

 $t_{1/2} = 0.693/k = 0.693/0.277 \text{ yr}^{-1} = 2.50 \text{ yr}$

3)
$$m_{Mn} = 54.9381 u$$
 ${}^{1}_{1}H = 1.00782 u$
 ${}^{1}_{0}n = 1.00867 u$ $c = 3.00 \times 10^{8} m/s$

$$\begin{split} m_T &= 25 \ x \ 1.00782 \ u + 30 \ x \ 1.00867 \ u = 55.4556 \ u \\ \Delta m &= m_T - m_{Mn} = 54.9381 \ u - 55.4556 \ u = -0.5175 \ u \\ \Delta E &= \Delta m \ x \ c^2 \\ \Delta E &= -0.5175 \ g \ x \ 1 \ kg/10^3 \ g \ x \ (3.00 \ x \ 10^8 \ m/s)^2 = -4.66 \ x \ 10^{13} \ J \\ \Delta E &= -4.66 \ x \ 10^{13} \ J \ or \ 4.66 \ x \ 10^{13} \ J \ released \ per \ mole \end{split}$$

4)	(a)	²¹⁸ 84Po	\rightarrow	⁴ ₂ He	+	²¹⁴ ₈₂ Pl	²¹⁴ ₈₂ Pb	
	(b)	²¹² ₈₃ Bi	\rightarrow	⁰ .1β	+	²¹² 84Po		
	(c)	²¹¹ 83 Bi	\rightarrow	⁴ ₂ α	+	²⁰⁷ 81Tl	l	
	(d)	⁹ ₄ Be +	⁴ ₂ He	\rightarrow	¹² ₆ C	+	¹ ₀ n	
	(e)	¹⁴ ₇ N +	⁴ ₂ He	\rightarrow	¹² ₆ C	+	⁶ 3Li	
	(f)	¹² ₆ C +	² ₁ H	\rightarrow	${}^{1}{}_{1}\mathbf{H}$	+	¹³ ₆ C	

5) k = 10 dis/min $t_{1/2} = 5730 \text{ yr}$

(a)
$$t_{1/2} = 5730 \text{ yr x } 365 \frac{\text{days/yr x } 24 \text{ h/1 } \text{day x } 60 \min/1 \text{ h}}{3.01 \text{ x } 10^9 \min}$$

 $k = 0.693/t_{1/2} = 0.693/(3.01 \text{ x } 10^9 \min) = 2.30 \text{ x } 10^{-10} \min^{-1}$
Rate = k x N
10 C-14 atoms/~~min~~ = 2.30 x $10^{-10} \min^{-1} \text{ x N}$
N = 10 C-14 atoms/(2.30 x 10^{-10}) = 4.35 x 10^{10} C-14 atoms

(b)
$$m = 4.35 \times 10^{10} \text{ C-14 atoms} \times 1 \text{ mol C-14}/(6.02 \times 10^{23} \text{ C-14 atoms}) \times 14.00 \text{ g C-14/1 mol C-14} = 1.01 \times 10^{-12} \text{ g C-14}$$

(b)
$${}^{58}_{27}$$
Co or ${}^{59}_{27}$ Co because Co-59 has an even number of neutrons.

- (c) ${}^{12}_{6}$ C or ${}^{11}_{6}$ C because C-12 has an even number of protons and neutrons.
- (d) ${}^{45}_{20}$ Ca or ${}^{44}_{20}$ Ca because Ca-44 has an even number of protons and neutrons.
- (e) ${}^{96}_{42}$ Mo or ${}^{96}_{43}$ Tc because Mo-96 has an even number of protons and neutrons.