Charles's Law Problems

1) A container holds 50.0 mL of nitrogen at $25^{\circ} \mathrm{C}$ and a pressure of 736 mm Hg . What will be its volume if the temperature increases by $35^{\circ} \mathrm{C}$?
2) A sample of oxygen occupies a volume of $160 \mathrm{dm}^{3}$ at $91^{\circ} \mathrm{C}$. What will be volume of oxygen when the temperature drops to $0.00^{\circ} \mathrm{C}$?
3) A sample of hydrogen has an initial temperature of $50 .{ }^{\circ} \mathrm{C}$. When the temperature is lowered to $-5.0^{\circ} \mathrm{C}$, the volume of hydrogen becomes $212 \mathbf{~ c m}^{3}$. What was the initial volume of the hydrogen in $\mathbf{~ d m}^{3}$?
4) $568 \mathrm{~cm}^{3}$ of chlorine at $25^{\circ} \mathrm{C}$ will occupy what volume at $-25^{\circ} \mathrm{C}$ while the pressure remains constant?
5) A sample of helium has a volume of $521 \mathrm{dm}^{3}$ at a pressure of 75 cm Hg and a temperature of $18^{\circ} \mathrm{C}$. When the temperature is increased to $23^{\circ} \mathrm{C}$, what is the volume of the helium?

Solutions

$$
\begin{aligned}
& \text { 1) } \mathbf{P}_{1}=736 \mathrm{~mm} \mathrm{Hg} \\
& \mathrm{~V}_{\mathbf{1}}=\mathbf{5 0 . 0} \mathbf{~ m L} \\
& \mathrm{T}_{1}=25^{\circ} \mathrm{C}+273=298 \mathrm{~K} \\
& \mathrm{~T}_{2}=25^{\circ} \mathrm{C}+35^{\circ} \mathrm{C}+273=333 \mathrm{~K} \\
& \mathbf{V}_{1} / T_{1}=V_{2} / T_{2} \\
& \mathbf{V}_{\mathbf{2}}=\mathbf{V}_{\mathbf{1}} \times \mathbf{T}_{\mathbf{2}} / \mathbf{T}_{\mathbf{1}} \\
& \mathbf{V}_{2}=50.0 \mathrm{~mL} \times 333 \mathrm{~K} / 298 \mathrm{~K}=55.9 \mathrm{~mL} \mathrm{~N} \mathbf{N}_{2} \\
& \text { 2) } \quad V_{1}=160 \mathrm{dm}^{3} \\
& \mathrm{~T}_{1}=91^{\circ} \mathrm{C}+273=364 \mathrm{~K} \\
& \mathrm{~T}_{2}=0.00^{\circ} \mathrm{C}+273=273 \mathrm{~K} \\
& \mathbf{V}_{1} / T_{1}=V_{2} / T_{2} \\
& \mathbf{V}_{\mathbf{2}}=\mathbf{V}_{\mathbf{1}} \mathbf{x} \mathbf{T}_{\mathbf{2}} / \mathbf{T}_{\mathbf{1}} \\
& V_{2}=160 \mathrm{dm}^{3} \times 273 \mathrm{~K} / 364 \mathrm{~K}=120 \mathrm{dm}^{3} \mathrm{O}_{2} \\
& \text { 3) } \quad V_{1}=\text { ? } \\
& \mathrm{T}_{1}=50 .{ }^{\circ} \mathrm{C}+273=323 \mathrm{~K} \\
& \mathbf{V}_{2}=212 \mathrm{~cm}^{3} \\
& \mathrm{~T}_{2}=-5.0^{\circ} \mathrm{C}+273=268 \mathrm{~K} \\
& V_{1} / T_{1}=V_{2} / T_{2} \\
& \mathbf{V}_{\mathbf{1}}=\mathrm{V}_{\mathbf{2}} \times \mathrm{T}_{\mathbf{1}} / \mathbf{T}_{\mathbf{2}} \\
& V_{1}=212 \mathrm{em}^{3} \times 1 \mathrm{dm}^{3} / 10^{3} \mathrm{em}^{3} \times 323 \mathrm{~K} / 268 \mathrm{~K}=0.256 \mathrm{dm}^{3} \mathrm{H}_{2}
\end{aligned}
$$

4) $\quad \mathrm{V}_{1}=568 \mathrm{~cm}^{3}$

$$
\mathrm{T}_{1}=25^{\circ} \mathrm{C}+273=298 \mathrm{~K} \quad \mathrm{~T}_{2}=-25^{\circ} \mathrm{C}+273=248 \mathrm{~K}
$$

$$
\mathbf{V}_{1} / T_{1}=V_{2} / T_{2}
$$

$$
\mathbf{V}_{2}=V_{1} \times T_{2} / T_{1}
$$

$$
\mathrm{V}_{2}=568 \mathrm{~cm}^{3} \times 248 \mathrm{~K} / 298 \mathrm{~K}=473 \mathrm{~cm}^{3} \mathrm{Cl}_{2}
$$

5) $\quad \mathrm{P}_{1}=75 \mathrm{~cm} \mathrm{Hg}$

$$
\mathrm{V}_{1}=521 \mathrm{dm}^{3}
$$

$$
\mathrm{T}_{1}=18^{\circ} \mathrm{C}+273=291 \mathrm{~K}
$$

$$
\mathbf{V}_{1} / \mathbf{T}_{1}=\mathbf{V}_{2} / \mathbf{T}_{2}
$$

$$
V_{2}=V_{1} \times T_{2} / T_{1}
$$

$$
\mathrm{V}_{2}=521 \mathrm{dm}^{3} \times 296 \mathrm{~K} / 291 \mathrm{~K}=530 . \mathrm{dm}^{3} \mathrm{He}
$$

