Covalent Bonding

- 1) (a) What are valence electrons?
 - (b) What is the kernel of an atom?
- 2) What is covalent bonding?
- 3) (a) As independent particles, atoms are at a relatively (high or low) potential energy?
 - (b) As atoms covalently bond with each other, they (increase or decrease) their potential energy which produces a (more stable or less stable) electron configuration.
- 4) What is the neutral particle that results from covalent bonding?
- 5) Draw the Lewis Diagram for the following molecules.
 - (a) H₂
 - (b) **O**₂
 - (c) N_2
 - (d) F_2
- 6) When the octet rule is satisfied as illustrated in Question 5, the outermost ______is/are filled.
- 7) What group or family of elements satisfy the octet rule without forming compounds?
- 8) If two covalently bonded atoms are identical (homonuclear), the chemical bond is said to be _____.
- 9) (a) When atoms share electrons, the force of attraction of an atom for the bonding pair of electrons is called the atom's _____.
 - (b) The smaller the difference in electronegativities between two bonded atoms, the greater the percentage of _____.
- 10) When atoms that share electrons have an unequal attraction for the bonding pair of electrons, the bond is said to be _____.

- 11) (a) When all the bonds in a molecule are nonpolar, the molecule is _____.
 - (b) When the polar bonds in a molecule are the same, the polarity of the molecule is dependent upon the _____.
- 12) Why is a hydrogen fluoride molecule polar?
- 13) A charged group of covalently bonded atoms are called _____.
- 14) Draw Lewis Structures for the following:
 - (a) H₂O
 - (b) CH₄
 - (c) CS₂
 - (d) NH₃
 - (e) NH₄⁺
 - (f) OH⁻
 - (g) CO_3^{2-}
- 15) A formula that shows the types and numbers of atoms combined as a single molecule is called a(n) _____.
- 16) Which of the following is not an example of a molecular formula?
 - (a) CO_2 (c) C
 - (b) H_2O_2 (d) Cl_2

Solutions

- 1) (a) Valence electrons are the electrons found in the highest numbered principal energy level (n) that determine the chemical properties of an element.
 - (b) The kernel of an atom is the nucleus of an atom and its inner (core) electrons.
- 2) Covalent bonding results when valence electrons are shared between two atoms. When two atoms share a pair of electrons (one electron from each atom), a single bond is formed. Covalent bonding can also result from the sharing of two pairs of electrons (a double bond) or three pairs of electrons (a triple bond).
- 3) (a) As independent particles, atoms are at a relatively high potential energy.
 - (b) As atoms covalently bond with each other, they decrease their potential potential energy which produces a more stable electron configuration.
- 4) A molecule.
- 5) (a) H₂

(b)

)U atoma	2 valance o
2Π atoms \rightarrow	2 valence e
Н : Н	Because the electrons are being shared, they are counted for both atoms.
O ₂	
2O atoms \rightarrow	12 valence e
0:0	Assume single bonds between atoms.
: 0 : 0 :	Use remaining 10 e ⁻ trying to form a complete octet.
	Fails because the O on the right has only 6 valence e ⁻ .
: 0 :: 0 :	Form a double bond giving each O 8 valence e ⁻ .

(c) N₂

2N atoms \rightarrow	10 valence e		
N : N	Assume single bonds between atoms.		
	Use remaining 8 e ⁻ trying to form a complete octet. Fails because the N on the right has only 4 valence e ⁻ .		
: N :::: N :	Form a triple bond giving each N 8 valence e ⁻ .		
(d) F ₂			
2F atoms \rightarrow	14 valence e		
F:F	Assume single bonds between atoms.		
•••••			
: F : F :	Use remaining 12 e ⁻ trying to form a complete octet.		
•• ••	Each F atom has a complete octet, therefore only a single bond is needed.		

- 6) Principal energy level or s and p orbitals.
- 7) Group or family VIII (the inert or noble gases).
- 8) Nonpolar covalent.
- 9) (a) Electronegativity.
 - (b) Covalent character.
- 10) Polar.
- 11) (a) Nonpolar.
 - (b) Molecular geometry or the shape of the molecule.

- 12) The HF molecule is polar because fluorine (the most electronegative element) attracts the bonding pair of electrons more strongly than the hydrogen.
- 13) A polyatomic ion.
- 14) (a) H₂O

2H atoms – 1O atom –	 > 2 valence e⁻ > 6 valence e⁻
	8 valence e
H : O : H	Assume single bonds between atoms.
н:О:Н 	Use remaining 4 e ⁻ trying to form a complete octet.

(b) CH₄

 1C atoms → 4 valence e⁻

 4H atom → 4 valence e⁻

 8 valence e⁻

 H : C : H

 Assume single bonds between atoms.

 ...

 H : C : H

 Use remaining 4 e⁻ trying to form a complete octet.

 ...

(c) CS₂

$\begin{array}{l} 1C \text{ atoms} \rightarrow 4\\ 2S \text{ atom } \rightarrow 1 \end{array}$	4 valence e ⁻ 2 valence e ⁻
1	6 valence e
S:C:S	Assume single bonds between atoms.
 : S : C : S :	Use remaining 12 e ⁻ trying to form a complete octet.
•• ••	Always start distributing electrons around the terminal atoms, saving the central atom for last.
	Fails because the central atom C has only 4 valence e.
: S :: C :: S :	Use remaining 12 e ⁻ trying to form a complete octet. Form two double bonds giving each atom 8 valence e ⁻ .

(d) NH₃

1N atoms \rightarrow 5 valence e⁻ 3H atoms \rightarrow 3 valence e⁻

8 valence e⁻

H : N : H	Assume single bonds between atoms.	
••		
Н		
••		
H : N : H	Use remaining 2 e ⁻ trying to form a complete octet.	
••	Note the pair of electrons above the N called a	
Н	nonbonding pair of electrons.	

(e) NH₄⁺

1N atoms - 4H atoms -	→ 5 valence e ⁻ → 4 valence e ⁻	
	9 valence e ⁻ - 1	Subtract 1 e ⁻ because of the + charge.
	8 valence e	
Н		
 H : N : H	Assume si	ingle bonds between atoms.
 Н		
Н		
 [H : N : H]	⁺ Both aton	ns have the maximum number of electrons.
 Н		
OH-		
10 atoms - 1H atoms -	→ 6 valence e ⁻ → 1 valence e ⁻	
	7 valence e ⁻ + 1	Add 1 e ⁻ because of the - charge.
	8 valence e	

Н:О	Assume single bonds between atoms.
 [H : O :] ⁻ 	Use remaining 6 e ⁻ trying to form a complete octet.

(g) CO_3^{2-} 1C atoms \rightarrow 4 valence e⁻ 3O atom \rightarrow 18 valence e 22 valence e +2Add 2 e⁻ because of the -2 charge. 24 valence e⁻ **O** : **C** : **O** Assume single bonds between atoms. • • 0 •• •• : **O** : **C** : **O** : Use remaining 18 e⁻ trying to form an octet. Fails because the central atom C has only 6 valence e⁻. :0: •• • • • • : **O** : **C** :: **O** : Form a double bond giving each atom 8 valence e. •• •• : **O** : ••

Because CO_3^{2-} has three equally correct Lewis Diagrams, it is an example of resonance. Note that a double arrow is used indicating that the molecule is a composite of the three structures with the three bonds being identical.

•• ••	•• ••	•• ••
: O : C :: O :	$\leftrightarrow : 0 :: \mathbf{C} : 0 :$	$\leftrightarrow : \mathbf{O} : \mathbf{C} : \mathbf{O} :$
•• ••	••••	•• •• ••
:0:	:0:	••
••	••	:0:

15) Molecular formula.

16) C is the symbol for the element carbon and not a molecular formula.