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Abstract

Stray bodies orbiting a planet or the Sun are removed by collisions with larger objects or by expulsion from the system. However, their rate of
removal generally cannot be described by the simple exponential law used to describe radioactive decay, because their effective half-life lengthens
with time. Previous studies of planetesimals, comets, asteroids, meteorites, and impact ejecta from planets or satellites have fit the number of
survivors S vs elapsed time t using exponential, logarithmic, and power laws, but no entirely satisfactory functional form has been found yet.
Herein we model the removal rates of impact ejecta from various moons of Jupiter, Saturn, and Neptune. We find that most situations are fit best
by stretched exponential decay, of the form S(t) = S(0) exp(−[t/t0]β). Here t0 is the time when the initial population has declined by a factor of
e ≈ 2.72, while the dimensionless exponent β lies between 0 and 1 (often near 1/3). The e-folding time S[dS/dt]−1 itself grows as the [1 − β]
power of t . This behavior is suggestive of a diffusion-like process.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The planets and their satellites grew from the accumulation
of small solid bodies; the cratering records of the Moon and
of other ancient surfaces bear witness to the presence of many
stray bodies early in geologic history, declining with a half-life
which has lengthened over time (e.g., Hartmann, 1972). Even
today, the Solar System still is littered with small objects left
over from the formation epoch, or created by more recent colli-
sions. These stray bodies are removed by ejection from planeto-
centric or heliocentric orbit, as well as by colliding with planets,
moons, and the Sun, with characteristic lifetimes depending on
their orbits. (Other loss processes occur, such as cometary out-
gassing, tidal disruption, and collisions with other small debris,
but these will not be considered herein.) However, as some or-
bits are much more stable than others, the rate at which a given
population declines generally cannot be described by the simple
exponential law used to describe radioactive decay.
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In this paper we model the loss rates of stray particles, the
better to understand the mechanisms by which small bodies are
removed from various niches within the Solar System. We be-
gin in Section 2 by using the removal of ejecta from Saturn’s
moon Hyperion to compare various proposed decay laws. Sec-
tion 3 applies the techniques developed in Section 2 to Hyperion
ejecta in greater depth, as well as to ejecta from other satellites
of Saturn, Jupiter, and Neptune. Section 4 discusses the lessons
learned from this study, while Section 5 reviews our conclu-
sions. Finally, two appendices describe the fitting procedures
and lifetime distributions.

2. Decay curves

Saturn’s small satellite Hyperion is locked in a 4:3 mean
motion resonance with the nearby much more massive moon
Titan. We have used the “regularized” routine RMVS3 of the
SWiFT mixed-variable symplectic integrator package (Levison
and Duncan, 1994), based on techniques introduced by Wisdom
and Holman (1991), to show that gravitational perturbations
(mostly from Titan) can scatter ejecta from Hyperion through-
out the saturnian system (Dobrovolskis and Lissauer, 2004). In
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brief, each of our Hyperion simulations included Saturn and its
moons Tethys, Dione, Titan, Hyperion, and Iapetus, as well as
the Sun. For each integration, we ejected 210 massless particles
vertically upward from points distributed roughly uniformly
over Hyperion’s surface. We then followed the evolution of this
population as debris was removed by collisions with Saturn,
its rings, or its above-mentioned moons, or by expulsion from
orbit around Saturn. Non-gravitational forces were not consid-
ered. We shall use the results of these simulations to compare
various functional forms proposed for the decay of the ejecta
population.

Let T be the total number of test particles in the simula-
tion, S(t) the number of particles surviving at time t , and R(t)

the number removed by that time. Thus R(0) = 0, S(0) = T ,
and R(t) + S(t) = T for any time t . Because the evolution
of the population depends on its current members, it is con-
venient to treat the fraction S(t)/T of particles surviving rather
than the cumulative fraction removed R(t)/T . The lowermost
curve (black) in Fig. 1 displays S/T versus t for the fiducial
simulation of Dobrovolskis and Lissauer (2004), referring to
the linear scales at the left-side and bottom axes, respectively.
Because R/T = 1 − S/T , this curve is the same as the upper-
most curve in Fig. 2 of Dobrovolskis and Lissauer (2004), but
turned upside down. In this view it may be regarded as a “de-
cay curve,” describing the decline of the population of survivors
with time.

Similar decay curves are characteristic of many orbit re-
moval simulations (e.g., Gladman and Duncan, 1990; Holman
and Wisdom, 1993; Levison and Duncan, 1994; Gladman
et al., 1995, 1996, 2000, 2005; Dones et al., 1996, 1999a;
Holman, 1997; Gladman, 1997; Farinella et al., 1997; Burns
and Gladman, 1998; Malyshkin and Tremaine, 1999; Evans and
Tabachnik, 1999; Tabachnik and Evans, 2000; Hartmann et al.,
2000; Dobrovolskis et al., 2000; Robutel and Laskar, 2001;
Armstrong et al., 2002; Chambers et al., 2002; Quintana et al.,
2002; Alvarellos et al., 2002, 2005, 2007; Nesvorný and Dones,
2002; Nesvorný et al., 2003; Dobrovolskis and Lissauer, 2004;
Zeehandelaar and Hamilton, 2005, 2006, 2007). Of the above,
Gladman et al. (1995, Fig. 1a; 1996, Fig. 1; 2000, Fig. 2), Glad-
man (1997, Figs. 8 and 10); Farinella et al. (1997, Fig. 1), Burns
and Gladman (1998, Fig. 2), and Robutel and Laskar (2001,
Fig. 5) have plotted their results in a linear:linear format, and
obtained shapes similar to the lowermost curve (black) in our
Fig. 1.
Fig. 1. Comparison of decay laws for ejecta from Hyperion. Note that these are not different fits to the same “data,” but the results of a single simulation plotted in
five different formats. All curves extend from the time of the first particle removal until the end of the simulation. Bottom curve (black): fraction S/T of particles
surviving (left-hand scale) vs elapsed time t (bottom scale). This curve would be straight if decays were linear with time, as in Eq. (11). Top curve (gold): log(S/T )

(right-hand scale) vs log t (interior scale). This curve would be straight for a simple power law decay, as in Eq. (1). Next-to-uppermost curve (blue): S/T (left-hand
scale) vs log t (interior scale). This curve would be straight for a simple logarithmic decay, as in Eq. (2). Next-to-lowest curve (green): log(S/T ) (right-hand scale)
vs elapsed time t (bottom scale). This curve would be straight for a simple exponential decay, as in Eq. (5). Middle curve (red): log(S/T ) (right-hand scale) vs

√
t

(top scale). This curve would be straight for a stretched exponential decay with β = 1/2, as in Eq. (9).
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2.1. Power laws versus log laws

At first glance, the shape of the lowermost decay curve
(black) in Fig. 1 suggests a functional form like 1/t , or some
other negative power of the time. In fact, this curve looks
nearly self-similar when plotted over a wide range of linear
time-scales, as a power law would. Accordingly, Evans and
Tabachnik (1999, Eq. (1b)) (see also Tabachnik and Evans,
2000, Eq. (23)) have attempted to fit their results on removal
of belts of remnant planetesimals between the terrestrial plan-
ets with the power law

(1a)S(t) = C/tD ⇔ logS = logC − D log t

(1b)⇒ dS/dt = −CD/tD+1 = −SD/t,

where C and D are dimensionless positive constants. Note that
C is the number of survivors after one unit of time t has elapsed.
Throughout this paper, we measure t in years, and we use
“log” as standard notation for the base-10 or common logarithm
(log10), and “ln” for the base-e or natural logarithm (loge).

Dones et al. (1996, 1999a), Holman (1997), and Hartmann
et al. (2000) have employed similar power laws for removal of
remnant planetesimals between the planets. Equation (1) would
appear as a straight line of slope −D and y-intercept log(C/T )

on a graph of log(S/T ) vs log t . The uppermost curve (gold)
in Fig. 1 plots our results in just this format, now referring
to the right-side and interior axes, respectively. However, it is
clear that this curve is not a straight line, so our decay behavior
does not fit any simple power law. Levison and Duncan (1994,
Figs. 5 and 11), Gladman et al. (1995, Fig. 1b), Holman (1997,
Fig. 3), Dones et al. (1999a, Fig. 1), Quintana et al. (2002,
Figs. 5 and 7), and Alvarellos et al. (2005, Fig. 6) have plot-
ted their results in similar log:log formats, and obtained curves
resembling ours.

Decay of orbiting populations has also been described as
having a logarithmic form (Holman and Wisdom, 1993; Dones
et al., 1999a, 1999b; Evans and Tabachnik, 1999, Eq. (1a);
Tabachnik and Evans, 2000, Eq. (22); Hartmann et al., 2000,
Eq. (4); Robutel and Laskar, 2001, Fig. 5). For example,
Tabachnik and Evans (2000) have fitted their results also to
the logarithmic decay law

(2a)S(t) = A − B log t

(2b)⇒ dS/dt = −B log(e)/t ≈ −0.4343B/t,

where A and B are dimensionless positive constants too. Note
that now A is the number of survivors after one time unit (year).
One advantage of this formulation is that any linear combina-
tion of such “log laws” is a log law too; in this sense one might
say that if you have seen one log law, you have seen them all.
However, this superposition property is violated by the non-
linear stipulation that S(t) must not go negative, but remains
at zero once the population vanishes.

Equation (2) would appear as a straight line of slope −B/T

and y-intercept A/T on a graph of S/T vs log t . The next-to-
uppermost curve (blue) in Fig. 1 plots our results in this format,
now referring to the left-side and interior axes, respectively.
The resulting curve consists of roughly uniform steps, and is
straighter than the lowest or uppermost curves, but still is not
fitted well by any straight line. Similar linear:log formats were
used by Gladman and Duncan (1990, Fig. 5), Holman and Wis-
dom (1993, Fig. 7), Tabachnik and Evans (2000, Figs. 20 and
21), Hartmann et al. (2000, Fig. 5b), Armstrong et al. (2002,
Fig. 1), Chambers et al. (2002, Fig. 7), Alvarellos et al. (2002,
Figs. 4, 7, and 10), Nesvorný and Dones (2002, Fig. 10), and
Nesvorný et al. (2003, Fig. 5), who all obtained curves resem-
bling ours.

In order to compare these decay laws, for each of our long-
term simulations we performed linear least-squares fits of S(t)

to both functional forms (1) and (2), using the method described
in Appendix A. Table 1 lists the resulting best fit parame-
ters, along with their corresponding 1-sigma uncertainties (see
Appendix A). For comparison with our fiducial case (GM =
1.00 km3/s2), Table 1 also includes long-term (200,000-year)
integrations for a massless Hyperion as well as for a massive
proto-Hyperion (the cases in Table 3 of Dobrovolskis and Lis-
sauer, 2004). In contrast, recent results from Cassini flybys re-
veal GM ≈ 0.389 km3/s2, so that Hyperion’s density is only
∼ 476 kg/m3 (Luke Dones, 2006, personal communication).

Table 1 shows that C and A (the number of survivors after
one year) are several percent less than T (the initial number of
particles). This table also lists values of χ , a measure of the
goodness of fit (see Appendix A). In general, the better the fit,
the lower χ should be. Although the large values of χ for both
laws indicate that neither fit is really satisfactory, they suggest
that the logarithmic law (2) fits the decay slightly better than
the power law (1), consistent with the impression from Fig. 1.
Evans and Tabachnik (1999) also stated that the logarithmic law
provided a better fit to their results than the power law, but they
did not describe their fitting procedure.

Dones et al. (1996) found that their populations of remnant
planetesimals decayed roughly exponentially at early times, but
at late times they decayed as power laws with exponents rang-
ing from 1.0 down to 0.3. Likewise Holman (1997) fitted the
tail of his planetesimal decay curve to a power law with expo-
nent 1.01 ± 0.13, consistent with unity, while Tabachnik and
Evans (2000) reported values of the exponent D ranging from
1.60 down to 0.19 for trojan companions of the terrestrial plan-
ets. In contrast, Evans and Tabachnik (1999) obtained values
of D ranging from 0.189 down to 0.040 for their planetesimal
belts. Similarly, we find D ranging from 0.091 down to 0.060
for our ejecta, as listed in Table 1.

Such low exponents make the power law (1) difficult to
distinguish from the logarithmic law (2). In fact, the logarith-
mic law can be seen as a limiting case of the power law as
the power D tends to zero (provided that CD in Eq. (1b) si-
multaneously approaches B log e in Eq. (2b); indeed, these are
approximately equal in Table 1). To see this, note that the time
interval t1 ≡ |dS/dt |−1 between successive particle removals is
directly proportional to the elapsed time t for the logarithmic
law (2b), but proportional to tD+1 for the power law (1b). (The
latter relation is known to seismologists as Omori’s law when
used with D + 1 > 0 to describe the frequency of earthquake
aftershocks; Lay and Wallace, 1995, p. 385.)
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Table 1
Fit parameters of various decay laws for different masses and radii of Hyperion

GM of Hyperion 1.00 km3/s2 2.88 km3/s2 0
Radius of Hyperion 143.0 km 190.0 km 143.0 km

Initial particles T 210 210 210

Decay law Final particles 2 (1%) 2 (1%) 34 (16%)

Simple power law (1) D 0.0760 ± 0.0030 0.0908 ± 0.0032 0.0596 ± 0.0028
C/T 0.961 ± 0.006 0.951 ± 0.004 0.958 ± 0.006
χ 3.459 4.224 2.027

t0 (yr) 0.595 0.572 0.488

Shifted power law (3) D 0.0921 ± 0.0036 0.1188 ± 0.0043 0.0672 ± 0.0033
T∗/T 1.074 ± 0.009 1.105 ± 0.008 1.045 ± 0.009
χ 3.153 3.758 1.780

Simple logarithmic law (2) B/T 0.180 ± 0.003 0.189 ± 0.003 0.114 ± 0.003
A/T 0.977 ± 0.007 0.957 ± 0.009 0.961 ± 0.006
t00 (yr) 2.8 × 105 1.2 × 105 2.6 × 108

χ 3.350 3.180 1.700

t0 (yr) 0.749 0.590 0.458

Shifted logarithmic law (4) B/T 0.195 ± 0.003 0.201 ± 0.004 0.123 ± 0.004
T∗/T 1.068 ± 0.010 1.058 ± 0.015 1.030 ± 0.008
t00 (yr) 1.0 × 105 5.6 × 104 6.3 × 107

χ 2.564 2.741 1.486

Simple exponential decay (5) t0 (yr) 40,600 ± 6743 42,269 ± 15,664 161,126 ± 20,324
T∗/T 0.430 ± 0.051 0.215 ± 0.065 0.564 ± 0.031
χ 1.509 2.050 0.718

Stretched exponential decay (6) t0 (yr) 4731 × / ÷ 1.95 1411 × / ÷ 1.99 51,659 × / ÷ 2.90
β 0.328 ± 0.019 0.368 ± 0.025 0.229 ± 0.018
χ 1.603 1.173 1.332

tE (yr) 8132 1250 58,160

Note. The simulation interval was 200,000 years in each case.
2.2. Time shifts

Note also that both Eqs. (1) and (2) lead to infinite values
of S and dS/dt at t = 0. The singularity in dS/dt is benign, but
that in S itself is more troublesome. In order to remove both
of these singularities, we may shift the origin of time by some
characteristic parameter t0 > 0. Then Eq. (1) is amended to the
“shifted power law”

(3a)S(t) = T

[1 + t/t0]D = T tD0

[t0 + t]D

(3b)⇒ dS/dt = −T tD0 D

[t0 + t]D+1
= −SD

t0 + t
.

Here the exponent D retains the same meaning it has in Eq. (1),
while the parameter C has been supplanted by the constant T =
S(0), the total number of particles in the simulation. Certain
natural phenomena, such as unforced turbulence (Frisch, 1995)
and many chemical reactions (e.g., X + X → X2), decay as
a power of the shifted time, as in Eq. (3).

Similarly, Eq. (2) becomes the “shifted log law”

(4a)
S(t) = T − B log(1 + t/t0) = T + B log t0 − B log(t0 + t)

(4b)⇒ dS/dt = −B log e

t0 + t
≈ −0.4343B

t0 + t
,

where the coefficient B retains the same meaning it has in
Eq. (2), but the parameter A also has been displaced by T .

In both Eqs. (3) and (4), S = T when t = 0, as required.
In the opposite extreme, when t 
 t0, Eqs. (3) and (4) reduce
to Eqs. (1) and (2), respectively, where we identify T = C/tD0
and T = A − B log t0. Note that now the time interval t1 ≡
|dS/dt |−1 between successive particle removals is proportional
to the shifted time t0 + t for Eq. (4), and to [t0 + t]D+1 for
Eq. (3). The shifted logarithmic law (4) is a limiting case of the
shifted power law (3) as the dimensionless exponent D again
tends to zero (provided that now T D in Eq. (3b) simultaneously
approaches B log e in Eq. (4b); in fact, these are approximately
equal from Table 1).

We fitted our results for S(t) to both time-shifted decay laws
as well. These are still two-parameter fits, for the sake of a fair
comparison with the other decay laws. In principle, we could
specify the total number of particles T a priori and then solve
for the parameters D and t0 in Eq. (3), or for B and t0 in
Eq. (4). But instead, we found it more convenient to use the
values of A, B , C, and D from the fits to Eqs. (1) and (2) to fix
t0 = [C/T ]1/D in Eq. (3) and t0 = 10[A/B−T/B] in Eq. (4) from
the late-time limits above. We then solved for the best-fit initial
number T∗ of particles along with the slope parameters D and
B/T in Eqs. (3) and (4). The results are listed in Table 1, along
with the corresponding time shifts t0; note that t0 is output from
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the unshifted laws (1) and (2), but input to the shifted versions
(3) and (4).

Note also that the time shifts t0 are consistently only a frac-
tion of a year, but much longer than Hyperion’s orbital period
of 21.3 days ≈ 0.0583 yr. The estimates of T∗ are fairly realis-
tic, but consistently several percent greater than their true value
of T = 210. Comparison of the tabulated results shows that
D and B/T are also slightly larger in magnitude for Eqs. (3)
and (4) than for Eqs. (1) and (2); however, the fitness measure
χ is smaller, so that the shifted decay laws do fit our simula-
tions better than the unshifted decay laws. From these values
of χ , Eq. (4) seems to be a better decay model than Eq. (3), but
still neither fit is very close.

Although time shifts can improve the fit of the decay laws at
early times, they cannot alleviate certain problems with decay
at late times. Note that power-law decay (whether time-shifted
or not) is never complete, since formally some particles always
remain for either Eq. (1) or Eq. (3). In contrast, S vanishes at a
finite time t00 = 10A/B for Eq. (2), or at t00 = t0[10T/B − 1] for
Eq. (4). Table 1 includes this “extinction time” t00 for both log-
arithmic laws; note that t00 is shorter for the shifted log law (4)
than for its unshifted version (2). In fact, t00 is shorter than the
simulation interval in three of the six cases.

The removal of all particles in a finite time is unphysical in
principle. Furthermore, both logarithmic laws (2) and (4) gen-
erally fail to fit the first and last few percent of the removals;
this is one reason why we ran most of our simulations to >99%
completion (only <1% of the total particles surviving the run).
Along with the need for a better fit, these behaviors lead us to
seek a more realistic decay law.

2.3. Simple exponential decay

Like the power laws, exponential decay is never formally
complete. Classic exponential decay is described by

S(t) = T exp(−t/t0) ⇔ logS = logT − t log(e)/t0

(5)⇒ dS/dt = −T

t0
exp(−t/t0) = −S/t0,

where t0 > 0 is again a time constant. For Eq. (5), the time
interval t1 ≡ |dS/dt |−1 between successive particle removals
grows exponentially with time, but a fixed fraction of the re-
mainder are removed during each unit of time. This familiar
law governs simple radioactive decay, for example, where half
of a given radionuclide decays during each “half-life” t1/2 =
t0 ln 2 ≈ 0.6931t0. The e-folding time te ≡ S|dS/dt |−1 = St1
is simply the constant t0. For comparison, the e-folding time
grows linearly with time for the shifted power law (3): te =
[t0 + t]/D.

Note that the logarithm of S declines linearly with time
for Eq. (5); this would appear as a straight line of slope
− log(e)/t0 ≈ −0.4343/t0 and y-intercept zero on a plot of
log(S/T ) versus t . The next-to-lowest curve (green) in Fig. 1
plots our results in this format, now referring to the right-
side and bottom axes, respectively. The resulting curve again
is straighter than the uppermost or lowest curves (apart from
the steps due to small-number statistics), but still is not fit well
by any single straight line. Dones et al. (1996, Fig. 2), Hart-
mann et al. (2000, Fig. 5a), Gladman et al. (2005, Fig. 4), and
Zeehandelaar and Hamilton (2005, 2006) plotted their results in
the same log:linear format, and obtained shapes similar to the
green curve in our Fig. 1.

As we did for the logarithmic and power laws (1)–(4), we
fitted our results for S(t) to the simple exponential law (5).
Because Eq. (5) depends on only one parameter t0, we again
solved for the best-fit initial number T∗ of particles as well, as
with the shifted laws (3) and (4), for the sake of a fairer compar-
ison with the other two-parameter fits. But as shown in Table 1,
now the estimates of T∗ are considerably less than its true value
T = 210, because our decays do not really follow a simple ex-
ponential law. Nevertheless, these fits give fairly low values of
χ (ranging from 0.718 to 2.050) compared to the previous de-
cay laws.

2.4. Stretched exponential decay

A useful generalization of Eq. (5) is the Kohlrausch formula

S(t) = T exp
(−[t/t0]β

)

(6)⇒ dS/dt = −βT

t1−βt
β

0

exp
(−[t/t0]β

) = −βS

t1−βt
β

0

.

Here the logarithm of S/T decays as a power β > 0 of the time.
For β = 1, Eq. (6) reduces to the simple exponential law Eq. (5).
Otherwise Eq. (6) becomes a power law, resembling a parabola,
in the log:linear format of the green curve in Fig. 1. As in the
power laws (1) and (3), some particles nominally survive to ar-
bitrarily long times.

For 0 < β < 1, dS/dt is formally infinite at t = 0, but S(t)

itself always remains finite, while the e-folding time

(7)te ≡ S|dS/dt |−1 = St1 = t1−βt
β

0 /β

itself lengthens as the [1 − β] power of the time. This case is
known to solid-state physicists as “stretched exponential relax-
ation,” while β is known as the stretching parameter; it has been
used to describe various physical phenomena, including creep,
annealing, electrical impedance, and magnetic spin relaxation
(e.g., Palmer et al., 1984; Peterson, 1989; Halsey and Leibig,
1991; Scher et al., 1991; Wikipedia, 2007). Stretched expo-
nential decay is associated with the concept of “fractal time”
because relaxation occurs on all time-scales (Peterson, 1989).

For β > 1, in contrast, te shortens with the passage of time;
such behavior could be termed “compressed exponential relax-
ation.” For all of our previous decay laws (1)–(5), the decay
curve S(t) is concave upward at all times, so that the absolute
decay rate |dS/dt | is greatest at the outset t = 0. In compressed
exponential decay, in contrast, dS/dt vanishes at t = 0, while
S(t) is concave downward for early times t < t0[1 − 1/β]1/β ,
but is concave upward thereafter. For example, if β = 2 this in-
flection point occurs at t = t0

√
1/2 ≈ 0.7071t0, and function (6)

is equivalent to the right half of a Gaussian distribution. In the
extreme case β = ∞, S(t) is a step function; all particles sur-
vive until t = t0, and then suddenly expire.
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Fig. 2. Stretched exponential decay of ejecta from Hyperion. The heavy middle curve graphs ln(S/T ) versus elapsed time, in a log:log format. The upper and
lower curves display its three-sigma error envelope, while the dotted line represents a least-squares fit with slope 0.328; this slope is the exponent β in Eq. (6). For
comparison, the diagonals of this plot (not drawn) have slopes of ±1/2.
In order to fit our results to the Kohlrausch law (6), we took
the logarithm of both sides, twice:

ln(S/T ) = −[t/t0]β
(8)⇔ log

∣∣ln(S/T )
∣∣ = log

([t/t0]β
) = β log t − β log t0.

Fig. 2 graphs log | ln(S/T )| versus log t for our fiducial decay
curve, along with its three-sigma uncertainty envelope (see Ap-
pendix A) and the best-fitting regression line. In this format,
Eq. (6) plots as a straight line of slope β and intercept −β log t0.

Our best estimates for these parameters are also listed in Ta-
ble 1, along with the fitness measure χ , ranging from 1.173
to 1.603. The latter are comparable to χ for the simple exponen-
tial model (5); however, this is because the simple exponential
fits included the second parameter T∗. If the simple exponential,
shifted logarithmic, or shifted power law fits had been con-
strained to have T∗ = T , all three values of χ would have been
larger than tabulated.

The final line of the table gives tE , the time at which the
number S of surviving particles falls to 1/e ≈ 0.3679 of the
initial number T . In principle, this should equal t0 for simple
exponential decay (5) or for stretched exponential decay (6). In
fact tE � t0 for the simple exponential fits, but tE ≈ t0 for the
stretched exponential fits. This provides further evidence that
the stretched exponential model is actually more realistic than
the simple exponential model.

Although t0 for the stretched exponential fits is uncertain
by a factor of two or three, it varies more than this from case
to case: while t0 ≈ 5000 yr in our fiducial case, it is only
∼1000 yr for the larger, massive Hyperion but ∼50,000 yr for
the massless Hyperion. Evidently Hyperion’s own gravity is im-
portant for scattering its ejecta into harm’s way, as discussed by
Dobrovolskis and Lissauer (2004).

In contrast to t0, β varies rather little; its best-fitting values
in Table 1 are all around 0.3, so that the e-folding time te grows
roughly as the [1 − β] ≈ 0.7 power of the time t . It is tempting
to suppose that orbit removals are controlled by some kind of
diffusion process such that te grows as the square root of the
time, so β is actually 1/2.

If indeed β = 1/2, the Kohlrausch law (6) becomes

S(t) = T exp(−√
t/t0) ⇔ ln(S/T ) = −√

t/t0

(9)⇒ dS/dt = −T/2√
t0t

exp(−√
t/t0) = −S/2√

t0t
.

Equation (9) would appear as a straight line of slope −0.4343/√
t0 and zero intercept on a graph of log(S/T ) vs

√
t . Accord-

ingly, the middle curve (red) in Fig. 1 plots our fiducial results
in just this format. In this log:root format, our decay curve fi-
nally becomes nearly a straight line!
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2.5. Diffusion

As stated above, the stretched exponential law suggests
a process of diffusion in the space of orbital elements. However,
diffusion in semi-major axis actually bears more resemblance
to compressed exponential decay; at least for the escape of
comets from the Oort cloud by diffusion in orbital binding en-
ergy, according to Yabushita’s (1980) analytical solution as well
as to the random walk model of Dones et al. (1996), although
both of those studies employed idealized initial conditions in
which particle trajectories began far from harm’s way. Yabushi-
ta’s (1980) solution is given as an incomplete gamma function
(see also Dones et al., 1996); we find that this function can also
be written in elementary form as

f (t) ≡ S(t)/T = γ (2, z) ≡
z∫

0

e−uudu = 1 − [1 + z]e−z

(10)⇒ df/dt = df

dz

dz

dt
= −z3e−z/t̄ ,

where u is a dummy variable, and z ≡ 8td/t = t̄/t . Here td is
the “diffusion time” of the comet cloud, and t̄ = 8td is the mean
lifetime of the particles, as explained in Appendix B.

Solution (10) is graphed in Fig. 3, in five formats simi-
lar to those of Fig. 1. As in compressed exponential decay,
df/dt from Eq. (10) vanishes at t = 0. Likewise f (t) also
is concave downward for t < t̄/3 = 8td/3 ≈ 2.6667td (z > 3,
f � 0.8009), and is concave upward thereafter. Because the
decay curves S(t) of our simulations are essentially concave up-
ward at all times, we did not attempt to fit them to the diffusion
solution (10). However, we will reconsider diffusion phenom-
ena in Section 4.

For t 
 t̄ = 8td (z � 1), Eq. (10) approaches f (t) = z2/2 =
t̄ 2/2t2 = 32t2

d /t2. Thus the population decays steeply as the in-
verse square of the time for late times, as shown by the log:log
plot (golden curve) in Fig. 3. The random walk simulations of
Dones et al. (1996) showed a similar inverse-square law tail.
Note that this asymptotic behavior is equivalent to the sim-
ple power law (1) for D = 2 and C/T = t̄ 2/2 = 32t2

d , or to
the shifted power law (3) for D = 2 and t2

0 = t̄ 2/2 = 32t2
d .

However, this value for the exponent D is greater than any con-
sidered heretofore. In contrast, both the numerical integrations
of Dones et al. (1996) and the Keplerian mapping technique
of Malyshkin and Tremaine (1999) found that the population of
simulated comets declines almost as a simple exponential decay
at first, but eventually as a slower power law with exponent D

closer to 1 than to 2.

3. Case studies

3.1. More Hyperion

The format of Figs. 1 and 3 is convenient for discussing the
decay curves of other test populations, as well. For example,
Fig. 3. Diffusion solution, Eq. (10). Format similar to Fig. 1.
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Table 2
Fit parameters of various decay laws for different launch speeds from Hyperion

Launch speed 1.01Ve 1.05Ve 1.10Ve 2.00Ve 5.00Ve No Sun

Initial particles T 208 210 210 210 210 210

Decay law Final particles 44 (21%) 38 (18%) 39 (19%) 40 (19%) 82 (39%) 21 (10%)

Simple D 0.0236 0.0636 0.0690 0.0535 0.0273 0.0650
power C/T 1.016 1.016 0.959 0.937 0.984 0.954
law (1) χ 4.275 2.628 2.218 3.579 4.127 3.039

t0 (yr) 1.918 1.269 0.548 0.298 0.495 0.487

Shifted D 0.0346 0.0768 0.0824 0.0738 0.0432 0.0779
power T∗/T 1.034 1.056 1.061 1.068 1.047 1.060
law (3) χ 4.181 2.343 1.728 2.582 3.425 2.843

Simple B/T 0.0812 0.140 0.136 0.124 0.0750 0.154
logarithmic A/T 1.031 1.016 0.963 0.937 0.983 0.966
law (2) t00 (yr) 4.9 × 1012 1.9 × 107 1.2 × 107 3.5 × 107 1.3 × 1013 1.9 × 106

χ 5.672 2.662 1.810 3.201 4.220 3.255

t0 (yr) 2.387 1.308 0.532 0.313 0.590 0.603

Shifted B/T 0.116 0.160 0.151 0.149 0.106 0.175
logarithmic T∗/T 1.054 1.050 1.042 1.056 1.046 1.060
law (4) t00 (yr) 1.0 × 109 2.3 × 106 2.2 × 106 1.6 × 106 1.5 × 109 3.0 × 105

χ 5.161 2.295 1.353 1.939 3.041 2.809

Simple t0 (yr) 11,863 12,715 16,741 15,515 29,974 9270
exponential T∗/T 0.872 0.723 0.626 0.597 0.700 0.645
decay (5) χ 1.777 0.972 0.827 1.102 1.624 1.135

Stretched t0 (yr) 9506 8503 7447 5015 14,739 3733
exponential β 0.618 0.348 0.287 0.321 0.380 0.356
decay (6) χ 0.864 1.402 1.389 1.384 1.530 1.172

tE (yr) 8083 7565 8132 6916 >20,000 4077

Note. The simulation interval was only 20,000 years in each case.
the other cases listed in Table 1 produce plots similar to Fig. 1
(although the vertical range differs for the massless Hyperion
case). In each case, the stretched exponential model fits best
(produces the straightest decay curve).

Dobrovolskis and Lissauer (2004) also performed short-term
(20,000-year) simulations to test the effects of the speed of
ejection from Hyperion, as listed in their Table 4. Table 2 of
this paper lists the results of fitting those runs to decay laws
(1)–(6); the format is similar to our Table 1, but without the
error bars. The top line of Table 2 gives the speed of ejection
in terms of Hyperion’s escape velocity Ve . The column headed
“1.10Ve” is the same case as our fiducial run, but restricted to
the first 20,000 years; note how decay is already 81% complete,
compared to 99% for the full 200,000-year term. The column
headed “No Sun” is another 20,000-year test with launch speed
1.10Ve , but excluding the Sun as a perturber for comparison.
Presumably solar perturbations raise the periapses of far-flung
ejecta, and thereby lengthen their lifetimes.

The second line of the column headed “1.01Ve” lists only
208 initial particles instead of 210, because we ignored two
ejecta which returned to Hyperion’s surface within 7 days. For
such low ejection speeds (in this case only one percent faster
than the nominal escape velocity), a few particles follow short
sub-orbital (ballistic) trajectories like these, or else they be-
come temporary satellites (sub-satellites) of their source moon
with lifetimes comparable to its orbital period; in either case,
they never get outside of that moon’s Hill sphere (Alvarellos
et al., 2002). In order to exclude them from consideration, fol-
lowing Alvarellos et al. (2005), we ignored any particles which
were removed in less than two orbital periods of their source.
This should not seriously compromise our analysis, because the
time-scales listed in Tables 1 and 2 (and Table 3) are all much
greater than Hyperion’s orbital period of 21.3 days ≈ 0.0583 yr.

Because of the short integration times, the simulations re-
ported in Table 2 are much less complete than those of Table 1.
Nevertheless the values of D and B for the power and loga-
rithmic models (both simple and shifted) are similar to those
in Table 1. Also as in Table 1, the values of C and A again
fall within several percent of T (the initial number of parti-
cles) for the simple power and log laws (1) and (2); likewise
for their shifted versions (3) and (4), the estimates T∗ of the ini-
tial number of particles remain several percent greater than its
true value T . For the simple exponential model (5), the estimate
T∗ is again considerably less than its true value T .

As in Table 1, all time-scales in Table 2 remain much greater
than Hyperion’s orbital period. Once more we find that time
shifts t0 on the order of a year slightly improve the fits to the
logarithmic and power laws, and slightly increase D and B .
As in Table 1, the extinction time t00 is shorter for the shifted
log law (4) than for its unshifted version (2), but t00 is greater
than the simulation interval for all cases in Table 2, and much
greater than the values in Table 1. Again we find that the fit-
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Table 3
Fit parameters of various decay laws for seasonal Hyperion runs

True anomaly 0◦.42 97◦.29 179◦.94 263◦.11 280◦.81 Combined
at launch

Initial particles T 209 210 210 210 210 1049

Decay law Final particles 5 (2%) 5 (2%) 10 (5%) 9 (4%) 8 (4%) 37 (3.5%)

Simple D 0.0661 0.0735 0.0577 0.0657 0.0749 0.0634
power C/T 0.977 0.951 0.970 0.948 0.961 0.946
law (1) χ 4.467 3.417 3.945 3.618 3.259 8.484

t0 (yr) 0.704 0.503 0.590 0.443 0.588 0.417

Shifted D 0.0915 0.0897 0.0761 0.0798 0.0906 0.0808
power T∗/T 1.083 1.075 1.063 1.064 1.072 1.071
law (3) χ 3.801 3.117 3.256 3.365 2.923 7.438

Simple B/T 0.183 0.179 0.154 0.163 0.170 0.164
logarithmic A/T 0.984 0.969 0.971 0.955 0.973 0.950
law (2) t00 (yr) 2.4 × 105 2.5 × 105 2.0 × 106 7.0 × 105 5.3 × 105 6.4 × 105

χ 4.348 3.537 4.408 3.793 3.192 8.951

t0 (yr) 0.815 0.675 0.646 0.532 0.698 0.494

Shifted B/T 0.205 0.198 0.175 0.182 0.188 0.184
logarithmic T∗/T 1.079 1.074 1.063 1.067 1.064 1.072
law (4) t00 (yr) 6.2 × 104 7.5 × 104 3.4 × 105 1.7 × 105 1.5 × 105 1.4 × 105

χ 2.775 2.713 3.268 3.112 2.535 6.646

Simple t0 (yr) 26,417 24,550 33,019 33,139 31,128 29,993
exponential T∗/T 0.420 0.485 0.545 0.464 0.490 0.475
decay (5) χ 1.869 1.379 1.472 2.056 1.476 3.610

Stretched t0 (yr) 3349 3974 7358 4891 5054 4755
exponential β 0.393 0.342 0.337 0.336 0.321 0.346
decay (6) χ 0.972 1.233 1.664 1.645 1.558 2.940

tE (yr) 4066 6019 9441 6575 8132 6616

Note. The simulation interval was 100,000 years in each case.
ness measure χ is comparable for the two-parameter simple
and stretched exponential models, but that tE matches t0 better
for the stretched exponential law (6) than for the simple ex-
ponential law (5). And as before, we find that the stretching
parameter β mostly ranges around 1/3.

In order to test the effects of Hyperion’s orbital eccentricity,
Dobrovolskis and Lissauer (2004) also performed intermediate-
term (100,000-year) integrations, listed as “seasonal simula-
tions” in their Table 5. Note that the final two columns of that
table contain errors: the last two entries in the row entitled “Sur-
vived” should be 8 (4%) and 37 (3.5%), while those in the
“Escaped” row should be 21 (10%) and 91 (8.7%), and those
in the row “Hit Titan” should be 162 (77%) and 814 (78%).

Table 3 of this paper lists the results of fitting those sea-
sonal runs to decay laws (1)–(6), in a format similar to our
Tables 1 and 2. The top line of Table 3 gives Hyperion’s orbital
position as its true anomaly at the time of ejection. The col-
umn headed “0◦.42” refers to launch near Hyperion’s periapsis,
while the one labeled “179◦.94” refers to its apoapsis. The col-
umn headed “263◦.11” is the same case as our fiducial run, but
restricted to the first half of the simulation; note how decay is
so well advanced that only a few percent of the ejecta remain.
The column labeled “Combined” lists the results of fitting the
combination of all five seasonal runs.
Generally the results in Table 3 are similar from column to
column, systematically varying somewhat with the true anom-
aly at launch. Again we find values of all parameters consis-
tent with Tables 1 and 2. Once more, the stretched exponential
law (6) generally fits our results best, as evidenced by the low
values of the fitness measure χ for this model, particularly for
ejection at periapsis. The combined run also fits the stretched
exponential model best, although for each decay model, χ is
greatest for the combined run. This is partly due to actual differ-
ences among the decay curves degrading the fit; but for reasons
we do not fully understand, χ also tends to increase roughly as
the square root of T , the total number of particles (i.e., χ2 ∼ T ).
Randomly sampling only 210 particles of the combined run
gives similar results to the five original runs.

Fig. 4 shows the decay curves for the combined simulations,
in a similar format to Figs. 1 and 3. Again the stretched expo-
nential model (red curve) is straightest. Note how combining
runs reduces the shot noise and improves the statistics. In our
subsequent simulations, we employ at least a hundred initial
particles, but over a thousand ejecta are preferable.

3.2. Other satellites of Saturn

Subsequent to the Hyperion simulations of Dobrovolskis and
Lissauer (2004), Alvarellos et al. (2005) undertook a study of
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Fig. 4. Comparison of decay laws for combined seasonal Hyperion simulations (final column in Table 3). Format similar to Fig. 1.
ejecta from some of Saturn’s other moons. They ejected 600
particles from each of the major craters Herschel on Mimas,
Odysseus and Penelope on Tethys, and Tirawa on Rhea (al-
though not all particles achieved planetocentric orbit; see Ta-
ble 4). In an effort to be realistic, Alvarellos et al. (2005) used
two end-member spray patterns, corresponding to rubble from
loose regolith and to spalls from hard surfaces. In general, spall
velocities were faster and more vertical, but the rubble and spall
simulations do not differ greatly, as Table 4 indicates.

Table 4 displays the outcome of fitting the resulting decay
curves to laws (1)–(6), in a format like Tables 1–3. Comparison
shows that the time-scales vary from satellite to satellite, but
that the dimensionless fit parameters remain similar. Note that
β in Table 4 is about 1/2, versus values nearer 1/3 from Ta-
bles 1–3. The fitness measures χ in Table 4 are generally larger
than those from Tables 1–3, but again the stretched exponential
model (6) clearly fits best. Furthermore, tE matches t0 from the
stretched exponential model (6) much better than t0 from the
simple exponential model (5).

To demonstrate, Figs. 5–7 respectively plot the decay curves
for spalls from Herschel on Mimas, for rubble from Odysseus
on Tethys, and for spalls from Tirawa on Rhea, in a for-
mat similar to Figs. 1, 3, and 4. Note how alike all of these
curves are, although the time-scales differ considerably. In each
case, the stretched exponential model (red curve) yields the
best (straightest) fit. The results for ejecta from Penelope (not
shown) are similar to those from Odysseus.
We believe that the stretching parameter β tends to be larger
for these saturnian moons than for Hyperion or the satellites of
Jupiter because the mid-sized satellites of Saturn are dynam-
ically more isolated. From examination of the orbits, we find
less spreading of the ejecta torus by perturbations from the other
satellites. Hence the decay curve is less “stretched” than for
Hyperion, or a dynamically crowded system like the Galilean
satellites.

3.3. Moons of Jupiter

In an earlier series of simulations, Alvarellos et al. (2002)
integrated ejecta from Jupiter’s largest moon Ganymede, under
the gravitational influences of Jupiter and its oblateness, all four
Galilean satellites Io, Europa, Ganymede, and Callisto, as well
as the Sun and Saturn. Particles were launched outward from
the rim of Gilgamesh, the largest impact basin on Ganymede,
at various speeds, and at angles of 30◦, 45◦, or 60◦ from the ver-
tical, and were followed for 100,000 years, or until all particles
were removed.

Alvarellos et al. (2002) tabulated their results according to
the angle of ejection, but the outcomes actually depend more
on the launch speed. Accordingly we have combined their sim-
ulations with the same launch speeds but different ejection an-
gles. Table 5 displays the outcome of fitting the resulting decay
curves to laws (1)–(6), in a format similar to Tables 1–4. Again,
the dimensionless fit parameters are comparable to those from
the previous tables, but the time-scales are different.
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Table 4
Fit parameters of various decay laws for different moons of Saturn

Satellite Mimas Tethys

0.00517 yr
2000 yr

Rhea

Orbital period 0.00258 yr 0.0124 yr
Run time 1000 yr 15,000 yr

Crater Herschel Odysseus Penelope Tirawa

Ejecta Rubble Spalls Rubble Spalls Rubble Spalls Rubble Spalls

Initial particles T 526 554 555 595 561 590 582 600

Decay law Final particles 2 3 7 5 3 4 2 4

Simple D 0.0971 0.0348 0.103 0.0733 0.0612 0.107 0.0481 0.0526
power C/T 0.831 0.874 0.782 0.825 0.830 0.714 0.892 0.898
law (1) χ 6.348 8.298 7.451 8.651 9.481 7.649 9.163 8.733

t0 (yr) 0.149 0.0212 0.0908 0.0725 0.0474 0.0434 0.0937 0.130

Shifted D 0.125 0.0552 0.142 0.110 0.106 0.151 0.0764 0.0767
power T∗/T 1.092 1.050 1.112 1.091 1.092 1.123 1.064 1.062
law (3) χ 6.051 7.699 6.507 7.575 8.198 6.358 8.155 7.901

Simple B/T 0.262 0.213 0.239 0.232 0.227 0.226 0.199 0.202
logarithmic A/T 0.791 0.707 0.755 0.743 0.707 0.692 0.803 0.829
law (2) t00 (yr) 1041 2080 1457 1611 1322 1157 10,981 12,741

χ 6.822 16.027 5.693 8.869 10.413 6.298 11.522 10.868

t0 (yr) 0.159 0.0422 0.0940 0.0781 0.0512 0.0435 0.102 0.141

Shifted B/T 0.291 0.246 0.261 0.256 0.249 0.243 0.216 0.221
logarithmic T∗/T 1.092 1.102 1.081 1.087 1.086 1.071 1.077 1.078
law (4) t00 (yr) 438.7 485.9 634.7 627.5 527.1 560.9 4249 4786

χ 5.365 11.600 4.205 6.109 7.408 5.671 8.217 7.827

Simple t0 (yr) 160.8 147.4 374.1 329.1 289.6 328.6 2036 2256
exponential T∗/T 0.686 0.778 0.444 0.508 0.457 0.341 0.402 0.450
decay (5) χ 3.012 2.737 4.385 4.622 4.612 4.182 4.084 4.176

Stretched t0 (yr) 64.44 74.73 48.61 55.39 32.82 24.61 216.8 323.7
exponential β 0.535 0.620 0.479 0.521 0.512 0.442 0.490 0.495
decay (6) χ 2.428 2.062 1.659 1.693 2.260 2.026 1.480 1.118

tE (yr) 79.09 86.87 45.99 56.68 28.78 23.98 196.6 327.1
As in Table 2, the top line of Table 5 lists the speed of ejec-
tion in terms of Ganymede’s escape velocity Ve. The trend of
these results with launch speed indicates that faster ejecta take
longer to decay. This is especially clear from the final line of
Table 5, and from t0 for the stretched exponential law (6). Note
also how the exponent β from the stretched exponential fit rises
monotonically with launch speed from ∼1/4 for the slowest
ejecta to ∼1/2 for the fastest ejecta.

Particles ejected with speeds slightly less than Ganymede’s
escape velocity Ve ≈ 2.740 km/s still can escape, because they
need only to reach Ganymede’s Hill sphere rather than infinity
(Alvarellos et al., 2002). However, the power and log law fits
to ejecta with launch speeds �Ve in Table 5 show values of the
time shift t0 only a few times greater than Ganymede’s orbital
period of 7.155 days ≈ 0.0196 yr. This suggests that t0 may be
overestimated; in fact, comparison of the fitness measures χ for
the simple and shifted logarithmic laws (2) and (4) implies that
including this time shift actually degrades the fit. The tabulated
values of χ imply that the decays fit the stretched exponential
law (6) better than the power and log laws (1)–(4) in every case.

The last column of Table 5, headed “Vertical,” refers to a spe-
cial test run in which 167 ejecta were launched vertically up-
ward from the center of Gilgamesh, at speeds ranging uniformly
from 0.903Ve to 1.400Ve. However, the first 18 particles fol-
lowed suborbital trajectories, while the next two entered tempo-
rary sub-satellite orbits around Ganymede; only the 147 vertical
ejecta with launch speeds �0.963Ve escaped Ganymede and
were fitted to the decay laws (1)–(6). Comparison with the other
columns of Table 5 shows that on the average, these vertical
ejecta behave most like the oblique ejecta with a launch speed
of 1.20Ve. However, note that the vertical ejecta fit a stretched
exponential decay best of all, despite their wide range of launch
speeds.

Recently Alvarellos et al. (2007) (see also Zahnle et al.,
2007) also have simulated the evolution of rubble and spalls
ejected from Io (period ≈ 1.769 days ≈ 0.00484 yr) by cometary
impacts at four different locations: Io’s south pole, its sub-
jovian and anti-jovian points, and Io’s apex of motion (at the
center of its leading hemisphere). Table 6 lists the results of fit-
ting all four decay curves to laws (1)–(6) for the spalls, while
Table 7 does the same for the rubble. The results from all four
impact sites were so similar that we have combined them into
two large simulations, whose fit parameters are reported in Ta-
bles 6 and 7 as well. The tabulated values of χ imply that the
stretched exponential law (6) again fits best in all ten cases. The
composite decay curve for all of the spalls is plotted in the usual
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Fig. 5. Comparison of decay laws for spalls from Mimas. Format similar to Fig. 1.

Fig. 6. Comparison of decay laws for rubble from Odysseus, on Tethys. Format similar to Fig. 1.
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Fig. 7. Comparison of decay laws for spalls from Rhea. Format similar to Fig. 1.
formats in Fig. 8; that for the rubble is similar, but with shorter
time-scales, consistent with the generally higher speeds of the
spalls.

3.4. Triton

Thus far we have found that launch speed affects ejecta de-
cay somewhat, but that different ejection angles or locations do
not matter as much. However, all of our runs so far simulate
the rather complicated Jupiter and Saturn systems; this tends
to obscure the competing influences of multiple perturbers and
targets. The better to separate various effects, we decided to
perform new simulations of a much simpler system, consisting
only of Neptune and Triton, its largest moon by far.

Triton’s orbit is notably circular; in fact, its eccentricity is
essentially undetectable, so we neglected it in all cases. In or-
der to test the effects of three other parameters, we built up
a realistic Neptune–Triton system from simpler models in a se-
quence of eight simulations. Table 8 lists the parameters of
these runs, along with the results of fitting their decay curves
to laws (1)–(6).

For half of the runs (tabulated in columns 7–10), Triton was
given its proper radius of 1352.6 km, GM of 1427.9 km3/s2,
and escape velocity Ve of 1.4530 km/s. Particles were ejected
with a launch speed 1.5000 km/s = 1.0323Ve, leaving a resid-
ual speed of 372.4 m/s after escape, small compared to Triton’s
orbital speed of 4.360 km/s. For the other four simulations
(listed in columns 3–6 of Table 6), we launched ejecta at a speed
of 372.4 m/s from a Triton with its true radius, but zero mass, as
in the case of the massless Hyperion in Table 1. In each of these
massless cases, Triton could not scatter its own ejecta, but pas-
sively re-accreted all of them with its geometric cross-section
alone.

For two of the massless Triton runs, and for two of the
massive Triton runs (columns 3, 4, 7, and 8 of Table 8), we
neglected Neptune’s oblateness. In the absence of this or other
perturbations, the Neptune–Triton–particle system thus consti-
tutes a Circular Restricted Three-Body Problem (CR3BP). Un-
der such conditions the Jacobi constant (analogous to energy,
and often approximated as the Tisserand parameter) is con-
served; this ensures that a given ejectum approaches Triton with
the same speed at each close encounter.

For the other four simulations (columns 5, 6, 9, and 10 of
Table 8), Neptune was given its proper radius of 25,225 km
and true dynamic oblateness J2 = 0.0034105. This perturbation
causes the orbits of ejecta to precess with periods of ∼700 years
about Neptune’s equator plane, inclined by ∼156◦.8 (23◦.2 ret-
rograde) to Triton’s orbit. This breaks the Jacobi constant and
allows a particle to re-encounter Triton with a somewhat differ-
ent speed each time.

For each combination of mass and oblateness, we launched
360 particles vertically from 360 equally spaced points along
Triton’s equator, taken as coincident with its orbital plane
(columns 3, 5, 7, and 9 of Table 8). If the oblateness is zero
as well, then the ejecta must always remain in Triton’s orbital
plane; this reduces the problem to two dimensions and dra-
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Table 5
Fit parameters of various decay laws for ejecta from Ganymede

Launch speed 0.96Ve 0.98Ve 1.00Ve 1.20Ve 1.40Ve Vertical
Run time (yr) 19,299 62,501 100,000 54,822 100,000 45,117

Initial particles T 119 166 178 179 180 147

Decay law Final particles 0 0 1 0 1 0

Simple D 0.169 0.155 0.156 0.0437 0.0481 0.0693
power C/T 0.655 0.678 0.752 0.948 0.967 0.910
law (1) χ 3.115 4.158 2.991 5.419 5.144 4.199

t0 (yr) 0.0807 0.0813 0.160 0.296 0.494 0.257

Shifted D 0.236 0.234 0.196 0.0674 0.0727 0.0980
power T∗/T 1.203 1.194 1.156 1.065 1.073 1.090
law (3) χ 1.968 2.548 2.307 5.227 4.904 3.810

Simple B/T 0.193 0.184 0.179 0.200 0.201 0.198
logarithmic A/T 0.748 0.768 0.817 0.914 0.962 0.896
law (2) t00 (yr) 7.5 × 103 1.5 × 104 3.6 × 104 3.8 × 104 6.0 × 104 3.4 × 104

χ 3.838 7.102 4.493 6.781 6.244 3.834

t0 (yr) 0.0492 0.0548 0.0953 0.371 0.647 0.298

Shifted B/T 0.197 0.188 0.182 0.221 0.222 0.217
logarithmic T∗/T 1.021 1.023 1.016 1.091 1.094 1.080
law (4) t00 (yr) 7.4 × 103 1.5 × 104 3.6 × 104 3.2 × 104 5.4 × 104 2.9 × 104

χ 4.101 7.548 4.804 5.353 4.834 2.805

Simple t0 (yr) 5005 19,186 23,538 8825 15,219 8570
exponential T∗/T 0.108 0.0527 0.0919 0.326 0.319 0.299
decay (5) χ 1.239 1.408 1.506 2.388 2.300 1.824

Stretched t0 (yr) 23.69 23.06 106.4 600.0 1138 590.6
exponential β 0.280 0.283 0.300 0.497 0.499 0.433
decay (6) χ 1.925 1.751 1.558 1.768 1.407 0.954

tE (yr) 10.49 14.76 60.75 406.8 733.3 449.5
matically increases the rate of re-accretion. Finally, for each
combination of mass and oblateness, we also launched 360 par-
ticles vertically from 360 equally spaced points along Triton’s
45◦ north parallel of latitude (columns 4, 6, 8, and 10). This
gives the ejecta an inclination with respect to Triton’s orbit, and
restores the problem to three dimensions.

We begin with the simplest case, equatorial ejection when
Triton’s mass and Neptune’s oblateness both vanish (column 3
of Table 8). Decay is very rapid in this non-scattering, two-
dimensional case, as shown both by tE and by the total run time.
None of the logarithmic or power laws (1)–(4) seems to fit this
case very well. However, both the simple and stretched expo-
nential laws (5) and (6) fit quite well: t0 ≈ tE for both laws,
and both have fitness measures χ of about unity. Furthermore,
T∗/T ≈ 1 as well for the simple exponential law (5), signifying
a realistic fit. Finally, the stretching parameter β (given with its
one-sigma uncertainty in Table 8) also is nearly indistinguish-
able from unity for the stretched exponential law (6), implying
that it closely approximates simple exponential decay (5).

Fig. 9 displays the decay curves for the above case, in the
usual format. Note that now the green curve is closest to the di-
agonal; this confirms that the decay curve for this case is nearly
a pure exponential. From this it is tempting to conclude that the
process of re-accretion is random, such that each ejecta particle
has the same probability of removal per unit time. However,
examination of the particle lifetimes versus the longitude of
launch (cf. Fig. 1 of Dobrovolskis and Lissauer, 2004) reveals
that ejecta from Triton’s leading and trailing quadrants are re-
accreted in about half the time as those from its sub-Neptune
and anti-Neptune quadrants. Thus the removal probability per
unit time is not constant, but a systematic function of launch
circumstances.

A similar pattern arises for midlatitude ejection when Tri-
ton’s mass and Neptune’s oblateness both vanish (column 4 of
Table 8), but the other simulations cannot be characterized in
any such simple manner. Examination of column 4 in Table 8
shows that this three-dimensional case is not fit by simple ex-
ponential decay (5) much better than by the power or log laws
(1)–(4). Furthermore, although the fitness measure χ is accept-
able for the Kohlrausch law (6), the best-fit exponent β is signif-
icantly greater than unity, as in compressed exponential decay.
On the face of it, this suggests a process of diffusion, similar to
a random walk. However, no diffusion can occur in this simu-
lation, any more than in the previous case, because a massless
Triton cannot scatter its ejecta; since Neptune’s oblateness is
also neglected, the particle orbits cannot even precess, but must
remain fixed.

In fact, Fig. 10 (in the usual format) reveals that the decay
curve for this case is nearly linear in time, corresponding nei-
ther to the diffusion solution (8), nor to any of our proposed
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Table 6
Fit parameters of various decay laws for spalls from Io

Location Apex Sub-jovian Anti-jovian Pole Combined

Initial particles T 572 546 539 568 2225

Decay law Final particles 3 2 4 4 13

Simple D 0.153 0.120 0.103 0.162 0.0996
power C/T 0.650 0.634 0.677 0.590 0.682
law (1) χ 6.560 7.457 8.160 6.590 16.871

t0 (yr) 0.0600 0.0222 0.0225 0.0384 0.0215

Shifted D 0.204 0.172 0.154 0.218 0.152
power T∗/T 1.166 1.143 1.127 1.176 1.123
law (3) χ 5.827 6.117 6.758 5.414 13.745

Simple B/T 0.245 0.224 0.228 0.237 0.225
logarithmic A/T 0.681 0.623 0.624 0.647 0.625
law (2) t00 (yr) 595.0 601.7 549.5 533.4 590.2

χ 5.701 6.365 6.886 6.237 14.111

t0 (yr) 0.0499 0.0208 0.0224 0.0324 0.0216

Shifted B/T 0.257 0.238 0.246 0.250 0.243
logarithmic T∗/T 1.047 1.060 1.072 1.050 1.072
law (4) t00 (yr) 583.2 582.7 514.6 521.8 553.1

χ 6.201 6.401 6.215 6.965 12.387

Simple t0 (yr) 158.8 150.6 176.8 179.0 159.2
exponential T∗/T 0.338 0.303 0.320 0.277 0.349
decay (5) χ 3.729 3.481 4.281 3.807 8.360

Stretched t0 (yr) 13.862 9.434 10.614 8.952 10.662
exponential β 0.464 0.432 0.447 0.420 0.441
decay (6) χ 1.882 2.384 2.529 2.683 4.831

tE (yr) 5.526 3.486 3.987 2.909 3.911

Note. All runs lasted 1000 years.
decay laws (1)–(6). For comparison, fitting this decay curve to
a linear decay law

(11)S(t) = T∗[1 − t/t00]
gives a relatively high fitness measure χ = 5.713, but a reason-
able initial number T∗ = 334.2 ± 6.1 compared to the actual
total T = 360, and a realistic extinction time t00 = 23.80 ±
0.54 yr at which all of the particles are gone, compared to the
actual run time of 24.99 yr.

Columns 5 and 6 of Table 8 show the effect of Neptune’s
oblateness on the two previous cases. The decay times are much
longer in both cases, but now the latitude of ejection makes lit-
tle difference between them. The decay curve corresponding
to column 5 is graphed in Fig. 11, in the by-now familiar for-
mat. The corresponding plot for column 6 is very similar; both
resemble Figs. 1 and 3–8 more than the “pathological” cases
in Figs. 9 and 10. Table 8 implies that the simple or stretched
exponential law fits these cases best, while Fig. 11 favors the
logarithmic (blue) or stretched exponential (red) law.

Column 7 of Table 8 shows the effects of Triton’s mass on
the planar case of equatorial ejection without oblateness. In
this simulation, Triton managed to expel one particle from the
Neptune–Triton system by a series of distant encounters, but it
re-accreted all of the others. The gravitational enhancement of
Triton’s collisional cross-section accelerates the initial decay,
as shown by the decreases in tE and in t0 for the stretched ex-
ponential law (6) from the massless case in column 3. However,
gravitational scattering by Triton “stretches” the tail of the de-
cay curve, as shown by the increases in total run time and in t0
for the simple exponential law (5). Fig. 12 displays the decay
curve corresponding to this case. Both Fig. 12 and column 6 of
Table 8 show that none of our decay laws (1)–(6) gives a par-
ticularly good fit to this simulation.

The corresponding plots for the other massive simulations
(columns 8–10 in Table 8) generally resemble Fig. 12, except
for time-scale. As Table 8 shows, Neptune’s oblateness and
non-equatorial launch both lengthen all relevant time-scales.
Note that columns 7 and 9 list time shifts t0 for the shifted log
law (4) even shorter than Triton’s orbital period 5.877 days =
0.0161 yr. In fact, including t0 causes a slight degradation of
the log fits for all four massive Triton runs, as it did for low-
speed ejecta from Ganymede (Table 5). Finally, the sixth row
of Table 8 shows that Triton expelled a few particles from the
Neptune–Triton system in each massive case. All of the others
hit Triton; no ejecta ever reached Neptune itself, which would
require still stronger perturbations.

4. Discussion

We have seen that in gravitational systems dominated by
a central mass, the decay curves of small bodies initially in
secondary-crossing orbits usually are fit best by the generalized
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Table 7
Fit parameters of various decay laws for rubble from Io

Location Apex Sub-jovian Anti-jovian Pole Combined
Run time (yr) 1000 1000 592.1 1000 1000

Initial particles T 559 436 442 531 1968

Decay law Final particles 3 4 0 2 9

Simple power D 0.180 0.163 0.199 0.265 0.140
law (1) C/T 0.551 0.543 0.504 0.423 0.582

χ 5.700 6.513 5.884 4.291 15.606

t0 (yr) 0.0368 0.0234 0.0319 0.0391 0.0211

Shifted power D 0.235 0.236 0.281 0.342 0.217
law (3) T∗/T 1.184 1.195 1.229 1.271 1.170

χ 4.541 4.604 4.451 3.096 11.188

Simple logarithmic B/T 0.235 0.230 0.240 0.225 0.228
law (2) A/T 0.644 0.609 0.604 0.596 0.613

t00 (yr) 546.2 441.4 331.6 450.1 488.0
χ 6.317 6.411 9.056 11.132 16.536

t0 (yr) 0.0305 0.0200 0.0223 0.0160 0.0201

Shifted logarithmic B/T 0.247 0.243 0.247 0.225 0.244
law (4) T∗/T 1.047 1.052 1.031 1.002 1.065

t00 (yr) 540.0 429.5 331.2 452.1 477.3
χ 7.253 7.050 9.956 11.651 17.951

Simple exponential t0 (yr) 158.6 218.5 75.5 163.2 143.0
decay (5) T∗/T 0.280 0.214 0.294 0.172 0.345

χ 3.632 3.431 3.315 3.327 8.599

Stretched exponential t0 (yr) 7.476 4.901 3.396 2.891 4.489
decay (6) β 0.398 0.363 0.428 0.375 0.384

χ 2.220 3.165 3.013 2.960 5.721

tE (yr) 5.477 2.648 2.143 1.859 2.712
exponential law (6), where the stretching parameter β generally
ranges between about 1/2 and 1/3. Furthermore, the e-folding
time te of satellite ejecta grows as the 1 − β power of the
elapsed time t , ranging from ∼1/2 to ∼2/3. We attribute this
lengthening of te to a combination of two effects, which we call
“spreading” and “culling.”

Spreading is analogous to a process of diffusion. For ex-
ample, displacement in a random walk increases as t1/2, cor-
responding to normal or Fickian diffusion. However, chaotic
physical systems can display “strange kinetics,” where dis-
placements grow as some other power of the time, tμ

(Shlesinger et al., 1993). If μ > 1/2, the system is called
“super-diffusive”; if μ < 1/2, it is called “sub-diffusive”
(Morbidelli and Froeschlé, 1996). For instance, Petit and Hénon
(1987) find that, without shepherding, a narrow planetary ring
broadens sub-diffusively, as t1/3 (μ = 1/3).

In the situations treated in this paper, the particle population
spans a narrow range of orbits at first, but spreads into a wider
range over the course of time. Some of the particles “hide” for
long intervals in relatively safe niches, such as temporary reso-
nances with the planets or satellites, while other new orbits are
relatively dangerous and short-lived, like planet-crossing aster-
oids.

Probably the most important spreading mechanism is dy-
namical heating. This refers to the gradual rise in eccentricities,
inclinations, and velocities of particles (relative to their sources
and sinks). In many respects it resembles a process of diffusion
in the space of orbital elements. Particle time constants grad-
ually lengthen as ejecta spread away from their source bodies,
which are also their dominant sinks (except that Titan is the
main sink for ejecta from nearby Hyperion).

Figs. 2–4 of Dobrovolskis and Lissauer (2004) show how
dynamical heating gradually spreads ejecta from Hyperion
throughout the Saturn system. Comparison of the massive and
massless Hyperion results from Table 3 of that paper and from
Table 1 of this one indicates that Hyperion itself is the initial
source of this heating, despite its small size, but also that other
perturbations (mainly from Titan) are important as well.

Similarly, Fig. 7 of Gladman et al. (1995) and Fig. 2 of
Gladman et al. (1996) graphically show dynamical heating of
lunar ejecta, while Fig. 4 of Gladman et al. (1996) and Fig. 3
of Gladman (1997) do the same for martian ejecta. Wetherill
(1977, Fig. 4) dramatically cartoons spreading of planetesimals
left over from the accretion of the Earth.

The primary cause of spreading is gravitational scattering,
but orbital precession can also cause dynamical heating. Com-
parison of columns 5 and 6 of Table 8 with columns 3 and 4
shows how including Neptune’s dynamical oblateness stretches
the decay of ejecta from Triton.

Culling refers to the case when the initial particle popula-
tion spans a wide range of orbits, some of which are more
prone to removal than others (e.g., low vs high inclinations).
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Fig. 8. Comparison of decay laws for spalls from Io. Format similar to Fig. 1.
The more “endangered” particles tend to be removed first, just
as predators cull slower, weaker prey from the herd, or as or-
chard workers make short work of picking low-hanging fruit.

As yet another analogy, imagine analyzing an unknown mix-
ture of radioactive wastes. Suppose that the waste contains only
two unstable nuclides with different time constants, and that all
daughter nuclei are stable, so that there are no decay chains.
Then the combined decay curve of the mix is the sum of two
simple exponentials. As the specimen decays, the population of
both radionuclides declines, but the ratio of long-lived to short-
lived nuclei increases, and the effective e-folding time te of the
whole sample grows with time.

In fact, Wetherill (1979) has shown that a simple two-
compartment model of Earth-crossing and Mars-crossing as-
teroids yields a population of Earth-crossers which decays as
the sum of two simple exponentials (plus a constant term, if
a steady-state source is operating; see Appendix B). If the two
time constants were sufficiently different, the net decay curve
would resemble two straight lines in a log:linear plot (like the
green curves in Figs. 1 and 3–12): an initially steep slope dom-
inated by the short-lived component, followed by a slow tail
dominated by the long-lived one. Note that none of our green
curves looks quite like this.

More generally, the net decay curve can be viewed as a linear
combination (with positive coefficients) of many simple ex-
ponential decays of the form exp(−kt). Unlike a mixture of
radioactive nuclides, though, the distribution of particle orbits
can be considered to contain a continuous distribution F of de-
cay constants k. How can F(k) be recovered? It turns out that
the decay curve S/T or f (t) is the Laplace transform of the de-
sired distribution F of time constants; thus F is just the inverse
Laplace transform of f . F(k) may be regarded as the “Laplace
spectrum” of the decay curve, analogous to the Fourier spec-
trum of a periodic function.

Like most inverse problems, “Laplace analysis” is generally
difficult. Closed-form expressions (Oberhettinger and Badii,
1973) are known for the Laplace spectra of the power laws (1)
and (3), and for the Kohlrausch law (6) in the particular cases
β = 1/3 and β = 1/2 (stretched exponential decay), as well as
for β = 1 (simple exponential decay). For example, the spec-
trum of simple exponential decay (5) is a Dirac delta-function at
the unique time constant t0. However, it can be shown that any
linear combination of exponential decay curves with positive
coefficients must be concave upwards everywhere. Therefore
no Laplace spectrum (with non-negative amplitudes) can exist
for compressed exponential decay (β > 1), the diffusion solu-
tion (10), nor either logarithmic law (2) or (4).

Matrix methods exist to Laplace-analyze decay curves like
ours computationally. Unfortunately, such algorithms are nu-
merically ill-conditioned (Bellman et al., 1966), and rather un-
stable in practice. Spreading also alters particle orbits with
time, which renders Laplace spectra less meaningful. Despite
these problems, we attempted to recover Laplace spectra from
our decay curves by using the publicly available Matlab script
reginvlaplace.m (Rogers, 2005). However, the results were dis-
appointing and are not presented here.
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Table 8
Fit parameters of various decay laws for Triton ejecta

GM of Triton 0 1427.9 km3/s2

J2 of Neptune 0 0.0034105 0 0.0034105

Launch latitude 0 45◦ 0 45◦ 0 45◦ 0 45◦
Run time (yr) 19.08 24.99 828.1 855.6 2364 33,634 17,242 34,612

Initial particles T 359 360 359 360 357 359 357 359

Decay law Particles expelled 0 0 0 0 1 8 6 16

Simple D 0.0866 0.0493 0.118 0.0746 0.244 0.144 0.249 0.158
power C/T 0.794 0.912 0.736 0.877 0.470 0.728 0.464 0.706
law (1) χ 6.571 6.032 5.579 6.656 5.143 5.695 4.274 5.237

t0 (yr) 0.0700 0.153 0.0754 0.173 0.0453 0.110 0.0461 0.110

Shifted D 0.142 0.0857 0.168 0.122 0.363 0.193 0.331 0.205
power T∗/T 1.119 1.071 1.144 1.106 1.300 1.159 1.269 1.169
law (3) χ 6.295 5.913 4.568 5.761 4.045 5.016 2.757 4.288

Simple B/T 0.418 0.373 0.257 0.279 0.199 0.189 0.176 0.183
logarithmic A/T 0.555 0.732 0.716 0.804 0.536 0.764 0.644 0.780
law (2) t00 (yr) 21.30 91.32 611.2 763.9 496.4 11,215 4476 17,961

χ 10.18 15.41 4.338 8.094 22.74 10.28 14.59 7.228

t0 (yr) 0.0864 0.191 0.0788 0.199 0.00461 0.0560 0.00945 0.0634

Shifted B/T 0.506 0.504 0.281 0.314 0.196 0.190 0.175 0.186
logarithmic T∗/T 1.182 1.186 1.084 1.113 0.989 1.008 0.991 1.015
law (4) t00 (yr) 18.6 42.6 572.8 698.4 498.0 11,238 4510 17,935

χ 6.754 11.88 3.332 5.138 22.83 10.75 14.77 7.690

Simple t0 (yr) 4.238 10.54 123.3 114.2 375.2 7652 4904 7651
exponential T∗/T 1.015 1.049 0.536 0.813 0.166 0.0775 0.0435 0.130
decay (5) χ 1.036 3.469 2.476 1.773 2.757 2.195 1.444 1.381

Stretched t0 (yr) 4.343 10.75 25.52 57.15 1.919 40.60 3.830 52.13
exponential β 1.029 1.306 0.479 0.610 0.413 0.364 0.273 0.301
decay (6) ±0.026 ±0.037 ±0.017 ±0.026 ±0.035 ±0.020 ±0.015 ±0.014

χ 0.960 1.473 2.316 2.411 4.065 3.091 3.911 3.584

tE (yr) 4.232 11.42 38.99 93.36 1.489 24.97 1.813 24.66

Note. No particles survived.
The relative importance of spreading versus culling remains
an open question. The role of culling is not clear in our Tri-
ton simulations, because all of the ejecta were launched with
the same speed. However, spreading was definitely absent in
the massless Triton cases where Neptune’s oblateness was ne-
glected too (Figs. 12 and 13, and columns 3 and 4 of Ta-
ble 8). In these two runs, ejecta decay assumes a simple or even
compressed exponential form. In contrast, both spreading and
culling must operate in the Öpik-type simulation of near-Earth
objects by Gladman et al. (2000, Fig. 2). Nevertheless, their de-
cay curve is well fit by a simple exponential decay of the form
2−t/60 Myr ≈ exp(−t/87 Myr).

Figs. 17 and 18 of Alvarellos et al. (2002) and Figs. 5, 9,
11, and 13 of Alvarellos et al. (2005) show how the relative
velocity at which ejecta hit satellites increases as a function of
time. This too can be attributed to a combination of spreading
and culling. However, Fig. 14 of Alvarellos et al. (2005) also
reveals that rubble from Mimas does not spread far from its
orbit. Thus culling appears more important than spreading, at
least for Mimas ejecta.

It is noteworthy that our decay curves resemble the distri-
bution of crater ages on the Moon, with a steep spike near
3.9 Gyr ago corresponding to the so-called lunar cataclysm or
late heavy bombardment, followed by a more gradual decline to
the present day (e.g., Hartmann, 1972; Hartmann et al., 2000).
Indeed, Dones et al. (1999b) have suggested that the plan-
etesimals left over from the accretion of the Earth and Moon
decayed according to a simple logarithmic law like Eq. (2).
Gladman et al. (1995, 1996) and Gladman (1997) also have de-
veloped an interesting application of their decay curves to the
ages of meteorites from the Moon and Mars, as follows.

Impacts by comets and asteroids on the surfaces of the plan-
ets and of their satellites produce “primary” craters and eject
rocks at a range of velocities. Those ejecta with speeds less
than the target’s escape velocity follow suborbital trajectories
and promptly return to the surface of the parent body, pro-
ducing “secondary” impacts and associated features. However,
ejecta with somewhat higher speeds may escape from the Moon
(or another satellite), but remain in orbit about the Earth (or
primary planet) for years. Such intermediate ejecta eventually
may be expelled from the Earth–Moon system (or whatever),
or be re-accreted by the satellite or by the planet itself. We call
such impacts “poltorary,” from the Slavic word for 3/2, because
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Fig. 9. Comparison of decay laws for equatorial ejecta from massless Triton, without oblateness. Format similar to Fig. 1.

Fig. 10. Comparison of decay laws for midlatitude ejecta from massless Triton, without oblateness. Format similar to Fig. 1.
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Fig. 11. Comparison of decay laws for equatorial ejecta from massless Triton, with oblateness. Format similar to Fig. 1.

Fig. 12. Comparison of decay laws for equatorial ejecta from massive Triton, without oblateness. Format similar to Fig. 1.
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Fig. 13. Lifetime distribution for diffusion solution.
they are intermediate between primary and secondary impacts
(Dobrovolskis and Lissauer, 2004; Alvarellos et al., 2005).

In any case, ejecta with the highest speeds escape to he-
liocentric orbit, to join the population of primary projectiles.
Gladman et al. (1995, 1996) found that lunar meteorites in geo-
centric orbit lasted only a few years before crashing to Earth,
but those in heliocentric orbit took some few thousands to mil-
lions of years. Eventually some of these find their way into
earthly meteorite collections, where dating techniques can de-
termine their “4π” cosmic-ray exposure ages, interpreted as the
length of time which these stones spent in free space.

Now the distribution of these ages is equivalent to the dis-
tribution of ejecta lifetimes in simulations like ours. As dis-
cussed in Appendix B, the distribution of particle lifetimes is
just the absolute derivative of the decay curve: |(d/(dt))f (t)| =
−(d/(dt))f (t). By the same token, the decay curve f (t) is also
the cumulative distribution of particle lifetimes greater than t .
This permits a direct comparison between our decay laws and
the cosmic-ray ages of meteorites.

Plotting the 4π ages of the fourteen lunar meteorites from
Table 1 of Gladman et al. (1996) in the formats of our Fig. 1
and Figs. 3–12 gives the impression that they fit a power law
or logarithmic decay law nicely. In contrast, the correspond-
ing plot for the twelve martian meteorite ages from Table 1 of
Gladman (1997) suggests that they follow a linear or simple
exponential decay law instead. Fitting both cumulative age dis-
tributions to our decay laws (1)–(6) also seems to give plausible
values for χ and for the fit parameters; however, their uncertain-
ties are so large as to be essentially meaningless. Apparently on
the order of 100 dates are required for meaningful fits, rather
than only a dozen or so. We leave this task to the future.

5. Conclusions

Small bodies left over from the formation of the planets and
satellites litter the Solar System. Along with the debris from
more recent collisions, these bodies are removed by expulsion
from heliocentric or planetocentric orbit, as well as by col-
lisions with planets, moons, and the Sun, with characteristic
lifetimes depending on their orbits. The rate at which a given
population of objects is removed is poorly described by the sim-
ple exponential law used to describe radioactive decay. On the
contrary, the removal of comets and remnant planetesimals has
sometimes been described as “logarithmic decay” or as power
law decay.

Our work suggests that the removal of ejecta from plane-
tary satellites is best described by none of the above, but by
a “stretched exponential” decay law of the form exp(−[t/t0]β).
Under this law, the particle lifetimes increase as a fractional
power 0 < 1 − β < 1 of the elapsed time t .

Statistical analysis enables us to determine the decay para-
meters, and supports the stretched exponential model, which
suggests some sort of diffusion process. Our results may be ap-
plicable in several contexts, including the delivery of meteorites
to Earth and the bombardment histories of the planets and their
moons.
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Appendix A. Least-squares fits and uncertainties

First we require a measure of the uncertainty of the number
S(t) of particles surviving at a given elapsed time t . Let R(t)

be the number of particles removed to date by all mechanisms,
and let T ≡ S(0) be the total number of particles in the sim-
ulation. Note R + S = T at any time. Now assume that each
particle has a certain probability p(t) of having been removed
already by any means, and has the complementary probability
1−p of having survived thus far. In a large number of indepen-
dent trials, this process would lead to a binomial distribution of
removals

(A.1)

(
T

R

)
pR(1 − p)S = T !p

R

R!
(1 − p)S

S!
whose mean is Tp and whose variance is Tp(1−p) (Bevington
and Robinson, 1969). Our best estimate for the probability of
removal by time t is just p = R/T , so the variance of the R dis-
tribution (A.1) becomes R(1−R/T ) = R(T −R)/T = RS/T ,
symmetrical in R and S. Taking the square root of this variance,
we obtain the standard deviation

(A.2)σ = √
RS/T .

Note that σ is the uncertainty both in the number S of sur-
vivors and in the number R of removals to date. For small R/T ,
σ reduces to

√
R as in simple counting statistics; similarly σ

tends to
√

S for small S/T . Furthermore, R±σ and S±σ never
go negative or exceed T . Also note that σ > 1 except for the
first and last few removals, so that the uncertainty exceeds the
shot noise associated with the discrete steps in the decay curves.

Now we wish to fit straight lines of the form mx + b to
our decay curves y(x). In the present context, the indepen-
dent variable x may be t , log t , or log(1 + t/t0), while the
dependent variable y may be S, logS, or log(− ln(S/T )).
If y = S, then the uncertainty (standard deviation) in y is
σ(y) = σ(S) = √

RS/T , from Eq. (A.2). In the case y = logS,
σ(y) = σ(S)|dy/dS| = σ(S) d

dS
logS = √

RS/T log(e)/S ≈
0.4343

√
R/(ST ). When y = log | ln(S/T )|, σ(y) = σ(S)| d

dS
×

[log | ln(S/T )|]| = √
RS/T log(e)/|S ln(S/T )| ≈ 0.4343

| ln(S/T )| ×√
R/(ST ).
Finding the best-fitting straight line is equivalent to minimiz-

ing

(A.3)χ2(m,b) ≡ 1

W

∫ [mx + b − y(x)]2

σ 2(y)
dx,

the weighted integral of squared differences between the line
and the curve. Here we have normalized χ2 above by W ≡ ∫

dx
to account for the continuous nature of the data. Note that χ2

as defined above is a continuum version of the more famil-
iar discrete statistic χ2

ν , the reduced chi-square (Bevington and
Robinson, 1969). In simple terms, χ ≡ √

χ2 is a measure of
the deviation of the fit from the curve, in units of σ . For exam-
ple, a curve which always lies within three standard deviations
of the best-fitting straight line must have χ < 3 (although the
converse does not hold). A really good fit should have χ � 1.

The decay curve y(x) is piecewise constant (like a stairway),
and so is its variance σ 2(y). Then if we write yi for the value
of y between successive particle removals at x = xi and xi+1,
we can express χ2 above in terms of sums rather than as an
integral:

Wχ2(m,b) = m2Zxx + 2mbZx + b2Z

(A.4)− 2mZxy − 2bZy + Zyy,

where we define

Z ≡
∑

i

xi+1 − xi

σ 2(yi)
, Zx ≡

∑
i

x2
i+1 − x2

i

2σ 2(yi)
,

Zxx ≡
∑

i

x3
i+1 − x3

i

3σ 2(yi)
, Zy ≡

∑
i

[xi+1 − xi]yi

σ 2(yi)
,

(A.5)Zxy ≡
∑

i

[x2
i+1 − x2

i ]yi

2σ 2(yi)
, Zyy ≡

∑
i

[xi+1 − xi]y2
i

σ 2(yi)
.

Because σ 2(y) vanishes for R = 0, these sums begin only with
the first removal. In principle, they continue until the removal
of the last particle, but in practice they continue only until the
end of the simulation.

In order to minimize χ2, we first differentiate Eq. (A.4) with
respect to m and b:

(A.6)W
∂χ2

∂m
= 2mZxx + 2bZx − 2Zxy,

(A.7)W
∂χ2

∂b
= 2mZx + 2bZ − 2Zy.

Next we set the above partial derivatives equal to zero, to obtain
the equations of condition. Solving the resulting simultaneous
linear equations for m and b then gives

(A.8)m = ZZxy − ZxZy

	
and b = ZxxZy − ZxZxy

	
,

where 	 ≡ ZxxZ − Z2
x .

Finding the uncertainty in these parameters is trickier, but
from Eqs. (A.5) and (A.8) we find

σ 2(m) = σ 2
(∑

i

[
Z

x2
i+1 − x2

i

2σ 2(yi)
− Zx

xi+1 − xi

σ 2(yi)

]
yi

	

)

=
∑

i

[
Z

x2
i+1 − x2

i

2σ 2(yi)
− Zx

xi+1 − xi

σ 2(yi)

]2
σ 2(yi)

	2

(A.9)

= [
Z2σ 2(Zxy) − 2ZxZ cov+Z2

xσ
2(Zy)

]
/	2 > 0
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and

σ 2(b) = σ 2
(∑

i

[
Zxx

xi+1 − xi

σ 2(yi)
− Zx

x2
i+1 − x2

i

2σ 2(yi)

]
yi

	

)

=
∑

i

[
Zxx

xi+1 − xi

σ 2(yi)
− Zx

x2
i+1 − x2

i

2σ 2(yi)

]2
σ 2(yi)

	2

(A.10)

= [
Z2

xxσ
2(Zy) − 2ZxxZx cov+Z2

xσ
2(Zxy)

]
/	2 > 0,

where we define

σ 2(Zy) ≡
∑

i

[xi+1 − xi]2

σ 2(yi)
,

cov ≡
∑

i

[xi+1 − xi][x2
i+1 − x2

i ]
2σ 2(yi)

,

(A.11)σ 2(Zxy) ≡
∑

i

[x2
i+1 − x2

i ]2

4σ 2(yi)
.

The six sums defined in Eq. (A.5) were evaluated numer-
ically for each model fit and used in Eq. (A.8) to find m

and b. Substituting the resulting values back into Eq. (A.4) then
gave χ . The three additional sums defined in Eq. (A.11) were
also evaluated numerically and used in Eqs. (A.9) and (A.10)
to find the variances of m and b. Finally m, b, and their vari-
ances were converted back into physical parameters and their
uncertainties, as needed.

Appendix B. Lifetime distributions

In order to compare simulations with different total numbers
of particles, we need to normalize our decay curves; but first we
must distinguish between stable and unstable sub-populations.
Although the number S(t) of particles surviving until time t

vanishes as t → ∞ for each of the decay laws considered in this
paper (presumably appropriate for satellite-crossing ejecta), it is
quite possible for each population to contain a number S(∞) of
stable particles which are never removed (or in practice, survive
longer than the simulations). Then the total number of unstable
particles is S(0)−S(∞), while the number of unstable particles
surviving until time t becomes S(t) − S(∞).
Note that S(0) may diverge, as in the simple power law (1)
or in the simple logarithmic law (2). Assuming that S(0) ex-
ists, we set T ≡ S(0) and define g ≡ S(∞)/S(0) = S(∞)/T

as the fraction of stable particles in the population. We also de-
fine f (t) ≡ [S(t) − S(∞)]/S(0) = S(t)/T − g as the fraction
of all particles with lifetimes greater than t , but still finite. Then
f (∞) = 0, while f (0) = 1 −g ≡ f0 is the fraction of all unsta-
ble particles in the population.

Now the fraction of all particles with lifetimes between t and
t + dt is just f (t) − f (t + dt), so the distribution function of
particle lifetimes is the absolute derivative | d

dt
f (t)| = − d

dt
f (t).

For example, Fig. 13 graphs the lifetime distribution for the
diffusion solution (10); this curve is the absolute derivative of
the black (lowest) curve in Fig. 3. Note how t̄ |df/dt | peaks at
27/e3 ≈ 1.3443 when t = t̄/3, and declines approximately as
t−3 thereafter. Thus t̄/3 is the modal lifetime for the diffusion
solution (10). However, a unique mode does not always exist.

The lifetime distribution enables us to find other averages
of our particle lifetimes as well. The mean lifetime of all
unstable particles is just the ratio

∫ ∞
0 t | df

dt
|dt/

∫ ∞
0 | df

dt
|dt =

[−tf |∞0 + ∫ ∞
0 f dt]/[f (0)−f (∞)] = ∫ ∞

0 f dt/f0 (presuming
tf → 0 as t → ∞). Similarly, their root-mean-square (RMS)

lifetime is
√∫ ∞

0 t2| df
dt

|dt/f0 =
√∫ ∞

0 f × 2t dt/f0 (presuming

t2f → 0 as t → ∞). However, note that these averages may
not always exist either. For example, the mean lifetime for the
diffusion solution (10) is exactly 8td ≡ t̄ , but its RMS lifetime
diverges. A more robust “average” is the median, which al-
ways does exist; it is simply equal to the time when half of
the unstable particles have been removed (f (t) = f0/2). For
example, the median lifetime for the diffusion solution (10)
is ∼4.7666td ≈ 0.5958t̄ . For comparison, the time at which
f (t) = f0/e = 1/e is tE ≈ 6.2253td ≈ 0.7782t̄ .

The usual measure of the width of a distribution is its stan-
dard deviation (SD). It is a very useful fact that the square of the
SD is the difference of the squares of the RMS and mean life-
times. However, this means that the SD diverges whenever the
RMS diverges, as for the diffusion solution (10). A more robust
measure of width is the inter-quartile range (IQR). For exam-
ple, f (t) for the diffusion solution (10) falls to 3f0/4 = 3/4
when t ≈ 2.9711td ≈ 0.3714t̄ , and f (t) = f0/4 = 1/4 when
t ≈ 8.3222td ≈ 1.0403t̄ . The IQR is just the difference between
these first and third quartiles, ∼ 5.3512td ≈ 0.6689t̄ .
Table 9
Median, mean, and root-mean-square lifetimes of particles decaying according to the shifted power law (3), along with their standard deviation (SD), inter-quartile
range (IQR), and the time tE at which f (t) = 1/e

D 3 2 1 1/2 1/3

tE/t0 e1/D − 1 e1/3 − 1 ≈ 0.3956
√

e − 1 ≈ 0.6487 e − 1 ≈ 1.7183 e2 − 1 ≈ 6.3891 e3 − 1 ≈ 19.0855

Median t/t0 21/D − 1 21/3 − 1 ≈ 0.2599
√

2 − 1 ≈ 0.4142 1 3 7

Mean t/t0
1

D−1 for D > 1 1/2 1 ∞ ∞ ∞

RMS t/t0

√
2

[D−1][D−2] for D > 2 1 ∞ ∞ ∞ ∞

SD/t0
1

D−1

√
D

D−2 for D > 2
√

3/2 ≈ 0.8660 ∞ ∞ ∞ ∞
IQR/t0 41/D − [4/3]1/D 41/3 − [4/3]1/3 ≈ 0.4868 2 − √

4/3 ≈ 0.8453 8/3 ≈ 2.6667 128/9 ≈ 14.2222 1664/27 ≈ 61.6296
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Table 10
Modal, median, mean, and root-mean-square lifetimes of particles decaying according to the Kohlrausch (generalized exponential) distribution (6), along with their
standard deviation (SD) and inter-quartile range (IQR)

β ∞ 2 1 1/2 1/3

α ≡ 1/β 0 1/2 1 2 3

Modal t/t0 [1 − α]α for α < 1 1
√

1/2 ≈ 0.7071 0 0 0

Median t/t0 [ln 2]α 1
√

ln 2 ≈ 0.8326 ln 2 ≈ 0.6931 [ln 2]2 ≈ 0.4805 [ln 2]3 ≈ 0.3330

Mean t/t0 Γ (α + 1) 1
√

π/4 ≈ 0.8862 1 2 6

RMS t/t0
√

Γ (2α + 1) 1 1
√

2 ≈ 1.4142
√

24 ≈ 4.8990
√

720 ≈ 26.8328

SD/t0
√

Γ (2α + 1) − [Γ (α + 1)]2 0
√

1 − π/4 ≈ 0.4633 1
√

20 ≈ 4.4721
√

684 ≈ 26.1534

IQR/t0 [ln 4]α − [ln(4/3)]α 0
√

ln 4 − √
ln(4/3) ≈ 0.6411 ln 3 ≈ 1.0986 [ln 4]2 − [ln(4/3)]2 ≈ 1.8391 [ln 4]3 − [ln(4/3)]3 ≈ 2.6404
To illustrate further, the modal lifetime is always zero for
the power laws, but Table 9 shows the median, mean, and RMS
lifetimes of particles decaying according to the shifted power
law (3), along with their SD and IQR; tE is also included. These
statistics are tabulated analytically, as well as numerically, for
the simple cases where the power D is 3, 2, 1, 1/2, and 1/3.
Note how tE , the median lifetime, and the IQR all lengthen as D

decreases and the distribution of lifetimes |df/dt | widens. The
mean lifetime diverges for D � 1, while the RMS and SD both
diverge for D � 2. The values for D = 2 compare reasonably
well with those above for the diffusion solution (10), if t0 ≈ t̄ .

For simple exponential decay (Eq. (5)), the median lifetime
of the particles is identical to their half-life t1/2 = t0 ln 2 ≈
0.6931t0, their mean lifetime is just t0, and their RMS lifetime
is

√
2t0 ≈ 1.4142t0. In comparison, compressed exponential

decay has a narrower distribution of lifetimes, while stretched
exponential decay has a broader distribution. To illustrate, Ta-
ble 10 lists the modal, median, mean, and RMS lifetimes for
the Kohlrausch law (6), along with its SD and IQR; tE = t0 in
all cases. These statistics are tabulated analytically, as well as
numerically, for the particular cases β = ∞ and β = 2 (repre-
senting compressed exponential decay), β = 1 (corresponding
to simple exponential decay), β = 1/2 and β = 1/3 (represent-
ing stretched exponential decay). Note that the lifetime distrib-
ution |df/dt | is a Dirac delta-function δ(t − t0) for the extreme
case β = ∞ of compressed exponential decay; as β decreases,
the distribution of lifetimes widens, and its median, mean, and
RMS spread farther apart, while its SD and IQR both increase.
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