Automating Exploratory Data Analysis for Efficient Data Mining

Jonathan D. Becher becher@accrue.com

Pavel Berkhin pavelb@accrue.com Presenting Author

Edmund Freeman eef@accrue.com

Accrue Software, Inc. www.accrue.com 510-580-4500

Problem Space Overview

- Industrial issues
 - large data sets (Web data doubles every few months)
 - noisy data containing lots of missing/incorrect values
 - high cardinality categorical attributes
 - attributes irrelevant for particular mining purposes

Goal

- get model into production as quickly as possible
- simplify, clean, and narrow the scope of data used

Benefits

- reduced CPU time for building a model
- reduced CPU time for using a model
- potentially increased model accuracy
- increased explanatory power of the model

Exploratory Data Analysis (EDA)

Strategy

- automate historically manual process
- provide many tuning controls with intelligent defaults
- focus on predictive problems

Approach

- identify inappropriate and suspicious attributes
- select the most appropriate attribute encoding
- create derived and transformed attributes
- choose an optimal subset of attributes

Inappropriate and Suspicious

- Inappropriate: automatically excluded
 - Constant: only contains a single value
 - Null: has all Null (missing) values
 - Near Null: # Null values larger than threshold
 - Many Values: # unique values larger than threshold
- Suspicious: user determines if excluded
 - Artifact. association with target is greater than threshold
 - Poor Predictor: association is less than threshold
 - Near Constant: one value covers too many cases
 - Few Values: less distinct values than threshold
 - Few Cases: less distinct non-Null cases than threshold

Suspicious Attribute Example

40. TopLevelDomain	Categorical attribute			
Status: Near Constant				
-Basic Stats				
Number of distinct attribute values is 5				
Number of cases with non Null values is 22421 (100.000%)				
-Association of original attribute with the target				
InfoXT = 0.00237				
Chi2XT = 0.003041				
GoKrXT = 0				
Attribute values are:				
	$r^2 = COM$			
	r4 = ORG			
v5 = EDU				
Target values are:				
t1 =False t2 =True				
-Categorical attribute - Target distributions				
vVal Cases t1 t2 t1 t2	Total			
vai cases ci cz ci cz v1 3 0.33 0.67 8e-5 1e-4				
v_2 22225 0.50 0.50 1.00 0.99				
v3 2 0.00 1.00 0.00 1e-4				
v_3 2 0.00 1.00 0.00 1e-4 v_4 6 0.50 0.50 2e-4 2e-4				
v5 185 0.20 0.80 3e-3 0.01	0e-3			
Tot 22421 0.50 0.50				

ACCRUE

3

Ξ

Encoding

- Determines most appropriate representation
 - continuous attributes are thresholded (discretize/quantize)
 - categorical attributes are grouped into smaller # of values

Benefits

- captures non-linear relationships (potentially more predictive)
- increases explanatory power
- Issue
 - can cause fatal loss of some of detail in original attributes
- Solution: Target Dependency Analysis (TDA)
 - measures association b/ source and target before/after
 - optimizes reduction in association to find optimal encoding
 - thresholding: annealing, objective function is association measure
 - grouping: categorical clustering, minimize reduction in association

Encoded Attribute Example

Age threshold 23.5 27.5 35.5 61.5 ; -- 4 cut points determined.

Education category { Doctorate Masters "Prof-school" } { Bachelors } { "Assocacdm" "Assoc-voc" "HS-grad" "Some-college" } { "10th" "11th" "12th" "1st-4th "5th-6th" "7th-8th" "9th" Preschool } ; -- 4 groups determined.

Sex category; -- No grouping (2 original values).

Figure 2. Optimized encodings determined by the EDA module

Target Dependency Analysis

- Three available measures
 - source attribute X with values j=1:J
 - target Y with values q=1:Q
 - joint distribution P_{jq} , and marginal distributions $P_{j,}$, $P_{q,}$,
- **Mutual Information**
 - $I(X,Y) = \Sigma_{jq} P_{jq} \log(P_{jq} / P_{jP_{q}}) = H(Y) H(Y|X)$
 - M(X,Y) = I(X,Y)/H(Y) normalized
- Chi-squared (Cramer's V)
 - $\mathbf{c}^{2}(\mathbf{X},\mathbf{Y}) = \mathbf{N} \, \mathbf{S}_{jq} \, (\mathbf{P}_{jq} \mathbf{P}_{j.}\mathbf{P}_{.q})^{2} \, / \, (\mathbf{P}_{j.}\mathbf{P}_{.q})$
 - $V(X,Y) = c^{2}(X,Y)/(N(min(Q,J)-1))$ normalized
- Goodman-Kruskal
 - Trivial classifier forecasts most frequent target value
 - Instead, choose most frequent forecast among all cases with the same X -value j (maximum likelihood forecast)
 - Goodman-Kruskal index is difference in error rate between trivial and X conditioned forecasters.

Encoded Attribute Example

```
3. Education
                  Categorical attribute
-Basic Stats -
 Number of distinct attribute values is
                                            16
 Number of cases with non Null values is 48842 (100.000%)
-Association of original attribute with the target - - -
 InfoXT = 0.116
 Chi2XT = 0.1339
 GOKrXT = 0.07949
Target values are: t1 =<=50K t2 =>50K
Selected grouping consists of:
 jVal Cases
             NumVal / Values covered
 i1
       4085
               3 Doctorate
                             Masters
                                         Prof-school
   8025
               1 Bachelors
 j2
 j3 30324
               4 Assoc-acdm Assoc-voc
                                                   Some-college
                                         HS-grad
i4
     6408
               8 10th
                              11th
                                         12th
                                                   1st-4th
                  5th-6th
                              7th-8th
                                         9th
                                                   Preschool
-Association of discretized attribute with the target- -
 InfoYT =
           0.1097
 Chi2YT = 0.1269
 GOKrYT = 0.07949
```


Transformations

- Univariate
 - traditionally only benefit to continuous targets (regression)
 - correlation extended to continuous/categorical pairs
 - $y(x) = v^*x^2 + (1-v)^*x$,
 - y(x) = 1/x,
 - $y(x) = \exp(v^*x)$,
 - $y(x) = \log(x)$,
- Multivariate
 - useful for both classification and regression
 - functions of several continuous attributes, including linear combinations with undefined coefficients, ratios and products.

- $\mathbf{y}(\mathbf{x}) = \mathbf{x}^{\mathbf{v}},$ $\mathbf{y}(\mathbf{x}) = (|\mathbf{x}|)$
- y(x) = (|x|+x)/2
- y(x) = |x|

Selection: Markov Blanket (MB)

- Theoretical basis
 - expectation of Kullback Leibler (KL) distance between target distribution $P(Y=q|X_1=j_1,..,X_k=j_k)$, conditioned by joint distribution of all k source attributes, and target distribution conditioned by s selected attributes $X_1,..,X_s$, $P(Y=q|X_1=j_1,..,X_s=j_s)$, s<k,

$$d(X_{1:k}, X_{1:s}) = S_{j1,...,jk} P_{j1,...,jk} KL(P_{q|j1,...,jk} || P_{q|j1,...,js}),$$

$$KL(P_{q}||R_{q}) = S_{q} P_{q} \log (P_{q}/R_{q}).$$

- Practice
 - computational feasibility: low dimensional blankets
 - attribute X_0 associated w/ other attributes or blanket $X_{1:b}$
 - if $\mathbf{d}(\mathbf{X}_{0:b}, \mathbf{X}_{1:b})$ is small, \mathbf{X}_0 is well covered by its blanket and is a good candidate for exclusion.
- Implementation details
 - choice of the original blankets
 - exclusion criterion/schedule
 - recomputation of Markov blankets

Selection: Inconsistency Rate (IR)

- Theoretical basis
 - generalization of Goodman-Kruskal previously described

Practice

- error rate of a trivial classifier which predicts the majority target outcome on each subset $X_1 = j_1, ..., X_k = j_k$.
- If omission of a certain attribute does not affect IR, error rate of this classifier remains intact without this attribute, and the attribute is a good candidate for exclusion.

Implementation details

- Backward selection process
- Forward steps

Attribute Selection Results

		Unoptimized Encoding	EDA Encoding
No Selection	Attributes Used	593	593
	Training Time	151	130
	ROC	0.712	0.724
	Top 5% Lift	2.76	2.71
MB	Attributes Used	254	254
	Training Time	74	79
	ROC	0.729	0.742
	Top 5% Lift	3.28	3.39
IR	Attributes Used	16	16
	Training Time	44	40
	ROC	0.712	0.735
	Top 5% Lift	3.03	3.35

Table 1. Unoptimized Encoding vs EDA Encoding

Ε

Conclusions

- EDA
 - historically manual preprocessing can be automated
 - native attribute representation can be improved
 - majority of attributes are unneeded by model
- Benefits to Data Mining
 - reduced CPU time for building a model
 - reduced CPU time for using a model
 - potentially increased model accuracy
 - increased explanatory power of the model

Note: all algorithms described are available commercially in Accrue Decision Series

