## Electrochemistry Problems

1) Given the $E^{\circ}$ for the following half-reactions:

$$
\begin{array}{ll}
\mathrm{Cu}^{+}+\mathbf{e}^{-} \rightarrow \mathbf{C u}^{\circ} & \mathbf{E}_{\text {red }}^{\circ}=0.52 \mathrm{~V} \\
\mathrm{Cu}^{2+}+2 \mathbf{e}^{-} \rightarrow \mathbf{C u}^{\circ} & \mathbf{E}_{\text {red }}^{\circ}=0.34 \mathrm{~V}
\end{array}
$$

What is $\mathrm{E}^{\circ}$ for the reaction:

$$
\mathbf{C u}^{+} \rightarrow \mathbf{C u}^{2+}+\mathbf{e}^{-}
$$

2) How many Faradays are required to produce 21.58 g of silver from a silver nitrate solution?
3) A current of 2.75 amperes is used to electrolyze a solution of copper(II) sulfate. How long will it take to deposit $\mathbf{1 0 . 4 7}$ grams of copper?
4) A voltaic cell consists of a copper electrode in a solution of copper(II) ions and a palladium electrode in a solution of palladium(II) ions. The palladium is the cathode and its reduction potential is 0.951 V .
(a) Write the half-reaction that occurs at the anode.
(b) If $\mathrm{E}^{\circ}$ is 0.609 V , what is the potential for the oxidation half-reaction?
(c) What is $\mathrm{K}_{\mathrm{eq}}$ for this reaction?
5) $\quad 5.77 \mathrm{~g}$ of zinc is deposited at the cathode when a current of 7.1 amperes passes through an electrolytic cell for 40 . minutes. What is the oxidation state of the zinc in the aqueous solution?
6) For each pair of species, choose the better reducing agent.
(a) $\mathrm{Ag}(\mathrm{s})$ or $\mathrm{Sn}(\mathrm{s})$, given:

$$
\begin{array}{ll}
\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{~s}) & \mathrm{E}_{\text {red }}^{\circ}=0.799 \mathrm{~V} \\
\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{~s}) & \mathrm{E}_{\text {red }}^{\circ}=-\mathbf{0 . 1 3 6 ~ V}
\end{array}
$$

(b) $\mathrm{Br}^{-}(\mathrm{aq})$ or $\mathrm{Cl}^{-}(\mathrm{aq})$, given:
$\mathrm{Br}_{2}(\mathrm{l})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-}(\mathrm{aq})$
$\mathrm{E}^{\circ}{ }_{\text {red }}=1.065 \mathrm{~V}$
$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$
$\mathrm{E}^{\circ}{ }_{\text {red }}=1.359 \mathrm{~V}$
(c) $\mathrm{Zn}(\mathrm{s})$ or $\mathrm{Co}(\mathrm{s})$, given:

$$
\begin{array}{ll}
\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{~s}) & \mathrm{E}_{\text {red }}^{\circ}=-0.763 \mathrm{~V} \\
\mathrm{Co}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathbf{C o ( s )} & \mathrm{E}_{\text {red }}^{\circ}=-0.277 \mathrm{~V}
\end{array}
$$

(d) $\mathrm{Au}(\mathrm{s})$ or $\mathrm{I}^{-}(\mathrm{aq})$, given:
$\mathbf{A u}^{3+}(\mathbf{a q})+3 \mathbf{e}^{-} \rightarrow \mathbf{A u}(\mathbf{s})$
$\mathrm{E}^{\circ}{ }_{\text {red }}=1.420 \mathrm{~V}$
$\mathbf{I}_{\mathbf{2}}(\mathrm{s})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{I}^{-}(\mathrm{aq})$
$\mathrm{E}^{\circ}{ }_{\text {red }}=0.540 \mathrm{~V}$

## Solutions

1) reduction: $\mathbf{C u}^{+}+\mathbf{e}^{-} \rightarrow \mathbf{C u}^{\circ} \quad \mathbf{E}^{\circ}{ }_{\text {red }}=0.52 \mathrm{~V}$
oxidation: $\quad \mathbf{C u}^{\circ} \rightarrow \mathbf{C u}^{2+}+2 \mathrm{e}^{-} \quad \mathrm{E}_{0 \mathrm{ox}}^{\circ}=-0.34 \mathrm{~V}$

$$
\begin{array}{ll}
\mathrm{Cu}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Gu}^{\circ} & \mathbf{E}_{\text {red }}^{\circ}=0.52 \mathrm{~V} \\
\mathrm{Gu}^{\circ} \rightarrow \mathrm{Cu}^{2+}+2 \mathbf{e}^{-} & \mathbf{E}_{0 \mathbf{x}}^{\circ}=-0.34 \mathrm{~V}
\end{array}
$$

$$
\mathrm{Cu}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{e}^{-} \quad \mathrm{E}_{\text {cell }}^{\circ}=0.18 \mathrm{~V}
$$

2) $\quad \mathrm{m}=21.58 \mathrm{~g} \mathrm{Ag}$
$1 \mathrm{~F}=1 \mathrm{~mol} \mathrm{e}^{-}$

$$
\mathbf{A g}^{+}(\mathbf{a q})+\mathbf{e}^{-} \rightarrow \mathbf{A g}(\mathrm{s})
$$

$$
\mathbf{n}_{\mathrm{F}}=21.58 \mathrm{~g} \mathrm{Ag} \times 1 \mathrm{~mol} \mathrm{Ag} / 107.90 \mathrm{~g} \mathrm{Ag} \times 1 \mathrm{~mol} \mathrm{e}^{-} / 1 \mathrm{~mol} \text { Ag x } 1 \mathrm{~F} / 1 \mathrm{~mol} \mathrm{e}^{-}
$$

$$
\mathbf{n}_{\mathrm{F}}=0.200 \mathrm{~F}
$$

3) $\quad I=2.75 \mathrm{~A}=2.75 \mathrm{C} / \mathrm{s}$
$\mathrm{m}=10.47 \mathrm{~g} \mathrm{Cu}$
$\mathbf{C u}^{2+}(\mathbf{a q})+2 \mathbf{e}^{-} \rightarrow \mathbf{C u}(\mathrm{s})$


## $63.55 \mathrm{~g} \mathrm{Gu} / 1 \mathrm{~mol} \mathrm{Gu}$

$\mathrm{t}=11600 \mathrm{~s} \mathrm{x} 1 \mathrm{hr} / 3600 \mathrm{~s}=3.22 \mathrm{hr}$
4) (a) $\mathbf{C u}(\mathrm{s}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$
(b) $\mathbf{P d}^{2+}+\mathrm{Ze}^{-} \rightarrow \mathbf{P d}$
$\mathrm{E}^{\circ}{ }_{\text {red }}=0.951 \mathrm{~V}$
$\mathbf{C u} \rightarrow \mathrm{Cu}^{2+}+2 \mathbf{e}^{-}$
$\mathrm{E}^{\circ}{ }_{\text {ox }}=$ ?

$$
\begin{aligned}
& \mathrm{Pd}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s}) \rightarrow \mathrm{Pd}(\mathrm{~s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \quad \mathrm{E}_{\text {cell }}^{\circ}=0.609 \mathrm{~V} \\
& \mathbf{E}_{\text {cell }}^{\circ}=\mathbf{E}_{\text {red }}^{\circ}+\mathbf{E}_{\text {ox }}^{\circ} \\
& 0.609 \mathrm{~V}=0.951 \mathrm{~V}+\mathbf{E}_{\text {ox }}^{\circ} \\
& \mathbf{E}_{\text {ox }}^{\circ}=-0.340 \mathrm{~V}
\end{aligned}
$$

(c) $\quad \log \mathrm{K}_{\text {eq }}=\mathbf{n \times E} / \mathbf{0 . 0 5 9 2}$
$\log \mathrm{K}_{\text {eq }}=2 \times 0.609 \mathrm{~V} / 0.0592=20.6$
$K_{\text {eq }}=10^{20.6}=3.98 \times 10^{20}$
5) $\quad \mathrm{m}=5.77 \mathrm{~g} \mathrm{Zn}$
$\mathrm{I}=7.1 \mathrm{~A}=7.1 \mathrm{C} / \mathrm{s}$
$t=40 . \min \times 60 \mathrm{~s} / 1 \min =2.4 \times 10^{3} \mathrm{~s}$
$\mathbf{Z n}^{\mathrm{x}^{+}}(\mathrm{aq})+\mathrm{xe}^{-} \rightarrow \mathbf{Z n}(\mathrm{s})$
$5.77 \mathrm{~g} \mathrm{Zn}=7.1 \mathrm{G} / \mathrm{s} \cdot 2.4 \times 10^{3} \mathrm{~s} \cdot 1 \mathrm{~mol} \mathrm{Zn} / \mathrm{x}$ mole $\mathrm{e}^{-} \cdot 1 \mathrm{~mol} \mathrm{e}^{-} / 96500 \mathrm{G}$ - $65.39 \mathrm{~g} \mathrm{Zn} / 1 \mathrm{~mol} \mathrm{Zn}$
$\mathrm{x}=2$, therefore $\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathbf{Z n}(\mathrm{s})$
6) (a) $\mathrm{Sn}(\mathrm{s})$ because it is more difficult to reduce than $\mathrm{Ag}(\mathrm{s})$.

The more difficult it is to reduce a species, the more readily its products are oxidized. This inverse relationship between reducing and oxidizing agents is similar to the inverse relationship between the strengths of conjugate acids and bases.
(b) $\quad \mathrm{Br}^{-}(\mathrm{aq})$ because $\mathrm{Cl}^{-}(\mathrm{aq})$ is the better oxidizing agent making $\mathrm{Br}^{-}(\mathrm{aq})$ the better reducing agent.
(c) $\quad \mathrm{Zn}(\mathrm{s})$ because it is a weaker oxidizing agent than $\mathrm{Co}(\mathrm{s})$.
(d) $\quad \mathrm{Au}(\mathrm{s})$ is the better oxidizing agent, therefore $\mathrm{I}^{-}(\mathrm{aq})$ is the better reducing agent.

