Combined Gas Law Problems

1) A sample of sulfur dioxide occupies a volume of 652 mL at $40 .^{\circ} \mathrm{C}$ and 720 mm Hg. What volume will the sulfur dioxide occupy at STP?
2) A sample of argon has a volume of $5.0 \mathrm{dm}^{3}$ and the pressure is 0.92 atm . If the final temperature is $30 .{ }^{\circ} \mathrm{C}$, the final volume is 5.7 L , and the final pressure is $800 . \mathrm{mm} \mathrm{Hg}$, what was the initial temperature of the argon?
3) 322 L of hydrogen occupies a volume of 197 L at STP. What was the initial pressure exerted on the hydrogen?
4) The initial temperature of a 1.00 liter sample of argon is $20 .{ }^{\circ} \mathrm{C}$. The pressure is decreased from 720 mm Hg to 360 mm Hg and the volume increases to 2.14 liters. What was the change in temperature of the argon?
5) A sample of nitrogen gas occupies a volume of 2.00 L at 756 mm Hg and $0.00^{\circ} \mathrm{C}$. The volume increases by 2.00 L and the temperature decreases to 137 K . What is the final pressure exerted on the gas?
6) A $20 . \mathrm{L}$ container is filled with helium and the pressure is 150 atm and the temperature is $30 .{ }^{\circ} \mathrm{C}$. How many 5.0 L balloons can be filled when the temperature is $22^{\circ} \mathrm{C}$ and the atmospheric pressure is 755 mm ?

Solutions

1) $\mathbf{P}_{1}=720 \mathrm{~mm}$
$\mathrm{V}_{1}=652 \mathrm{~mL}$
$\mathrm{T}_{1}=40 .{ }^{\circ} \mathrm{C}+273=313 \mathrm{~K}$ $T_{2}=0^{\circ} \mathrm{C}+273=273 \mathrm{~K}$
$\mathbf{P}_{1} \mathbf{V}_{\mathbf{1}} / \mathbf{T}_{\mathbf{1}}=\mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}} / \mathbf{T}_{\mathbf{2}}$
$\mathbf{V}_{\mathbf{2}}=\mathbf{P}_{\mathbf{1}} \mathbf{V}_{\mathbf{1}} / \mathbf{T}_{\mathbf{1}} \times \mathbf{T}_{\mathbf{2}} / \mathbf{P}_{\mathbf{2}}$
$\mathbf{V}_{\mathbf{2}}=720 \mathrm{~mm} \times 652 \mathrm{~mL} \times 273 \mathrm{~K} /(313 \mathrm{~K} \times 760 \mathrm{~mm})=540 \mathrm{~mL} \mathrm{SO}{ }_{2}$
2) $\quad P_{1}=0.92 \mathrm{~atm}$
$\mathrm{V}_{1}=5.0 \mathrm{dm}^{3}$
$\mathbf{V}_{2}=5.7 \mathrm{~L}$
$\mathrm{T}_{1}=$?
$\mathrm{T}_{2}=30 .{ }^{\circ} \mathrm{C}+273=303 \mathrm{~K}$
$\mathbf{P}_{1} \mathbf{V}_{1} / \mathbf{T}_{\mathbf{1}}=\mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}} / \mathbf{T}_{\mathbf{2}}$
$\mathrm{T}_{\mathbf{1}}=\mathbf{P}_{1} \mathbf{V}_{\mathbf{1}} / \mathbf{P}_{\mathbf{2}} \times \mathrm{T}_{2} / \mathbf{V}_{\mathbf{2}}$
$T_{1}=0.92 \mathrm{~atm} \times 760 \mathrm{~mm} / 1 \mathrm{~atm} \times 5.0 \mathrm{dm}^{3} \times 303 \mathrm{~K} /\left(800 . \mathrm{mm} \times 5.7 \mathrm{~L} \times 1 \mathrm{dm}^{3} / \pm\right)=$ $232 \mathrm{~K}=-41^{\circ} \mathrm{C}$
3) $\quad P_{1}=$?
$\mathrm{V}_{1}=322 \mathrm{~L}$
$\mathrm{T}_{1}=37^{\circ} \mathrm{C}+273=310 \mathrm{~K}$
$\mathbf{P}_{1} \mathbf{V}_{\mathbf{1}} / \mathbf{T}_{\mathbf{1}}=\mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}} / \mathbf{T}_{\mathbf{2}}$
$\mathbf{P}_{1}=\mathbf{P}_{2} \mathbf{V}_{2} / \mathbf{T}_{\mathbf{2}} \times \mathbf{T}_{1} / \mathbf{V}_{\mathbf{1}}$
$P_{1}=1.00 \mathrm{~atm} \times 197 \mathrm{~L} \times 310 \mathrm{~K} /(273 \mathrm{~K} \times 322 \mathrm{E})=0.69 \mathrm{~atm}$
4) $P_{1}=720 \mathrm{~mm}$
$P_{2}=360 \mathrm{~mm}$
$\mathrm{V}_{1}=1.00 \mathrm{~L}$
$\mathrm{V}_{2}=2.14 \mathrm{~L}$
$\mathrm{T}_{1}=20 .{ }^{\circ} \mathrm{C}+273=293 \mathrm{~K} \quad \mathrm{~T}_{2}=$?
$\mathbf{P}_{1} \mathbf{V}_{\mathbf{1}} / \mathbf{T}_{\mathbf{1}}=\mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}} / \mathbf{T}_{\mathbf{2}}$
$\mathbf{T}_{\mathbf{2}}=\mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}} / \mathbf{P}_{\mathbf{1}} \times \mathbf{T}_{\mathbf{1}} / \mathbf{V}_{\mathbf{1}}$
$\mathrm{T}_{2}=360 \mathrm{~mm} \times 2.14 \mathrm{~L} \times 293 \mathrm{~K} /(720 \mathrm{~mm} \times 1.0 \mathrm{~L})=313 \mathrm{~K}=40 .{ }^{\circ} \mathrm{C}$
5)

$P_{1}=756 \mathrm{~mm}$
$\mathbf{P}_{2}=$?
$\mathrm{V}_{1}=2.00 \mathrm{~L}$
$\mathrm{V}_{2}=4.00 \mathrm{~L}$
$\mathrm{T}_{1}=0.0^{\circ} \mathrm{C}+273=273 \mathrm{~K}$
$\mathrm{T}_{2}=137 \mathrm{~K}$
$\mathbf{P}_{1} \mathbf{V}_{1} / \mathbf{T}_{\mathbf{1}}=\mathbf{P}_{2} \mathbf{V}_{2} / \mathbf{T}_{\mathbf{2}}$
$\mathbf{P}_{\mathbf{2}}=\mathbf{P}_{\mathbf{1}} \mathrm{V}_{\mathbf{1}} / \mathbf{T}_{\mathbf{1}} \times \mathbf{T}_{\mathbf{2}} / \mathbf{V}_{\mathbf{2}}$
$P_{2}=756 \mathrm{~mm} \times 2.00 \mathrm{~L} \times 137 \mathrm{~K} /(273 \mathrm{~K} \times 4.00 \mathrm{E})=190 . \mathrm{mm} \mathrm{Hg}$
6) $\quad P_{1}=150 \mathrm{~atm}$
$V_{1}=20 . L$
$\mathrm{T}_{1}=30 .{ }^{\circ} \mathrm{C}+273=303 \mathrm{~K}$
$\mathbf{P}_{1} \mathbf{V}_{\mathbf{1}} / \mathbf{T}_{\mathbf{1}}=\mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}} / \mathbf{T}_{\mathbf{2}}$
$\mathbf{V}_{\mathbf{2}}=\mathbf{P}_{1} \mathbf{V}_{\mathbf{1}} / \mathbf{T}_{\mathbf{1}} \times \mathbf{T}_{\mathbf{2}} / \mathbf{P}_{\mathbf{2}}$
$\mathbf{P}_{2}=150 \mathrm{~atm} \times 20 . \mathrm{L} \times 295 \mathrm{~K} /(303 \mathrm{~K} \times 755 \mathrm{~mm} \times 1 \mathrm{~atm} / 760 \mathrm{~mm})=2940 \mathrm{~L}$ \# balloons = 1 balloon/5.0 亡x 2940 L = 588 balloons

