Density Worksheet

1) An object has a density of $10.00 \mathrm{~g} / \mathrm{mL}$. If the object has a volume of 25.00 mL , what is its mass?
2) A metal cylinder has a mass of 6.20 g . The density of the cylinder is $21.0 \mathrm{~g} / \mathrm{mL}$. What is its volume?
3) A rubber stopper has a mass of 4.27 g and a volume of 1.31 mL . What is its density?
4) A metal cylinder is placed in a graduated cylinder which has been filled with water to the $\mathbf{7 0 . 0} \mathbf{~ m L}$ mark. The water level rises to the $\mathbf{7 8 . 0} \mathbf{~ m L}$ mark.
(a) What is the volume of the metal cylinder?
(b) The cylinder has a density of $3.21 \mathrm{~g} / \mathrm{cm}^{3}$. What is its mass?
5) A gold cube is 150.00 mm long, 10.00 cm wide, and 0.95 m thick. If gold has a density of $19.3 \mathrm{~g} / \mathrm{cm}^{3}$, calculate the mass of the gold cube.
6) A rectangular fish tank is $\mathbf{6 0 . 0 0} \mathbf{~ c m}$ long, 200.00 mm wide, and 200.00 m deep.
(a) What volume of water can it hold?
(b) What is the mass of the water?

Solutions

1) $\quad \mathbf{D}=\mathbf{M} / \mathrm{V}$
$M=D \times V=10.00 \mathrm{~g} / \mathrm{mL} \times 25.00 \mathrm{~mL}=250.0 \mathrm{~g}$
2) $\quad \mathbf{D}=\mathrm{M} / \mathrm{V}$
$V=M / D=6.20 \mathrm{~g} / 21.0 \mathrm{~g} / \mathrm{mL}=0.295 \mathrm{~mL}$
3) $\quad \mathrm{D}=\mathrm{M} / \mathrm{V}=4.27 \mathrm{~g} / 1.31 \mathrm{~mL}=3.26 \mathrm{~g} / \mathrm{mL}$
4) (a) $V=78.0 \mathrm{~mL}-70.0 \mathrm{~mL}=8.0 \mathrm{~mL}$
(b) $\quad \mathbf{D}=\mathbf{M} / \mathbf{V}$

$$
M=D \times V=3.21 \mathrm{~g} / \mathrm{cm}^{3} \times 8.0 \mathrm{~mL} \times 1 \mathrm{~cm}^{3} / 1 \mathrm{~mL}=26 \mathrm{~g}
$$

5) $V=1 \times w x h$
$V=150.00 \mathrm{~mm} \times 1 \mathrm{~cm} / 10 \mathrm{~mm} \times 10.00 \mathrm{~cm} \times 0.95 \mathrm{~m} \times 100 \mathrm{~cm} / 1 \mathrm{~m}=1.4 \times 10^{4} \mathrm{~cm}^{3}$
$\mathbf{D}=\mathbf{M} / \mathbf{V}$
$M=D \times V=19.3 \mathrm{~g} / \mathrm{cm}^{3} \times 1.4 \times 10^{4} \mathrm{~cm}^{3}=2.7 \times 10^{5} \mathrm{~g}$
6) (a) $V=l x w x h$
$V=60.00 \mathrm{~cm} \times 200.00 \mathrm{~mm} \times 1 \mathrm{~cm} / 10 \mathrm{~mm} \times 200.00 \mathrm{~m} \times 100 \mathrm{~cm} / \mathrm{m}$

$$
\mathbf{V}=2.400 \times 10^{7} \mathrm{~cm}^{3}
$$

(b) $\quad \mathrm{D}=\mathrm{M} / \mathrm{V}$

$$
\mathbf{M}=\mathbf{D} \times V=1.00 \mathrm{~g} / \mathrm{cm}^{3} \times 2.400 \times 10^{7} \mathrm{~cm}^{3}=2.40 \times 10^{7} \mathrm{~g}
$$

