Boyle's Law Problems

1) A container holds $500 . \mathrm{mL}$ of CO_{2} at $20 .{ }^{\circ} \mathrm{C}$ and 742 torr. What will be the volume of the CO_{2} if the pressure is increased to $\mathbf{7 9 5}$ torr?
2) A gas tank holds 2785 L of propane, $\mathrm{C}_{3} \mathrm{H}_{8}$, at $830 . \mathrm{mm} \mathrm{Hg}$. What is the volume of the propane at standard pressure?
3) A balloon contains 7.2 L of He . The pressure is reduced to 2.00 atm and the balloon expands to occupy a volume of 25.1 L . What was the initial pressure exerted on the balloon?
4) A sample of neon occupies a volume of 461 mL at STP. What will be the volume of the neon when the pressure is reduced to 93.3 kPa ?
5) $\quad 352 \mathrm{~mL}$ of chlorine under a pressure of $680 . \mathrm{mm} \mathrm{Hg}$ are placed in a container under a pressure of 1210 mm Hg . The temperature remains constant at 296 K . What is the volume of the container in liters?

Solutions

1) $\mathbf{P}_{1}=742$ torr
$\mathrm{V}_{1}=500 . \mathrm{mL}$
$\mathrm{T}_{1}=20 .{ }^{\circ} \mathrm{C}+273=293 \mathrm{~K}$ $\mathrm{T}_{2}=20 .{ }^{\circ} \mathrm{C}+273=293 \mathrm{~K}$
$\mathbf{P}_{\mathbf{1}} \mathbf{V}_{\mathbf{1}}=\mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}$
$\mathbf{V}_{\mathbf{2}}=\mathbf{P}_{\mathbf{1}} \mathbf{V}_{\mathbf{1}} / \mathbf{P}_{\mathbf{2}}$
$\mathrm{V}_{2}=742$ torr $\times 500 . \mathrm{mL} / 795$ torf $=467 \mathrm{~mL} \mathrm{CO} 2$
2) $P_{1}=830 . \mathrm{mm} \mathrm{Hg}$

$$
\mathbf{V}_{1}=2785 \mathrm{~L} \quad \mathrm{~V}_{2}=\text { ? }
$$

$$
\mathbf{P}_{1} \mathbf{V}_{\mathbf{1}}=\mathbf{P}_{2} \mathbf{V}_{2}
$$

$$
\mathbf{V}_{\mathbf{2}}=\mathbf{P}_{1} \mathbf{V}_{\mathbf{1}} / \mathbf{P}_{\mathbf{2}}
$$

$$
\mathrm{V}_{2}=830 . \mathrm{mm} \times 2785 \mathrm{~L} / 760 \mathrm{~mm}=3040 \mathrm{~L} \mathrm{C}_{3} \mathrm{H}_{8}
$$

3) $\quad P_{1}=$?
$\mathrm{V}_{1}=7.2 \mathrm{~L}$
$\mathbf{P}_{1} \mathbf{V}_{\mathbf{1}}=\mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}$
$\mathbf{P}_{\mathbf{1}}=\mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}} / \mathbf{V}_{\mathbf{1}}$
$\mathbf{P}_{1}=2.00 \mathrm{~atm} \times 25.1 \mathrm{~L} / 7.2 \mathrm{~L}=7.0 \mathrm{~atm}$
4) $\quad P_{1}=101.3 \mathrm{kPa}$

$$
\mathbf{P}_{2}=93.3 \mathrm{kPa}
$$

$$
\mathrm{V}_{1}=461 \mathrm{~mL}
$$

$$
\mathbf{V}_{2}=\text { ? }
$$

$\mathbf{P}_{\mathbf{1}} \mathbf{V}_{\mathbf{1}}=\mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}$
$\mathbf{V}_{\mathbf{2}}=\mathbf{P}_{\mathbf{1}} \mathbf{V}_{\mathbf{1}} / \mathbf{P}_{\mathbf{2}}$
$\mathrm{V}_{2}=101.3 \mathrm{kPa} \times 461 \mathrm{~mL} / 93.3 \mathrm{kPa}=501 \mathrm{~mL} \mathrm{Ne}$
5) $\quad P_{1}=680 . \mathrm{mm}$ $P_{2}=1210 \mathrm{~mm}$
$\mathrm{V}_{1}=352 \mathrm{~mL}$
$\mathbf{V}_{2}=$?
$\mathbf{P}_{\mathbf{1}} \mathbf{V}_{\mathbf{1}}=\mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}$
$\mathbf{V}_{\mathbf{2}}=\mathbf{P}_{\mathbf{1}} \mathbf{V}_{\mathbf{1}} / \mathbf{P}_{\mathbf{2}}$
$\mathrm{V}_{2}=680 . \mathrm{mm} \times 352 \mathrm{~mL} / 1210 \mathrm{~mm}=198 \mathrm{~mL} \mathrm{Cl}{ }_{2}$

