Dalton's Law Of Partial Pressure Problems

1) The volume of hydrogen collected over water is 453 mL at $18^{\circ} \mathrm{C}$ and $780 \mathrm{~mm} \mathbf{~ H g}$. What is its volume dry at STP?
2) A 423 mL sample of dry oxygen at STP is transferred to a container over water at $22^{\circ} \mathrm{C}$ and 738 mm Hg . What is the new volume of the oxygen?
3) Calculate the mass of $400 . \mathrm{mL}$ of carbon dioxide collected over water at $30 .{ }^{\circ} \mathrm{C}$ and 749 mm Hg .
4) $\quad 50.0 \mathrm{~mL}$ of dry fluorine at $20.0^{\circ} \mathrm{C}$ and 795 mm Hg will occupy what volume over water at the same temperature and pressure?

Solutions

1) $P_{1}=P_{T}=P_{\text {hyd }}+P_{\text {water }}=780 . \mathrm{mm} \mathrm{Hg}$ $P_{2}=760 \mathrm{~mm} \mathrm{Hg}$
$P_{\text {hyd }}=780 . \mathrm{mm} \mathrm{Hg}-15.5 \mathrm{~mm} \mathrm{Hg}=764 \mathrm{~mm} \mathrm{Hg}$
$\mathrm{V}_{1}=453 \mathrm{~mL}$ $\mathbf{V}_{2}=$?
$\mathrm{T}_{1}=18^{\circ} \mathrm{C}+273=291 \mathrm{~K}$
$\mathrm{T}_{2}=0^{\circ} \mathrm{C}+273=273 \mathrm{~K}$
$\mathbf{P}_{1} \mathbf{V}_{\mathbf{1}} / \mathbf{T}_{\mathbf{1}}=\mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}} / \mathbf{T}_{\mathbf{2}}$
$\mathbf{V}_{\mathbf{2}}=\mathbf{P}_{\mathbf{1}} \mathbf{V}_{\mathbf{1}} / \mathbf{T}_{\mathbf{1}} \times \mathbf{T}_{\mathbf{2}} / \mathbf{P}_{\mathbf{2}}$
$V_{2}=780 . \mathrm{mm} \times 453 \mathrm{~mL} \times 273 \mathrm{~K} /(291 \mathrm{~K} \times 760 \mathrm{~mm})=436 \mathrm{~mL} \mathrm{H} \mathbf{H}_{2}$
2) $P_{1}=760 \mathrm{~mm} \mathrm{Hg}$

$$
\begin{aligned}
& P_{2}=P_{T}=P_{\text {oxy }}+P_{\text {water }}=738 \mathrm{~mm}-19.8 \mathrm{~mm} \mathrm{Hg} \\
& \mathbf{P}_{2}=718 \mathrm{~mm} \mathrm{Hg} \\
& \mathbf{V}_{2}=? \\
& \mathrm{~T}_{2}=22^{\circ} \mathrm{C}+273=295 \mathrm{~K}
\end{aligned}
$$

$V_{1}=423 \mathrm{~mL}$

$$
\mathrm{T}_{1}=0.0^{\circ} \mathrm{C}+273=273 \mathrm{~K}
$$

$\mathbf{P}_{1} \mathbf{V}_{\mathbf{1}} / \mathbf{T}_{\mathbf{1}}=\mathbf{P}_{\mathbf{2}} \mathrm{V}_{\mathbf{2}} / \mathbf{T}_{\mathbf{2}}$
$\mathbf{V}_{\mathbf{2}}=\mathbf{P}_{\mathbf{1}} \mathbf{V}_{\mathbf{1}} / \mathbf{T}_{\mathbf{1}} \times \mathbf{T}_{\mathbf{2}} / \mathbf{P}_{\mathbf{2}}$
$V_{2}=760 \mathrm{~mm} \times 423 \mathrm{~mL} \times 295 \mathrm{~K} /(273 \mathrm{~K} \times 718 \mathrm{~mm})=484 \mathrm{~mL} \mathrm{O}{ }_{2}$
3) $\quad \mathbf{P}_{\mathrm{T}}=\mathbf{P}_{\text {gas }}+\mathbf{P}_{\text {water }}=\mathbf{7 4 9} \mathbf{~ m m ~ H g}$

```
Pgas}=749 mm Hg - 31.8 mm Hg=717 mm Hg
V=400.0 L
T = 30. }\mp@subsup{}{}{\circ}\textrm{C}+273=303 
PV = nRT
n = PV/RT
n= 717 mm x 1 atm/760 mm x 400.0 mL x 1 L/10 mL/(0.0821 L.atm/mol.K x 303 K)
n=0.0152 mol CO2
```


4) $\mathbf{P}_{1}=795 \mathrm{~mm} \mathrm{Hg}$

$$
\mathbf{P}_{2}=\mathbf{P}_{\mathbf{T}}=\mathbf{P}_{\text {gas }}-\mathbf{P}_{\text {water }}
$$

$$
\mathbf{P}_{2}=795 \mathrm{~mm} \mathrm{Hg}-17.5 \mathrm{~mm} \mathrm{Hg}=778 \mathrm{~mm} \mathrm{Hg}
$$

$$
\mathrm{V}_{1}=50.0 \mathrm{~mL} \quad \mathrm{~V}_{2}=\text { ? }
$$

$$
\mathrm{T}_{1}=20.0^{\circ} \mathrm{C}+273=293 \mathrm{~K} \quad \mathrm{~T}_{2}=\mathrm{T}_{1}=293 \mathrm{~K}
$$

$$
\mathbf{P}_{1} \mathbf{V}_{1} / \mathbf{T}_{1}=\mathbf{P}_{2} \mathbf{V}_{2} / \mathbf{T}_{2}
$$

$$
\mathbf{V}_{\mathbf{2}}=\mathbf{P}_{\mathbf{1}} \mathbf{V}_{\mathbf{1}} / \mathbf{P}_{\mathbf{2}}
$$

$$
\mathbf{V}_{2}=795 \mathrm{~mm} \times 50.0 \mathrm{~mL} / 778 \mathrm{~mm}=51.1 \mathrm{~mL}
$$

