## Kinetics Problems

1) Given the following data:

| $[A]$ <br> $(M)$ | $[B]$ <br> $(M)$ | Rate <br> $(M / s)$ |
| :--- | :--- | :--- |
|  |  |  |
| 0.20 | $\mathbf{0 . 1 0}$ | $1.12 \times 10^{-3}$ |
| 0.20 | $\mathbf{0 . 2 0}$ | $4.48 \times 10^{-3}$ |
| 0.40 | 0.10 | $2.24 \times 10^{-3}$ |

Determine the:
(a) rate expression for the reaction.
(b) rate constant.
(c) reaction rate when $[\mathrm{A}]=0.12 \mathrm{M}$ and $[\mathrm{B}]=0.10 \mathrm{M}$.
2) Dinitrogen pentoxide decomposes as shown below.
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
At $70^{\circ} \mathrm{C}$, the value of the rate constant is $2.3 \times 10^{-3} / \mathrm{s}$. If the initial concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ is $\mathbf{0 . 3 8} \mathrm{M}$, how much $\mathrm{N}_{2} \mathrm{O}_{5}$ remains after 2.5 minutes?
3) Nitrosyl bromide decomposes as shown below.
$2 \mathrm{NOBr}(\mathrm{g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g})$
The activation energy for the reaction at $130^{\circ} \mathrm{C}$ is $78.6 \mathrm{~kJ} / \mathrm{mol}$. How many times greater is the rate constant when the temperature is increased to $160^{\circ} \mathrm{C}$ ?
4) Dinitrogen tetraoxide reacts with carbon dioxide as shown below.
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})+2 \mathrm{CO}(\mathrm{g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{g})$
(a) What is the rate of reaction in terms of $\mathrm{N}_{2} \mathrm{O}_{4}$ ?
(b) How is the rate of $\mathrm{N}_{2} \mathrm{O}_{4}$ disappearance related to the appearance of NO?
(c) If $\mathrm{N}_{2} \mathrm{O}_{4}$ reacts at the rate of $11 \mathrm{M} / \mathrm{s}$, what is the rate of NO formation?
5) Phosphine decomposes as shown below.
$4 \mathrm{PH}_{3}(\mathrm{~g}) \rightarrow \mathrm{P}_{4}(\mathrm{~g})+\mathbf{6 H} \mathbf{2}(\mathrm{g})$
This reaction takes place at $100^{\circ} \mathrm{C}$ and the rate constant is $0.372 \mathrm{M} / \mathrm{min}$.
(a) How long does it take for the phosphine to drop to one-fifth of its original concentration?
(b) What is k at $70^{\circ} \mathrm{C}$ if the activation energy is $73.2 \mathrm{~kJ} / \mathrm{mol}$ ?
6) Given the following data:

| $[\mathrm{A}]$ <br> $(\mathrm{M})$ | Rate <br> $(\mathrm{M} / \mathrm{s})$ |
| :--- | :--- |
|  |  |
| 0.10 | $\mathbf{0 . 0 1 0}$ |
| 0.20 | $\mathbf{0 . 0 4 2}$ |
| 0.30 | 0.097 |
| 0.40 | 0.158 |

Determine the reaction rate when $[\mathrm{A}]=0.15 \mathrm{M}$.

## Solutions

1) (a) Rate $=k[A]^{m}[B]^{n}$

Rate $_{1}=k(0.20 M)^{m}(0.10 M){ }^{\mathbf{n}}$
Rate $\left._{2}=k(0.20 M)\right)^{m}(0.20 M)^{n}$
Rate $_{1} /$ Rate $_{2}=\mathbf{k}(0.20 \mathrm{M})^{\mathrm{m}}(0.10 \mathrm{M})^{\mathrm{n}} / \mathbf{k}(0.20 \mathrm{M})^{\mathrm{m}}(0.20 \mathrm{M})^{\mathrm{n}}$
$\left(1.12 \times 10^{-3} \mathrm{M} / \mathrm{s}\right) /\left(4.48 \times 10^{-3} \mathrm{M} / \mathrm{s}\right)=\mathbf{k}(0.20 \mathrm{M})^{m}(0.10 \mathrm{M})^{\mathrm{n}} / \mathbf{k}(0.20 \mathrm{M})^{\mathrm{m}}(0.20 \mathrm{M})^{\mathrm{n}}$
$0.25=(0.10 / 0.20)^{n}$
$0.50^{n}=0.25, n=2$

Rate $_{1}=\mathbf{k}(0.20 \mathrm{M})^{\mathrm{m}}(\mathbf{0 . 1 0} \mathbf{M})^{\mathbf{2}}$
Rate $\left._{3}=k(0.40 M)\right)^{m}(0.10 M){ }^{2}$
Rate $_{1} /$ Rate $_{3}=\mathbf{k}(0.20 \mathrm{M})^{\mathrm{m}}(\mathbf{0 . 1 0} \mathbf{M})^{2} / \mathbf{k}(0.40 \mathrm{M})^{\mathrm{m}}(\mathbf{0 . 1 0} \mathbf{M})^{2}$
$\left(1.12 \times 10^{-3} \mathrm{M} / \mathrm{s}\right) /\left(2.24 \times 10^{-3} \mathrm{M} / \mathrm{s}\right)=\mathbf{k}(0.20 \mathrm{M})^{\mathrm{m}}(0.10 \mathrm{M})^{\mathbf{z}} / \mathbf{k}(0.40 \mathrm{M})^{\mathrm{m}}(0.10 \mathrm{M})^{\mathbf{z}}$
$0.50=(0.20 / 0.40)^{m}$
$0.50^{\mathrm{m}}=\mathbf{0 . 5 0}, \mathrm{m}=1$
Rate $=\mathbf{k}[\mathrm{A}][\mathrm{B}]^{2}$
(b) $\quad$ Rate $=k[A][B]^{2}$
$1.12 \times 10^{-3} \mathrm{M} / \mathrm{s}=\mathrm{kx}(0.20 \mathrm{M}) \times(0.10 \mathrm{M})^{2}$
$\mathrm{k}=0.56 \mathrm{M}^{-2} \mathrm{~s}^{-1}$
(c) $[\mathrm{A}]=0.12 \mathrm{M} \quad[\mathrm{B}]=0.10 \mathrm{M} \quad \mathrm{k}=0.56 \mathrm{M}^{-2} \mathrm{~s}^{-1}$

Rate $=k[A][B]^{2}=0.56 M^{-2} s^{-1} \times 0.12 M \times(0.10 M){ }^{2}$
Rate $=6.7 \times 10^{-4} \mathrm{M} / \mathrm{s}$
2) $\mathrm{T}=70^{\circ} \mathrm{C}$
$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0}=\mathbf{0 . 3 8} \mathrm{M}$
$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{\mathrm{t}}=$ ?
$\mathrm{k}=2.3 \times 10^{-3} / \mathrm{s}$ $\mathrm{t}=2.5 \mathrm{~min}$
$\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{\mathrm{t}}-\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0}=-\mathrm{kx} \mathrm{t}$
$\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{\mathrm{t}}=-\mathrm{kxt}+\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0}$
$\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{\mathrm{t}}=-2.3 \times 10^{-3} / \mathrm{s} \times 2.5 \mathrm{~min} \times 60 \mathrm{~s} / 1 \mathrm{~min}+\ln (0.38)$
$\ln \left[\mathbf{N}_{\mathbf{2}} \mathrm{O}_{5}\right]_{\mathrm{t}}=\mathbf{- 1 . 3 1}$
$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{\mathrm{t}}=\mathrm{e}^{-1.31}=0.27 \mathrm{M}$
3) $\quad \mathrm{E}_{\mathrm{a}}=78.6 \mathrm{~kJ} / \mathrm{mol}$ $\mathrm{T}_{1}=130^{\circ} \mathrm{C}+273=403 \mathrm{~K}$
$\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$ $\mathrm{T}_{2}=160^{\circ} \mathrm{C}+273=433 \mathrm{~K}$
$\ln \left(k_{2} / k_{1}\right)=E_{a} / R \times\left(T_{1}{ }^{-1}-T_{2}{ }^{-1}\right)$
$\ln \left(\mathbf{k}_{2} / \mathbf{k}_{1}\right)=78.6 \mathrm{~kJ} / \mathrm{mol} /\left(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K} \times 1 \mathrm{~kJ} / 10^{3} \mathrm{~J}\right) \times\left(403^{-1} \mathrm{~K}-433^{-1} \mathrm{~K}\right)$
$\ln \left(k_{2} / \mathbf{k}_{1}\right)=1.63$
$k_{2} / k_{1}=e^{1.63}=5.1$
$\mathbf{k}_{2}=5.1 \mathbf{k}_{1}$
4)
(a) Rate $=-\Delta\left[\mathrm{N}_{2} \mathrm{O}_{4}\right] / \Delta t$
(b) $\quad$ Rate $=-\Delta\left[N_{2} \mathrm{O}_{4}\right] / \Delta t=\Delta[N O] / 2 \Delta t$
(c) $\quad$ Rate $=-\Delta\left[N_{2} \mathrm{O}_{4}\right] / \Delta t=\Delta[\mathrm{NO}] / 2 \Delta t$ $\Delta[\mathrm{NO}] / \Delta \mathrm{t}=2 \times 11 \mathrm{M} / \mathrm{s}=22 \mathrm{M} / \mathrm{s}$
5) $\mathrm{T}=100^{\circ} \mathrm{C}$

$$
\mathrm{k}=0.372 \mathrm{M} / \mathrm{min}
$$

$\left[\mathrm{PH}_{3}\right]_{\mathrm{t}}=\mathbf{1} / 5 \times\left[\mathrm{PH}_{3}\right]_{0}$
(a) $\quad \ln \left(\left[\mathrm{PH}_{3}\right]_{\mathrm{t}} /\left[\mathrm{PH}_{3}\right]_{0}\right)=-k \times t$
$\ln \left(0.20 \times\left[\mathrm{PH}_{3} \mathrm{I}_{9} /\left(\mathrm{PH}_{3}\right]_{9}\right)=\mathbf{- 0 . 3 7 2} \mathrm{M} / \mathrm{min} \times \mathrm{t}\right.$
$-1.61=-0.372 \mathrm{M} / \mathrm{min} \times \mathrm{t}$
$t=4.33 \mathrm{~min}$
(b) $\quad \ln \left(k_{2} / k_{1}\right)=E_{a} / R\left(1 / T_{1}-1 / T_{2}\right)$
$\ln \left(\mathbf{k}_{2} / \mathbf{k}_{1}\right)=73.2 \mathbf{k J} / \mathbf{m o l} /\left(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K} \times 1 \mathbf{k J} / 10^{3} \mathrm{~J}\right)(1 / 373 \mathrm{~K}-1 / 343 \mathrm{~K})$
$\ln \left(k_{2} / k_{1}\right)=-2.07$
$\mathbf{k}_{2} / \mathbf{k}_{1}=\mathrm{e}^{-2.07}=\mathbf{0 . 1 2}$
$\mathrm{k}_{2}=0.12 \times \mathrm{k}_{1}=0.12 \times 0.372 \mathrm{M} / \mathrm{min}=0.045 \mathrm{M} / \mathrm{min}$
6) $\quad$ Rate $_{2}=k[A]^{m}$
$0.042 \mathrm{M} / \mathrm{s}=\mathbf{k}(0.20)^{\mathrm{m}}$

Rate $_{4}=\mathbf{k}[A]^{\mathbf{m}}$
$0.158 \mathrm{M} / \mathrm{s}=\mathrm{k}(0.40)^{\mathrm{m}}$

Rate $_{2} /$ Rate $_{4}=k[A]^{\mathrm{m}} / \mathrm{k}[\mathrm{A}]^{\mathrm{m}}$
$0.042 \mathrm{M} / \mathrm{s} / \mathbf{0 . 1 5 8} \mathrm{M} / \mathrm{s}=\mathbf{k}(\mathbf{0 . 2 0})^{\mathrm{m}} / \mathbf{k}(0.40)^{\mathrm{m}}=(0.20 / 0.40)^{\mathrm{m}}=0.50^{\mathrm{m}}$
$0.27=0.50^{\mathrm{m}}$
$m=2$

Rate $_{2}=\mathbf{k}[A]^{\mathbf{m}}$
0.042 M/s $=\mathbf{k}(0.20 \mathrm{M})^{\mathbf{2}}$
$\mathbf{k}=\mathbf{0 . 0 4 2} \mathrm{M} / \mathrm{s} /(\mathbf{0 . 2 0} \mathbf{M})^{2}$
$\mathrm{k}=1.0 \mathrm{M}^{-1} \mathrm{~s}^{-1}$
Rate $=\mathbf{k}[\mathbf{A}]^{2}$
Rate $=1.0 \mathrm{M}^{-1} \mathrm{~s}^{-1} \mathrm{x}(0.15 \mathrm{M})^{2}=0.022 \mathrm{M} / \mathrm{s}$

