Ideal Gas Law Problems

1) How many molecules are there in 985 mL of nitrogen at $0.0^{\circ} \mathrm{C}$ and $1.00 \times 10^{-6} \mathrm{~mm} \mathrm{Hg}$?
2) Calculate the mass of 15.0 L of NH_{3} at $27^{\circ} \mathrm{C}$ and $900 \mathrm{~mm} \mathbf{~ H g}$.
3) An empty flask has a mass of 47.392 g and 47.816 g when filled with acetone vapor at $100 .{ }^{\circ} \mathrm{C}$ and 745 mm Hg . If the volume of the flask is 247.3 mL , what is the molar mass of the acetone?
4) Calculate the density in g / L of 478 mL of krypton at $47^{\circ} \mathrm{C}$ and 671 mm Hg .
5) $\quad 6.3 \mathrm{mg}$ of a boron hydride is contained in a flask of 385 mL at $25.0^{\circ} \mathrm{C}$ and a pressure of $\mathbf{1 1}$ torr.
(a) Determine the molar mass of the hydride.
(b) Which of the following hydrides is contained in the flask, $\mathrm{BH}_{3}, \mathrm{~B}_{2} \mathrm{H}_{6}$, or $\mathbf{B}_{4} \mathrm{H}_{10}$?
6) A volume of 26.5 mL of nitrogen gas was collected in a tube at a temperature of $17^{\circ} \mathrm{C}$ and a pressure of 737 mm Hg . The next day the volume of the nitrogen was 27.1 mL with the barometer still reading 737 mm Hg . What was the temperature on the second day?

Solutions

1) $\quad \mathbf{P}=1.00 \times 10^{-6} \mathrm{~mm} \mathrm{Hg}$
$\mathrm{V}=\mathbf{9 8 5} \mathrm{mL}$
$\mathbf{P V}=\mathbf{n R T}$
$\mathrm{n}=\mathrm{PV} / \mathrm{RT}$
$\mathrm{n}=1.00 \times 10^{-6} \mathrm{~mm} \times 1 \mathrm{~atm} / 760 \mathrm{~mm} \times 985 \mathrm{~mL} \times 1 \mathrm{~L} / 10^{3} \mathrm{~mL} /$ $(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K} \times 273 \mathrm{~K})=5.78 \times 10^{-11} \mathrm{moles} \mathrm{N}_{2}$ $n_{\text {molecules }}=5.78 \times 10^{-11}$ moles $\mathrm{N}_{2} \times 6.02 \times 10^{23} \mathrm{~N}_{2}$ molecules $/ 1$ mol $\mathrm{N}_{\mathbf{z}}$ $=3.48 \times 10^{13} \mathrm{~N}_{2}$ molecules
2)

P = 900. mm Hg $\mathrm{T}=27^{\circ} \mathrm{C}+273=300 \mathrm{~K}$ $\mathrm{V}=15.0 \mathrm{~L}$ $R=0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}$
$\mathbf{P V}=\mathbf{n R T}$
$\mathrm{n}=\mathrm{PV} / \mathrm{RT}$
n = 900. $\mathrm{mm} \times 1 \mathrm{~atm} / 760 \mathrm{~mm} \times 15.0 \mathrm{~L} /(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K} \times 300 \mathrm{~K})=$ $\mathbf{n}=0.721$ moles $\mathrm{NH}_{3} \times 17.04 \mathrm{~g} \mathrm{NH}_{3} / \mathbf{1} \mathrm{mol} \mathrm{NH}_{3}=12.3 \mathrm{~g} \mathrm{NH}_{3}$
3) $\quad \mathbf{P}=745 \mathrm{~mm} \mathrm{Hg}$
$\mathrm{V}=247.3 \mathrm{~mL}$
$m_{\text {vapor }}=47.392 \mathrm{~g}-47.816 \mathrm{~g}=0.424 \mathrm{~g}$
$\mathbf{P V}=\mathbf{n R T}$
$\mathbf{n}=\mathbf{m} / \mathbf{M M}$
$\mathbf{P V}=\mathbf{m R T} / \mathbf{M M}$
$\mathbf{M M}=\mathbf{m R T} / \mathbf{P V}$
MM $=0.424 \mathrm{~g} \times 0.0821 \mathrm{~L} \cdot \mathbf{a t m} / \mathrm{mol} \cdot \mathrm{K} \times 373 \mathrm{~K} /(745 \mathrm{~mm} \times 1 \mathrm{~atm} / 760 \mathrm{~mm}$ $\left.\mathbf{x} 247.3 \mathrm{~mL} \times 1 \mathbf{~} / \mathbf{1 0}^{\mathbf{3}} \mathbf{m L}\right)=53.6 \mathrm{~g} / \mathrm{mol}$
4) $\quad P=671 \mathrm{~mm} \mathrm{Hg}$
$\mathrm{V}=478 \mathrm{~mL}$
$\mathbf{P V}=\mathbf{n R T}$
$\mathbf{n}=\mathbf{m} / \mathbf{M M}$
$\mathbf{D}=\mathbf{m} / \mathbf{V}=\mathbf{P} \times \mathbf{M M} / \mathbf{R} \times \mathbf{T}$
$\mathrm{D}=671 \mathrm{~mm} \times 1 \mathrm{~atm} / 760 \mathrm{~mm} \times 83.80 \mathrm{~g} / \mathrm{mol} /(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K} \times 320 . \mathrm{K})$
$=2.82 \mathrm{~g} / \mathrm{L}$
$\mathrm{T}=100 .{ }^{\circ} \mathrm{C}+273=373 \mathrm{~K}$
$R=0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}$

$$
\mathrm{T}=47^{\circ} \mathrm{C}+273=320 . \mathrm{K}
$$

$\mathbf{R}=\mathbf{0 . 0 8 2 1} \mathrm{L} \cdot \mathrm{atm} / \mathrm{mol} \cdot \mathrm{K}$
5) $\quad \mathbf{P}=11$ torr
$\mathrm{V}=385 \mathrm{~mL}$
$\mathrm{m}=6.3 \mathrm{mg}$
$\mathbf{P V}=\mathbf{n R T}$
$\mathbf{n}=\mathbf{m} / \mathbf{M M}$
$\mathbf{P V}=\mathbf{m R T} / \mathbf{M M}$
$\left.M M=6.3 \mathrm{mg} \times 1 \mathrm{~g} / 10^{3} \mathrm{mg} \times 0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K} \times 298 \mathrm{~K}\right) /$
(11 torf x $1 \mathrm{~mm} / 1$ torr x $1 \mathrm{~atm} / 760 \mathrm{~mm} \times 385 \mathrm{~mL} \times 1 \mathrm{~L} / 0^{3} \mathrm{~mL}$) $=27.7 \mathrm{~g} / \mathrm{mol}$
$\mathrm{B}_{2} \mathrm{H}_{6}$ because its molar mass is 27.7 g .
6) $\mathrm{P}_{1}=737 \mathrm{~mm} \mathrm{Hg}$
$V_{1}=26.5 \mathrm{~mL}$
$\mathbf{V}_{2}=27.1 \mathrm{~mL}$
$\mathrm{T}_{1}=17^{\circ} \mathrm{C}+273=290 . \mathrm{K}$
$\mathrm{T}_{2}=$?
$\mathbf{P}_{\mathbf{1}} \mathrm{V}_{\mathbf{1}}=\mathrm{nRT}_{\mathbf{1}}$
$\mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}=\mathbf{n R T} \mathbf{N}_{\mathbf{2}}$
$\mathbf{P}_{\mathbf{1}} \mathbf{V}_{\mathbf{1}} / \mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}=\mathbf{n R T} \mathbf{1}_{\mathbf{1}} / \mathbf{n R T}_{\mathbf{2}}$
$\mathbf{V}_{1} / \mathbf{V}_{2}=\mathbf{T}_{1} / \mathbf{T}_{\mathbf{2}} \quad$ (Charles's Law)
$T_{2}=V_{2} / V_{1} \times T_{1}$
$\mathrm{T}_{2}=27.1 \mathrm{mb} / 26.5 \mathrm{mb} \times 290 . \mathrm{K}=297 \mathrm{~K}=24^{\circ} \mathrm{C}$

