Boyle's Law Problems

- 1) A container holds 500. mL of CO₂ at 20.° C and 742 torr. What will be the volume of the CO₂ if the pressure is increased to 795 torr?
- 2) A gas tank holds 2785 L of propane, C₃H₈, at 830. mm Hg. What is the volume of the propane at standard pressure?
- 3) A balloon contains 7.2 L of He. The pressure is reduced to 2.00 atm and the balloon expands to occupy a volume of 25.1 L. What was the initial pressure exerted on the balloon?
- 4) A sample of neon occupies a volume of 461 mL at STP. What will be the volume of the neon when the pressure is reduced to 93.3 kPa?
- 5) 352 mL of chlorine under a pressure of 680. mm Hg are placed in a container under a pressure of 1210 mm Hg. The temperature remains constant at 296 K. What is the volume of the container in liters?

Solutions

1)	P ₁ = 742 torr	P ₂ = 795 torr
	$V_1 = 500. mL$	$V_2 = ?$
	$T_1 = 20.^{\circ} C + 273 = 293 K$	$T_2 = 20.^{\circ} C + 273 = 293 K$
	$\mathbf{P}_1\mathbf{V}_1=\mathbf{P}_2\mathbf{V}_2$	
	$\mathbf{V}_2 = \mathbf{P}_1 \mathbf{V}_1 / \mathbf{P}_2$	
	$V_2 = 742 \text{ torr} x 500. \text{ mL}/795 \text{ torr} = 467 \text{ mL CO}_2$	
2)	$P_1 = 830. \text{ mm Hg}$	$\mathbf{P}_2 = 760 \ \mathbf{mm} \ \mathbf{Hg}$
	$V_1 = 2785 L$	V ₂ = ?
	$\mathbf{P}_1\mathbf{V}_1=\mathbf{P}_2\mathbf{V}_2$	
	$\mathbf{V}_2 = \mathbf{P}_1 \mathbf{V}_1 / \mathbf{P}_2$	
	$V_2 = 830. \text{ mm} \times 2785 \text{ L}/760 \text{ mm} = 3040 \text{ L} \text{ C}_3 \text{H}_8$	
•		
3)	$P_1 = ?$	$P_2 = 2.00 \text{ atm}$
	$V_1 = 7.2 L$	$V_2 = 25.1 L$
	$\mathbf{P}_1\mathbf{V}_1=\mathbf{P}_2\mathbf{V}_2$	
	$\mathbf{P}_1 = \mathbf{P}_2 \mathbf{V}_2 / \mathbf{V}_1$	

 $P_1 = 2.00 \text{ atm x } 25.1 \text{ L/7.2 L} = 7.0 \text{ atm}$

4) $P_1 = 101.3 \text{ kPa}$ $P_2 = 93.3 \text{ kPa}$ $V_1 = 461 \text{ mL}$ $V_2 = ?$ $P_1V_1 = P_2V_2$ $V_2 = P_1V_1/P_2$

V₂ = 101.3 kPa x 461 mL/93.3 kPa = 501 mL Ne

5) $P_1 = 680. \text{ mm}$ $P_2 = 1210 \text{ mm}$ $V_1 = 352 \text{ mL}$ $V_2 = ?$ $P_1V_1 = P_2V_2$ $V_2 = P_1V_1/P_2$ $V_2 = 680. \text{ mm x } 352 \text{ mL}/1210 \text{ mm} = 198 \text{ mL } Cl_2$