Jon Risch's Web Site


Argent Room Lens Analysis/Clone Note
by Jon M. Risch, [email protected]     3-8-99

I thought it might be interesting to share a process of product analysis concerning the Argent Room Lens.  Please note that I have not seen a pair in the flesh, have not seen any whitepapers on the product. I have visted the review at Soundstage (http://www.soundstage.com/noisy14.htm), and read the review in Stereophile.  See also the Argent web page:
http://www.roomlens.com/index.html

Using dimensions and derived dimensions based on the photo's provided, I proceeded to analyze the acoustics of the product.

Over all dimensions:  58" long tubes/pipes, slightly less than 2" I.D. on the three pipes, probably 2.5" nominal PVC plumbing pipe with close to 1/4" walls, the HD pipes.  The composite width at the tubes is approximately 8 1/2".  The spacing between the tubes varies from top to bottom, with the wider spacing at the top, varying from about 1" to about 2/3".

Now what would this do to a sound wave that hit it broadside (parallel to the three tubes)?

First, ignoring the helmholtz resonator aspect, it can only affect frequencies above a corner of about 1.6 kHz, the frequency where the wavelength equals the width.  There will be some effect down to about 800 Hz, below which, it won't present any sort of significant obstacle acoustically.  Any significant affect on a sound wave will occur above these frequencies, slight effects above about 800, and near total effects above about 3 kHz.

The spacing between the tubes will allow frequencies with wavelengths above the spacing distance to shine through in a straight line in the cracks between, and be almost totally blocked where the tubes are, so they act as diffractors (a form of diffussion) from a low corner of 1.6 kHz, up to about 16 kHz, where they will act as a picket fence shadow, mostly blocking the frequencies above 16 kHz.  A significant amount of energy within this band will also be directly diffussed off of the rounded tubes.

The recommended placement and orientation will essentially make the aforementioned frequency band for the nominal first side wall reflections and the front wall reflections (to a lesser degree) become diffussed on the way toward the way reflection point, and diffracted before the remaining sound energy is reflected off the wall.

This would result in the side and front wall reflections effectively being diffussed and broken-up up to a large degree, avoiding a coherent presentation of energy to the ear from the first reflection.

Unlike wall hung diffussors at the mirror points on the side walls and the front wall, these Argent Room Lens will actually reradiate a diffuse field from their location in the room, as well as diffuse the side wall reflection like wall mounted diffussors.  This reradiated sound energy will not be readily apparent as a distinct source for two reasons:  one, it has been dispersed in an almost 360 degree pattern, to bounce off of other room surfaces in most instances with an arrival time at the listener at a much later time, and second, the reradiation will be at a minimum along the edge of the three tubes, which happens to be aimed at the listening position.

The tubes themselves will act like classic helmholtz resonators, and if they were simply open tubes, they would resonate at approximately 117 Hz, and multiples and sub multiples of that frequency.  However, they have some acoustic resistance at the bottom (a fine screen), and some stuffing somewhere inside the length of the tubes.  Clever placement and density choices of this stuffing could effectively result in a bass absorbtion right where the typical 8 foot ceiling has it first resonance mode, effectively damping this first mode via the tubes.  If all three are tuned slightly differently, not only could the first floor to ceiling mode be reduced, but several of the higher order modes as well.  This 8 foot floor to ceiling mode would be fairly universal, and so would be a definite way to help reducing this floor to ceiling set of modes.

My conjecture would be that by reducing the floor to ceiling modes, and enhancing the amount of random and uncorrelated horizontal reflections, as wqell as delaying and reducing the first arrival times of the side and front wall reflections these devices would tend to enhace the apparent sound image, effectively reducing the negative effects of the room itself.  I would guess that they would have less of an effect with planar or other highly directional speakers, and would be at maximum effect with a full omnidirectional sound source, and at a high amount of effect with most dynamic multiway speaker systems.
Reducing the side wall, and to a lesser extent, the front wall first reflections without any absorption or radical room geometry is a new one on me.

For those interested in constructing there own, it should be easy to obtain the necessary materials from a hardware store.  Use 2 1/2" heavy duty/high pressure PVC pipes, cut to 58 " lengths, spaced apart 1" at the top tapering to 7/8" at the bottom for the left pair of tubes, and spaced apart about 3/4" at the top tapering down to a little over 5/8" at the bottom for the right pair of tubes.  Make a nice heavy non-resonant base, and a hardboard cap to hold them in place.  Finish as desired.

Now for the educated guess part:
Roll up a wad of 3/4 to 1" thick loose/puffy polyester batting about 16" long byn 12"for each tube, rolling up the 16" portion, and push it into the tubes using a long stick. From left to right tube, position the end of the wadded polyester 18" from the bottom, 23" from the bottom, and 18" from the top on the last one.  A wad of fiberglass could be used as well, a piece of 6 1/2" by 4' by 12" long, or 3 1/2' by 8" by 12" long.  Then place a piece of very fine mesh screen on the bottom of each tube.  If you can't get a very fine mesh screen, wrap a layer of nylon stocking on each side of a regular piece of screen door metal screen, and wedge/glue it into place.

You might even make it one tube wider, just repeat the tube pair spacing (I would opt for the wider spaced pair) opposite the added tube.  This would make it effective down to even lower frequencies.

This would be a minimal investment to see if they do anything for your room acoustics.

Jon Risch



Copyright Notice
All website content Copyright Jon M. Risch, 1997 - 2001

All applicable copyright laws apply, all rights reserved, except transmission by USENET and like facilities granted.  Any use or inclusion in print or other media are specifically prohibited.  The informational content is not warrantied in any way or form, and any use of said content are at the reader's own risk, the author shall not be held responsible in any way for any damages or injuries arising from the content of this web site.  Common safety practices are encouraged at all times.  Do not fold, spindle or mutilate.



 ----> E-MAIL ME ! <-----


 Back to home page
Hosted by www.Geocities.ws

1