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In this article we show how the copula and the BET methodology can be used 

to price baskets of credit derivatives. After brief descriptions of both 

algorithms we use market data to price first to default and first loss contracts 

on baskets of credit derivatives. Additionally the copula approach is used with 

Moody and Standard and Poors correlation functions (this makes things 

simpler to back office to have a quick present value of baskets) and different 

recovery assumptions. All the tests are made using market data and the results 

are then compared with prices given by market makers.  

 

 

1) Introduction 

 

Over the last few years the market for credit derivatives has experienced a tremendous growth. 

Several aspects have contributed to this start of the matter: a) the need of (financial) institutions to 

hedge the credit exposures in their portfolios; b) the possibilities of those institutions to optimise the 

allocation of their capital while at the same time fulfilling the requirements of Basle II.  

Two classes of credit derivative contracts can be discerned: single name and multiname contracts. 

In single name instruments the payoff depends on the credit events of one underlying entity. Examples 

of such securities are credit default swaps (CDS’s), single name credit linked notes (CLN’s), credit 

spread options (CSO’s), and total return swaps.  The most liquid single name credit derivative is the 

CDS, representing about 40% of the credit derivatives market (see the British Bankers Association 

report [1]). It provides insurance against the losses due to a default of one entity called the reference 

entity. In the plain vanilla version of the contract the buyer pays a periodic fee in exchange for a lump 

payment by the protection seller in case an event of default happened. We refer to Takavoli [2] and 

Schonbucher [3] for a more detailed description of single name instruments. 

In multi name contracts the payoff is contingent on the credit events of a portfolio of entities. 

Examples are colateralized debt obligations (CDO), first loss and nth to default basket derivatives and 

                                                                 
1 João Garcia and Tony Van Gestel are Senior Quantitative Analysts at Dexia Group, Luc Leonard is the Head of 
Credit Methodology at Dexia Group and Geert Gielens is a Senior Quantitative dealer at Dexia Bank in Belgium. 
Any communication about this article should be sent to João Garcia at crisj@dexia.com.   
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multi name credit linked notes. In a first to default basket the protection buyer pays a fee in return for a 

lump payment by the protection seller for the first entity to default in the portfolio. The main reason 

why one would want to use a first- to-default derivative is that it makes protectio n on a portfolio 

cheaper. Consider for instance an investor who wants to hedge the credit exposure on a portfolio of 5 

bonds. He/she might feel that for his/her investment horizon the risk on more than one default is rather 

small and instead of buying protection on each single name in the portfolio he/she might choose to buy 

protection to one default 2. As a consequence the losses in the portfolio might be reduced (and 

consequent improvement in its rating).   

In a first loss basket the protection buyer pays a fee to receive protection on a certain amount. 

Instead of buying protection on the number of entities to default this derivative allows the investor to 

focus directly on the possible amount lost. In our example, suppose the protection nominal in each 

name was 10 millions USD. The investor might think that losses exceeding 30 mi USD are 

unacceptable. He/she might want to buy a first loss basket yielding credit protection up to 30 mi USD. 

If the recovery rate for each entity is high the investor might finish by having bought full protection. As 

before a first loss basket might be used to improve the rating of the portfolio.  

In this paper we show how to price a first to default and a first loss credit derivative. Our objective 

is to describe and test (using market data) two different approaches that we have seen being used by 

market participants. We base our copula algorithm on the paper of Li [4]. In this paper we have tesd 

some practical aspects for pricing the contracts. First we make use of market default probabilities 

implied by (extracted from) the CDS market for each underlying name. Second we use the copula 

algorithm with three correlation functions: a) Moodys (for ABS/MBS products); b) Standard and Poors; 

and c) the one evaluated from equity returns. Third all the data used is taken from the market while the 

prices are compared with the bid offer given by market makers (the prices were given by market 

makers on the condition of anonymity). At last we use the BET algorithm to price the same securities 

and compare both approaches.  

The remainder of the paper is organized as follows. In section 2 we define what will be seen as 

default correlation. How to imply default probabilities from the CDS market is shown in section 3. We 

describe what copula functions are and why we will be using gaussian copulas in section 4. In section 5 

we show how default correlation, marginal default probabilities and copula functions are put together to 

price first to default and first loss basket derivatives using the copula methodology. In section 6 we 

briefly describe the BET approach. In section 7 use market data to price a first to default and a first loss 

using both methodologies and compare it with a bid quote given by a market participant. Conclusions 

are drawn in section 8. 

                                                                 
2 If we assume that the entities in the portfolio are not independent then the first to default basket fee will be 
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2) Default Correlation  

When pricing a credit derivative on a portfolio of credits there are at least two important aspects to 

be taken into account: a) the default correlation among entities, and b) the joint default probability 

function. Both quantities should somehow be calibrated to market data. In this section we discuss the 

issues on assigning a default correlation matrix to a basket of entities. 

In the credit derivatives literature there are two main approaches currently being used to define the 

default correlation.  

In an approach described e.g. in Lucas [5] and Gupton et al [6] (and preferred by credit rating 

agencies) one discretizes the period of observation and defines default as a survival or death event in 

the observed period. In this way, consider one chooses a one year period interval and let p1 and p2 be 

the one year marginal probability of default of companies C1 and C2 respectively. Consider p12 as the 

joint default probability for the two companies for the same period. The (one year) default correlation 

(Corr(C1,C2)) between C1 and C2  is then given by: 

 

 

 

In order to evaluate the correlation one will have to define companies by ratings and get data for a 

certain period of time. Problems such as determination of the period of observation, inclusion or 

exclusion of companies in the pool (the rating category) during the period of observation and so on 

make the methodology rather tricky to be used. We refer to Li [4] for more details. 

Another approach (the one employed in this paper) exploits the notion of survival times commonly 

used in actuarial analyses and in reliability theory (see Barlow and Proschan [7]). In this approach the 

survival time is a random variable and it will represent the time up to default of each entity in the 

basket. The default correlation between two reference entities is defined as the correlation between their 

survival times. 

Consider T1 and T2 the survival times (or default times) of the two entities C1 and C2. The default 

correlation between the two companies is then given by: 
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where E is the expectation operator and s denotes the standard deviation of the survival time.  

We will also assume that default correlation can be evaluated from the equity markets. This is the 

hypothesis made in CreditMetrics and KMV and follows from the firm value model deve loped by 

Merton3 [8]. I.e. in order to evaluate the correlation between two entities we will take time series of 

stock returns, standardize (see section 5) and evaluate the correlation between them. We refer to 

Embrechts et al [9] and Frey et al [10] for alternative ways of evaluating the correlation matrix in a 

latent variable model. 

An advantage of the approach here used is that equity data is easily available in comparison with 

default times. Moreover the use of equity data permits an easy calibration of the input parameter to be 

used in a gaussian copula function (as will be seen in section 4).  

  

 

3) Marginal Default Probabilities and the CDS market  

 

In a standard credit default swap (CDS) a protection seller receives a fixed periodic (say every 

quarter) premium in order to give protection in case of default on a certain reference. Consider that the 

notional involved is N, the recovery rate in case of default is a and the CDS rate is KT for a T year 

contract. By a CDS the contract buyer would be paying 0.25 * KT * N  every quarter in order to receive 

(1 – a) * N in case of default. Below we give a quick explanation for the evaluation of the CDS rate and 

we refer the interested reader to the work of Martin et al. [11] or Hull and White [12] for more details.     

In our approach we consider that the default time follows a Cox process (see Bremau [13] or 

Lando [14]). In this way if Q(T) is the probability of default occurring at time T, and ?(t) is the 

instantaneous hazard rate of default at time t, then Q(T) is given by: 

 

 

                                                                 
3 Merton model is a so called latent variable model. In it default happens when the latent variable (equity price) of 
the reference entity reaches book value.  
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Suppose CDS premiums are paid at a set of dates (every quarter) that we will represent by t1, t2, … , 

tn. The expectation of the present value (PV) of the cash flows to be paid by the CDS buyer is then 

given by:  

 

 

 

where D(ti) is the ti risk free discount factor, and we assume that payments are made quartely and the 

CDS rate KT is given yearly. 

The PV of the payment the CDS seller may have to make in case of default is given by the 

discounted value of the non-recovered fraction weighted by the probability of default occurring at each 

payment date. The PV of the non-recovered part in case of default is given by: 

 

 

where q(ti,ti+1) is the probability of default between ti and t i+1  given that it survived until time ti and it is 

related to Q(ti) in the following recursive way: 

 

 

In eq. 5 we have made the approximation that the discount factor for a default inter-time period is the 

arithmetic average of the extremes in the interval.   

As we assume no-arbitrage at the beginning of the contract, the two sides (seller and buyer) agree 

on the equality of their respective PV’s and the CDS rate is then given by: 
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Market quotes for CDS’s of different maturities are then used in an optimization algorithm to 

imply default probabilities. We refer to Martin et al [11] for more details.  

 

 

4) Copula Functions  

In order to generate default times of the entities in a basket portfolio we need to determine a joint 

distribution function. This joint distribution must fulfil two requirements: a) it recovers the uni-

dimensional marginal distributions implied from the CDS market; b) it recovers the two dimensional 

default correlation matrix from the entities in the portfolio4. 

In this work we use copula functions to generate correlated default times that follow given 

marginal distributions. We will give a very brief description of the use of copulas. We refer to Nelsen 

[15] for a comple te mathematical description, to Frees and Valdez [16] as a very good survey paper, 

and to Li [4], Schonbucher [17], and Frey et al [18] on the use of copulas in pricing baskets. 

In order to understand how the copula is used consider we have a basket on M entities and P 1(x1), 

P2(x2), …, P M(xM) are the marginal distributions of default times implied from the CDS market for each 

entity (as described in section 3). A copula function C is a function from (0,1)M to (0,1) such that: 

 

 

 

where P is the joint distribution function of default times. It is well known from Sklar [19] that under 

some standard technical conditions (e.g. continuity of the marginals) any such a multivariate 

distribution function can be written in the form of a copula function.  

A common market practice is to use the multivariate normal copula that is defined as: 

 

 

 

where N-1 is the inverse of the univariate standard normal distribution, and NM is the multivariate 

normal distribution with correlation matrix function S.   

                                                                 
4 One should be aware that given a joint distribution function one can determine the marginals and the 
correlation matrix uniquely but not the other way around. I.e. given the marginals and the correlation 
matrix there is not a unique solution for the joint distribution. 
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Most of the market participants we are aware of have chosen the normal copula function as here 

described for the pricing of basket derivatives. A first (and admittedly academic weak) practical reason 

for it is that multinormal distributed numbers are usually readily available in any numerical package. 

A second practical reason is that using gaussian copulas eliminates the necessity for a calibration 

to a possible default correlation function. I.e. for any other alternative choice of the copula function one 

will still have to calibrate its parameters in order to recover the correlation matrix. This would be done 

by the use of eq. 1 where p1 and p2 come from the marginal distributions and p12 comes from the copula 

function with the appropriate parameter to recover the observed correlation. But if one assumes the 

validity of Merton firm value model, default correlation may be taken from the equity market (time 

series of stock returns). It can be proven that this correlation is the correlation parameter used in the 

gaussian copula function and the calibration is done by construction, eliminating the time consuming 

calibration for correlation. We refer to Li [4] and Gupton et al [6] for more details.  

Although mathematical convenience has been the driving force behind the market and our 

preference for the gaussian copulas, we are well aware of possible limitations on the approach. We refer 

the interested reader to the work of Marshal et al [20] and Schonbucher [17] for the use of the 

alternative copulas and to Frey et al [10] for a critic on the use of asset correlations. 

  

 

5) Pricing Baskets: The Copula Algorithm 

In this section we show the steps to price a first to default and a first loss basket. We need to price a 

first to default or a first loss on a basket containing M entities and the expiration time of the baskets is 

Texp . The necessary data to price the securities are: a) the yield curve; b) market CDS spread curves for 

each individual name; c) recovery rate (in case of default) for each name; d) the correlation matrix 

(equity returns) of the entities in the basket. 

We will divide the algorithm in two steps: i) we show how to generate default times; ii) we show 

how to use the default times generated in step i) to evaluate the first to default (in section 5.1) and the 

first loss derivative (in section 5.2).  

The steps to be taken in the generation of the default times are the following: 

a) for each name in the basket estimate the default probability distribution function (see e.g. 

Martin et al. [8]); 

b) from a multivariate gaussian distribution with correlation matrix G (correlation matrix of equity 

returns) generate M numbers. Consider that X = [x1, x2, …, xM] is the vector of generated 

numbers; 
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c) for each number generated in step b) and using a standard normal distribution function evaluate 

the default probabilities pi such that: 

 

 

 

where n(y) is the normal density function with average 0 and standard deviation 1. 

d) for each generated number in c) and the marginal distributions of default implied in step a) 

retrieve the default times. I.e. evaluate t i such that:  

 

 

The vector of points T = [t1, t2, …, tM] are the simulated default times and Fi is the marginal 

cumulative distribution function for the asset i evaluated in step a). 

 

From Merton model one can evaluate the correlation function used in step b) above from 

normalized time series of equity returns. Consider we have used the algorithm described above to 

generate a number Nsim of simulations of default times. The simulated default times are going to be used 

to price a first to default and a first loss basket.  

Assume that Texp is the expiration time of the baskets (first to default or first loss), a i is the recovery 

rate of the reference entity i, and KT is the basket rate we want to evaluate. In addition suppose that the 

exposure for entity i is Ni, while NT  is the total exposure in the basket. I.e. if entity i defaults the 

protection seller will cover (1-a i) * Ni. The present value of the cash flow paid by the protection buyer 

in a certain simulation k  (PVk
B) is given by (see eq. 4):  

 

 

The index n in the equation above depends on the type of basket: a) for a first to default it represents the 

smaller between the time of the first default or the time of contract expiration; b) for a first loss it means 

the smaller between the time when the amount of protection loss is reached and expiration of contract 

time. Define by PVk
N  the present value of the notional in simulation k  if it would be paid at every 

payment date in the contract, i.e.: 
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where tk
d is the default time for simulation k . In this way: 

 

 

 

Analogously the present value of the cash flow of the protection seller for a simulation k (PVk
S) is given 

by: 

   

and we assume that at simulation k  the default may have occurred with entity i.  

 

 

5.1) First to Default Basket 

 

For a first to default basket the pricing algorithm is the following: 

 

a)  for each simulation k  select the minimum time from the vector of simulated default times (the 

vector T generated at step d) of last section).; 

b) for each simulation k evaluate the PVk
N and the PVk

S using eq.14 and 16 respectively; 

c) evaluate the average of the present value of the fees paid (<PVS>) and of the notional received 

(<PVN>) in all simulations. I.e.: 

 

  where A above maybe N (notional) or S (seller); 
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a) evaluate the first to default basket rate K  which is given by: 

 

 

 

5.2) First Loss basket 

Consider that Ni is the notional for each entity i (the maximum protection on an individual name) 

and NP is the maximum loss in the basket (the total protection for which the investor is covered). As an 

example consider a basket with five names, each with a notional of 10 mi USD (maximum protection 

per name (Ni)). Assume the recovery rate for each name is 50% and the maximum loss in the basket is 

15 mi USD (NP). Under this simple example a first default would involve the payment of 5 mil USD by 

the protection seller and the new maximum loss notional in the basket would reduce to 10 mi USD. The 

contract continues existing until it expires or NP reaches zero. 

For the case of a first loss basket the evaluations of the fees to be paid (by the protection buyer) and 

the insurance (by the protection seller) depends on the following points: a) notional in each entity (it 

might differ from entity to entity); b) the recovery factor of each entity; c) the maximum loss covered at 

the time a default happens; d) the time of the default. 

The algorithm used for pricing a first loss basket is the following:  

a) evaluate the default times that occur before the expiry of the contract; 

b) evaluate the remaining capital protection after each default and check if the remaining 

protection (NP) is still higher than zero. In case NP goes to zero the contract terminates. The 

present value of the notional at simulation k is given by:  

 

 

 

 

and where NP(t) is the outstanding protection at time t. The present value of the amount to be 

paid by the protection seller at simulation k  (PVk
S) is then: 
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where nd is the number of defaults, td
j is the time of the jth default, Nd

i is the amount covered by 

the td
j -default and is given by: 

 

 

 

and assuming that the default occurred with entity i; 

  

c) evaluate the present values of buyer, seller and the basket rate analogously as it is done for the 

first to default basket (see eq. 17 and eq. 18 respectively). 

 

In the next section we give the results of our simulations.  

  

6) The BET Approach 

 The BET methodology is based on the concept of diversity score (DS) and it is an application 

of the binomial formula from probability theory to a simplified version of the portfolio. We will show 

one way the market participants use the BET to generate a rating and then a price for a basket structure. 

We refer to Garcia et alli [23] for a far more detailed study of the BET methodology. 

 The technique consists in simplifying the portfolio maintaining the same default behaviour of 

the real one. The basic idea is to map a portfolio of heterogeneous correlated securities with distinct 

probabilities of defaults into a portfolio of independent securities with the same probability of default. 

After the mapping is done it is warranted to apply the binomial formula to estimate the expected loss on 

the portfolio. As adherence of the portfolio  to a rating category is determined by its expected loss, one 

can estimate the rating category of the portfolio once one has evaluated the expected loss. The last step 

is then to exploit the relation between rating and spread to obtain a valuation of the structure.  

 We will describe the methodology in somewhat more detail. For simplicity we will assume the 

collateral portfolio to be composed of bonds issued by different entities.  
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 The first step consists in reducing the portfolio of correlated credits into a portfolio of 

independent assets. It is achieved by calculating the DS of the portfolio. The DS is assumed to be the 

number of independent homogeneous assets that gives the same loss distribution as the actual portfolio. 

It is a function of the default correlation of the names in the portfolio. There are two different ways of 

calculating the DS of a portfolio. In a first approach one uses a table to map the number of companies 

in a certain sector to its diversity score (see section 7.2.2 for more details and data on how it is done). In 

a second approach the DS is calculated from the correlation, the face value, and the probabilities of 

defaults of the entities in the portfolio, and we refer to Cifuents et al [22] for more details. Here we will 

be using the first approach as it is more widespread in dealing rooms. 

 In the second step one calculates the weighted average rating factor (WARF). It represents the 

average rating of the portfolio and as such of the idealized assets. Assume each name j in the real 

portfolio has a rating factor given by RFj (it is given by the Moodys 10-year estimation of the 

cumulative probability of default multiplied by 10,000). The WARF is then given by eq. 22 below: 

 

 

where N is the total nominal in the portfolio and Nj is the notional on bond j. 

 In the third step one uses the WARF and the maturity of the contract to determine the average 

rating of the generalized bond and its cumulative probability of default. As the generalized bonds are 

assumed to be independent one can calculate the probabilities of 0 up to DS (idealized bond) defaults in 

the time period of the contract. Assuming that p is the cumulative probability of default the probability 

P i of i such a bonds defaulting is given by: 

 

 

 

 In order to reduce the impact of the errors due to all the simplified assumptions in the model it 

is a common market practice to multiply the probability of default p by a stress factor ?: 
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 In the fourth step one uses the probabilities evaluated in eq. 24 above and the average recovery 

rate (it is an input to the algorithm) to calculate expected loss (EL) in the idealized portfolio. Suppose a 

is the average recovery rate and Navg is the nominal of each idealized bond (given by the total nominal 

in the portfolio N divided by the diversity score). The EL is then given by: 

 

 

 

 In the fifth step one uses the EL and the maturity of the contract to calculate the default 

probability and the rating of the portfolio. Consider that PD would be the cumulative probability of 

default on the portfolio seen as a whole. The expected loss is related with the default probability of the 

portfolio by the expression: 

 

 

 

Once the probability of default and the maturity are used to determine the rating of the portfolio we are 

ready to determine the premium to be paid. In what follows we will show one possible alternative for 

this step.  

The fee to be paid is calculated by mapping the rating with an appropriate spread. This 

mapping is more an art than a science as the methodology is not unique. There are several ways the 

mapping can be done and each of those ways might lead to different prices. One possibility is to find in 

the market curves that link spreads to rating and sector. The problem with this approach is that these 

curves do not exist for every combination of rating and sector. As it will be seen in section 7 for the 

rating Baa3 we could find curves only for industrials, telecom and utilities. Another possibility is to use 

curves relating rating (only) to spread. Alternatively one would use curves relating sectors to spread. 

Those curves are available in the market from large investment banks like Goldman Sachs or Morgan 
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Stanley (MSCI bond index) to mention only two. One may still decide to take a weighted average of 

those curves.  

For simplicity in this study we will be using the spreads of the industrial sector for the given 

rating.  

  

   

7) Empirical Results  

 

7.1) First to Default  

Consider a first to default basket contract composed by five reference entities: Boeing, Disney, 

General Electric, Goldman Sachs, Hewlett Packard Compaq.   

The CDS quotes used to imply the default probabilities are shown in table 1.  

 

 CDS Quotes (in bp) for different maturities (in year)  

Company 1 y 2 y 3 y 4 y 5 y 6 y 

Boeing  34 45 49 54 57 54 

Disney 50 63 67 77 84 92 

General Electric 36 42 45 54 60 60 

Goldman Sachs  29 37 39 46 50 54 

HPQ 78 71 69 63 60 58 

Table 1 CDS Quotes in bp taken from a market participant on the date of the evaluation 

 

For pricing purpose we have assumed a standard recovery rate of 20% for every company in the 

basket.  This was the recovery value used by several market participants (in dealing rooms) at the date 

of pricing (Jan 21st 2003). 

The risk free discount curve used for the pricing is reported in table 2.  

 

 

 

 

 

 

 

 



9th Draft 15 

Date Discount Factor 

21/01/2003 1 

21/02/2003 0.998829 

21/03/2003 0.997763 

21/04/2003 0.996587 

21/05/2003 0.995454 

23/06/2003 0.994211 

21/07/2003 0.993109 

21/10/2003 0.989430 

21/01/2004 0.985192 

21/01/2005 0.959950 

23/01/2006 0.923584 

21/01/2007 0.882579 

22/01/2008 0.838816 

21/01/2009 0.795279 

       Table 2 Risk Free Discount factors used in the pricing of the First to default 

 

The default probability curves (for each name) were implied from the CDS curves of table 1 as 

described in Martin et al. [11].  

In order to generate the joint default probabilities we have used a normal copula function. The 

covariance matrix parameter used in the normal copula was taken from the equity market and is 

reported in table 3. 

 

 

 Boeing Disney General Electric Goldman Sachs  HPQ 

Boeing  1 0.281696 0.410516 0.122576 0.159480 

Disney 0.281696 1 0.445367 0.343534 0.378281 

General Electric 0.410516 0.445367 1 0.455073 0.337691 

Goldman Sachs  0.122576 0.343534 0.455073 1 0.439621 

HPQ 0.159480 0.378281 0.337691 0.439621 1 

Table 3 Covariance Matrix from three year time series taken from the equity market 

 

The price for the 5 year first to default basket using the algorithm described in section 5.1 and a 

bid-offer quotes from a market maker are shown in table 4.  
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 Basket Rate (bp) 

Model Rate  257 

Market (Bid-Offer) 205-265 

   Table 4 CDS Premium for a first to default basket 

 

As it can be seen in table 4 the rate given by the model falls inside the market maker bid-offer 

spread. Observe that we have used mid quotes to imply default probabilities (table 1). Another 

observation is that those quotes are not homogeneously liquid. I.e. quotes for the three and five years 

are far more liquid than any of the others that might have been obtained through interpolation (we have 

obtained all the spreads used to imply the default probabilities from another market maker). This can 

explain why the model rate is not closer to the mid of the bid-offer. 

 

 

 

7.2) First Loss Basket 

 Here we will price two first loss baskets: one quoted in dollar and the other in euros. The two 

portfolios might be seen in table 5. 

 The contracts offer protection of up to 30 mi euros and 32 mi euros and USD respectively and 

of up to 10 mi (euros/USD) loss for each name. The portfolio contains 16 and 17 names respectively for 

the euros and USD contracts. The sector names used for the evaluation of the DS (see section 7.2.2) are 

included in table 5 (we used the industry classif ication table of Moody’s). In section 7.2.1 we present 

the results of the copula method and in section 7.2.2 for the BET methodology. 
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Euro Contract USD Contract 

Entity Sector Rating Entity Sector Rating  

AXA SA Insurance A1 Boeing Co. Defense A1 

ABN Amro Banking Aa3 Bank of America Banking Aa3 

Akzo Nobel Chemicals A2 Citigroup Banking A2 

Basf Ag. Chemicals Aa3 Coca Cola Food/Beverage Aa3 

Bayer Ag. Chemicals A2 CSC Computers/Peripherals A2 

BMW Ag Autos A1 Disney Entertainment Baa1 

BP Amoco Oil Aa1 General Electric Electrical Aa3 

BAT Tobacco A2 Goldman Sachs  Securities Aa3 

Carrefour  Retail A1 Hewlett Packard Computers/Peripherals A3 

Commerzbank Banking A1 IBM Computers/Peripherals A1 

Ahold NV Retail Baa1 Lockheed Martin Defense Baa2 

Marks & Spencer Retail A3 Lehman Brothers  Securities A2 

Philips NV Electronics A3 McDonalds Corp. Food/Beverage Aa3 

Peugeot Autos A2  Merrill Lynch Securities Aa3 

Siemens Electronics Aa3 Morgan Stanley Securities Aa3 

Total Fina Oil Aa2 Philipp Morris  Tobacco A2 

- -  Wal Mart Retail Aa2 

  Table 5 First Loss baskets. The maximum protection per name is 10 mi euros/USD. The total  

  protection is 30 mi euros and 32 mi USD respectively. The sector names were taken from Moody’s. 

  

   

  

7.2.1) The Copula Method 

 

 In here we will price the first loss baskets using the gaussian copula approach as explained in 

section 5. The yield curves used in the study are shown in table 6. The marginal probabilities of defaults 

have been implied from the CDS market and the market CDS quotes (as of the date of pricing) are 

shown in table 7. When using the copula approach we have tested the prices with three different 

correlation functions: a) taken from Moodys; b) taken from S&P (Standard and Poors); c) evaluated 

from equity returns.  
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Date Discount Factor 

(euro) 

Discount Factor 

(USD) 

28/10/2002 1 1 

29/10/2002 0.99991 0.99995 

04/11/2002 0.99935 0.99965 

28/11/2002 0.99717 0.99842 

28/01/2003 0.99181 0.99529 

28/04/2003 0.98442 0.99077 

28/10/2003 0.96943 0.98086 

28/10/2004 0.93524 0.95049 

28/10/2005 0.89582 0.91171 

       Table 6 Discount factors used to price the first loss baskets 

  

 

 For both Moody’s and S&P we have used the correlation functions they give for quoting their 

CDO structures (it is the same used for ABS/MBS structures). Both agencies use correlation based on 

industry and sectors (inter-industry correlations and intra-industry correlations). We have used an inter-

industry correlation of 0 for both cases while an intra-industry of 0.3 and 0.1 for S&P (see Bergman 

[24]) and Moody’s (available upon request) respectively.  Bellow we give the relation of companies 

that belong to the same sector (we have used Moody’s industry table to make the groupings): 

a) euro basket: (ABN Amro, Commerzbank),  (Akzo Nobel, Basf, Bayer), (BMW , Peugeot), 

  (BP Amoco, Total Fina), (Carrefour, Ahold), (Philips, Siemens); 

b) USD basket: (Boeing, Lockheed Martin), (Bank of America, Citigroup), (Coca Cola, 

McDonalds), (CSC, Hewllett Packard, IBM), (Goldman Sachs, Lehman Brothers, Merrill 

Lynch). 

  

 The correlations extracted from the equity returns are shown in tables 8a and 8b for the euros 

and USD contracts respectively.  We have used 3 years of weekly prices to compute the correlation 

function. 

 In order to understand the impact of the recovery rate we have computed the prices of the 

baskets under three different assumptions for the recovery rate: a) 20%; b) 36.2%; and c) 45%. The 

36.2% is the average recovery rate for senior unsecured speculative grade bonds for 2001 as reported in 

Moodys [21]. The 45% recovery is approximately the 1982-2000 average recovery rate for the senior 
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unsecured speculative grade recoveries as reported in the same Moody’s [21]. Finally the 20% was a 

stressed value we got to after talks with market participants at the time of the pricing.  

 The results of the pricing using different correlations and default assumptions (for the copula 

approach) are shown in tables 9a and 9b. In the bottom line of the table we have added the bid and offer 

quotes of a market maker. 

 We report in tables 10a and 10b the relative errors defined by the difference of the value found 

and the mid price divided by the mid price.   
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Company 1yr (bp) 3yr (bp) 5yr (bp)  Company 1yr (bp) 3yr (bp) 5yr (bp) 

Axa S.A. 121 121 140  Boeing Co 66 95 110 

ABN Amro 12 29 43  Bank of America 21 36 48 

Akzo Nobel 41 54 65  Citigroup 25 37 50 

Basf Ag 19 25 33  Coca Cola 25 32 40 

Bayer Ag. 41 74 85  CSC 136 155 175 

BMW Ag 22 33 45  Disney 69 92 115 

BP Amoco 15 18 25  General Electric 56 70 94 

BAT 48 75 85  Goldman Sachs 53 71 90 

Carrefour 35 45 55  Hewlett Packard 182 161 140 

Commerzbank 116 127 150  IBM 50 57 70 

Ahold 142 190 200  Lockheed Martin 53 53 60 

Marks & Spencer 39 47 55  Lehman Brothers  77 102 92 

Philipps NV 83 139 150  McDonalds Corp 22 31 40 

Peugeot 35 50 65  Merril Lynch 98 115 98 

Siemens  35 70 75  Morgan Stanley 47 64 85 

Total Fina 14 20 25  Philip Morris 200 200 200 

- - - -  Wal Mart 22 25 30 

 

Table 7 CDS spreads used in the evaluation of the default probabilities. The left and right tables give the names in the euro and USD contracts 

respectively. Both contracts give protection of up to 10 mi euros and USD per company respectively. The total loss per contract is 30 mi 

euros and 32 mi USD respectively.   
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 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) 

(1) 1.000 0.590 0.365 0.286 0.355 0.416 0.180 -0.078 0.318 0.496 0.335 0.108 0.305 0.450 0.356 0.313 

(2) 0.590 1.000 0.387 0.361 0.451 0.498 0.242 0.081 0.381 0.468 0.451 0.299 0.422 0.321 0.446 0.322 

(3) 0.365 0.387 1.000 0.498 0.497 0.391 0.179 -0.127 0.142 0.342 0.212 0.178 0.187 0.388 0.219 0.215 

(4). 0.286 0.361 0.498 1.000 0.742 0.491 0.290 -0.061 0.173 0.372 0.308 0.113 0.156 0.350 0.264 0.295 

(5) 0.355 0.451 0.497 0.742 1.000 0.478 0.229 0 0.200 0.339 0.331 0.142 0.199 0.390 0.300 0.339 

(6) 0.416 0.498 0.391 0.491 0.478 1.000 0.249 -0.045 0.268 0.365 0.312 0.241 0.314 0.386 0.409 0.247 

(7) 0.180 0.242 0.179 0.290 0.229 0.249 1.000 0.013 0.115 0.222 0.222 0.013 0.159 0.139 0.127 0.593 

(8) -0.078 0.081 -0.127 -0.061 0 -0.045 0.013 1.000 -0.022 0.043 -0.075 0.020 -0.046 -0.089 0.037 -0.027 

(9) 0.318 0.381 0.142 0.173 0.200 0.268 0.115 -0.022 1.000 0.153 0.310 0.156 0.270 0.179 0.261 0.385 

(10) 0.496 0.468 0.342 0.372 0.339 0.365 0.222 0.043 0.153 1.000 0.144 0.152 0.291 0.356 0.347 0.306 

(11) 0.335 0.451 0.212 0.308 0.331 0.312 0.222 -0.075 0.310 0.144 1.000 0.239 0.259 0.201 0.173 0.308 

(12) 0.108 0.299 0.178 0.113 0.142 0.241 0.013 0.020 0.156 0.152 0.239 1.000 0.115 0.195 0.120 0.025 

(13) 0.305 0.422 0.187 0.156 0.199 0.314 0.159 -0.046 0.270 0.291 0.259 0.115 1.000 0.281 0.648 0.257 

(14) 0.450 0.321 0.388 0.350 0.390 0.386 0.139 -0.089 0.179 0.356 0.201 0.195 0.281 1.000 0.283 0.273 

(15) 0.356 0.446 0.219 0.264 0.300 0.409 0.127 0.037 0.261 0.347 0.173 0.120 0.648 0.283 1.000 0.256 

(16) 0.313 0.322 0.215 0.295 0.339 0.247 0.593 -0.027 0.385 0.306 0.308 0.025 0.257 0.273 0.256 1.000 

Table 8a Correlation matrix taken from the equity market (equity returns) for the first loss basket in euro. For reasons of aesthetics names of the 

companies in the table have been coded in the following way: (1) Axa SA, (2) ABN Amro, (3) Akzo Nobel, (4) Basf Ag, (5) Bayer Ag, (6) BMW 

Ag, (7) BP Amoco, (8) BAT , (9) Carrefour, (10) Commerzbank, (11) Ahold , (12) Marks & Spencer, (13) Philipps NV, (14) Peugeot, (15) Siemens, 

(16) Total Fina. 
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 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) 

(1) 1.000 0.208 0.300 0.211 0.183 0.282 0.411 0.123 0.160 0.079 0.259 0.251 0.211 0.203 0.236 0.157 0.259 

(2) 0.208 1.000 0.637 0.219 0.169 0.323 0.454 0.367 0.218 0.231 0.087 0.537 0.268 0.429 0.510 0.106 0.332 

(3) 0.300 0.637 1.000 0.285 0.268 0.469 0.609 0.580 0.354 0.417 0.043 0.703 0.269 0.673 0.711 0.113 0.489 

(4). 0.211 0.219 0.285 1.000 0.075 0.167 0.251 -0.042 0.026 0.085 0.191 0.082 0.231 -0.004 0.100 0.162 0.310 

(5) 0.183 0.169 0.268 0.075 1.000 0.276 0.319 0.232 0.296 0.398 0.067 0.242 0.218 0.275 0.319 0.102 0.186 

(6) 0.282 0.323 0.469 0.167 0.276 1.000 0.445 0.344 0.378 0.366 -0.049 0.451 0.276 0.445 0.437 0.009 0.325 

(7) 0.411 0.454 0.609 0.251 0.319 0.445 1.000 0.455 0.337 0.391 0.070 0.621 0.243 0.511 0.593 0.208 0.481 

(8) 0.123 0.367 0.580 -0.042 0.232 0.344 0.455 1.000 0.440 0.344 0.016 0.783 0.123 0.790 0.829 -0.032 0.373 

(9) 0.160 0.218 0.354 0.026 0.296 0.378 0.337 0.440 1.000 0.444 0.036 0.465 0.165 0.424 0.538 0.142 0.216 

(10) 0.079 0.231 0.417 0.085 0.398 0.366 0.391 0.344 0.444 1.000 -0.008 0.350 0.208 0.342 0.400 0.164 0.210 

(11) 0.259 0.087 0.043 0.191 0.067 -0.049 0.070 0.016 0.036 -0.008 1.000 0.057 0.119 -0.006 0.073 0.217 0.214 

(12) 0.251 0.537 0.703 0.082 0.242 0.451 0.621 0.783 0.465 0.350 0.057 1.000 0.217 0.796 0.866 0.027 0.447 

(13) 0.211 0.268 0.269 0.231 0.218 0.276 0.243 0.123 0.165 0.208 0.119 0.217 1.000 0.095 0.263 0.223 0.199 

(14) 0.203 0.429 0.673 -0.004 0.275 0.445 0.511 0.790 0.424 0.342 -0.006 0.796 0.095 1.000 0.815 -0.009 0.333 

(15) 0.236 0.510 0.711 0.100 0.319 0.437 0.593 0.829 0.538 0.400 0.0731 0.866 0.263 0.815 1.000 0.046 0.455 

(16) 0.157 0.106 0.113 0.162 0.102 0.009 0.208 -0.032 0.142 0.164 0.217 0.027 0.223 -0.009 0.046 1.000 0.116 

(17) 0.259 0.332 0.489 0.310 0.186 0.325 0.481 0.373 0.216 0.210 0.214 0.447 0.199 0.333 0.455 0.116 1.000 

Table 8b Correlation matrix taken from the equity market (equity returns) for the first loss basket in euro. For reasons of aesthetics names of the 

companies in the table have been coded in the following way: (1) Boeing Co, (2) Bank of America, (3) Citigroup, (4) Coca Cola, (5) CSC, (6) 

Disney, (7) GE, (8) Goldman Sachs, (9) HP, (10) IBM, (11) Lockheed Martin, (12) Lehman Brothers, (13) McDonalds Corp. (14) Merril Lynch, 

(15) Morgan Stanley, (16) Philipp Morris, (17) Wal Mart. 
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Recovery Rate  

(%) 

Moody’s Corr. 

(bp) 

S&P Corr. 

(bp) 

Eq. Returns Corr 

(bp) 

36.2 460 467 437 

20.0 460 460 432 

45.0 543 550 530 

Market Quote (bp) 303 (bid)  -  403 (mid)  -  503 (offer) 

Table 9a Results for the pricing of the euro first loss basket using different correlation and 

recovery rate assumptions. 

 

 

Recovery Rate  

(%) 

Moody’s Corr. 

(bp) 

S&P Corr. 

(bp) 

Eq. Returns Corr 

(bp) 

36.2 505 507 470 

20.0 510 504 450 

45.0 501 501 471 

Market Quote (bp) 387 (bid)  -  487 (mid)  -  587 (offer) 

Table 9b Results for the pricing of the USD first loss basket using different correlation and 

recovery rate assumptions. 

 

 

Recovery Rate  

(%) 

Moody’s Corr. 

(%) 

S&P Corr. 

(%) 

Eq. Returns Corr 

(%) 

36.2 12.4 13.7 7.7 

20.0 12.4 12.4 6.7 

45.0 25.8  26.7 24.0 

Market Quote (bp) 303 (bid)  -  403 (mid)  -  503 (offer) 

Table 10a Rela tive errors for the prices given in table 9a. We take the computed quote subtract 

the market mid price and divide it by the market price.  
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Recovery Rate  

(%) 

Moody’s Corr. 

(%) 

S&P Corr. 

(%) 

Eq. Returns Corr 

(%) 

36.2 3.7 4.1 -3.5 

20.0 4.7 3.5 -7.6 

45.0 2.9 2.9 -3.3 

Market Quote (bp) 303 (bid)  -  403 (mid)  -  503 (offer) 

Table 10b Relative errors for the prices given in table 9b. We take the computed price subtract the 

market mid price and divide it by the market price.  

 

  

 7.2.2) BET Methodology 

 In the first step of the BET methodology one needs to evaluate the DS of the portfolio. 

For each portfolio we group the companies that belong to the same sector5. The aggregate 

industry equivalent unity score (AIEUS) of each sector is computed in two steps: a) for each 

company in the sector divide its exposure by the average firm exposure in the portfolio; b) add 

those values in a) for the companies in the sector. We then use the mapping table 11 to get the DS 

of each group and by adding them up we get the DS of the portfolio. The computations are shown 

in Table 12. 

 In the next step one computes the WARF of the portfolio (see eq. 22 in section 6). The 

rating factors used in the computation are seen in table 13. From the WARF we have the average 

rating of the portfolio and via interpolation one computes the average default probability of the 

idealized bond. The results of those computations for both portfolios are shown in table 14.  

 Once all the necessary parameters are computed one gets the rating of the portfolio (see 

table 14) as described in section 6. As already mentioned in section 6 we will be using the spreads 

given by ratings in the industrial sector. I.e. we will take the spread of the Baa3 rating (the rating 

of both portfolios) for the industrial sector. We should still mention that the other two possible 

sectors (with Baa3 rating) for which spreads were available in market were the phones and 

utilities and both of them had spreads higher than the one given by the industrials (with Baa3 

rating).  

 

 

 

 

                                                                 
5 The number of companies in the same sector is called “equivalent industry unit score”. 
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AIEUS DS  AIEUS DS 

0.0000 0.0000  2.15 1.6000 

0.0500 0.1000  2.25 1.6500 

0.1500 0.2000  2.35 1.7000 

0.2500 0.3000  2.45 1.7500 

0.3500 0.4000  2.55 1.8000 

0.4500 0.5000  2.65 1.8500 

0.5500 0.6000  2.75 1.9000 

0.6500 0.7000  2.85 1.9500 

0.7500 0.8000  2.95 2.0000 

0.8500 0.9000  3.05 2.0333 

0.9500 1.0000  3.15 2.0667 

1.0500 1.0500  3.25 2.1000 

1.1500 1.1000  3.35 2.1333 

1.2500 1.1500  3.45 2.1667 

1.3500 1.2000  3.55 2.2000 

1.4500 1.2500  3.65 2.2333 

1.5500 1.3000  3.75 2.2667 

1.6500 1.3500  3.85 2.3000 

1.7500 1.4000  3.95 2.3333 

1.8500 1.4500  4.05 2.3667 

1.9500 1.5000  4.15 2.4000 

2.0500 1.5500  4.25 2.4333 

Table 11 Diversity Score Conversion table (AIEUS : Aggregate Industry Equivalent Unity  

Score). 
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Euro Denominated Contract USD denominated Contract 

Sector AIEUS DS Sector AIEUS DS 

Insurance  1 1 Ind. Aerospace 

Defense 

2 1.5 

Banking 2 1.5 Banking 2 1.5 

Industrial:Chem. 3 2 Ind. Food 1 1 

Industrial: Autos 2 1.5 Ind. Electric 1 1 

Industrial: Oil 2 1.5 Ind. Computers  4 2 

Industrial:Tobacco 1 1 Ind. Entertainment 1 1 

Ind. Retail 3 2 Securities 3 2 

Ind. Electronics 2 1.5 Ind. Restaurants 1 1 

- - - Ind. Tobacco  1 1 

- - - Ind. Retail 1 1 

Total 16 12 Total 17 13 

 Table 12 Computation of the Diversity Scores for the Euro and USD contracts. 

 

  

 As it can be seen in table 14 the spreads (over government) for industrials Baa3 are 

219.17 bp and 507.69 bp for US and euro respectively. The quotes have been taken from the 

Bloomberg professional curves for the date 28 Oct 2002.  
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  Cumulative Default Probabilities in time (%) 

Rating Rating Factor 1 yr 2 yr 3 yr 4 yr 5 yr 6 yr 7 yr 8 yr 9 yr 10 yr 

Aaa 1 0.0005 0.0002 0.0007 0.0018 0.0029 0.0040 0.0052 0.0066 0.0082 0.0100 

Aa1 10 0.0006 0.0030 0.0100 0.0210 0.0310 0.0420 0.0540 0.0670 0.0820 0.1000 

Aa2 20 0.0014 0.0080 0.0260 0.0470 0.0680 0.0890 0.1110 0.1350 0.1640 0.2000 

Aa3 40 0.0030 0.0190 0.0590 0.1010 0.1420 0.1830 0.2270 0.2720 0.3200 0.4000 

A1 70 0.0058 0.0370 0.1170 0.1890 0.2610 0.3300 0.4060 0.4800 0.5730 0.7000 

A2 120 0.0109 0.0700 0.2220 0.3450 0.4670 0.5830 0.7100 0.8290 0.9820 1.2000 

A3 180 0.0389 0.1500 0.3600 0.5400 0.7300 0.9100 1.1100 1.3000 1.5200 1.8000 

Baa1 260 0.0900 0.2800 0.5600 0.8300 1.1000 1.3700 1.6700 1.9700 2.2700 2.6000 

Baa2 360 0.1700 0.4700 0.8300 1.2000 1.5800 1.9700 2.4100 2.8500 3.2400 3.6000 

Baa3 610 0.4200 1.0500 1.7100 2.3800 3.0500 3.7000 4.3300 4.9700 5.5700 6.1000 

Ba1  940 0.8700 2.0200 3.1300 4.2000 5.2800 6.2500 7.0600 7.8900 8.6900 9.4000 

Ba2  1350 1.5600 3.4700 5.1800 6.8000 8.4100 9.7700 10.700 11.660 12.650 13.500 

Ba3  1780 2.8100 5.5100 7.8700 9.7900 11.860 13.490 14.620 15.710 16.710 17.800 

B1 2220 4.6800 8.3800 11.580 13.850 16.120 17.890 19.130 20.230 21.240 22.200 

B2 2720 7.1600 11.670 15.550 18.130 20.710 22.650 24.010 25.150 26.220 27.200 

B3 3490 11.620 16.610 21.030 24.040 27.050 29.200 31.000 32.500 33.780 34.900 

Caa1 4770 17.382 23.234 28.639 32.479 36.314 38.967 41.385 43.657 45.672 47.629 

Caa2 6500 26.000 32.500 39.000 43.880 48.750 52.000 55.250 58.500 61.750 65.000 

Caa3 8070 50.990 57.009 62.450 66.240 69.821 72.111 74.330 76.485 78.581 80.623 

     Table 13 Indealized Moody’s default probabilities and rating factors.
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 Euro Portfolio USD Portfolio  

DS 12 13 

WARF 101.18 95.63 

Indealized Def. Prob. (%) 0.3667 0.3894 

Stressed Def. Prob. (%) 0.4509 0.4790 

Recovery Rate (%) 36.20 36.20 

Evaluated Rating Baa3 Baa3 

Model Price (bp) 508 219 

Market Price (mid) 403 487 

Relative Error (%) 20.7 -55.0 

         Table 14 Portfolio parameters computed using the BET Methodology.    

  

 As can be seen from table 14 the BET approach gives too large relative errors in the 

quotes for both instruments. For both contracts it falls outside the bid offer spread of the 

instruments (303/503 for the euro and 387/587 for the USD).  

 If the market were to use the BET methodology without any adjustment whatsoever from 

the results in table 14 it is clear that the approach should not at all be used in practice. 

 There are several problems with the BET approach. One for example is its use of 

historical probabilities of default that may not match the ones implied in the CDS market. This 

can cause problems as the quotes given might not reflect the cost of the hedge as given in the 

CDS market. An adjustment to it is done by stressing the default probability of the idealized 

bond. I.e. one multiplies the idealized default probability by a certain factor, as it has been done in 

here. A second source of errors is due to the discretization process. As we have seen the portfolio 

default probability implied by the expected loss determines the rating that will be used to evaluate 

the spread. The sensitivity to the rating might be very high. As an example if the rating for the 

USD portfolio would be one notch better (B1) the spread would have been 500 bp.  

 In order to count for the problems mentioned above the user of the methodology might 

make its own adjustments after checking the rating obtained. The user might want to compare the 

spread obtained with the one for a rating one notch up and down. A possibility is for example to 

give as bid the spread for the one notch up while as offer the spread of one notch down. Or 

alternatively one can take as mid price the average between the spreads for the one notch up and 

the one down.  
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8) Conclusions  

 

In this work we used and compared different methodologies to price first to default (FTD) 

and first loss contracts of portfolios of credits. All the data used in the tests was taken from the 

market and the model prices were tested with the bid offer spread of two market makers (one for 

the FTD and another for the first loss).  

For the FTD contract we have used the gaussian copula function approach with the 

correlation being calculated from the equity market. The recovery rate used was 20% and the 

model price (257 bp) is inside the bid offer of a market maker (205 – 265 bp).  

For the first loss basket we have used the gaussian copula method and the BET methodology 

and the results are compared with bid offer quotes of a market maker on two different baskets. 

Additionally for the gaussian copula we have used three different recoveries assumptions and for 

each case we have tested the results of using different correlation assumptions (Moody’s, S&P 

and correlation taken from equity returns). We have observed that the gaussian copula with the 

correlation calculated from the equity returns gives the best results. It should be noted however 

that if one uses the Moody’s or S&P correlations (for structured products) one is still inside the 

bid offer. Moreover the results of the copula approach are far better than the ones obtained via the 

BET methodology.   

Our conclusion from this study is that the gaussian copula approach with the equity return 

correlation and the appropriate recovery rate is capable of capturing the mid prices for the two 

first loss and the first loss basket instruments priced in this study. A continuation of this study is 

under way when a more extensive test of the impact of the correlation and recovery rates 

assumptions including the copula - BET models for the rating of CDO’s will be made. 
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