Measurement And Metric Worksheet

I. Fill in the blanks with the word or words that best completes the statement.

1) The meter is a little longer than \qquad ft.
2) One-half an inch would be (shorter, longer) than 1.0 cm .
3) Write the accepted SI abbreviations for each unit.
(a) milligram
(c) deciliter
(b) microliter
(d) milliliter
4) The ___ of a measurement describes how close the measurement agrees with the accepted value.
5) The \qquad of a measurement depends on its reproducibility.
6) The space occupied by a sample of matter is known as \qquad .
7) The quantity of \qquad an object contains is its mass.
8) The mass of $1.0 \mathrm{~cm}^{3}$ of water at $4^{\circ} \mathrm{C}$ is \qquad .
9) The ratio of the mass of an object to its volume is its \qquad .
10) To convert ${ }^{\circ} \mathrm{C}$ to Kelvin, the number \qquad is added to ${ }^{\circ} \mathrm{C}$.
II. Change each measurement to scientific notation.
(a) $1,062,457 \mathrm{~mm}$
(b) $\quad 0.00543 \mathrm{~km}$
(c) 111.6 g
(d) $\quad 0.00000521 \mathrm{~L}$
(e) $5.025 \mathrm{~cm}^{3}$
III. Change each measurement to a whole number or decimal.
(a) $\quad 6.150 \times 10^{3} \mathrm{~km}$
(b) $5.362 \times 10^{2} \mathrm{mg}$
(c) $2.35 \times 10^{-2} \mathrm{~cm}$
(d) $8.79 \times 10^{-5} \mathrm{~cm}^{2}$
IV. Perform the following operations and give the answers in scientific notation with the correct number of significant figures.
(a) $\quad 21.6 \mathrm{~m}+\mathbf{8 . 0 2} \mathrm{m}+171.220 \mathrm{~m}$
(b) $2083 \mathrm{~L}-20 \mathrm{~L}$
(c) $\quad 47.68 \mathrm{~km}+538.01 \mathrm{~km}+39 \mathrm{~km}$
(d) $0.32 \mathrm{~cm} \times 0.76 \mathrm{~cm} \times 14.2 \mathrm{~cm}$
(e) $\quad\left(7.24 \times 10^{4} \mathrm{~mm}\right) /\left(4.6 \times 10^{2} \mathrm{~mm}\right)$
(f) $\quad 3.05 \times 10^{-5} \mathrm{~m} \mathrm{x} 3.44 \times 10^{-3} \mathrm{~m}$
V. Use the Factor Label Method to perform the following conversions and give your answers to the correct number of significant figures.
(a) $0.10 \mathrm{~m}=$ \qquad cm
(b) $2985 \mathrm{~m}=$ \qquad cm
(c) $15.64 \mathrm{~g}=$ \qquad g
(d) $\mathbf{1 6 4 0} \mathrm{mL}=$ \qquad L
(e) $15 \mathrm{~mm}=$ \qquad cm
(f) $15 \mathrm{~cm}=$ \qquad m
(g) $0.98 \mathrm{~m}=$ \qquad cm
(h) $0.067 \mathrm{~g}=$ \qquad mg
(i) A proton has a mass of $1.67 \times 10^{-27} \mathrm{~kg}$. Calculate the mass of 6.02×10^{23} protons.

Solutions

I. Fill in the blanks with the word or words that best completes the statement.

1) 3
2) longer
3) (a) mg
(c) dl
(b) $\quad \mu \mathrm{l}$
(d) ml
4) accuracy
5) precision
6) volume
7) matter
8) 1.0 g
9) density
10) 273
II. Change each measurement to scientific notation.
(a) $1.062457 \times 10^{6} \mathrm{~mm}$
(b) $5.43 \times 10^{-3} \mathrm{~km}$
(c) $\quad 1.116 \times 10^{2} \mathrm{~g}$
(d) $5.21 \times 10^{-6} \mathrm{~L}$
(e) $5.025 \mathrm{~cm}^{3}$
III. Change each measurement to a whole number or decimal.
(a) 6150 km
(b) $\quad 536.2 \mathrm{mg}$
(c) $\quad 0.0235 \mathrm{~cm}$
(d) $0.0000879 \mathrm{~cm}^{2}$
IV. Perform the following operations and give the answers in scientific notation with the correct number of significant figures.
(a) 200.84 m
(b) 2063 L
(c) 625 km
(d) $3.5 \mathrm{~cm}^{3}$
(e) 160
(f) $\quad 1.05 \times 10^{-7} \mathrm{~m}^{2}$
V. Use the Factor Label Method to perform the following conversions and give your answers to the correct number of significant figures.
(a) $0.10 \mathrm{~m} \times 10^{2} \mathrm{~cm} / 1 \mathrm{~m}=1.0 \mathrm{~cm}$
(b) $2985 \mathrm{~m} \times 1 \mathrm{~km} / 1^{3} \mathrm{~m}=2.985 \mathrm{~km}$
(c) $\quad 15.64 \mathrm{mg} \mathrm{x} 1 \mathrm{~g} / 10^{3} \mathrm{mg}=0.01564 \mathrm{~g}$
(d) $1640 \mathrm{ml} \mathrm{x} 1 \mathrm{~L} / 10^{3} \mathrm{ml}=1.640 \mathrm{~L}$
(e) $15 \mathrm{~mm} \times 1 \mathrm{~cm} / 10 \mathrm{~mm}=1.5 \mathrm{~cm}$
(f) $\quad 15 \mathrm{em} \times 1 \mathrm{~m} / 10^{2} \mathrm{em}=0.15 \mathrm{~m}$
(g) $0.98 \mathrm{~m} \mathrm{x} \mathrm{10} \mathbf{2} \mathrm{cm} / 1 \mathrm{~m}=98 \mathrm{~cm}$
(h) $\quad 0.067 \mathrm{gx} \mathrm{10}{ }^{3} \mathrm{mg} / 1 \mathrm{~g}=67 \mathrm{mg}$
(i) $\quad 1.67 \times 10^{-27} \mathrm{~kg} / \mathbf{P}^{+} \times 6.02 \times 10^{23} \mathrm{P}^{+}=1.01 \times 10^{-3} \mathrm{~kg}$
