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In this article we show how the copula and the BET methodology can be used
to price baskets of credit derivatives. After brief descriptions of both
algorithms we use market data to price first to default and first loss contracts
on baskets of credit derivatives. Additionally the copula approach is used with
Moody and Standard and Poors correlation functions (this makes things
simpler to back office to have a quick present value of baskets) and different
recovery assumptions. All the tests are made using market data and the results

are then compared with prices given by market makers.

1) Introduction

Over the last few years the market for credit derivatives has experienced a tremendous growth.
Severa aspects have contributed to this start of the matter: @) the need of (financial) ingtitutions to
hedge the credit exposuresin their portfolios; b) the possibilities of those institutions to optimise the
alocation of their capital while at the same time fulfilling the requirements of Badelll.

Two classes of credit derivative contracts can be discerned: single name and multiname contracts.
In single name instruments the payoff depends on the credit events of one underlying entity. Examples
of such securities are credit default swaps (CDS's), single name credit linked notes (CLN’s), credit
spread options (CSO’s), and total return swaps. The most liquid single name credit derivative is the
CDS, representing about 40% of the credit derivatives market (see the British Bankers Association
report [1]). It provides insurance against the losses due to a default of one entity called the reference
entity. In the plain vanilla version of the contract the buyer pays a periodic fee in exchange for alump
payment by the protection sdller in case an event of default happened. We refer to Takavoli [2] and
Schonbucher [3] for a more detailed description of single name instruments.

In multi name contracts the payoff is contingent on the credit events of a portfolio of entities.
Examples are colateralized debt obligations (CDO), first loss and " to default basket derivatives and
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multi name credit linked notes. In afirst to default basket the protection buyer pays afee in return for a
lump payment by the protection seller for the first entity to default in the portfolio. The main reason
why one would want to use a firgt- to-default derivative is that it makes protectio n on a portfolio
cheaper. Consider for instance an investor who wants to hedge the credit exposure on a portfolio of 5
bonds. He/she might feel that for his/her investment horizon the risk on more than one default is rather
smdl and instead of buying protection on each single name in the portfolio he/she might choose to buy
protection to one default®. As a consequence the losses in the portfolio might be reduced (and
consequent improvement in its rating).

In afirst loss basket the protection buyer pays a fee to receive protection on a certain amount.
Instead of buying protection on the number of entities to default this derivative allows the investor to
focus directly on the possible amount lost. In our example, suppose the protection nominal in each
name was 10 millions USD. The investor might think that losses exceeding 30 mi USD are
unacceptable. He/she might want to buy afirst loss basket yielding credit protection up to 30 mi USD.
If the recovery rate for each entity is high the investor might finish by having bought full protection. As
before afirst loss basket might be used to improve the rating of the portfolio.

In this paper we show how to price afirst to default and afirst loss credit derivative. Our objective
isto describe and test (using market data) two different approaches that we have seen being used by
market participants. We base our copula algorithm on the paper of Li [4]. In this paper we have tesd
some practical aspects for pricing the contracts. First we make use of market default probabilities
implied by (extracted from) the CDS market for each underlying name. Second we use the copula
algorithm with three correlation functions: a) Moodys (for ABS/MBS products); b) Standard and Poors;
and c) the one evaluated from equity returns. Third all the data used is taken from the market while the
prices are compared with the bid offer given by market makers (the prices were given by market
makers on the condition of anonymity). At last we use the BET agorithm to price the same securities
and compare both approaches.

The remainder of the paper is organized as follows. In section 2 we define what will be seen as
default corrdation. How to imply default probabilities from the CDS market is shown in section 3. We
describe what copula functions are and why we will be using gaussian copulas in section 4. In section 5
we show how default correlation, marginal default probabilities and copula functions are put together to
price first to default and first loss basket derivatives using the copula methodology. In section 6 we
briefly describe the BET approach. In section 7 use market data to price afirst to default and afirst loss
using both methodologies and compare it with a bid quote given by a market participant. Conclusions

are drawn in section 8.

2 |f we assume that the entitiesin the portfolio are not independent then the first to default basket fee will be
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2) Default Correlation

When pricing a credit derivative on a portfolio of creditsthere are at least two important aspects to
be taken into account: a) the default correlation among entities, and b) the joint default probability
function. Both quantities should somehow be calibrated to market data. In this section we discuss the
issues on assigning a default correlation matrix to a basket of entities.

In the credit derivatives literature there are two main approaches currently being used to define the
default correlation.

In an approach described e.g. in Lucas [5] and Gupton et a [6] (and preferred by credit rating
agencies) one discretizes the period of observation and defines default as a survival or death event in
the observed period. In this way, consider one chooses a one year period interva and let p, and p, be
the one year marginal probability of default of companies C; and C, respectively. Consider p,, asthe
joint default probability for the two companies for the same period. The (one year) default correlation
(Corr(C.,Cy)) between C, and C, isthen given by:

— P, - P %P,
Corr(C,,C,) = . 1
( ' 2) '\/p1><1- pl)xpz >‘(1' pz) ()

In order to evaluate the correlation one will have to define companies by ratings and get data for a
certain period of time. Problems such as determination of the period of observation, inclusion or
exclusion of companiesin the pool (the rating category) during the period of observation and so on
make the methodology rather tricky to be used. We refer to Li [4] for more details.

Another approach (the one employed in this paper) exploits the notion of survival times commonly
used in actuarial analyses and in reliability theory (see Barlow and Proschan [7]). In this approach the
surviva timeis arandom variable and it will represent the time up to default of each entity in the
basket. The default correlation between two reference entities is defined as the correlation between their
survival times.

Consider T1 and T- the survival times (or default times) of the two entities C; and Cs. The default
correlation between the two companiesis then given by:

cheaper than buying protection in each individual name.
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COI’I’(Cl, Cz) — E(TliTzs) - E)g(Tl) XE(Tz) , (2)

where E is the expectation operator and s denotes the standard deviation of the survival time.

We will also assume that default correlation can be evaluated from the equity markets. Thisisthe
hypothesis made in CreditMetrics and KMV and follows from the firm value model developed by
Merton® [8]. |.e. in order to evaluate the correlation between two entities we will take time series of
stock returns, standardize (see section 5) and evaluate the correlation between them. We refer to
Embrechts et d [9] and Frey et d [10] for aternative ways of evaluating the correlation matrix in a
latent variable moddl.

An advantage of the approach here used is that equity datais easily available in comparison with
default times. Moreover the use of equity data permits an easy calibration of the input parameter to be

used in a gaussian copula function (as will be seen in section 4).

3) Marginal Default Probabilities and the CDS market

In astandard credit default swap (CDS) a protection seller recelves afixed periodic (say every
guarter) premium in order to give protection in case of default on a certain reference. Consider that the
notiona involved is N, the recovery rate in case of default isaand the CDSrateisK; for aT year
contract. By a CDS the contract buyer would be paying 0.25 * K: * N every quarter in order to receive
(1 -3 * N in case of default. Below we give a quick explanation for the evaluation of the CDS rate and
we refer the interested reader to the work of Martin et a. [11] or Hull and White [12] for more details.

In our approach we consider that the default time follows a Cox process (see Bremau [13] or
Lando [14]). In thisway if Q(T) is the probability of default occurring at time T, and t) isthe
instantaneous hazard rate of default at time t, then Q(T) is given by:

T
-g (Dt

QM=1-e° . (©)

% Merton model isaso called |atent variable model. In it default happens when the latent variable (equity price) of
the reference entity reaches book value.
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Suppose CDS premiums are paid at a set of dates (every quarter) that we will represent by t;, to, ...,
t,. The expectation of the present value (PV) of the cash flowsto be paid by the CDS buyer is then
given by:

PVaye = & 0.255D(t) ¥y <N X1- Q(t)), (4)

i=1

where D(t;) isthet; risk free discount factor, and we assume that payments are made quartely and the
CDSrate K is given yearly.

The PV of the payment the CDS sdller may have to make in case of default is given by the
discounted value of the non-recovered fraction weighted by the probability of default occurring at each
payment date. The PV of the non-recovered part in case of default is given by:

PV, @ a)x8 05XD(t)+ D(t,.)) N X1~ Q(t,))xa(t t,.), ©)

i=0

where q(ti ti+1) is the probability of default between t and ti+1 given that it survived until time t; and it is
related to Q(t;) in the following recursive way:

Q(ti1) =Q(t) + @- Q) >t ti.s) (6)
Q(t,) =0

In eg. 5 we have made the approximation that the discount factor for a default inter-time period isthe
arithmetic average of the extremesin the interval.

Aswe assume no-arbitrage at the beginning of the contract, the two sides (sdller and buyer) agree
on the equality of their respective PV’s and the CDS rate is then given by:

(1 a)xA 05XD() + D(t) XL~ QL)) 4t )
KT @ i=0 . . (7)
a (1- Q) XD(t)

i=1
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Market quotes for CDS s of different maturities are then used in an optimization algorithm to
imply default probabilities. We refer to Martin et & [11] for more details.

4) Copula Functions

In order to generate default times of the entities in a basket portfolio we need to determine ajoint
distribution function. This joint distribution must fulfil two requirements. @) it recovers the uni-
dimensional margina distributions implied from the CDS market; b) it recovers the two dimensiona
default correlation natrix from the entities in the portfolio®.

In thiswork we use copula functions to generate correlated default times that follow given
marginal distributions. We will give avery brief description of the use of copulas. We refer to Nelsen
[15] for a complete mathematical description, to Frees and Valdez [16] as a very good survey paper,
and to Li [4], Schonbucher [17], and Frey et d [18] on the use of copulasin pricing baskets.

In order to understand how the copulais used consider we have a basket on M entities and P1(Xy),
P2(X2), ..., Pu(xw) are the margina distributions of default times implied from the CDS market for each
entity (as described in section 3). A copula function C is a function from (0,1)" to (0,1) such that:

CIPL(%), Py (%), Py (X)) = PX, X0 X000 Xy )4 (®)

where Pisthejoint distrbution function of default times. It iswell known from Sklar [19] that under
some standard technical conditions (e.g. continuity of the marginals) any such a multivariate

distribution function can be written in the form of a copula function.
A common market practice is to use the multivariate normal copulathat is defined as:

C(X XgreXr ) = Ny (NTH0x,), N2 (X, ), NTH (%), S), ©)

where N is the inverse of the univariate standard normal distribution, and Ny, is the multivariate
normal distribution with correlation matrix function S.

“ One should be aware that given ajoint distribution function one can determine the marginas and the
correlation matrix uniquely but not the other way around. |.e. given the marginals and the correlation
matrix there is not a unique solution for the joint distribution.
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Most of the market participants we are aware of have chosen the normal copula function as here
described for the pricing of basket derivatives. A first (and admittedly academic weak) practical reason
for it is that multinormal distributed numbers are usually readily available in any numerical package.

A second practical reason isthat using gaussian copulas eliminates the necessity for a calibration
to a possible default correlation function. I.e. for any other aternative choice of the copula function one
will till have to calibrate its parametersin order to recover the correlation matrix. This would be done
by the use of eq. 1 where p; and p, come from the margind distributions and p,, comes from the copula
function with the appropriate parameter to recover the observed carrelation. But if one assumes the
validity of Merton firm value model, default correlation may be taken from the equity market (time
series of stock returns). It can be proven that this correation is the correlation parameter used in the
gaussian copula function and the calibration is done by construction, eliminating the time consuming
calibration for correlation. We refer to Li [4] and Gupton et a [6] for more details.

Although mathematical convenience has been the driving force behind the market and our
preference for the gaussian copulas, we are well aware of possible limitations on the approach. We refer
the interested reader to the work of Marsha et a [20] and Schonbucher [17] for the use of the
alternative copulas and to Frey et a [10] for acritic on the use of asset correlations.

5) Pricing Baskets. The Copula Algorithm
In this section we show the steps to price a first to default and a first loss basket. We need to price a
first to default or afirst loss on a basket containing M entities and the expiration time of the basketsis
Tep. The necessary data to price the securities are: a) the yield curve; b) market CDS spread curves for
each individual name; ¢) recovery rate (in case of default) for each name; d) the correlation matrix
(equity returns) of the entities in the basket.
We will divide the dgorithm in two steps: i) we show how to generate default times; ii) we show
how to use the default times generated in step i) to evauate the first to default (in section 5.1) and the
first loss derivative (in section 5.2).
The steps to be taken in the generation of the default times are the following:
a) for each name in the basket estimate the default probability distribution function (see e.g.
Martin et d. [8]);

b) from amultivariate gaussian distribution with correlation matrix G (correlation matrix of equity
returns) generate M numbers. Consider that X = [X4, X, ..., Xu] iSthe vector of generated
numbers;
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c) for each number generated in step b) and using a standard normal distribution function evaluate
the default probabilities p such that:

P = gu(y)dy, 10

where n(y) is the normal density function with average 0 and standard deviation 1.
d) for each generated number in c) and the margina distributions of default implied in step @)
retrieve the default times. |.e. evduatet; such that:

p- FR{t)=0 . (11)

The vector of points T = [ty, t;, ..., ty] are the smulated default times and F, isthe margind
cumulative distribution function for the asset i evaluated in step a).

From Merton model one can evauate the correlation function used in step b) above from
normalized time series of equity returns. Consider we have used the algorithm described above to
generate a number N, of smulations of default times. The simulated default times are going to be used
to price afirst to default and afirst loss basket.

Assume that Tep is the expiration time of the baskets (first to default or first loss), ai isthe recovery
rate of the reference entity i, and Ky is the basket rate we want to evaluate. In addition suppose that the
exposure for entity i is N, while Ny is the total exposure in the basket. |.e. if entity i defaults the
protection seller will cover (1-a;) * N. The present value of the cash flow paid by the protection buyer
in acertain simulation k (PVG) is given by (see eq. 4):

n

PV¥s = § D(t;) XK N,. . 13)

J

Theindex n in the equation above depends on the type of basket: &) for afirst to default it represents the
simaller between the time of the first default or the time of contract expiration; b) for afirst lossit means
the smaller between the time when the amount of protection lossis reached and expiration of contract
time. Define by PV the present value of the notional in simulation k if it would be paid at every
payment date in the contract, i.e.:
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PV¥N = é D(t,)N,, t =mn(t¢,T,)  (14)

J

where t'; is the default time for simulation k. In thisway:
PVKs = K xPV*y . (15)

Analogously the present value of the cash flow of the protection seller for asimulation k (PV¥y) isgiven
by:
¥ k H k
PVKSZ}'(:L- a;)>XD(t" )N, if t d£T9(p
t

. _ (16)
0 otherwise

and we assume that at smulation k the default may have occurred with entity i.

5.1) First to Default Basket
For afirst to default basket the pricing algorithm is the following:

a) for each smulation k select the minimum time from the vector of simulated default times (the

vector T generated at step d) of last section).;

b) for each smulation k evaluate the PV and the PV¥s using eg.14 and 16 respectively:

c) evauate the average of the present value of the fees paid (<PVs>) and of the notional received
(<PV>) indl simulations. |.e.:

Nosim

a PW
<PV, >=-k

17)

where A above maybe N (notional) or S (seller);
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a) evaluatethefirst to default basket rate K which is given by:

K = SPVs>

18
VR 18)

5.2) First Loss basket

Consider that N isthe notional for each entity i (the maximum protection on an individua name)
and Np is the maximum loss in the basket (the total protection for which the investor is covered). Asan
example consider a basket with five names, each with anotional of 10 mi USD (maximum protection
per name (N))). Assume the recovery rate for each name is 50% and the maximum loss in the basket is
15 mi USD (N»). Under this simple example a first default would involve the payment of 5 mil USD by
the protection seller and the new maximum loss notional in the basket would reduce to 10 mi USD. The
contract continues existing until it expires or N» reaches zero.

For the case of afirgt loss basket the evaluations of the fees to be paid (by the protection buyer) and
the insurance (by the protection seller) depends on the following points: @) notional in each entity (it
might differ from entity to entity); b) the recovery factor of each entity; c) the maximum loss covered at
the time a default happens; d) the time of the default.

The algorithm used for pricing afirst loss basket is the following:

a) evauate the default times that occur before the expiry of the contract;

b) evauate the remaining capital protection after each default and check if the remaining

protection (Np) is still higher than zero. In case N> goes to zero the contract terminates. The
present value of the notional at simulation k is given by:

PV¥n = é D(t,)Np(t,),  t,=min(t,,T

J

(19)

e<p)’

and where N»(t) is the outstanding protection at time t. The present value of the amount to be
paid by the protection seller at simulation k (PVX) is then:
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ja D(ty')<N% if tha £T,,

—— —

PV¥s = (20)

',1'0 otherwise,

where ng is the number of defaults, t,' isthe time of the jth default, N is the amount covered by

the t -default and is given by:

(1'ai)xN' if (1'ai)xNi <Np(ty)

: (21)
N, (t,) otherwise,

and assuming that the default occurred with entity i;

c) evaluate the present values of buyer, sdller and the basket rate analogoudly as it is done for the
first to default basket (see eq. 17 and eq. 18 respectively).

In the next section we give the results of our simulations.

6) TheBET Approach

The BET methodology is based on the concept of diversity score(DS) and it isan application
of the binomial formula from probability theory to a simplified version of the portfolio. We will show
one way the market participants use the BET to generate a rating and then a price for a basket structure.
Werefer to Garcia et ali [23] for afar more detailed study of the BET methodol ogy.

The technique consists in simplifying the portfolio maintaining the same default behaviour of
the real one. The basic ideais to map a portfolio of heterogeneous correlated securities with distinct
probabilities of defaults into a portfolio of independent securities with the same probability of default.
After the mapping is done it is warranted to apply the binomia formula to estimate the expected loss on
the portfolio. As adherence of the portfolio to arating category is determined by its expected loss, one
can estimate the rating category of the portfolio once one has evaluated the expected loss. The last step
is then to exploit the relation between rating and spread to obtain a vauation of the structure.

We will describe the methodology in somewhat more detail. For simplicity we will assume the
collatera portfolio to be composed of bonds issued by different entities.
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The first step consists in reducing the portfolio of correlated creditsinto a portfolio of
independent assets. It is achieved by calculating the DS of the portfolio. The DS is assumed to be the
number of independent homogeneous assets that gives the same loss distribution as the actua portfolio.
It is afunction of the default correlation of the names in the portfolio. There are two different ways of
calculating the DS of a portfolio. In afirst approach one uses a table to map the number of companies
in acertain sector to its diversity score (see section 7.2.2 for more details and data on how it isdone). In
a second approach the DS is calculated from the correlation, the face value, and the probabilities of
defaults of the entities in the portfolio, and we refer to Cifuents et al [22] for more details. Here we will
be using the first gpproach as it is more widespread in dealing rooms.

In the second step one calculates the weighted average rating factor (WARF). It represents the
average rating of the portfolio and as such of the idealized assets. Assume each name| in the red
portfolio has arating factor given by RF, (it is given by the Moodys 10-year estimation of the
cumulative probability of default multiplied by 10,000). The WARF is then given by eq. 22 below:

3
a RF N,
WARF :‘T, (22)

where N isthe total nominal in the portfolio and N; is the notional on bond j.

In the third step one uses the WARF and the maturity of the contract to determine the average
rating of the generalized bond and its cumulative probability of default. As the generalized bonds are
assumed to be independent one can calculate the probabilities of 0 up to DS (idealized bond) defaultsin
the time period of the contract. Assuming that p is the cumulative probability of default the probability
P, of i such abonds defaulting is given by:

DS

P =mxp' X1- p)—. (23

In order to reduce the impact of the errors due to al the smplified assumptionsin the modd it

is a common market practice to multiply the probability of default p by a stressfactor ?:
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— DS <) X1 - a xp)°St
R—mx(g p) X1-gxp)~"". (24)

In the fourth step one uses the probabilities evaluated in eq. 24 above and the average recovery
rate (it is an input to the algorithm) to caculate expected loss (EL) in the idealized portfolio. Suppose a
isthe average recovery rate and Nayg iSs the nominal of each idedlized bond (given by the total nominal
in the portfolio N divided by the diversity score). The EL is then given by:

DS
EL=3 (1-a) Ny R, (25

i=0

In the fifth step one uses the EL and the maturity of the contract to calculate the default
probability and the rating of the portfolio. Consider that P, would be the cumulative probability of
default on the portfolio seen as awhole. The expected loss is related with the default probability of the
portfolio by the expression:

EL

PD = m (26)

Once the probability of default and the maturity are used to determine the rating of the portfolio we are
ready to determine the premium to be paid. In what follows we will show one possible aternative for
this step.

The fee to be paid is calculated by mapping the rating with an appropriate spread. This
mapping is more an art than a science as the methodology is not unique. There are severa waysthe
mapping can be done and each of those ways might lead to different prices. One possibility isto find in
the market curvesthat link spreadsto rating and sector. The problem with this approach is that these
curves do not exist for every combination of rating and sector. Asit will be seen in section 7 for the
rating Baa3 we could find curves only for industrias, telecom and utilities. Another possibility is to use
curves relating rating (only) to spread. Alternatively one would use curves relating sectors to spread.

Those curves are available in the market from large investment banks like Goldman Sachs or Morgan
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Stanley (MSCI bond index) to mention only two. One may till decide to take a weighted average of
those curves.

For simplicity in this study we will be using the spreads of the industria sector for the given
rating.

7) Empirical Results

7.1) First to Default

Consider afirst to default basket contract composed by five reference entities. Boeing, Disney,
General Electric, Goldman Sachs, Hewlett Packard Compaq.

The CDS quotes used to imply the default probabilities are shown in table 1.

CDS Quotes (in bp) for different maturities (in year)
Company ly 2y 3y 4y S5y 6y
Boeing 34 45 49 4 57 54
Disney 50 63 67 77 &4 92
General Electric 36 42 45 54 60 60
Goldman Sachs 29 37 39 46 50 54
HPQ 78 71 69 63 60 58

Table 1 CDS Quotes in bp taken from a market participant on the date of the evaluation

For pricing purpose we have assumed a standard recovery rate of 20% for every company in the
basket. Thiswas the recovery value used by several market participants (in dealing rooms) at the date
of pricing (Jan 21 2003).

The risk free discount curve used for the pricing is reported in table 2.
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Date Discount Factor
21/01/2003 1
21/02/2003 0.998829
21/03/2003 0.997763
21/04/2003 0.996587
21/05/2003 0.995454
23/06/2003 0.994211
21/07/2003 0.993109
21/10/2003 0.989430
21/01/2004 0.985192
21/01/2005 0.959950
23/01/2006 0.923584
21/01/2007 0.882579
22/01/2008 0.838816
21/01/2009 0.795279

Table 2 Risk Free Discount factors used in the pricing of the First to default

The default probability curves (for each name) were implied from the CDS curves of table 1 as
described in Martin et a. [11].

In order to generate the joint default probabilities we have used anormal copulafunction. The
covariance matrix parameter used in the normal copula was taken from the equity market and is
reported in table 3.

Boeing Disney General Electric | Goldman Sachs HPQ
Boeing 1 0.281696 0.410516 0.122576 0.159480
Disney 0.281696 1 0.445367 0.343534 0.378281
General Electric 0.410516 0.445367 1 0.455073 0.337691
Goldman Sachs 0.122576 0.343534 0.455073 1 0.439621
HPQ 0.159480 0.378281 0.337691 0.439621 1

Table 3 Covariance Matrix from three year time series taken from the equity market

The price for the 5 year first to default basket using the algorithm described in section 5.1 and a
bid-offer quotes from a market maker are shown in table 4.
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Basket Rate (bp)
Mode Rate 257

Market (Bid-Offer) 205-265

Table 4 CDS Premium for afirst to default basket

Asit can be seen in table 4 the rate given by the modéd falls inside the market maker bid-offer
spread. Observe that we have used mid quotes to imply default probabilities (table 1). Another
observation is that those quotes are not homogeneoudly liquid. I.e. quotes for the three and five years
are far more liquid than any of the others that might have been obtained through interpolation (we have
obtained all the spreads used to imply the default probabilities from another market maker). This can
explain why the modd rate is not closer to the mid of the bid-offer.

7.2) First Loss Basket

Here we will price two first 1oss baskets: one quoted in dollar and the other in euros. The two
portfolios might be seen in table 5.

The contracts offer protection of up to 30 mi euros and 32 mi euros and USD respectively and
of up to 10 mi (euros’'USD) loss for each name. The portfolio contains 16 and 17 names respectively for
the euros and USD contracts. The sector names used for the evaluation of the DS (see section 7.2.2) are
included in table 5 (we used the industry classif ication table of Moody’s). In section 7.2.1 we present
the results of the copula method and in section 7.2.2 for the BET methodology.
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Euro Contract

USD Contract

Entity Sector Rating Entity Sector Rating
AXA SA Insurance Al Boeing Co. Defense Al
ABN Amro Banking Aa3 Bank of America Banking Aa3
Akzo Nobel Chemicals A2 Citigroup Banking A2
Basf Ag. Chemicals Aa3 Coca Cola Food/Beverage Aa3
Bayer Ag. Chemicds A2 CsC Computers/Peripherals A2
BMW Ag Autos Al Disney Entertainment Baal
BP Amoco Oil Aal General Electric Electrical Aa3
BAT Tobacco A2 Goldman Sachs Securities Aa3
Carrefour Retall Al Hewlett Packard | Computers/Peripherals A3
Commerzbank Banking Al IBM Computers/Peripheras Al
Ahold NV Retail Baal L ockheed Martin Defense Baa2
Marks& Spencer Retall A3 Lehman Brothers Securities A2
PhilipsNV Electronics A3 McDonalds Corp. Food/Beverage Aa3
Peugeot Autos A2 Merrill Lynch Securities Aa3
Siemens Electronics Aa3 Morgan Stanley Securities Aa3
Total Fina Oil Aa2 Philipp Morris Tobacco A2
- - Wal Mart Retall Aa2

Table 5 First Loss baskets. The maximum protection per nameis 10 mi eurosUSD. The total

protection is 30 mi euros and 32 mi USD respectively. The sector names were taken from Moody’s.

7.2.1) The Copula Method

In here we will price the first loss baskets using the gaussian copula approach as explained in
section 5. The yield curves used in the study are shown in table 6. The marginal probabilities of defaults
have been implied from the CDS market and the market CDS quotes (as of the date of pricing) are

shown in table 7. When using the copula approach we have tested the prices with three different

correlation functions: a) taken from Moodys; b) taken from S& P (Standard and Poors); ¢) evaluated
from equity returns.
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Date Discount Factor Discount Factor
(euro) (USD)
28/10/2002 1 1
29/10/2002 0.99991 0.99995
04/11/2002 0.99935 0.99965
28/11/2002 0.99717 0.99842
28/01/2003 0.99181 0.99529
28/04/2003 0.98442 0.99077
28/10/2003 0.96943 0.98086
28/10/2004 0.93524 0.95049
28/10/2005 0.89582 0.91171

Table 6 Discount factors used to price the first loss baskets

For both Moody’ s and S& P we have used the correlation functions they give for quoting their
CDO structures (it is the same used for ABS/MBS structures). Both agencies use correl ation based on
industry and sectors (inter-industry correlations and intra-industry correlations). We have used an inter-
industry correlation of O for both cases while an intra-industry of 0.3 and 0.1 for S& P (see Bergman
[24]) and Moody’ s (available upon request) respectively. Bellow we give the relation of companies
that belong to the same sector (we have used Moody’ s industry table to make the groupings):

a euro basket: (ABN Amro, Commerzbank), (Akzo Nobd, Basf, Bayer), (BMW , Peugeot),

(BP Amoco, Totd Fina), (Carrefour, Ahold), (Philips, Siemens);

b) USD basket: (Boeing, Lockheed Martin), (Bank of America, Citigroup), (Coca Cola,

McDondds), (CSC, Hewllett Packard, IBM), (Goldman Sachs, Lehman Brothers, Merrill

Lynch).

The correlations extracted from the equity returns are shown in tables 8a and 8b for the euros
and USD contracts respectively. We have used 3 years of weekly prices to compute the correlation
function.

In order to understand the impact of the recovery rate we have computed the prices of the
baskets under three different assumptions for the recovery rate: a) 20%; b) 36.2%; and c) 45%. The
36.2% is the average recovery rate for senior unsecured speculative grade bonds for 2001 as reported in
Moodys [21]. The 45% recovery is approximately the 1982- 2000 average recovery rate for the senior
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unsecured speculative grade recoveries as reported in the same Moody’ s [21]. Finally the 20% was a
stressed value we got to after talks with market participants at the time of the pricing.

The results of the pricing using different correlations and default assumptions (for the copula
approach) are shown in tables 9a and 9b. In the bottom line of the table we have added the bid and offer

quotes of a market maker.
We report in tables 10a and 10b the relative errors defined by the difference of the value found

and the mid price divided by the mid price.

9" Draft 19



Company 1yr (bp) | 3yr (bp) | Syr (bp)
Axa SA. 121 121 140
ABNAmro 12 29 43
Akzo Nobel 41 54 65
Bas Ag 19 25 33
Bayer Ag. 41 74 85
BMW Ag 22 33 45
BP Amoco 15 18 25
BAT 48 75 85
Carrefour 35 45 55
Commer zbank 116 127 150
Ahold 142 190 200
Marks & Spencer 39 47 55
PhilippsNV 83 139 150
Peugeot 35 50 65
Semens 35 70 75
Total Fina 14 20 25

euros and 32 mi USD respectively.

Company lyr (bp) | 3yr (bp) | Syr (bp)
Boeing Co 66 95 110
Bank of America 21 36 48
Citigroup 25 37 50
Coca Cola 25 32 40
CsC 136 155 175
Disney 69 92 115
General Electric 56 70 9
Goldman Sachs 53 71 0
Hewlett Packard 182 161 140
IBM 50 57 70
Lockheed Martin 53 53 60
Lehman Brothers 7 102 92
McDonalds Corp 22 31 40
Merril Lynch 98 115 98
Morgan Stanley 47 64 85
Philip Morris 200 200 200
Wal Mart 22 25 30

9" Draft
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n 1@ |6 (4) (5 |6 M | ® (9) (10 1) |1 13 | |19 (16

(1) | 1000 | 0590 0365 | 028 0355|0416 | 0.180|-0.078 | 0318 | 0496|0335 | 0108 0305 | 0450 | 0.35% 0.313

(2) | 0590 | 1000|0387 |0361 0451|0498 |[0242|0081 |[0381 | 0468|0451 | 0299 0422 | 0321 | 0446 0.32

(3) | 0365 |0.387 | 1.000 | 0498 0497|0391 |[0179|-0.127 | 0142 | 0342|0212 | 0178 0.187 | 0388 | 0219 0.215

(4). 10286 | 0361 | 0498 |1000 0742|0491 |0.290 |-0.061 | 0173 | 0372|0308 | 0113 0.15 |[0350 |[0.264 0295

(5) | 0355 | 0451|0497 |0742 1000|0478 |0229|0 0200 | 0339|0331 |[0142 0199 | 0390 |0300 0339

(6) | 0416 | 0498 | 0391 | 0491 0478|1000 (0249 |-0045 | 0268 | 0365|0312 | 0241 0314 | 038 | 0409 0.247

(7) 10180 | 0242|0179 | 0290 0229|0249 |[1000| 0013 | 0115 | 0222|0222 |0013 0159 |0139 | 0127 0.593

(8) |-0.078 | 0.081 | -0.127 | -0.061 O -0.045 | 0.013 | 1.000 | -0.022 | 0.043 | -0.075 | 0.020 -0.046 | -0.089 | 0.037 -0.027

(9) 0318 | 0381|0142 | 0173 0200|0268 | 0.115|-0.022 | 1.000 | 0153|0310 | 0156 0.270 | 0179 | 0261 0.385

(10) | 0.496 |0.468 | 0342 | 0372 0339|0365 |0222| 0043 | 0153 | 1.000| 0.144 | 0152 0291 | 035 | 0.347 0.306

(11| 0335 | 0451 | 0212 (0308 0331|0312 |0222|-0.075 | 0310 | 0144|1000 |0239 025 |[0201 |0173 0.308

(12)| 0108 | 0.299| 0178 | 0113 0142|0241 |0013|0.020 | 0156 | 0152|0239 | 1000 0.115 |[0195 |0120 0.025

(13) | 0.305 | 0.422| 0187 | 015 0199|0314 |[0159|-0046 | 0270 | 0291|0259 | 0115 1.000 | 0281 | 0.648 0.257

(14)| 0450 | 0321|0388 | 0350 0390|038 |[0139|-0.089 | 0179 | 035 |0201 |019 0281 | 1000 | 0283 0273

(15) | 0.356 |0.446 | 0219 | 0264 0300|0409 |[0127|0.0387 | 0261 | 0347|0173 |0120 0648 | 0283 | 1000 0.256

(16) | 0.313 | 0.322| 0215 | 0295 0.339| 0247 | 0593 | -0.027 | 0.385 | 0306|0308 | 0.025 0257 | 0273 | 025 1.000

Table 8a Correlation matrix taken from the equity market (equity returns) for the first loss basket in euro. For reasons of aesthetics names of the
companies in the table have been coded in the following way: (1) Axa SA, (2) ABN Amro, (3) Akzo Nobdl, (4) Basf Ag, (5) Bayer Ag, (6) BMW
Ag, (7) BP Amoaco, (8) BAT , (9) Carrefour, (10) Commerzbank, (11) Ahold, (12) Marks & Spencer, (13) Philipps NV, (14) Peugeot, (15) Siemens,
(16) Tota Fina.
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O 1@ [ (@ (O (6 (7 18 9 (W0 (1) |12 |13 |14 |15 | (16 |17
(1) | 1.000 | 0.208| 0.300 | 0.211 | 0.183|0.282 | 0411|0123 | 0.160| 0079 |0259 |0.251|0.211|0.203 |0.236| 0157 | 0.259
(2) | 0208 [ 1.000 | 0.637 | 0.219 | 0.169 | 0.323 | 0454 | 0367 | 0.218| 0231 | 0.087 | 0.537|0.268 | 0429 |0510| 0106 | 0.332
(3) | 0.300 | 0.637| 1.000 | 0.285 | 0.268 | 0.469 | 0.609| 0580 | 0.354| 0417 |0.043 | 0.703|0.269 | 0.673 | 0.711| 0113 | 0.489
(4). 10211 {0219 | 0285 | 1.000 | 0.075|0.167 | 0.251| -0.042 | 0.026 | 0.085 | 0.191 | 0.082| 0.231 | -0.004 | 0.100 | 0.162 | 0.310
(5) 10183 (0.169| 0268 | 0.075 | 1.000 | 0.276 | 0319|0232 | 0296|0398 | 0067 |0.242|0218 0275 |0319| 0102 | 0.186
(6) | 0282 (0323 | 0469 | 0.167 | 0.276 | 1.000 | 0445|0344 | 0378 | 0366 |-0.049 | 0.451| 0.276 | 0.445 | 0.437 | 0009 | 0.325
(7) | 0411 {0454 | 0609 | 0.251 | 0.319 | 0.445 | 1000|045 |[0.337|0391 |0070 |0.621|0.243 0511 |0593| 0208 | 0.481
(8) | 0123 {0.367| 0.580 | -0.042 | 0.232 | 0.344 | 0455| 1.000 | 0440|0344 |0016 |0.783|0.123 |0.790 |0.829| -0.032 | 0.373
(9) |0160 (0.218| 0.354 | 0.026 | 0.296 | 0.378 | 0.337| 0440 | 1.000| 0444 | 0036 | 0.465|0.165|0.424 |0538| 0142 | 0.216
(10) | 0.079 [ 0.231| 0417 | 0.085 | 0.398 | 0.366 | 0.391| 0.344 | 0.444| 1.000 | -0.008 | 0.350 | 0.208 | 0.342 | 0.400| 0164 | 0.210
(11) | 0.259 | 0.087 | 0.043 | 0.191 | 0.067 | -0.049 | 0.070| 0016 | 0.036 | -0.008 | 1.000 | 0.057| 0.119 [ -0.006 | 0.073 | 0.217 | 0.214
(12)| 0.251 [ 0.537 | 0.703 | 0.082 | 0.242 | 0.451 | 0621 | 0.783 | 0465|0350 |0.057 | 1.000|0.217|0.79 | 0.866 | 0027 | 0.447
(13)| 0.211 { 0.268 | 0.269 | 0.231 | 0218 | 0.276 | 0.243| 0123 | 0.165( 0.208 | 0119 | 0.217| 1000 [ 0.095 | 0.263 | 0.223 | 0.199
(14) | 0.203 [ 0.429 | 0.673 | -0.004 | 0.275 | 0.445 | 0511|0790 | 0424|0342 |-0.006 | 0.796 | 0.095 | 1.000 | 0.815| -0.009 | 0.333
(15) | 0.236 { 0.510 | 0.711 | 0.100 | 0.319 | 0.437 | 0593|0829 | 0.538| 0400 | 0.0731 | 0.866| 0.263 | 0.815 | 1.000| 0.046 | 0.455
(16) | 0.157 { 0.106 | 0.113 | 0.162 | 0.102 | 0.009 | 0.208 | -0.032 | 0.142| 0.164 | 0.217 | 0.027 | 0.223 | -0.009 | 0.046 | 1.000 | 0.116
(17)| 0259 { 0.332| 0489 | 0.310 | 0.186 | 0.325 | 0481|0373 | 0.216| 0210 | 0214 | 0447|0199 |0.333 |0455| 0116 | 1.000

Table 8b Correlation matrix taken from the equity market (equity returns) for the first loss basket in euro. For reasons of aesthetics names of the

companies in the table have been coded in the following way: (1) Boeing Co, (2) Bank of America, (3) Citigroup, (4) Coca Cola, (5) CSC, (6)

Disney, (7) GE, (8) Goldman Sachs, (9) HP, (10) IBM, (11) Lockheed Martin, (12) Lehman Brothers, (13) McDonads Corp. (14) Merril Lynch,

(15) Morgan Stanley, (16) Philipp Morris, (17) Wal Mart.
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Recovery Rate Moody’s Corr. X P Corr. Eq. Returns Corr
(%) (bp) (bp) (bp)
36.2 460 467 437
20.0 460 460 432
45.0 543 550 530
Market Quote (bp) 303 (bid) - 403 (mid) - 503 (offer)

Table 9a Results for the pricing of the euro first loss basket using different correlation and
recovery rate assumptions.

Recovery Rate Moody’s Corr. X P Corr. Eq. ReturnsCorr
(%) (bp) (bp) (bp)
36.2 505 507 470
20.0 510 504 450
45.0 501 501 471
Market Quote (bp) 387 (bid) - 487 (mid) - 587 (offer)

Table 9b Results for the pricing of the USD first loss basket using different correlation and
recovery rate assumptions.

Recovery Rate Moody’s Corr. &P Corr. Eq. ReturnsCorr
(%) (%) (%) (%)
36.2 124 13.7 7.7
20.0 12.4 12.4 6.7
45.0 25.8 26.7 24.0
Market Quote (bp) 303 (bid) - 403 (mid) - 503 (offer)

Table 10a Relative errors for the prices given in table 9a. We take the computed quote subtract
the market mid price and divide it by the market price.
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Recovery Rate Moody’'s Corr. S& P Corr. Eq. ReturnsCorr
(%) (%) (%) (%)
36.2 3.7 4.1 -3.5
20.0 4.7 35 -7.6
45.0 29 29 -3.3
Market Quote (bp) 303 (bid) - 403 (mid) - 503 (offer)

Table 10b R ative errors for the prices given in table 9b. We take the computed price subtract the
market mid price and divide it by the market price.

7.2.2) BET Methodology

In the first step of the BET methodology one needs to evduate the DS of the portfolio.
For each portfolio we group the companies that belong to the same sector’. The aggregate
industry equivalent unity score (AIEUS) of each sector is computed in two steps: @) for each
company in the sector divide its exposure by the average firm exposure in the portfolio; b) add
those valuesin @) for the companies in the sector. We then use the mapping table 11 to get the DS
of each group and by adding them up we get the DS of the portfolio. The computations are shown
inTable12.

In the next step one computes the WARF of the portfolio (see eg. 22 in section 6). The
rating factors used in the computation are seen in table 13. From the WARF we have the average
rating of the portfolio and via interpolation one computes the average default probability of the
idealized bond. The results of those computations for both portfolios are shown in table 14.

Once dl the necessary parameters are computed one gets the rating of the portfolio (see
table 14) as described in section 6. As already mentioned in section 6 we will be using the spreads
given by ratings in the industria sector. |.e. we will take the spread of the Baa3 rating (the rating
of both portfolios) for the industrial sector. We should still mention that the other two possible
sectors (with Baa3 rating) for which spreads were available in market were the phones and
utilities and both of them had spreads higher than the one given by the industrials (with Baa3
rating).

® The number of companiesin the same sector is called “equivalent industry unit score”.
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AIEUS DS
0.0000 0.0000
0.0500 0.1000
0.1500 0.2000
0.2500 0.3000
0.3500 0.4000
0.4500 0.5000
0.5500 0.6000
0.6500 0.7000
0.7500 0.8000
0.8500 0.9000
0.9500 1.0000
1.0500 1.0500
1.1500 1.1000
1.2500 1.1500
1.3500 1.2000
1.4500 1.2500
1.5500 1.3000
1.6500 1.3600
1.7500 1.4000
1.8500 1.4500
1.9500 1.5000
2.0500 1.5500

Table 11 Diversity Score Conversion table (AIEUS : Aggregate Industry Equivalent Unity

Score).

AIEUS DS
2.15 1.6000
2.25 1.6500
2.35 1.7000
245 1.7500
2.55 1.8000
2.65 1.8500
2.75 1.9000
2.85 1.9500
2.95 2.0000
3.05 2.0333
315 2.0667
325 2.1000
3.35 21333
345 2.1667
3.55 2.2000
3.65 2.2333
3.75 2.2667
3.85 2.3000
3.95 2.3333
4.05 2.3667
4.15 2.4000
4.25 24333
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Euro Denominated Contract USD denominated Contract
Sector AIEUS DS Sector AIEUS DS
Insurance 1 1 Ind. Aerospace 2 15
Defense
Banking 2 1.5 Banking 2 15
Industrial:Chem. 3 2 Ind. Food 1 1
Indugtrial: Autos 2 1.5 Ind. Electric 1 1
Industrial: Oil 2 1.5 Ind. Computers 4 2
Industrial: Tobacco 1 1 Ind. Entertainment 1 1
Ind. Retail 3 2 Securities 3 2
Ind. Electronics 2 1.5 Ind. Restaurants 1 1
- - - Ind. Tobacco 1 1
- - - Ind. Retail 1 1
Total 16 12 Total 17 13

Table 12 Computation of the Diversity Scores for the Euro and USD contracts.

Asit can be seen in table 14 the spreads (over government) for industrials Baa3 are
219.17 bp and 507.69 bp for US and euro respectively. The quotes have been taken from the
Bloomberg professional curves for the date 28 Oct 2002.
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Cumulative Default Probabilitiesin time (%)

Rating | Rating Factor lyr 2yr 3yr 4yr S5yr 6 yr 7yr 8yr 9yr 10yr
Aaa 1 0.0005 0.0002 0.0007 0.0018 0.0029 0.0040 0.0052 0.0066 0.0082 0.0100
Aal 10 0.0006 0.0030 0.0100 0.0210 0.0310 0.0420 0.0540 0.0670 0.0820 0.1000
Aa2 20 0.0014 0.0080 0.0260 0.0470 0.0680 0.0890 0.1110 0.1350 0.1640 0.2000
Aa3 40 0.0030 0.0190 0.0590 0.1010 0.1420 0.1830 0.2270 0.2720 0.3200 0.4000
Al 70 0.0058 0.0370 0.1170 0.1890 0.2610 0.3300 0.4060 0.4800 0.5730 0.7000
A2 120 0.0109 0.0700 0.2220 0.3450 0.4670 0.5830 0.7100 0.8290 0.9820 1.2000
A3 180 0.0389 0.1500 0.3600 0.5400 0.7300 0.9100 1.1100 1.3000 1.5200 1.8000
Baal 260 0.0900 0.2800 0.5600 0.8300 1.1000 1.3700 1.6700 1.9700 2.2700 2.6000
Baa2 360 0.1700 0.4700 0.8300 1.2000 1.5800 1.9700 24100 2.8500 3.2400 3.6000
Baa3 610 0.4200 1.0500 1.7100 2.3800 3.0500 3.7000 4.3300 4.9700 5.5700 6.1000
Bal 940 0.8700 2.0200 3.1300 4.2000 5.2800 6.2500 7.0600 7.8900 8.6900 9.4000
Ba2 1350 1.5600 3.4700 5.1800 6.8000 8.4100 9.7700 10.700 11.660 12.650 13.500
Ba3 1780 2.8100 5.5100 7.8700 9.7900 11.860 13.490 14.620 15.710 16.710 17.800

B1 2220 4.6800 8.3800 11.580 13.850 16.120 17.890 19.130 20.230 21.240 22.200
B2 2720 7.1600 11.670 15.550 18.130 20.710 22.650 24.010 25.150 26.220 27.200
B3 3490 11.620 16.610 21.030 24.040 27.050 29.200 31.000 32.500 33.780 34.900

Caal 4770 17.382 23.234 28.639 32.479 36.314 38.967 41.385 43.657 45.672 47629
Caa2 6500 26.000 32.500 39.000 43.880 48.750 52.000 55.250 58.500 61.750 65.000
Caa3 8070 50.990 57.009 62.450 66.240 69.821 72111 74.330 76.485 78.581 80.623

Table 13 Indealized Moody’ s default probabilities and rating factors.
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Euro Portfolio USD Portfolio
DS 12 13
WARF 101.18 95.63
Indealized Def. Prob. (%) 0.3667 0.38%4
Stressed Def. Prob. (%) 0.4509 0.4790
Recovery Rate (%) 36.20 36.20
Evaluated Rating Baa3 Baa3
Model Price (bp) 508 219
Market Price (mid) 403 487
Relative Error (%) 20.7 -55.0

Table 14 Portfolio parameters computed using the BET Methodology.

As can be seen from table 14 the BET approach gives too large relative errorsin the
guotes for both instruments. For both contracts it falls outside the bid offer spread of the
instruments (303/503 for the euro and 387/587 for the USD).

If the market were to use the BET methodology without any adjustment whatsoever from
the resultsin table 14 it is clear that the approach should not at al be used in practice.

There are several problems with the BET approach. One for example is its use of
historical probabilities of default that may not match the ones implied in the CDS market. This
can cause problems as the quotes given might not reflect the cost of the hedge as given in the
CDS market. An adjustment to it is done by stressing the default probability of the idedized
bond. 1.e. one multiplies the idealized default probability by a certain factor, asit has been donein
here. A second source of errorsis due to the discretization process. As we have seen the portfolio
default probability implied by the expected loss determines the rating that will be used to evaluate
the spread. The sensitivity to the rating might be very high. As an example if the rating for the

USD portfolio would be one notch better (B1) the spread would have been 500 bp.

In order to count for the problems mentioned above the user of the methodology might
make its own adjustments after checking the rating obtained. The user might want to compare the
spread obtained with the one for arating one notch up and down. A possibility isfor example to
give as bid the spread for the one notch up while as offer the spread of one notch down. Or
alternatively one can take as mid price the average between the spreads for the one notch up and

the one down.
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8) Conclusons

In this work we used and compared different methodologies to price first to default (FTD)
and first loss contracts of portfolios of credits. All the data used in the tests was taken from the
market and the model prices were tested with the bid offer spread of two market makers (one for
the FTD and another for the first 10ss).

For the FTD contract we have used the gaussian copula function approach with the
correlation being calculated from the equity market. The recovery rate used was 20% and the
model price (257 bp) isinside the bid offer of a market maker (205 — 265 bp).

For the first loss basket we have used the gaussian copula method and the BET methodol ogy
and the results are compared with bid offer quotes of a market maker on two different baskets.
Additionally for the gaussian copula we have used three different recoveries assumptions and for
each case we have tested the results of using different correation assumptions (Moody’s, S& P
and correlation taken from equity returns). We have observed that the gaussian copula with the
correlation caculated from the equity returns gives the best results. It should be noted however
that if one uses the Moody’s or S& P correlations (for structured products) oneis still inside the
bid offer. Moreover the results of the copula approach are far better than the ones obtained via the
BET methodology.

Our conclusion from this study is that the gaussian copula approach with the equity return
correlation and the appropriate recovery rate is capable of capturing the mid prices for the two
first loss and the first loss basket instruments priced in this study. A continuation of this study is
under way when a more extensive test of the impact of the correlation and recovery rates

assumptions including the copula - BET models for the rating of CDO’ s will be made.
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